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Abstract

We consider random, complex sample covariance matﬁcx§x, whereX is a

p x N random matrix with i.i.d. entries of distributign. It has been conjectured
that both the distribution of the distance between nearest neighbor digesiva
in the bulk and that of the smallest eigenvalues become, in the Init> oo,

% — 1, the same as that identified for a complex Gaussian distributioive
prove these conjectures for a certain class of probability distributiong) 2004
Wiley Periodicals, Inc.

1 Introduction

We address here the problem of universality of local eigenvalue statistics
some complex, random sample covariance matrices. Consider large ramatam
cesﬁx*x, X being ap x N random matrix with centered i.i.d. complex entries
Xi; of distributionu with varianceo2. We will restrict ourselves to the case where
p = N + v andv is a fixed integer. We will be interested in universal features of
local properties of the spectrum in the lafyelimit, that is, features that do not
depend on the precise details of the probability distributicm C.

Before stating results about local properties of the spectrum, it is impddant
recall that for such random matrix ensembles, the global behavior opdetram
has been known for a long time. Let < --- < Ay be the ordered eigenvalues
of %x*x, and definguy = ﬁZi’\l:l 8, to be its spectral measure. Then, it is the
first fundamental result due to [26] (see also [32]) thatNagrows to infinity, u
converges to the Marchenko-Pastur law with dengjty depending only on the
variances? given by

1
— V4?2 —x if0 <X <402
(1.1) 0o (X) = 1 2m/%0? -
0 otherwise.
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Beyond this global result about the whole spectrum, one is also interested in
local properties of the spectrum. We will first consider local propertig¢samulk
of the spectrum for some particular ensembles of such random sampléaooea
matrices, that is, properties of eigenvalues in any intdevalo2(1 — €)]. Then we
will turn to properties of the lower edge of the spectrum, the so-céiéed edge
that is, properties of eigenvalues close to 0.

To study such local characteristics of the spectrum, it is convenient toedefi
the so-called local eigenvalue statistics. Given a symmetric fundtiarL > (R™),
m fixed, with compact support, a poiate [0, 402], and a scaling factopy, we
define the local eigenvalue statisti8%( f, u) by

(1.2) SH= Y fFlonGiy, — W, ... pnGip, — W),
i1,..,im

where the sum is over all distinct indices frdth ..., N}. Whenu is in the bulk
of the spectrum, the natural choice for the scaling factanis= Np, (u), while
for the bottom edge, this factor is then given QY% 2.

The computation of these local eigenvalue statistics is not an easy task in gen-
eral. In the well-known case where the distributieris Gaussian with variance
0?2 = 1 (which defines the so-called Laguerre unitary ensemble (LUE) in math-
ematical physics or the Wishart distribution in the statistical literature), the be-
havior of these local eigenvalue statistics is well understood. More phecfer
u e [e,4(1—¢)], pn = Np1(u), the following bulk asymptotics were proven by
[27]: for fixed v,

lim ES{(F) :f f(ta, ... tm) det(Ksin(ti, ), dta - - dtm,

Rm

sinz (X —Xj)
7 (Xi —Xj)

Foru = 0 andpy = 4N?, Forrester proved thieard edgeasymptotics [12]:

whereKsin(Xi, Xj) = is the so-called sine kernel.

lim ES(T) = f f(ts . o) det(Kaestt, )", dty - - i,
Rm

where theBessel kerndk defined by
3, (A% 3,265 = 3,047Hx2 3,07
2(X — Xj) ’

whereJ, is the usual Bessel function of index Our goal in this work is to extend
this result to the case where the distributjprof the entries ofX is not Gaussian
but belongs to the class introduced by [21], which we Eallssian divisible

(1.3) Kges(Xi» Xj) =

DEFINITION 1.1 A probability measurg on C is said to beGaussian divisiblef
it can be written

u=PxG
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for some probability measute such that/ x d P(x) = 0, [ IX|?d P(x) < oo, and
a complex-centered Gaussian I8wvith positive finite variance.

We will call o2 the variance of the probability distributigr; in particular, we
know that the limiting spectral measure ﬁfX*X converges to the Marchenko-
Pastur distribution with parameter

In Section 2 we give precise statements of our results and sketch thestrateg
of the proof, inspired by [21]. The proof will mainly rely on the study of the
so-called deformed Laguerre ensemble, which is the law of the random matrix
%(W + aB)*(W + aB), whereB is ap x N random matrix with i.i.d. complex
centered Gaussian entries, andis a fixed matrix with positive pairwise distinct
singular values. In Section 3, we obtain an integral representation abtredation
kernel of the deformed Laguerre ensemble. We then allow the matriv be
random and give conditions under which we can determine the limiting behavior
of local eigenvalue statistics: this is the object of Section 4. The limiting eigezvalu
statistics are then identified through a saddle point analysis (Section 5)agthe
sections deal with the same study for the hard edge.

2 Universality in the Bulk of the Spectrum and at the Hard Edge
For any integem, definek(m) = 4(m + 2).

2.1 Universality in the Bulk

THEOREMZ2.1 Assume the g N random matrix X hasi.i.d. entries with a Gauss-
ian divisible law of variancer? and thatv = p — N is fixed. Then for a given
integer m> 2, if the probability distributiornpe admits moments up to orderrk),
thenvs > 0, u € [8,40%(1 — 8)], and pn = Np,(u) in the local eigenvalue
statistics(1.2),

M) dty- - dty

(2.1) NILTOES]‘(f) :/ f(tl,...,tm)det( 2t —1)
RM

ij=1
Remark2.2. The condition ons can be weakened o= O(N*¥48).

Remark2.3. Theorem 2.1 is an integrated version of universality. Indeed, if one
considers the so-called-point correlation function®]] (see below for the defini-
tion), thenES(f) = [ f(ts, ..., tm) RY(t1, ..., tm)dts - - - dtyy. A Strong univer-
sality result would have been to state that thgoint correlation functions con-
verge a.s. adl grows to infinity to the determinant dédsin(t;, t; ))i”szl.

We can also prove that the spacing distribution, close to a pdimthe interior
of the support of Marchenko-Pastor’s law, is universal.
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Lets > 0, A € Rﬂ‘r‘, and (ty) be a sequence such that M.ty = +o0,
limn_ oo tn/N = 0. Define then the “spacing function” by
(2.2)

1 . S N
Sru(s,/\,U)=—ﬁ{1§ <SN-1 Ajp—2 < A —ul = }
2 T = Npy Np (W)

Intuitively the expectation of the spacing function is the probability, knowirag th
there exists an eigenvalue in an interVglof length 2y centered at, of finding
its nearest neighbor within a distanﬁ%. Finally, for K being the operator in
L2(0, s) with kernelKgin(t, S), we define

d2
(23) p(S) = @ det(l - K)LZ(O,S)'

THEOREM 2.4 Assume that the Gaussian divisible lamadmits moments up to
order16+e¢, € > 0. Let (s, A, u) be defined by2.2) for a point u in the bulk of
the spectrum. Then, for any=s0,

2.4) Jim ES\I(S,)L(X*X),u):f p(w)dw,
—> 00 0
where gw) is given by(2.3).

Remark2.5. We refer the reader to [21] for the proof that Theorem 2.4 is an easy
consequence of Theorem 2.1.

Another consequence of Theorem 2.1 deals with the fluctuations of theemumb
of eigenvalues of the random sample covariance matrﬁ:ﬁéx in an interval
centered around a poiatin the bulk. Define, for such a point

1 L
wn(L) = Nn{ki € [u,u+ Np(u)]}’

and letg (x) := [ Lzﬂ exp(—t?/2)dt.

PROPOSITION2.6

lim lim Py (”N(L)L < x) — $(x).

L—o0o N—>oo 1 -
/= logL

Remark2.7. The proof follows the same steps as those used by [7] in a similar
study of the Gaussian unitary ensemble. See also, for example, [34].

2.2 Convergence of the Eigenvalue Statistics at the Hard Edge
We first show the universality of the Bessel kernel athibed edge

THEOREM 2.8 Let X be a random matrix with a Gaussian divisible lavadmit-
ting moments up to order k k(m). For u = 0 and py = 4N?/52 in the local
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eigenvalue statisticgl.2)

(2.5) NIergOESL‘(f) :/ f(X1,..., Xm) deI(ngs(xi,xj))szll_[dm,
ED i=1

where Kg.(X, y) is the Bessel kernel defined(ih.3).

A second result is that the limiting distribution of the smallest eigenvalue is also
universal. We need a preliminary definition.

DEFINITION 2.9 Thegap probability of the Bessel kernial
o0 s m
(2.6) Eged(0.5) =det(l — Kgdizog = ) fo det(KgesOi, X))y [ T d%-
m=0 i=1

Let alsoE(n, J) be the probability that the random matl%»(*x has precisely
n eigenvalues in the interval J.

