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Abstract

We consider random, complex sample covariance matrices1
N X∗X, whereX is a

p× N random matrix with i.i.d. entries of distributionµ. It has been conjectured
that both the distribution of the distance between nearest neighbor eigenvalues
in the bulk and that of the smallest eigenvalues become, in the limitN → ∞,
p
N → 1, the same as that identified for a complex Gaussian distributionµ. We
prove these conjectures for a certain class of probability distributionsµ. c© 2004
Wiley Periodicals, Inc.

1 Introduction

We address here the problem of universality of local eigenvalue statisticsfor
some complex, random sample covariance matrices. Consider large randommatri-
ces 1

N X∗X, X being ap × N random matrix with centered i.i.d. complex entries
Xi j of distributionµ with varianceσ 2. We will restrict ourselves to the case where
p = N + ν andν is a fixed integer. We will be interested in universal features of
local properties of the spectrum in the largeN limit, that is, features that do not
depend on the precise details of the probability distributionµ onC.

Before stating results about local properties of the spectrum, it is importantto
recall that for such random matrix ensembles, the global behavior of the spectrum
has been known for a long time. Letλ1 ≤ · · · ≤ λN be the ordered eigenvalues
of 1

N X∗X, and defineµN = 1
N

∑N
i=1 δλi to be its spectral measure. Then, it is the

first fundamental result due to [26] (see also [32]) that, asN grows to infinity,µN

converges to the Marchenko-Pastur law with densityρσ , depending only on the
varianceσ 2 given by

(1.1) ρσ (x) =







1

2π
√

xσ 2

√

4σ 2 − x if 0 ≤ x ≤ 4σ 2,

0 otherwise.
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Beyond this global result about the whole spectrum, one is also interested in
local properties of the spectrum. We will first consider local properties inthebulk
of the spectrum for some particular ensembles of such random sample covariance
matrices, that is, properties of eigenvalues in any interval[ǫ,4σ 2(1− ǫ)]. Then we
will turn to properties of the lower edge of the spectrum, the so-calledhard edge,
that is, properties of eigenvalues close to 0.

To study such local characteristics of the spectrum, it is convenient to define
the so-called local eigenvalue statistics. Given a symmetric functionf ∈ L∞(Rm),
m fixed, with compact support, a pointu ∈ [0,4σ 2], and a scaling factorρN , we
define the local eigenvalue statisticsSm

N( f,u) by

(1.2) Sm
N( f ) =

∑

i1,...,im

f (ρN(λi1 − u), . . . , ρN(λim − u)),

where the sum is over all distinct indices from{1, . . . , N}. Whenu is in the bulk
of the spectrum, the natural choice for the scaling factor isρN = Nρσ (u), while
for the bottom edge, this factor is then given by 4N2/σ 2.

The computation of these local eigenvalue statistics is not an easy task in gen-
eral. In the well-known case where the distributionµ is Gaussian with variance
σ 2 = 1 (which defines the so-called Laguerre unitary ensemble (LUE) in math-
ematical physics or the Wishart distribution in the statistical literature), the be-
havior of these local eigenvalue statistics is well understood. More precisely, for
u ∈ [ǫ,4(1 − ǫ)], ρN = Nρ1(u), the following bulk asymptotics were proven by
[27]: for fixedν,

lim
N→∞

ESm
N( f ) =

∫

Rm

f (t1, . . . , tm)det
(

Ksin(ti , tj )
)m

i, j =1 dt1 · · · dtm,

whereKsin(xi , xj ) = sinπ(xi −xj )

π(xi −xj )
is the so-called sine kernel.

Foru = 0 andρN = 4N2, Forrester proved thehard edgeasymptotics [12]:

lim
N→∞

ESm
N( f ) =

∫

Rm

f (t1, . . . , tm)det
(

KBes(ti , tj )
)m

i, j =1 dt1 · · · dtm,

where theBessel kernelis defined by

(1.3) K ν
Bes(xi , xj ) =

Jν(x
1/2
i )x1/2

j Jν+1(x
1/2
j )− Jν(x

1/2
j )x1/2

i Jν+1(x
1/2
i )

2(xi − xj )
,

whereJν is the usual Bessel function of indexν. Our goal in this work is to extend
this result to the case where the distributionµ of the entries ofX is not Gaussian
but belongs to the class introduced by [21], which we callGaussian divisible.