THEOREM 2.10 Assume that the Gaussian divisible lamadmits moments up to
any order. Then

: o%s )
(2.7) NIergoE 0, Nz ) = Eged0, 5)

where .0, s) is the gap probability of the Bessel kernel.

Remark2.11 In particular, forv = 0, the gap probability is given by
Eges(0, 5) = exp{—s},
as first noticed by Forrester [12] (see also [10]).

Remark.12 In the proof, it will become apparent that the “hard edge” is actually
not really an edge. Indeed, concentration results we will use are tliasgen-
values of Hermitian matrices around 0. Of course, this is essentially bettaise
limiting Marchenko-Pastur law is, wheﬁ — 1, the law of a squared Wigner
variable.

Remark2.13 Theorem 2.8 implies that fluctuations of the number of eigenvalues
in an interval close to 0 are the same as for the LUE. We refer to [34] foe mor
details.

At this point, we would like to point out that the limiting behavior of largest
eigenvalues could also be studied by our method. Yet it has already hexsti-in
gated: Soshnikov has obtained that the largest eigenvalue exhibitsaahifrectu-
ations provided the probability measyras symmetric and admits sub-Gaussian
tails [35]. Our approach would give the same type of results under viéfgr-d
ent hypotheses, namely, a Gaussian divisible distribution and a finite nwhber
moments.
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2.3 Sketch of the Proof of Theorems2.1to 2.10

The method used here will follow the same steps as Johansson’s pro& of th
universality for the local statistics of eigenvalues of Hermitian matrices &g [

The first part of the proof deals with the study of the deformed Laguenre
semble, which is the distribution of the random matrix

1
N(W +aB)"(W +aB),

whereB is a matrix with i.i.d. complex centered Gaussian entries and for a given
p x N matrix W. We will call H the rescaled matrikl/+~/N)W and assume that

its singular valueg/y, . .., /YN are pairwise distinct. We will denote K the

joint eigenvalue distribution induced by the deformed Laguerre ensemiblen T
one can first compute the density

dQN (Xa, ..., Xn)
dX]_‘--dXN

of the eigenvalue distributio®f. This will imply that the deformed Laguerre
ensemble induces a so-called determinantal random point field, as weplawne

The m-point correlation functions of the joint eigenvalue density induced by
the deformed Laguerre ensemble are defined by

N! / dQR (Xq, ..., XN)

(N —m)! dxg---dXxy
R

RN (X1, ..oy Xms Y) = dXmy1 - - - AXN.

N—m

They give the marginal distribution ah unordered eigenvalues. For the distri-
bution Qf, we show that these correlation functions are given by a determinant
RU(X1, - .., Xm; Y) = detKn (X, X; {f‘jzl involving a so-called correlation kernel
Kn. This defines the determinantal random point field structure. We furtitaimo
an explicit integral representation of the correlation kernel, using aroapp due
to [23] and previously used in [4] (Section 3). This integral represiemtdurther
depends orH*H only through its spectral measuﬁezi”:1 8y,. The following is
heavily technical and deals with various rewritings of the correlation ké8ex-
tion 3.4), which are necessary for the later asymptotic analysis of thelattre
kernel.

The second part of the proof deals with the case that the midtisxrandom.
Denote byQy the distribution of the spectrum of the random matrix

1

1
—X*X = —(W+aB)"(W + aB).
N W +aB (W+aB)

Here, the eigenvalue distributid@y defined by

Qn = f Q dPy(H)

Mp.N((C)
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defines a determinantal random point field for general probability med&suH )
of the random matriXd. Let R{(u, v; y(H)) be them-point correlation function
of the deformed Laguerre ensemble (for a fixed maltx and R (u, v) that of
the sample covariance matq%(X*X.

ProPOSITION2.14

RO, v) = f dPu(H)RI(U, v: y(H)).
Mp‘N((C)

This proposition and the detailed study of the deformed Laguerre enserable a
the basis of the proof. Indeed, the results we need to analyze the limitingibeha
of the correlation kernel is the following:

1 N
NZIOQ(Z—M)=flog(2—y)dp(y)+0(N‘5)
i=1

wherep is Marchenko-Pastur’s distribution agd> 0.

In Section 4, we establish the condition under which one can refftadsy a
probability measuréy satisfying the above conditions without affecting the lim-
iting behavior of local eigenvalue statistics. This will be obtained using curee
tion results for the spectral measure of large random matrices due toThéh,
in Section 5, we proceed to the saddle point analysis of the correlatioalkern
der Py.

3 Integral Representation of the Correlation Kernel
of the Defor med L aguerre Ensemble

3.1 Known Resultsfor the Deformed L aguerre Ensemble

The computation of the joint eigenvalue density of the deformed Laguefre en
semble has been obtained by Jackson, Sener, and Verbaarschoinfairix of
arbitrary dimensions [17] and Guhr and Wettig for square matrices [18]h&ve
assume that the entries Bfare Gaussian with variancer for some parameter
o that will later be chosen to be the variance of the Rw

Then, setting = s/2 = 402a2/(2N), H = W/+/N, anduﬁyp, the law of
ﬁX*X givenH, one obtains the following:

PROPOSITION3.1 The symmetrized eigenvalue probability distributiofj @ R"
has a density given by
d QR (X1, ..., Xn)

(3.1) i -

v

, . e 2\ 2\ N
vor (oo () ()G )L
V(y) 2t 2t t Yi ij=1
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where y, ..., yn stand for the positive eigenvalues of H, |, is the usual modi-
fied Bessel function, &) = [T;_; (x — ), and t= 40{a/(2N).

The joint eigenvalue distribution of the deformed Laguerre ensemblescdfer
nice interpretation in terms of squared Bessel processes conditioned, Sertke
of Doob, never to collide. LeQY be the probability measure defined in (3.1), and
P; (y, xX) the transition probability density at timeof N squared Bessel processes
X{ of dimensiond = 2(p — N + 1) conditioned, in the sense of Doob, never to
intersect pairwise, starting st.

THEOREM3.2 [24]Forany ye W} ={y e R}, y1 < --- < yn},
d QR (X1, -, Xn)
dxN

Remark3.3. P (y, X) is equivalently the transition probability of tHeprocess
obtained from arN-dimensional squared Bessel process, wheredefined to be

hx) =TT <; (X = %p)1.

(3.2)

= Pt(y’ X)~

Let
1 Yy + X YX\ /Y2
. = — — I, =
69 won=seo( 5N () ()
be the transition density of a squared Bessel process of dimensianD. Given
apointz = (z, ..., zy) With z; < - -+ < zy, define a probability measure by the
density
de Coxi))N L det(pr (X, z)N._
(34) PtT(X; y’ Z) _ t(pt(yj |))I,]—l t(pT( | J))LJ_]_‘

det(pi7(yi, Zj))m':l

This is just the probability density o squared Bessel processes startingy at
conditioned not to collide up to tim& + t and to end at this time at the point
Then it was also proven in [24] that, for any point

(3.5) Pu(y. ) = lim RT(x: y. 2).

This approach follows [21] and uses the famous Karlin-McGregor éme¢2?2].

3.2 A First Step Toward the Correlation Function
of the Deformed Laguerre Ensemble

In this section, we start from formula (3.5). We will first consider the piob
ity measure defined in (3.4). This probability will prove to define a determihanta
random point field for which we can compute the correlation kernel. This will
then be used to derive an explicit representation for the correlatiorelkefithe
deformed Laguerre ensemble by lettifiggrow to infinity.
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PROPOSITION3.4 Let R{,‘*T(xl, ..., Xm; ¥) denote the m-point correlation func-
tion of the probability measure with density functiofd ®; y, z) given by(3.4).
Then

(36) RR}’T(XL cees Xms y) = det(KL(xi s Xj))irf]jzl’
where
N
(3.7) KQW v y) = > pi(Yie WPr(v. 2)(PracO. Zp))je
k,j=1

with p (X, y) as defined ir{3.3).

PROOF OFPROPOSITION3.4: Such a result seems to have been first noticed
by [3] for some particular ensembles of random matrices. Let us firdiden
P (x, y) given by (3.4). Now sep; (X) = pt(Vi, X) andyj(X) = pr(X, z). Be-
cause of the semigroup property, one easily shows that

/¢j COY()dX = pric(Y;, o).
Ry

Thus, with corollary 1.5 in [31], for instance, time-point correlation function
of P is given by

RUT (X0, - Xmi Y) = det(K{ o6, X3 )7y

O

At this stage, we are not able to determine the limiting kekglu, v; y) of
Ky (U, v;y)asT — oo; this will be done in the next section by using an integral
representation of the kernel.