DEFINITION 1.1 A probability measureµ on C is said to beGaussian divisibleif
it can be written

µ = P ⋆ G
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for some probability measureP such that
∫

x d P(x) = 0,
∫

|x|2 d P(x) < ∞, and
a complex-centered Gaussian lawG with positive finite variance.

We will call σ 2 the variance of the probability distributionµ; in particular, we
know that the limiting spectral measure of1

N X∗X converges to the Marchenko-
Pastur distribution with parameterσ .

In Section 2 we give precise statements of our results and sketch the strategy
of the proof, inspired by [21]. The proof will mainly rely on the study of the
so-called deformed Laguerre ensemble, which is the law of the random matrix
1
N (W + aB)∗(W + aB), whereB is a p × N random matrix with i.i.d. complex
centered Gaussian entries, andW is a fixed matrix with positive pairwise distinct
singular values. In Section 3, we obtain an integral representation of the correlation
kernel of the deformed Laguerre ensemble. We then allow the matrixW to be
random and give conditions under which we can determine the limiting behavior
of local eigenvalue statistics: this is the object of Section 4. The limiting eigenvalue
statistics are then identified through a saddle point analysis (Section 5). Thelast
sections deal with the same study for the hard edge.

2 Universality in the Bulk of the Spectrum and at the Hard Edge

For any integerm, definek(m) = 4(m + 2).

2.1 Universality in the Bulk

THEOREM2.1 Assume the p× N random matrix X has i.i.d. entries with a Gauss-
ian divisible law of varianceσ 2 and thatν = p − N is fixed. Then for a given
integer m> 2, if the probability distributionµ admits moments up to order k(m),
then∀δ > 0, u ∈ [δ,4σ 2(1 − δ)], and ρN = Nρσ (u) in the local eigenvalue
statistics(1.2),

(2.1) lim
N→∞

ESm
N( f ) =

∫

Rm

f (t1, . . . , tm)det

(

sin(π(ti − tj ))

π(ti − tj )

)m

i, j =1

dt1 · · · dtm.

Remark2.2. The condition onν can be weakened toν = O(N43/48).

Remark2.3. Theorem 2.1 is an integrated version of universality. Indeed, if one
considers the so-calledm-point correlation functionsRm

N (see below for the defini-
tion), thenESm

N( f ) =
∫

f (t1, . . . , tm)Rm
N(t1, . . . , tm)dt1 · · · dtm. A strong univer-

sality result would have been to state that them-point correlation functions con-
verge a.s. asN grows to infinity to the determinant det(Ksin(ti , tj ))

m
i, j =1.

We can also prove that the spacing distribution, close to a pointu in the interior
of the support of Marchenko-Pastor’s law, is universal.
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Let s ≥ 0, λ ∈ R
N
+ , and(tN) be a sequence such that limN→∞ tN = +∞,

limN→∞ tN/N = 0. Define then the “spacing function” by
(2.2)

SN(s, λ,u) = 1

2tN
♯

{

1 ≤ j ≤ N − 1, λj +1 − λj ≤ s

Nρ(u)
, |λj − u| ≤ tN

Nρ(u)

}

.

Intuitively the expectation of the spacing function is the probability, knowing that
there exists an eigenvalue in an intervalIN of length 2tN centered atu, of finding
its nearest neighbor within a distancesNρ(u) . Finally, for K being the operator in

L2(0, s) with kernelKsin(t, s), we define

(2.3) p(s) = d2

ds2
det(I − K )L2(0,s).

THEOREM 2.4 Assume that the Gaussian divisible lawµ admits moments up to
order16+ ǫ, ǫ > 0. Let SN(s, λ,u) be defined by(2.2) for a point u in the bulk of
the spectrum. Then, for any s≥ 0,

(2.4) lim
N→∞

ESN(s, λ(X
∗X),u) =

∫ s

0
p(w)dw,

where p(w) is given by(2.3).

Remark2.5. We refer the reader to [21] for the proof that Theorem 2.4 is an easy
consequence of Theorem 2.1.

Another consequence of Theorem 2.1 deals with the fluctuations of the number
of eigenvalues of the random sample covariance matrices1

N X∗X in an interval
centered around a pointu in the bulk. Define, for such a pointu,

νN(L) = 1

N
♯

{

λi ∈
[

u,u + L

Nρ(u)

]}

,

and letφ(x) :=
∫ x
−∞

1√
2π

exp(−t2/2)dt.

PROPOSITION2.6

lim
L→∞

lim
N→∞

PN





νN(L)− L
√

1
π2 log L

≤ x



 = φ(x).

Remark2.7. The proof follows the same steps as those used by [7] in a similar
study of the Gaussian unitary ensemble. See also, for example, [34].

2.2 Convergence of the Eigenvalue Statistics at the Hard Edge

We first show the universality of the Bessel kernel at thehard edge.

THEOREM 2.8 Let X be a random matrix with a Gaussian divisible lawµ admit-
ting moments up to order k> k(m). For u = 0 andρN = 4N2/σ 2 in the local
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eigenvalue statistics(1.2)

(2.5) lim
N→∞

ESm
N( f ) =

∫

R
m
+

f (x1, . . . , xm)det(K ν
Bes(xi , xj ))

m
i, j =1

m
∏

i=1

dxi ,

where KνBes(x, y) is the Bessel kernel defined in(1.3).

A second result is that the limiting distribution of the smallest eigenvalue is also
universal. We need a preliminary definition.

DEFINITION 2.9 Thegap probability of the Bessel kernelis

(2.6) Eν
Bes(0, s) = det(I − K ν

Bes)L2(0,s) =
∞
∑

m=0

∫ s

0
det

(

K ν
Bes(xi , xj )

)m

i, j =1

m
∏

i=1

dxi .

Let alsoE(n, J) be the probability that the random matrix1
N X∗X has precisely

n eigenvalues in the interval J.

THEOREM 2.10 Assume that the Gaussian divisible lawµ admits moments up to
any order. Then

(2.7) lim
N→∞

E

(

0,
σ 2s

4N2

)

= Eν
Bes(0, s)

where EνBes(0, s) is the gap probability of the Bessel kernel.

Remark2.11. In particular, forν = 0, the gap probability is given by

E0
Bes(0, s) = exp{−s},

as first noticed by Forrester [12] (see also [10]).

Remark2.12. In the proof, it will become apparent that the “hard edge” is actually
not really an edge. Indeed, concentration results we will use are those of eigen-
values of Hermitian matrices around 0. Of course, this is essentially becausethe
limiting Marchenko-Pastur law is, whenpN → 1, the law of a squared Wigner
variable.

Remark2.13. Theorem 2.8 implies that fluctuations of the number of eigenvalues
in an interval close to 0 are the same as for the LUE. We refer to [34] for more
details.

At this point, we would like to point out that the limiting behavior of largest
eigenvalues could also be studied by our method. Yet it has already been investi-
gated: Soshnikov has obtained that the largest eigenvalue exhibits universal fluctu-
ations provided the probability measureµ is symmetric and admits sub-Gaussian
tails [35]. Our approach would give the same type of results under very differ-
ent hypotheses, namely, a Gaussian divisible distribution and a finite numberof
moments.
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2.3 Sketch of the Proof of Theorems 2.1 to 2.10

The method used here will follow the same steps as Johansson’s proof of the
universality for the local statistics of eigenvalues of Hermitian matrices (see [21]).