3.3 Kazakov's Type Formula

Here we will express the correlation kernel of the deformed Laguesserable
Kn(u, v; y) as a double integral over some contours in the complex plane. From
the unitary invariance of the Gaussian law, we know that the correlatiastiéum
depends only orH*H through its empirical spectral measure. “Kazakov’s for-
mula,” which was first used in [4], is the trick to explicitly bring out the spdctra
measure: Y\, 8y,

Lets = 2t = 407a?/N.
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THEOREM 3.5 The correlation kernel of the deformed Laguerre ensemble is given

by
e’s 22— w? zu3 wu?
K vy) = iﬂSZ//eXp( s )J”<2T)JV<2 s >
roy
ﬁwzw ) Y
X —
224+yi\z) w?—-22 ’

i=1

(3.8)

wherey = R* andT is a contour encircling thewj, j =1,..., N (but not the
—i/¥j, 1, ..., N), not crossing.

PrRoOOF OFTHEOREM3.5: We can first rewrite, using Cramer’s formula,

detAj (U)

N
(3.9) KU, v) =§pt(yj,U) SetA

where A ; = put(Y;, z) and Aj(v) is the matrix obtained fronA by replacing
the columnj by (pr (v, z1), ..., pr(v, zy))'. This can also be written, by multi-
linearity of the determinant, as

N
. L qu 5 _ Yi 3 detB(v)
(3.10) Kn (U, v; y)—(v> ;WVJ’”)(U) detB ’
where
B = IV<«T/y. J)exp(_ Yi +2 )
Tt 2(T +1)

andB(v) is obtained fromB by replacingT + t with T andy; with v.

The next step will be achieved in the following proposition. In this proposition
we rewrite the ratio of determinants in (3.10) and thenTlegrow to infinity to
obtain an expression for the correlation kernel of the deformed Legjeasemble.

PROPOSITION3.6

Kn(u, vy y) =
N v—u 5 Fv4 2 u%
3 2 (E)Ze'Texm—y,-)lu( v, )
(3.11) =1 S v S
e D)o (PN T2 () we
- N w aw.
e S S g Vi WY

Remarl3.7. Afterwards we will not conside(r%)”/2 any more since it will not play
a role in the asymptotic

X\ 2 "
detKn (i, Xj; Y)iNj—1 = det((;f) Kn(Xi, Xj; y))

i i,j=1
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PROOF OFPROPOSITION3.6: Because the two matrices under consideration
in (3.10) differ by thej ™ column only, we will find an integral transform expressing
this column inB(v) in terms of that ofB. This will make use of some kind of time
inversion for the semigroup with transition densiiy(y, x). Eventually we will let
T — oo to obtain the correlation kernel of the deformed Laguerre ensemble.

LEMMA 3.8

NN —u(T +1t) —zt B
012 51 (37%) er(Zr ) ooz e -
2
T (T (e
t 2T tT T+t

iR~

ProOOF. We start from formula [28, p. 108], valid for aray b:

1 ab —a? —p?
/exp( px9)x J,(ax) J, (bx)dx 2p2|”<2p2> exp( ap? )

R+
The left-hand side can be rewritten as
1 ax bx
3.13 —/ex (—xz)JU(—>J ( >x dx.
(3.13) 3 > )35

We first make the change of variabbes= iy, obtaining that (3.13) can be rewritten

as
813 = L f exp(y’)J, (a;)y)Jv<b;)y)ydy
iR

1 ay by
= gWim — /ex I ( )I,)(—) dy,
02 | D(Y) D D y ay,

iR~
where we have used in the last equality thdk) = J,(iz2) exp”'”.

For p = +/t/(T(t + T)) and making the change of variablgs= x/+/2t, we
obtain

(3.14) /eyzlv(%y)l (bpy>ydy—
iR~

i/egl (ax TA+T) )I (bX«/T(t-}-T)
2t v \/Et v \/i

iR~
Setting then
T4+t V20 oo T VA2
T JTE+T) CTHtTSTE+T)
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in (3.14), we obtain

1 X3(T +1) (T +t)/vx JVZX
(3.15) (3.14)_2—t/exp( T )Iv( T )IV(Tth)XdX’

iR~
and the left-hand side is then given by

1 NN —v(T +1) —zt
3.16 — 1, == 7 L
@10 () ew( =) oozt )
which finishes the proof of the lemma. g

We come back to the proof of Proposition 3.6. Then developing the determinant
along thej™ column, we obtain the representation

) -
detB(v) _ 1 / %exp(u (T +t)>|v<ﬁu(T +t))detB(u)
iR-

uduy,
detB 2T tT detB

where the matri>8(u) has been obtained frol by changingy; to u. We can now
pass to the limiT — oo, thanks to the dominated convergence theorem and to the
fact (proven in [24]) thaf |; -j (X —Xj) is a minimal harmonic function for squared
Bessel processes on the Weyl chamidee= {x; < --- < Xy}. We obtain that

detB(u) u —y,

i#]
This then gives that

detB(v)  (—1)" u? uy/v u>—vy { u ’
e = o ] oo (s ()T = )

iR- i#]

We then changa — iw using thatl,(z2) = J,(i2) exp”iT” and then changeto 3;
we thus obtain the result. O

We can now turn to the proof of Theorem 3.5. The sum gyesccurring in
Proposition 3.6 can be written as a residue integral. This is Kazakov's faf2gi,
which seems to have been used first by Brézin and Hikami [4, 5]. Welaign
make the change of variables— iz. O

3.4 Rewriting the Kernel

The formula for the correlation kernel, obtained in the preceding subseidion
not yet satisfactory. Indeed, we will see that the critical points forzthend w-
integrals are equal, and thus the terpiqul® — z2) is singular at the critical points.

In order to remove this singularity, we will first find a new expression thidlt w
allow us to use the well-known behavior of Bessel functions of largenaegs.
This is the object of the next proposition and claim. We will then remove the
singularity.
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Let H! be the modified Bessel function of the third kind, also known as the
Hankel function.

PrROPOSITION3.9 The correlation kernel is also given by

2 .2
-1 / dw/dzexp(Z v )Hj(zw—ﬁ)
dims? S S
r

iA+R
XJU(ZZﬁ)ﬁw§+M (ﬂ)”w—l—z
s 2+y \z) w-z

i=1

Kn(u, vy y) =

whereI" encircles thetiy;, j = 1,..., N, and A is large enough so that =
i A 4+ R does not cros§.

PROOF. We begin with Proposition 3.6. The main step is the following lemma:
LEmMmA 3.10

(3.17) /exp(——)J <2wsf) Y[ Tw? + yowdw =

i#]

1 w? 2w v\
Efexp(—?)Hvl( . )w [ [w®+ yowduw.
R

i#]

PrRooF. The proof of this formula is given in [40, p. 211] in the case- 0 and
can easily be extended to arbitrary40, exercise 15]. O

We now come back to the proof of Proposition 3.9. The use of formula (3.17)
can now be explained: we can move the contour fiRrto y := R + i A with
A > 0 thanks to Cauchy’s formula. We then chodstarge enough so that, when
applying Kazakov’s formula, the contollr (symmetric around the origin) for the
z-integral encircles thg;,i = 1,..., N, and does not crosg . At this point, we
do not yet make the change of variables— z as in Section 3.3.

Next, we rewrite

wz _1 wtiz w-—iz
w2+22 di\w-—iz w+iz

and obtain in an obvious way a rewriting of the correlation kekglu, v; y) =
K& U, v; y) — K2 (u, v; y) whereK?, is given by

1
Ky = 8|27182 / dw/dz

iA+R ir

2 2 N 2 , v ;
xexp( zZ—w )Hj(zwﬁ)l,,(ZZ\/G)H w2+ Vi (E) w—{—fz
s s s J1-Z2+y\z) w-iz
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andK? is the kernel

2
Ky = 8|2rrsz / dw/dz

i1A+R ir
5 exp<_zz - wz) Hj(zwﬁ> (22[) 1—[ w22+ Yi (g)” w — |z
S S LY w+iz
Then we can modify the contolirso that it encircles they; and joins—oco=i 7 for
some positive;. We then changiz to z, changing I" to I'. Using the symmetries

when making the change of variables> —z, we can see tha(}, = —K%, and
we can then conside¢} only. This proves Proposition 3.9. O

We will now use the asymptotic expansion of Bessel functions of large argu
ments.

Claim3.1

1
Kn(u, vy y) = <1+ O(N1/4))

_l v _im .
% gt (Kin@ vy + CD'e TGy, v y)
with
2 _ .2 i 9
Kain :f/dzdwexp(z w +2|z;)f 2|zﬁ>
(3.18) r |
X(E)”w—l—z 1 1—[w2+yi
z) w-zJwyzi  2+y’
2 .2 H 1
Kan =f/dzdwexp<z z +2”:ﬁ+2'zﬁ>
(3.19) r

(w)”w—z 1 lﬁ[wz—i—yi

X _ 9

z w+zﬂﬁizl 22+

whererl is a new contour that has been cut on a small neighborhood of the negative
real axis. We noteg andx; = X, the two points where we cut. They will be

fixed later.

The proof of this claim is postponed to the end of Section 5.

From now on, we will only consider the kerni€l, v, since the analysis fdf,
is exactly the same. In this paragraph, we are going to remove the sing%%_:gity
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FIGURE 3.1. Preliminary contours.

Set
(3.20)

_ 1 14l
&’N_Zi(ﬁ—ﬁ)/dzfdw( l+e
r .y

ox 22 —w? - 2ziJu+2wi o\ w+z1
% =
P s Jwyzz

N A
(2(2 +w) — 25(z+ w) Z T y))/l(zz s — 2i ﬁ)

4@)) w?+y (w)"
Z2+y \z

et

and
(3.21)

ZW—\@XO) w2ty (w)’

R, -1 s =

1n(Xo) = 2l(f—f)f +e >EX§+yi <Xo)
xexp( —w —2x0|[+2w|f> w+X 1

VWX Xo
N A
(2(x0 +w) — 25(Xo + w) Z Y —2 ﬁ) .

S

(w2 + Y (X5 + i)
PrRoOPOSITION3.11 We find that the kernel Ky can be rewritten

(3.22) Kin(u, v3y) = S n + Ry y(X0) — Ry (X0).

Remark3.12 The two contourg™ andy in (3.20) can now cross each other since
we have removed the singularity-.
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PROOF OFPROPOSITION3.11: In the expression of the kerrt€] n, we make
the change of variables— Bz, w — Bw, for 8 real close to 1. We then obtain
for the two “half-contoursT andI'; definingI” and for

22—w2—22iu+2iwv>

E(z w) = exp< S

the following:

1 N2ty witz
d dwE
/z/ w (Z’w)w—zil_[ZZeri«/wﬁ

[ =1
Brwl+y w+z
(3.23) /dzfdw—E(ﬂz Bw )]_[ Ry o
w2+yi w—+Zz
(3.24) /x, dz/dw—E(ﬂz Bw )]‘[ v Tz
= R]_,N,J.

Consider the kerneR;  ; defined in (3.24). This kernel admits a derivative
with respect t8 taken at8 = 1, which, as we will see later, can be analyzed by a
saddle point method. We set

d
(3.25) RlN—_(R1N0+ Rin1| -
dsg g=1

Then in (3.23) we make the change of varialdes— bz, w — bw, with b
very close to 1 and differentiate with respecbtdr his modifies the contour but by
Cauchy’s theorem we can deform backt@ndy. This gives

(3.26) — Kin(u,v3y) =
N 2 v
we+Yy [w w+2Zz 1
Rl’N+{/r/i11 2+ (?) Vivisw - "

x<—2w2+22 2|fz+2|fw+252< z >)dwdz}.

24y Z+y
Using that

K1 N 2iz\ fw\'w+z 1 N w2+,
— = dzdw|— ) = E(z, w),
0./u // z ( s)(z) w—z./wﬁﬂ 2+ (2 w)

ry
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(3.26) can be rewritten

(3.27) Kin+ (—VU+Vv)—=Kyn =

[
1 /Hw +yiw+z(ﬂ)vex (22—w2—22iﬁ+2wiﬁ>
{3/ i IRVATIV/ AN g S

Vi .
(2(z+w) 25(w+z)2(w2+y)(z2+y) 2|ﬁ)dwdz}+R1,N.

Solving the ordinary differential equation (3.27) then gives (3.22). aBse we
have now removed the singularity the two contolirsindy, can cross each other.
Proposition 3.11 is now proven. O

We will here write the kerne§, \ in a way more suitable for the saddle point
analysis. The same rewriting can be done for the kerRels.

Define

Gw,zy) =

ﬂiziyy (z)wf+jz (g)eXp(Ziﬁws—Ziﬁﬂ

and
(3.28) hn(2) = Lo exp )
| e A )

PROPOSITION3.13 The kernel $y can be written

SN :f/gm(z, w) eXP<GN’ﬁ(Z)_SGN’ﬁ(W)>
r vy

x(w) \/_th(z)dwdz

whereGy 4(2) = 22 — 2izu—s Y|\, log(Z% + ;) and

(3.29)

G'N’ﬁ(z) - G’N’ﬁ(w) .\ CAB/N,ﬁ(w)

Z—w V4

(3.30) on(Z, w) =
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PROOF OFPROPOSITION3.13: The exponential term intervening in the corre-
lation kernelS,  defined in (3.20) (and in the kernel ) can be written

(3.31) G2 A v
exp{s7 (=G (@) + Gn 5 @) [n(@).
Now defining
. 2 N Y .
(3.32) ogn(zw) = > <Z+w —(z+ w)sigl: W2+ y)(Z2+Y) 'ﬁ) )

it is easily checked that, as a direct consequence of the method usedria gfet
1

w—2"
G/N’ﬁ(z) — G’N’ﬁ(w) .\ G’N’ﬁ(w)
Z—w VA ’

On(Z w) = gn(z w) =

4 Concentration of Measure

In this section, we prove some results that will be needed to localize the critical
points in the exponential terms of the preceding kernels, when the nkhigxan-
dom. To this end, we need to prove the uniform convergence)iof the random
term [, (w? — y;) towards its a.s. limit. To obtain this uniform convergence, we
will need to replacePy by a new probability distribution: the aim of this section
is to prove that such a replacement does not affect the limiting behaviocalf lo
eigenvalue statistics.

4.1 Preliminaries

We choose the principal branch on the complex plane cut aRndor the
logarithm branch. Provided we choogdar from the eigenvalues, we can write

N

(4.1) [Jw?+y) =exp / log(w? + y)dun(y)
i=1

with uy the spectral measure 6f*H.

From now on, we will consider a random matkit and assume tha, the law
of the entries ofV, satisfies

(4.2) /zdP(z) =0, /|zz*|d P(2) = o0? = %.

Such a condition on the variance Bfis not restrictive. It can indeed be achieved
by rescaling the entries of the random matKx In particular, conditions (4.2)
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ensure convergence of the spectral measuté’dfl to the Marchenko-Pastur law
with density

4.3) p0) = 222X,

T oJX

Condition (4.2) also implies that the limiting spectral measurﬁ ®f X is then
given by Marchenko-Pastur’s law with parametg4 4 a2; we denotep = p, the
density of this probability measure. We also rdsets/2 = a?/N.

The idea is then, roughly speaking, to replace the random terms intenianing
the correlation kernel by their almost sure limit expressed in terms of Makche
Pastur’s distribution. This will be done using concentration results we will no
establish. We have made the assumptions to ensure the convergelipge tofthe
law p of a squared Wigner random variable. Yet we need to prove some nmifor
convergence of (4.1) towarq%1 log—((iz)? — y)dp(y). This will now be proven
with the results of [14] on concentration of measure. For convenienteiny that
[T, (w?+y) = H(iw) for H(w) =[], (yi —w?), we will prove concentration
results forF, and then just a rotation in the complex plane will be enough.

Let us recall the results of Guionnet-Zeitouni and those of Bai, which ill b
the basis for what follows.

PrROPOSITION4.1 ([14]) Let Y be an Nx M matrix, N < M, with independent
entries Y, of law R;. Set Ry = [Tees [y Pair Z =Y Y%,

If the R, are supported in a compact set K, for any function f so tha) g=
f (x?) is convex and has finite Lipschitz nofigy,, for anys > 8o(N + M) =
AK|ymlglh /(N + M),

M+ N
PN,M(ITFN(f(Z)) —Etrn(f (D)) >3 ; ) <

(6 — 50)2(N + M)?
Zexp(_ 41K 2ig]? )

wheretry denotes the normalized trace.

Remarlk4.2 Infact,gis to be seen as a function of the+ N) x (p+ N) Hermitian
matrix RW(Y)
0vY
)

From the discussion before corollary 1.8 in [14], this is the Lipschitz ndrthis
function that we have to consider. In particulatdifhas entries bounded by 1, then
RW? has a spectral radius of ordsr+ p.

PROPOSITION4.3 ([1]) Let Y be an Nx M matrix, N < M, with independent
entries X of law R ;. We assume the entries are centered of varidnaed admit
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moments up to ordet. Let Ry be the empirical spectral distribution (ﬁY*Y;
then we have

IEFn — Fonlloo = O(N ™),

To ensure thaf|Fp)n — Fil| = O(N~>4®), whereF; = F is the limiting
Marchenko-Pastur distribution function, one needs to assumé (N*¥4®). This
is the reason for the restriction we have made»on

4.2 Concentration of Measure
Set

(4.4) Qr, = {z:IM(2) € [1. Rl Re(2) < R}.