The first part of the proof deals with the study of the deformed Laguerreen-
semble, which is the distribution of the random matrix

1

N
(W + aB)∗(W + aB),

whereB is a matrix with i.i.d. complex centered Gaussian entries and for a given
p × N matrix W. We will call H the rescaled matrix(1/

√
N)W and assume that

its singular values
√

y1, . . . ,
√

yN are pairwise distinct. We will denote byQH
N the

joint eigenvalue distribution induced by the deformed Laguerre ensemble. Then
one can first compute the density

d QH
N (x1, . . . , xN)

dx1 · · · dxN

of the eigenvalue distributionQH
N . This will imply that the deformed Laguerre

ensemble induces a so-called determinantal random point field, as we now explain.
The m-point correlation functions of the joint eigenvalue density induced by

the deformed Laguerre ensemble are defined by

Rm
N(x1, . . . , xm; y) = N!

(N − m)!

∫

RN−m

d QH
N (x1, . . . , xN)

dx1 · · · dxN
dxm+1 · · · dxN .

They give the marginal distribution ofm unordered eigenvalues. For the distri-
bution QH

N , we show that these correlation functions are given by a determinant
Rm

N(x1, . . . , xm; y) = detKN(xi , xj )
m
i, j =1 involving a so-called correlation kernel

KN . This defines the determinantal random point field structure. We further obtain
an explicit integral representation of the correlation kernel, using an approach due
to [23] and previously used in [4] (Section 3). This integral representation further
depends onH ∗H only through its spectral measure1N

∑N
i=1 δyi . The following is

heavily technical and deals with various rewritings of the correlation kernel (Sec-
tion 3.4), which are necessary for the later asymptotic analysis of the correlation
kernel.

The second part of the proof deals with the case that the matrixH is random.
Denote byQN the distribution of the spectrum of the random matrix

1

N
X∗X = 1

N
(W + aB)∗(W + aB).

Here, the eigenvalue distributionQN defined by

QN =
∫

Mp,N (C)

QH
N d PN(H)
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defines a determinantal random point field for general probability measure PN(H)
of the random matrixH . Let Rm

N(u, v; y(H)) be them-point correlation function
of the deformed Laguerre ensemble (for a fixed matrixH ), and Rm

N(u, v) that of
the sample covariance matrix1N X∗X.

PROPOSITION2.14

Rm
N(u, v) =

∫

Mp,N (C)

d PN(H)R
m
N(u, v; y(H)).

This proposition and the detailed study of the deformed Laguerre ensemble are
the basis of the proof. Indeed, the results we need to analyze the limiting behavior
of the correlation kernel is the following:

1

N

N
∑

i=1

log(z − yi ) =
∫

log(z − y)dρ(y)+ o(N−ξ )

whereρ is Marchenko-Pastur’s distribution andξ > 0.
In Section 4, we establish the condition under which one can replacePN by a

probability measurēPN satisfying the above conditions without affecting the lim-
iting behavior of local eigenvalue statistics. This will be obtained using concentra-
tion results for the spectral measure of large random matrices due to [14].Then,
in Section 5, we proceed to the saddle point analysis of the correlation kernel un-
der P̄N .

3 Integral Representation of the Correlation Kernel
of the Deformed Laguerre Ensemble

3.1 Known Results for the Deformed Laguerre Ensemble

The computation of the joint eigenvalue density of the deformed Laguerre en-
semble has been obtained by Jackson, Sener, and Verbaarschot fora matrix of
arbitrary dimensions [17] and Guhr and Wettig for square matrices [13]. We here
assume that the entries ofB are Gaussian with variance 4σ 2

1 for some parameter
σ 2

1 that will later be chosen to be the variance of the lawP.

Then, settingt = s/2 = 4σ 2
1 a2/(2N), H = W/

√
N, andµH

N,p, the law of
1
N X∗X given H , one obtains the following:

PROPOSITION3.1 The symmetrized eigenvalue probability distribution QH
N onR

N
+

has a density given by

(3.1)
d QH

N (x1, . . . , xN)

dxN
=

V(x)

V(y)
det

(

1

2t
exp

(

− yi + xj

2t

)

Iν

(√
yi xj

t

)(

xj

yi

)
ν
2
)N

i, j =1

,
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where y1, . . . , yN stand for the positive eigenvalues of H∗H, Iν is the usual modi-
fied Bessel function, V(x) =

∏

i< j (xi − xj ), and t = 4σ 2
1 a2/(2N).

The joint eigenvalue distribution of the deformed Laguerre ensemble offers a
nice interpretation in terms of squared Bessel processes conditioned, in the sense
of Doob, never to collide. LetQH

N be the probability measure defined in (3.1), and
Pt(y, x) the transition probability density at timet of N squared Bessel processes
Xi

t of dimensiond = 2(p − N + 1) conditioned, in the sense of Doob, never to
intersect pairwise, starting atyi .

THEOREM 3.2 [24]For any y∈ WN
+ = {y ∈ R

N
+ , y1 < · · · < yN},

(3.2)
d QH

N (x1, . . . , xN)

dxN
= Pt(y, x).

Remark3.3. Pt(y, x) is equivalently the transition probability of theh-process
obtained from anN-dimensional squared Bessel process, whereh is defined to be
h(x) = |

∏

i< j (xi − xj )|.

Let

(3.3) pt(x, y) = 1

2t
exp

(

− y + x

2t

)

Iν

(√
yx

t

)

( y

x

)
ν
2

be the transition density of a squared Bessel process of dimension 2(ν + 1). Given
a pointz = (z1, . . . , zN) with z1 < · · · < zN , define a probability measure by the
density

(3.4) PT
t (x; y, z) =

det(pt(yj , xi ))
N
i, j =1 det(pT (xi , zj ))

N
i, j =1

det(pt+T (yi , zj ))
N
i, j =1

.

This is just the probability density ofN squared Bessel processes starting aty
conditioned not to collide up to timeT + t and to end at this time at the pointz.
Then it was also proven in [24] that, for any pointz,

(3.5) Pt(y, x) = lim
T→∞

PT
t (x; y, z).

This approach follows [21] and uses the famous Karlin-McGregor theorem [22].

3.2 A First Step Toward the Correlation Function
of the Deformed Laguerre Ensemble

In this section, we start from formula (3.5). We will first consider the probabil-
ity measure defined in (3.4). This probability will prove to define a determinantal
random point field for which we can compute the correlation kernel. This will
then be used to derive an explicit representation for the correlation kernel of the
deformed Laguerre ensemble by lettingT grow to infinity.



UNIVERSALITY OF LOCAL SPECTRAL STATISTICS 9

PROPOSITION3.4 Let Rm,T
N (x1, . . . , xm; y) denote the m-point correlation func-

tion of the probability measure with density function PT
t (x; y, z) given by(3.4).

Then

(3.6) Rm,T
N (x1, . . . , xm; y) = det

(

K T
N(xi , xj )

)m

i, j =1,

where

(3.7) K T
N(u, v; y) =

N
∑

k, j =1

pt(yk,u)pT (v, zj )(pT+t(yl , zp))
−1
j,k

with pt(x, y) as defined in(3.3).

PROOF OFPROPOSITION3.4: Such a result seems to have been first noticed
by [3] for some particular ensembles of random matrices. Let us first consider
PT

t (x, y) given by (3.4). Now setφi (x) = pt(yi , x) andψj (x) = pT (x, zj ). Be-
cause of the semigroup property, one easily shows that

∫

R+

φj (x)ψk(x)dx = pT+t(yj , zk).

Thus, with corollary 1.5 in [31], for instance, them-point correlation function
of PT

t is given by

Rm,T
N (x1, . . . , xm; y) = det

(

K T
N(xi , xj ; y)

)m

i, j =1.

�

At this stage, we are not able to determine the limiting kernelKN(u, v; y) of
K T

N(u, v; y) asT → ∞; this will be done in the next section by using an integral
representation of the kernel.