LetA(H) = (A1(H), ..., An(H)) be the spectrum ofi*H. We here prove con-
centration results assuming that the entég are random variables of laf . In
particular, they do not need to be identically distributed, yet of the samencaria
We also establish concentration results for an arbitrary parameter

P
= —_— >
v N“_rflo N — L
THEOREM 4.4 Assume the entries of H admit moments up to order g where q is

strictly greater tharB and let R n > 0 be given. There exisG< & < 1 — % and

a probability measure with compact support on, M(C), denoted @y, such that
for any symmetric function LW(RL\:) and fora = -2+ q(% —-&),

— 1
(4.5) ‘ / FO(H)dPy(H) — / F((H)dPN(H)| < WIIFIIOO
Mp,n (C) Mp,N(C)
and
1 1
(4.6) sup Ntrlog—(zz— M)—/ log— (2 — y)dp(y)| < CN7%,
ZeQRy 0

Py almost surely.

PrRoOOF. In view of Proposition 4.1, we first need to replag by a measure
with compact support. This is the object of the following lemma.

LEMMA 4.5 Let F € L>®°(RN) be a symmetric function. There exists a probability
measure B, on My n(C) with support in[—Ly, LnINP such that

2

N
(4.7) ‘ / FO(H)dPy(H) — f F(K(H))dPLN(H)SVIIFIIOOL—q.

N
Mp,n (C) Mp,n(C)
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PROOF. Set L
L
dR = Z—LX[*LN»LN]d Pk
ik
with ZJ'L"‘. a normalization constant, artf = [1/_; [Ty, Z-. ForF € L, one
can easily show that

=

(4.8)‘ / F(M)dPy(M)dM — / F(M)ydP_ ,(M)dM

Mp.Nn(C) Mp N (C)

1
IF lloo(1 — Zh>(1+ ?),

N

and
1-ZK=P@ELl<j<pl<k<Nst|Wi >Ly)

E|W: |9 N

(4.9) < Npsup= L < SR
j.k LN LN
Ly will be fixed afterwards. 0
Now set
1

(410) DN — QR,n N NZZ

Note thattDy < C N2 for some constan® depending only orR andy.
Set

(4.11)  An(f,8) = {H € My(C) : ‘%tr f,(H H*)—/ f,(x)dp (X)

> 5]

and Ay (8) = Nep, An(fz. 8) where f,(x) = log—(z2 — x).

To use concentration results, from the remark following Proposition 4.1, we
need to control the Lipschitz norm ¢f — log — (2% — y?) := f,(y?). Herey
is to be seen as an eigenvalueR¥W(H) that is of spectral radius smaller than
Ln+/N, since we have truncated the entriestbf Then, combining Proposition
4.1 and Proposition 4.3, we obtain that fdi; = | f|Lp + || Fll~, there exist some
constant€; andC, such that if we set

CiLIf,

(4.12) 8o(N) = + Cal Flup N,

where this time f |y is the Lipschitz norm ofy +— log—(z* — y), then for all
z € An(8), we have

_ (6—=060)24N2

25] <4e cUIF

(4.13) Py [

%tr f,(HH™) —/ f,(x)dp (X)

Then, provided Inz?) > §, we can prove as in [21] that
(4.14) [fli =1 flip + IFllo < C(Lnv/N +log(Lnv/N)).
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Otherwise for Injz) > § andz close to the imaginary axis, we can bound this norm
thanks to the bounded variation theorem, to find that

(4.15) |fl, < C©)LnvN.
To sum up, one needs

(1) %NE < land

(2) SN <1,
SetLy = N3¢,

(2) is obviously satisfied, and (1) is true fgr> 9 provided¢ is small enough.
Eventually, one shows thaz € Qg ,, one hasio(N) < CN~*, and

1
oL

S H) - / £,00dp (%)

N%

> N‘E] <Cce®©

for some nonnegative constant C.

We can now estimate the probability of the complement of the eAgiiN —%)
using thatp ~ y N:

(4.16) PL [AN(NTH)C] < C N2 exp{—C N%}.
Set
_ 1
(4.17) dPN(H) = ————d P (AN(NTH)).
Ln(AN(NTE))

Then Theorem 4.4 is proven fare Dy, and we can extend it to atle Qr, by a
straightforward approximation argument. a

From now on we replace Py by d Py and define for any integed andC > 0

(4.18) Yg, =

1 -
:yem; sup /Iog—(zz—y)dpw)—NZIog—aZ—yi)}scN S}.

2eQRy

Let us recall that, by (4.6)Py(sp(H*H) € Yg,) = 1 forallN > 1, where “sp”
stands for “spectrum.”

5 Saddle Point for the Bulk Correlation Functionsunder Py

In this section, we show that und®, a saddle point analysis of the local
eigenvalue statistics can be achieved.
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5.1 Preliminaries

In this subsection we consider the kert@&ly as written in Proposition 3.13
(the other kernels will be analyzed similarly). We can now use the contientra
results established in the preceding section to say that, uniformiaManying in a
compact set,

1N
N > log(Z + ¥i)
i—1

is well approximated by its nonrandom limit, given in terms of Marchenko-Pastu
law. Because the variance of the entrieéhas been set equal b the spectral
measure oH*H converges to Marchenko-Pastur's law with density

«/_\/
and recall thas = a?/N.

Now letuy be a sequence converginguo= ./u,, a point in the bulk. Here,
we introducauy becausel = ug + % andv = ug + % vary around the point in the
bulk ug, which can be first ignored in the search of saddle points.

Define

(5.1) Gu(2) = 2 — 2uiz— aZ/ log(z% + x)dp (x),

wherep is the Marchenko-Pastur distribution with parametér= %1 + a%. Here

éu(z) is the almost sure limit of the exponential te@h,u(z) = 72 — 2izu —
sZiN:l log(z% + v;). First from (4.18) and Cauchy’s formula, we know there exists
a constanC such that for allN > 1, u in a compact seK, andz € Qg/22,, Pn
a.s.,

IGN (@) — Gy (@) < CINT* + Ju—un)),
Gy (@ — G (@] < CIN™F + [u — uy)).
This will enable us to replacey by its limit in the integrand.

(5.2)

Comparison with the Exponential Term for the Hermitian Case

Let u be a fixed pointu € [v1+ 4a28, v/1+ 4a%(1 — §p)], 0 < 8o < 1.
Introduce

Gn, _u(i2) = —Gnu(2),
Gru(@) = 2 — 2uz+ @2 / log(y — 2)dun(y),

(5.3) Gu(®) =7 —2uz+ azf log(y — Z%)dp(y),

72

(5.4) Fu(2) = z-uz, az/ log(z — t)o (t)dt,
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o being the underlying density function of Wigner’s semicircle law.

The reason for introducing these functions is that the eigenvalues vs&eon
have asymptotically the same law as that of the squares of the eigenvalues of a
Hermitian matrix. To be more precise, we will show that the exponential term is of
the same form as the Johansson-Wigner ensemble.

Then we find from (5.3), (5.4), and the definition@ando that
(5.5) G, (2 = 2F,(2),
whereF, is the exponential term for the Hermitian case studied in [21]. We now
make a saddle point fog; , noticing that the exponential term can be written
GN,u(w) = —2Fn _u(iw) for Fy being the same exponential term as [21]. It will

thus be enough to prove the results Fay. Therefore we will refer to Johansson’s
saddle point analysis of the kernel of Hermitian Brownian motion [21].

Critical Points

Set./u = +/1+ 4a?cost.. Since we will constantly refer to Johansson’s re-
sults [21], we will do a saddle point fdfy, and then a rotation of 7 will give the
result. Johansson’s computations show that the critical pointEuftatre given by
the equation

Fi@ = (z— V) + 2822~ VZ2 - 1) =

and the critical point&. of G, are just%zc, wherez; are those of. Setting

1 1
(5.6) Z=S(X) = (X + )
one obtains that the critical points fé(, are given byz, = S(£x.) with
(5.7) Xe = v 1+ 4a2exp=if. = 20 exp=io..

5.2 Contoursfor an Arbitrary Point in the Bulk

Let us nota, = +/1 + 4a2 andr,e™ % the critical points defined in (5.6)—(5.7).
Considers > 0,¢ > 0 small enough. We now define the contours we will use
in the saddle point analysis. Let the contoursZtwe defined by

i = %S(roe”—t), — o0 <t<0
Ty (t) = %S(roe“), A<t<A-—c¢
Ti(t) = %S(roe“), A—e<t<A+e
FZ(t)Z%S(roeit), Ad+e<t<m—36;

1 .
g () =S ™™ —1), 00>12>0,
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FIGURE5.1. Contours for the bulk.

L7t =-TIf .
We cut this contour so that it does not crd&s, as in Section 3.4. Then l&f be

such that IniS(towe)) = n andt = Re(S(towe)). 1 Will be fixed afterwards. One
then defines the contour far, in the case R& (wc¢(Uo))) > lim,_o Re(F(in)):

1
ﬁﬁ)=7@+ﬂx O<t<n,
1
ﬁﬁ)=7&wu, th<t<l-—eg,
1
ﬁﬁ)=7&wm, l-e<t<1l+e,

1
va () = ~S(twe),  1+e<t<-+oo,

and
(5-8) Vj_(t) = _Vj+(t)~

Or if Re(x?) > 0, we define the contowr asy* = %(wc +it), t € RT, and
Yy~ = %(wC —it),t € R*. This is the modification of the contour needed to obtain
the asymptotics of the correlation kernel in the whole bulk of the spectruen (se
Appendix A for an explanation).