3.3 Kazakov’s Type Formula

Here we will express the correlation kernel of the deformed Laguerre ensemble
KN(u, v; y) as a double integral over some contours in the complex plane. From
the unitary invariance of the Gaussian law, we know that the correlation function
depends only onH ∗H through its empirical spectral measure. “Kazakov’s for-
mula,” which was first used in [4], is the trick to explicitly bring out the spectral
measure1

N

∑N
i=1 δyi .

Let s = 2t = 4σ 2
1 a2/N.
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THEOREM 3.5 The correlation kernel of the deformed Laguerre ensemble is given
by

KN(u, v; y) = e
v−u

s

iπs2

∫

Ŵ

∫

γ

exp

(

z2 − w2

s

)

Jν

(

2
zu

1
2

s

)

Jν

(

2
wv

1
2

s

)

×
N
∏

i=1

w2 + yi

z2 + yi

(

w

z

)ν −2zw

w2 − z2
dz dw,

(3.8)

whereγ = R
+ andŴ is a contour encircling the i

√
yj , j = 1, . . . , N (but not the

−i
√

yj , 1, . . . , N), not crossingγ .

PROOF OFTHEOREM 3.5: We can first rewrite, using Cramer’s formula,

(3.9) K T
N(u, v) =

N
∑

j =1

pt(yj ,u)
detAj (v)

detA

whereAi, j = pt+T (yj , zi ) and Aj (v) is the matrix obtained fromA by replacing
the columnj by (pT (v, z1), . . . , pT (v, zN))

T. This can also be written, by multi-
linearity of the determinant, as

(3.10) K T
N(u, v; y) =

(u

v

)
ν
2

N
∑

j =1

pt(yj ,u)
( yj

u

)
ν
2 detB(v)

detB
,

where

Bi, j = Iν

(√
yi zj

T + t

)

exp

(

− yi + zj

2(T + t)

)

andB(v) is obtained fromB by replacingT + t with T andyj with v.
The next step will be achieved in the following proposition. In this proposition

we rewrite the ratio of determinants in (3.10) and then letT grow to infinity to
obtain an expression for the correlation kernel of the deformed Laguerre ensemble.

PROPOSITION3.6
KN(u, v; y) =

N
∑

j =1

2

s2
e(

v−u
s )
(u

v

)
ν
2

ei νπ2 exp(−yj )Iν

(2
√

yj u
1
2

s

)

×
∫

R+

exp

(

− w2

s

)

Jν

(

2v
1
2w

s

)

∏

i 6= j

−w2 − yi

yj − yi

(

iw
√

yj

)ν

w dw.

(3.11)

Remark3.7. Afterwards we will not consider(u
v
)ν/2 any more since it will not play

a role in the asymptotic

det(KN(xi , xj ; y))mi, j =1 = det

((

xj

xi

)
ν
2

KN(xi , xj ; y)

)m

i, j =1

.
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PROOF OFPROPOSITION3.6: Because the two matrices under consideration
in (3.10) differ by thej th column only, we will find an integral transform expressing
this column inB(v) in terms of that ofB. This will make use of some kind of time
inversion for the semigroup with transition densitypt(y, x). Eventually we will let
T → ∞ to obtain the correlation kernel of the deformed Laguerre ensemble.

LEMMA 3.8

(3.12)
1

p2
Iν

(√
v
√

z

T

)

exp

(−v(T + t)

2tT

)

exp

( −zt

2(T + t)2

)

=

1

t

∫

i R−

exp

(

x2(T + t)

2tT

)

Iν

(

(T + t)
√
vx

tT

)

Iν

( √
zx

T + t

)

x dx.

PROOF: We start from formula [28, p. 108], valid for anya,b:
∫

R+

exp(−p2x2)x Jν(ax)Jν(bx)dx = 1

2p2
Iν

(

ab

2p2

)

exp

(−a2 − b2

4p2

)

.

The left-hand side can be rewritten as

(3.13)
1

p2

∫

R+

exp(−x2)Jν

(

ax

p

)

Jν

(

bx

p

)

x dx.