Finally, setl’ = Z_J-Szl(l“j+ — Ty andy = Y7 (%" — 7). A plot of the
contours is given by Figure 5.1.
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Define

LN(r)J//(E) W2 oz w)
S z) Jwyz
y3 I's

G -G
X eXp( N.ve (2 N"/E(w)>hN(Z)dw dz

S

LEMMA 5.1 We can find R 7, €, ands positive such that the contoupg™ andI';
belong to some neighborhood Zf included inQg,/22,, and such thayN > 1,
u, v in a compact set KPy a.s.,

(5.9) ISy — Ln(r)| < CeeN
for some constant & 0.

PrROOF. The proof is exactly the same as the one given by Johansson [21L].

5.3 Saddle Point Analysis
By (5.2), the critical pointgy for Fy satisfy
(5.10) |25 — 25 < C(N™F + |u — un).

One can then deform the contoyrs(respectivelyI's) into contoursyy (respec-
tively, I'y) within aC? distance at most (N~ + |u — uy|) leaving the endpoints
unchanged and such tha§(0)* = Wy, . andT'y(0)* = 2 .. We can also choose
these contours such that, fof < e,

1 . 1
N = =Sy cexpit) and yy (1) = =S(zy (1+1).
Using the contours defined in the preceding subsection, we then obtaisthg-a
dard saddle point argument
b,d
Ly _
21 Np(u)

VN SNo(U) /D /2R ¢
~d

A A w ’
<on(ie B (522

R
y ((F5%) ) (v) (O exp{s™(Gn.y(Zc) - G yi(@Ric))}

=61 @R 0261 i 0 () 02

whereb andd stand for+ according to the contou?gt (respectively,y?ft) along
which the integration is performed.

(5.11)
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As already observed, the two critical points are the same, defgtetd one
can check from (3.30) and the definitions of the contdy§sandyy that

N2 ) =on(Z ) =0,
on(Z.2) =Gy 4(Z), on(Z. %
(72) @ = bS (W)l  (TR) (@ = @B 4 S (wh).

Q

BecauseSy () = Gy, s5(g), we can consider just the joint contribution of
equal critical points. That is, we consider orly;* andL ™. We obtain that

(5-12) Sl() (”O(%N))

N

_ ~b é ~b _é 50 b | sb
s (52) St Gt 8
7, SNo(u) s wh,/2b

Now, for w. = z. = w™ with positive real and imaginary parts, for instance,
the large exponential terms cancel each other, and we only have to exdmine
contribution ofhy. Define therh as

(5.13) h(w) = shn(w).

1
Npo (u)(uv)Y/

Then, taking (5.10) into account and assumjng 936 we have for some constant
C

1 ++ 5+ _ —£
(5.14) 2inN,o(u)LN (1) +h(Z)| =C(u—un|+N).

We have the same kind of formula fag~.
We have that

1/2
s15  CEEUTrgh))
' a2p(u)

So at the end, adding the contributiongf and ofw; (which gives the conjugate),
we obtain

=1(wo im).

1 5+ A _ SanTT
(5.16) Np @) (=h(zf) +h(z)) =-2 —— exp(—wot}.
Thus
1 sint 1
FaNp) 2N T T exp{‘w“}(“o(ﬁ»-

We can then drop the constant tewrg by multilinearity of the determinant insofar
as we are interested in correlation functions.
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Remarks.2 We would like to insist here on the fact that this particular form of the
exponential term also justifies the use of a saddle point method. Indeszkrco
tration results are not strong enough simply to replateg —(z% — y)dun(y) by

its almost sure limit; yet because at the critical points the large exponential terms
exp(S‘léN,ﬁ(Zc)) and eX[QS_léNW/;(ﬁ)C)) cancel each other, one just needs to
know where these critical points lie.

5.4 Asymptotic of the Correlation Kernel under Py

Admitting for a while that the contribution from the kernig| , is negligible,
we obtain that

1 -1 _ 1 1sin(zt)
Np<u>8ins<uv>l/4K“'l_(1+O(m>)§ Tt

and the similarly rescalell y » gives the same contribution.

Now, adding all these contributions, we finally get
1 T sin(rr )
5.17) |————K , —
( )‘Np(U) N(UN uNJFN,O(U)) T

5.5 Proof of Claim 3.1 and of R'LN Being Negligible

< C(N~“*+|u—un|)+Ce N,

We prove in this section the claim stated at the beginning of Section 3.4 and
that the kerneR;  is negligible.

Bessel's Approximatioe will next use the well-known asymptotic behavior
of Bessel functions [30]. First, for large, one has

o= Z oo 1)) ov0( 1)

This asymptotic expansion is valid as long agdm > 0. We can also make use
of the well-known behavior of the Bessel functidy

d(2) = \/gcos(z - % - %) (1+ O(%))

which is valid for|arg(z)| < & — 8.

Remark5.3. There might be some problem when the contbuwrrossesR _, yet
we will see that the contribution from this part of the contour can be neglecte

Now, we choose the contour for tlzeintegral given as before except that on
the top side the contour crosses the imaginary axis to encircle thgy,, | =
1, ..., N. Then we can apply both the approximations of Bessel functions: indeed,
the two curvesy andT" remain far away from 0, and is located in the positive
imaginary half-plane.

We can first analyze the-integral (3.17) by an a priori saddle point analysis:
the large exponential term is still a function of the spectral meaﬁ@syi. Thus
we can replaced ! by its approximation with an error of at most of ordemMi*/4.



UNIVERSALITY OF LOCAL SPECTRAL STATISTICS 29

Next, wheny has been moved back o = i A + t, keeping an error of at most
1/NY4 we can choosé to follow the same curve as in the preceding saddle
point analysis except that it crosses the imaginary axis at a distancdeafsatl
fromi,/y1. Then we obtain a similar error. The sole point is the justification of
Bessel's approximation close to the negative real axis. Yet we knovipg, phat

the contribution foiz describing the interval—ro, — i€, —ro +i€) := (Xg, X1) and

y (we can consider the contribution of such contours since they do nss)ci®
exponentially small. Thus we can replace the confouny two contourd™; and

', obtained fromlI" by making a cut around the negative real axis. We obtain an
expression of the correlation kernel with an error of ordeéN¥* as long as we
move the two remaining contours far away from 0.

The Kernel R . The kernel (3.24) admits a derivative with respecgtthat
can be analyzed by a saddle point approximation: its contribution will bedafror
exp(—coN) for some positiveeg. Once more, this is because the relevant critical
points of the exponential terms do not lie close to the real axis, sifka point in
the bulk of the spectrum. We can thus deforra= i A + R to the contour defined
for the saddle point analysis, thatjs= i (w; + it), t € R. We then use the same
arguments as for the analysisSfy .

The Contribution ofxp, X1). It is clear that, as the curueg, X;) lies far away
from w¢, one can deform the contour= A + it so that it is as in the saddle point
analysis. Then the contribution from this part of the contour is negligible.

So far we have obtained universality of correlation functions utiigrwhich
we state in the following proposition:

PROPOSITIONS.4 Uniformly for § and § varying in a compactsefg, 0 < £ < %
such that

1 i f sinm(t —
(5-18) ‘Np(u)K”(u+ Np(w " Np<u>) B

Py almost surely.

tj)' <CN*
nE :

6 Proof of Universality of L ocal Eigenvalue Statistics

We will only give the proof of weak universality of correlation functioss)ce
the proof of the spacing distribution can easily be deduced from [21dalRénat
we considerf € L*°(R™) with compact support and th&f( f) is defined by1.2)
with py = Np(u). Given an integem, we setdt™ = []™, dt. We also set, for
t e Randu(t) = u+t/Np(u),

(6.1) lim ESH(F) =

lim ff(t t #Rmut u(ty))dt™
\ 1""’m)(Np(u))m n(uta), ..., u(tm))dt™.
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PRoOOF OFTHEOREM2.1: We have seen that

f(tl,...,tm)

Npm R, um)dt” =

/ d%&ﬂ/pMnﬂH»%ﬁﬂﬂmN
RN

Mp.N(©)

wherepn (X, -) is the density function of the eigenvaluesﬁb(*x knowing H.
Then, using Theorem 4.4 and the remark following it,

‘ / dPN(H)/pN(X,Y(H))gl?(f)[x]dXN
RN

Mp. N (©C)
(6.2) _ /'dﬁMHy/pMKWH»Sanww
Mp.n () RY

< CN"|[ f | N>PE~0 = o(2)
for p > 4(m+ 2) and& small enough.

Moreover,
f dﬁN(H)pr(x,y(H))sﬁ‘(f)[x]:
Mp.N(C) Rﬂ
(6.3) / dﬁN(H)/f(tl,...,tm)
Mp.N(C) RT

m

1
X det(W Kn(u(t), uctj); y(H))) dt™.

ij=1
Since f is compactly supported, all thgs vary in a compact set, so that we can
use Proposition 5.4. We can then pass to the IMit> oo, thus proving Theorem
2.1. O

Remark6.1 The class of universality of the sine kernel should also include the
sample covariance matrices with parametet 1. In this case, the main difficulty

is probably the analysis of Bessel functions of large degree and largenpter. We
have not found the suitable integral representation of Bessel fundbaashieve

the analysis of correlation functions.

7 Correlation Functionsfor theHard Edge

We first show that the correlation kernel of the deformed Laguerrersble
can be conveniently rewritten in terms of the Bessel kernel.
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THEOREM 7.1 The correlation kernel of the deformed Laguerre ensemble is also
given by

(7.1) KnU? 02 y) =

4 vim 2Zu 2wv
——exp—— dwd Kg[ —, —
dirs3 Xp2 /wawZ B(s’ s)

r vy

Nw2—yi (w)’ w? — 22 N v
2l e )

i=1

where the contoul’, symmetric aroun@, encircles thety;’s, y is the imaginary
axis oriented positivel) — +o00, 0 — —o0, and Kg is the kernel defined by

x1,001,(y) = YL, 1,0
X2 — y? :
Remark7.2 The kernelKg is related to the Bessel kerni€l, . by

(7.2) Kg(X,y) =

2vim ) _
exp< 2 )KB(ZII’OU, 12rov) = Kées((rou)Z’ (rov)z).

PrOOF OFTHEOREM7.1: The first step is the following lemma:
LEMMA 7.3 Let Kg(X, y) be the kernel defined i{7.2). Then
d

(7.3) BLBYL(BX) = b

[B2Ke(BX, BY)]-
PrROOF, One has

1 / /
B*Ke(BX, BY) = W[IBXIV(IBX)IV(IB)’) — BY LBV L(BX)].

Thus
%[ﬂZKB(ﬂx, BY)]
= ﬁ(xz—l_yz){ﬂxlﬁ(ﬂX)lv(ﬁy) — BYL(BY) 1, (BX)
+ B2 (B, (BY) — B2Y21, (BY) 1 (BX)
(7.4)

+ B2y L (B (BY) — B2y (BX)1,(BY))

B2, (BX) + BX1,(BX)]1,(BY)

1
poe =yl
— [BA21(BY) + BYLL(BY)]1.(BX) .
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Now, using the fact thal, is a solution of the differential equation [8]
(7.5) 2w (2) + 7w (2) — (Z2 +v)w(2) =

one obtains from (7.4) that

B*Ke(BX, BY)] = BAx% — yAH1,(Bx)1,(BY)],

dB [ B(X2 —y?) [

which is the desired result. O

We come back to the proof of Theorem 7.1 and rewrite the kernel in aeliffer
way. We consider the kernel

Rn(u, vy y) =

wz 2w 2zu w2 — 22\ (w)" w? — Vi
[fd")dzwz_22|”( < )IV(T)exp( . )(;) 1_[ 7y
I iR+ =1

We first make the change of variables> 8z, w — Bw, and define

w\’ w? —
(7.6) h(w,2) = (;) E Ty
obtaining
2 132 2 _
RN(u,v;y)=//d dz e exp< )
r’ iRt
xh(ﬂw,ﬂz)lv(zﬂwv) <2,Bzu>

wZ /32 2 /3222
=//dwdzw2_z2 exp( )

o iR+

x h(Bw, B2)B ﬂﬁ KB</32’”—” ﬂ@)

Now, thanks to Cauchy’s theorem, for théntegral we can mové& back tor".
We then integrate ove#, varying fromato 1 (@ > 0, which we’ll make tend to 0).
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Thus,

1
/ Ru(U, v: y)dg =

fdﬁf/dwdz

r iRt

d 2wy 2zu B2w? — B27?
< (7505 ) e (FE)

We can integrate this by parts oy@iobtaining
1-a)Rn(u,v;y) =

2wy 2zu\ wz w2 — 722
(7.7) /dz/dwKB( o )wz = exp< S )h(w,z)
fdz/dwa Ke 2wv ZZu wzZ
s Jw2—2

w2 Z2
X exp( )h(aw, az)

2wv _2zu wZ
/dz/dw/dﬁﬂ KB<ﬁT’ﬂ?>m
2,2 _ p252
y exp(%)h(ﬁw,ﬁ@
2wv 27U wZ
—/dz/ dw/dﬂﬂZKB<ﬁT’ﬂ?)ﬂm
N

(w? — 22)y;
(7.10) x 28 (w2 2o )
; (B2w? — ) (B?Z2 — Vi)

2.2 22
x exp(%)h(ﬁw,ﬁz).

Now, make the change of variablgg — z, Bw — w, in the reverse order to
obtain that

—N(Bw. BB

(7.8)

(7.9)

(7.9 + (7.7 = 0, (7.8 = aR3,
whereR? is a well-defined integral independentafand that (7.10) is precisely
the kernel we want.

We can now pass to the limit — 0. Now, we know that the Bessel kernel
has only an artificial singularity at¢ = y; thus the contours can cross and we can
also extend the contour farto a contour symmetric with respect to the imaginary
axis. Up to a multiplication by a factc%, we may replac& with two axes parallel
to the real axis and replagewith the imaginary axis oriented positively from 0 to
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400 and from 0 to—o0, since the integrand is an odd functiomof Theorem 7.1
is now proven. O

8 Saddle Point Analysisfor theHard Edge

We are now able to proceed to the study of the laxgasymptotic of the ker-
nel. We will use the results of the saddle point analysis made for the bulle sinc
the exponential term is of the same nature. We keep the hypotlr%s;is%1 and
the notations = a?/N. All along this section, we considerP y (H) defined in
Theorem 4.4 instead afPy (H) as before.

SetGn(2) = 22+ & YL log(— (22 — y)) and define

N

(8.1) InEZ w)=1-5) w7 yi
i1

— Y2 = V)

and

1 1 1 1
2 =-(vV1+4a?— —)==(20 — — ).
(8:2) ‘o 2< e 1+4a2) 2(“ 20)
LEmMMA 8.1 Forr, given by(8.2) and setting

xa? x'a?
= R vV = s
N2r, N2r,

one has

lim — dz/dw KB(ZAJ %)wzg\,(z w)

N—o00 jTS

(8.3) « elsHGNw)~Gn @)

2 2 2
= r5Kged X7, X9).

PrRoOOF OFLEMMA 8.1: This will be the object of the rest of this section. The
core of the argument will again be a saddle point method.

8.1 Contoursfor the Saddle Point Analysis

Because we have chosen= g; for some fixedx, the argument of Bessel
functions is of order 1. This means that the Bessel functions do notilvatetito
the leading exponential term to be considered in the saddle point analysis.

Thus, the exponential term to be considered for the equation for the kritica
points is given by

(8.4) Go(2) := Z% + slog(—(Z? — y))dp(y) = 2Fo(2),
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FIGURE 8.1. Contours for the hard edge.

whereF, is the exponential term for the Johansson ensemble [21] defined in (5.4).
This is actually the specificatiam = O in the exponential term of the bulk kernel,
and recall that the negative sign has been introduced to have a defiritéHoy

The critical points are known: they are given hy= +ir,, where we again
will be able to use concentration of measure’s results proven in Sectioe
choose the same contours (unrotated) as [21] for eigenvalues of Hermaizices
close to 0. This is exactly where the interpretation of eigenvalues of thendedfo
Laguerre ensemble as squares of eigenvalues of Hermitian matrices pidgs a

Now we will just indicate what changes from the saddle point analysis of Sec
tion 5: the contours are chosen so that they correspond to the critictd pleiined
above, and they are oriented in the same way for the contours fanereas the
orientation is inverse for the contour ferlying in the negative half-plane.

8.2 Contribution of gy at the Critical Points

We now turn to the functiogy, defined in (8.1), at the critical points.

Recall the link betweefsy andFy observed for the bulk: the exponential term
is now exactly twice that of the Hermitian case.

One has first

ON (W, we) = gN(—we, we) = N (We, —we) = On(—we, —we).