We first make the change of variablesx = iy, obtaining that (3.13) can be rewritten
as

(3.13) = 1

p2

∫

i R−

exp(y2)Jν

(

aiy

p

)

Jν

(

biy

p

)

y dy

= e(νiπ) 1

p2

∫

i R−

exp(y2)Iν

(

ay

p

)

Iν

(

by

p

)

y dy,

where we have used in the last equality thatIν(z) = Jν(i z)exp νiπ
2 .

For p =
√

t/(T(t + T)) and making the change of variablesy = x/
√

2t , we
obtain

(3.14)
∫

i R−

ey2
Iν

(

ay

p

)

Iν

(

by

p

)

y dy =

1

2t

∫

i R−

e
x2
2t Iν

(

ax
√

T(t + T)√
2t

)

Iν

(

bx
√

T(t + T)√
2t

)

x dx.

Setting then

a = T + t

T

√
2
√
v√

T(t + T)
, b = T

T + t

√
2t

√
z

T
√

T(t + T)
,
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in (3.14), we obtain

(3.15) (3.14) = 1

2t

∫

i R−

exp

(

x2(T + t)

2tT

)

Iν

(

(T + t)
√
vx

tT

)

Iν

( √
zx

T + t

)

x dx,

and the left-hand side is then given by

(3.16)
1

2p2
Iν

(√
v
√

z

T

)

exp

(−v(T + t)

2tT

)

exp

( −zt

2(T + t)2

)

,

which finishes the proof of the lemma. �

We come back to the proof of Proposition 3.6. Then developing the determinant
along thej th column, we obtain the representation

detB(v)

detB
= (−1)ν

∫

i R−

1

t
exp

(

u2(T + t)

2tT

)

Iν

(√
vu(T + t)

tT

)

detB̃(u)

detB
u du,

where the matrixB̃(u) has been obtained fromB by changingyj to u. We can now
pass to the limitT → ∞, thanks to the dominated convergence theorem and to the
fact (proven in [24]) that

∏

i< j (xi −xj ) is a minimal harmonic function for squared
Bessel processes on the Weyl chamberW = {x1 < · · · < xN}. We obtain that

lim
T→∞

detB̃(u)

detB
=
∏

i 6= j

u2 − yi

yj − yi
.

This then gives that

detB(v)

detB
= (−1)ν

t

∫

i R−

exp

(

u2

2t

)

Iν

(

u
√
v

t

)

∏

i 6= j

u2 − yi

yj − yi

(

u
√

yj

)ν

u du.

We then changeu → iw using thatIν(z) = Jν(i z)exp νiπ
2 and then changet to s

2;
we thus obtain the result. �

We can now turn to the proof of Theorem 3.5. The sum overyj occurring in
Proposition 3.6 can be written as a residue integral. This is Kazakov’s formula [23],
which seems to have been used first by Brézin and Hikami [4, 5]. We eventually
make the change of variablesz 7→ i z. �

3.4 Rewriting the Kernel

The formula for the correlation kernel, obtained in the preceding subsection, is
not yet satisfactory. Indeed, we will see that the critical points for thez- andw-
integrals are equal, and thus the term 1/(w2 − z2) is singular at the critical points.
In order to remove this singularity, we will first find a new expression that will
allow us to use the well-known behavior of Bessel functions of large arguments.
This is the object of the next proposition and claim. We will then remove the
singularity.
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Let H1
ν be the modified Bessel function of the third kind, also known as the

Hankel function.

PROPOSITION3.9 The correlation kernel is also given by

KN(u, v; y) = −1

4iπs2

∫

i A+R

dw
∫

Ŵ

dz exp

(

z2 − w2

s

)

H1
ν

(

2w
√
v

s

)

× Jν

(

2z
√

u

s

) N
∏

i=1

w2 + yi

z2 + yi

(

w

z

)ν
w + z

w − z

whereŴ encircles the±iyj , j = 1, . . . , N, and A is large enough so thatγ =
i A + R does not crossŴ.