Consider now

N
" 2y| 222
Gy@=2-s ( — )
N ,; Z-%)? (Z-w)?
N

_ 4yi 2
_Z_SZ((ZZ—M)2 * (zz—yi))'

i=1

(8.5)
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In the largeN-limit, using the results of concentration of measure and the fact that
the critical points satisfy the equation

N

, 27Zs
(8.6) GN(Z)=22+ZZZ v =0,
i—1 & Y
we find
18, 1 Fo1
8.7 lim = = d
(8.7) NL@ON;ZZ_% /zz_y p(y),
- 0

where the Marchenko-Pastur distributipris the law of the square of a Wigner
variable, still denoted. From (8.1), (8.5), and (8.7), we thus obtain that

1 "
(88) gN (:twc, :l:wc) — ZGN(wC)

8.3 Saddle Point Asymptotics

We can now perform the saddle point analysis of the correlation kegnigl a
[21]. We obtain that

Gy (@) () OTR) () _ b
VRO ©)/~Gr @ (TR (O
whereb stands for+=. We now obtain the exponential convergence towards the
signed sum of the four contributions depending on the different combirsatd

+2z. and+w.: here the contribution of opposite critical points has to be taken into
account.

Of course, forw = z = +ir, we obtain the Bessel kernel:

(8.10) exp(%) Kg(iroU, irov) = 2Kped((row)?, (rov)?)

Since thew-integrand is an odd function af, forz= —w = ir, we get a second
Bessel kernel taking into account the orientation for the contours. ez oases
(z=w = —irgandz = —w = —ir,) are similar.

Eventually, by the same saddle point argument as for the bulk, using (@ ),
and (8.10), we obtain that

a‘ xa? \? [ x'a?\?
lim ——K , ;
N—oo 4N2r2 N (NZrO) <2Nro) y
(8.11) 2 <02X2 o2x'? )

o
= |lim K , :
ne anz M Nz anz Y

(8.9)

v 2 L2
- KBes(x » X )

whereKg,. is the limiting kernel defined in (1.3).
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Note that the error term in the asymptotic expansion is of ordefN. as for
the bulk correlation under the same conditions of moments. O

Remark8.2 Such a computation has been madexfe# x’, but it can be extended
to the equality case. One just needs to take the derivatixé at x of the right-
hand side of (7.3) to obtain a similar expressionKar(x, X; y). The scaling is the
same and the limit is, of course, the derivativecatf y — Kg.(X, Y).

To sum up, we have obtained, as for the bulk, the following result:
PrROPOSITIONS.3 Let the x vary in a compact s, L]; then, Py almost surely,

o2 Xj o2 onz ; 1 L
(8.12) 4N2KN<4N2’ 4N2; Y) = KBes(Xi’Xj)(1+ O(TN) + O(W))

9 Universality of Eigenvalue Statistics at the Hard Edge

9.1 Proof of Theorem 2.8

Here we give only a sketch of the proof. For the scaling faptpe= 4N?/02,
one has

‘ f dPN(H>/pN(x,y(H))Sﬁ(f)[x]dx“

Mp.n (©) RN
(9.1) [ dPuc) [ oucc ) SU D
Mp.n (©) RY

< CN"||f [lcN2PE~9 = o(1)
for p > 4(m + 2) and¢ small enough. And

9.2)
/ dﬂ(H)pr(x, Y(H)SO(HIX] =
Mp,N((C) R!\r‘

_ at at a* m
dPn(H f(ty,...,tn) det K Xi, Xi:
/ . )f @ m <4N2r§ N<4N2r§ I 4N?rg J y))i,j:l

Mp.n(C) RM
m

Becausef has compact suppolt, all x; belong toK; thus we have
at a*x,  a%x m m
det K , L —det(K:.(x,x)) - .| <
(4N2rg N<4N2rg 4NZr2 y))i,,-zl (Kbes®- %)) j_y

K
C(N—S + N) +Ce N,

(9.3)
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which holdsPy a.s. We can then pass to the limit— oo.

9.2 Fluctuations of the Smallest Eigenvalues: Proof of Theorem 2.10

Let E(O, s) be the probability that no eigenvalue éfx*x lies in the interval
[0, s]. Then, by the inclusion-exclusion formula, one hasdfee 02/4 = a*/4r2

(9.4) E(O, z—sz) - f dPy(H) detl] — Kn)2(0as/no)-
Mp.N (©)
We next develop the Fredholm determinant and obtain
(9.5) . o i
E(o, ﬁ—i) = [ ey S0 /0 det k(s %: Iy [ ] dx.
Mp.n (C) m=0 i=1

We can first replac®y by Py as in (9.1). Given an integevl, form < M,
using Proposition 8.3,

s m

2
/N de'[(Kr\I(Xi,Xj;y))ir,njzll_[dxi
0 i=1

s o X X m

Lj=lij=1

s U - m 1 S
= /(; det(KBes(Xi7 )(J'))i,j:lgdxi <1+ o(ﬁ) * O(m)

Then we eventually obtain, given a fixed> 0, that

s 1 o aXi oX m

m>M
s 1 o aXp oX M
J, det(ﬁ““(mvy»i,jﬂ

for M large enough, since the sum ovmaris actually finite for fixedN and the
determinant intervening in the right-hand side of (9.7) can be comparedttoftha
the Bessel kernel for which the result is known. Adding (9.6), (9.9, the error
term due to the replacement Bf; by Py,

<

<€

|de1(| — KN) 205 — detl — KBes)LZ(o,s)|

11
<Y —C—+2+N*
m<M mt v N

(9.8) < (c(N—f + Tlﬁ)) + 2e.
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Thus

(9.9) N'L”go det(l — Kn) iz = detll — Kged2s)

for sin a compact sek, Py almost surely.

We can then use the well-known fluctuation results obtained in [37] for the
smallest particle of a determinantal random point field with correlation keeirg
the Bessel kernel.

Appendix: Extension of the Domain of Univer sality

In this subsection, we will prove that Johansson’s proof of univigysaf local
eigenvalue statistics for Hermitian matrices [21] can be extended to the whkle bu
of the spectrum, giving in turn the same interval of universality for our mode

The model studied in [21] deals with local eigenvalue statistics of random Her
mitian matrices. Let{y be the space dfl x N hermitian matrices.

DEFINITION A.1 A Johansson-type random matrix M &fy is a random matrix
that can be writtetM = (1/4+/N)M, where the entries ofl satisfy the follow-
ing conditions: The entriek?lij, i > j, are independent random variables with a
Gaussian divisible law with parameters ando; fori > j and of parameter§

ando for P;.

We noteo?, the variance of the Gaussian divisible laywandi, < --- < Ay,
the ordered eigenvalues & . In particular, the limiting spectral measure N,
UN = ﬁ Zi’\'zl 85, is given by the semicircle law defined by the density

. 1
G(X) = V 4o? — x? 1[72(7,217]()()-

2mwo?

PROPOSITIONA.2 Let u € [8, 402 — 8] be a point in the bulk of the spectrum.
Then, withony = N& (u) in (1.2),

lim ES{(f) = f f(ty, ..., tm) det(Ksin(ti, tj))TJ.:l E dt,.

RmM

SKETCH OF PROOE We refer to Johansson’s paper [21] and only indicate the
main changes from his proof. The correlation kernel that corresporttie corre-
lation kernel of the deformed Laguerre ensemble is given by the followdndple
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integral in the complex plane:

(Al) Kn(u,vy) =

e x Xi
(1— elvwi j
(2In)2t(u—v)/ / dZdw © )l_[Z—Xj

I iR+A

2 2 N :
XeXp{w 2wv2t : +2uz}<w+z—v—t2(w y>)lj(z y))
i - J] - J)

for some arbitranA.
Here we assume that = %1 so that, in view of [21],

lim — Sy =0

whereog. is the semicircle law with densﬂﬁt«/ — X2, The only step in Johans-
son’s proof that is no longer valid is the choice of the contetdior the w-integral.
We have to find a contour in the complex plane satisfying the saddle pointeequ
ments. We consider = +/1 + 4a2 cog6,), for somed, € [, = — §], wheres > 0
is given.

We recall that the exponential terfy (w) to be analyzed satisfies

w—u 11
Fi(w) == 2 +/_1w——ydaSC(y)

whereu = +/1+ 4a2cosh,. Let us assume c@g > 0 so that the critical points
(proof of lemma 3.2 in [21]w. and w, have positive real part. We note, =
a’ + ib. For thez-integral, we keep the same contour as chosen in [21]. Consider
the contour

yt) :=a +it, teR.
We then have to show that this contour can be chosen to complete a saddle poin
analysis of the kernel. Then, alopg

dRy(we +it) 1 L do(y) .
Re(T) =—(b+1) (; - /1m> = G(t)(b+1).

We restrict ourselves here tosuch thato +t > 5 so that concentration results
hold. The functiorG(t) is a monotonic function af that anneals d@t= +b. This

is enough to obtain that R&,) achieves its maximum at; andw. along this part
of the contoury .

We then have to show that the contribution fremwhen|b 4 t| < 5 is negli-
gible. Using thatw, is a critical point and the expression @+ t)G(t) as above,
one obtains that
nb?
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This is enough to obtain that, fgrsmall enough angt| < 7,
Re(F@ +it)) — ReF(w¢) < —Co

for some positivec,. In the last step, we use that @ga’ + it)) < Re(F@ +
in)) + n?. The rest of the proof then follows exactly the same steps as in [Z1].
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