PROOF: We begin with Proposition 3.6. The main step is the following lemma:

LEMMA 3.10

(3.17)
∫

R+

exp

(

−w
2

s

)

Jν

(

2w
√
v

s

)

wν
∏

i 6= j

(w2 + yi )w dw =

1

2

∫

R

exp

(

−w
2

s

)

H1
ν

(

2w
√
v

s

)

wν
∏

i 6= j

(w2 + yi )w dw.

PROOF: The proof of this formula is given in [40, p. 211] in the caseν = 0 and
can easily be extended to arbitraryν [40, exercise 15]. �

We now come back to the proof of Proposition 3.9. The use of formula (3.17)
can now be explained: we can move the contour fromR to γ := R + i A with
A > 0 thanks to Cauchy’s formula. We then chooseA large enough so that, when
applying Kazakov’s formula, the contourŴ (symmetric around the origin) for the
z-integral encircles theyi , i = 1, . . . , N, and does not crossi γ . At this point, we
do not yet make the change of variablesi z 7→ z as in Section 3.3.

Next, we rewrite

wz

w2 + z2
= 1

4i

(

w + i z

w − i z
− w − i z

w + i z

)

and obtain in an obvious way a rewriting of the correlation kernelKN(u, v; y) =
K 1

N(u, v; y)− K 2
N(u, v; y) whereK 1

N is given by

K 1
N = 1

8i 2πs2

∫

i A+R

dw
∫

iŴ

dz

× exp

(−z2 − w2

s

)

H1
ν

(

2w
√
v

s

)

Iν

(

2z
√

u

s

) N
∏

i=1

w2 + yi

−z2 + yi

(

w

z

)ν
w + i z

w − i z
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andK 2
N is the kernel

K 2
N = 1

8i 2πs2

∫

i A+R

dw
∫

iŴ

dz

× exp

(−z2 − w2

s

)

H1
ν

(

2w
√
v

s

)

Iν

(

2z
√

u

s

) N
∏

i=1

w2 + yi

−z2 + yi

(

w

z

)ν
w − i z

w + i z
.

Then we can modify the contourŴ so that it encircles the±yi and joins−∞±iη for
some positiveη. We then changei z to z, changingiŴ to Ŵ. Using the symmetries
when making the change of variablesz 7→ −z, we can see thatK 1

N = −K 2
N , and

we can then considerK 1
N only. This proves Proposition 3.9. �

We will now use the asymptotic expansion of Bessel functions of large argu-
ments.

Claim 3.1.

KN(u, v; y) =
(

1 + O

(

1

N1/4

))

× −1

8iπs(uv)1/4

(

K1,N(u, v; y)+ (−1)νe− iπ
2 K2,N(u, v; y)

)

with

K1,N =
∫

Ŵ

∫

γ

dz dw exp

(

z2 − w2 + 2iw
√
v − 2i z

√
u

s

)

×
(

w

z

)ν
w + z

w − z

1√
w

√
z

N
∏

i=1

w2 + yi

z2 + yi
,

(3.18)

K2,N =
∫

Ŵ

∫

γ

dz dw exp

(

z2 − w2 + 2iw
√
v + 2i z

√
u

s

)

×
(

w

z

)ν
w − z

w + z

1√
w

√
z

N
∏

i=1

w2 + yi

z2 + yi
,

(3.19)

whereŴ is a new contour that has been cut on a small neighborhood of the negative
real axis. We notex0 andx1 = x̄0, the two points where we cutŴ. They will be
fixed later.

The proof of this claim is postponed to the end of Section 5.
From now on, we will only consider the kernelK1,N , since the analysis forK2,N

is exactly the same. In this paragraph, we are going to remove the singularity1
w−z.
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A

X

X

Γ

Γ0

1

1

0

γ

FIGURE 3.1. Preliminary contours.

Set

S1,N = 1

2i (
√
v − √

u)

∫

Ŵ

dz
∫

γ

dw
(

−1 + e
(

−i 2(
√
v−√

u)z
s

)

)

N
∏

i=1

w2 + yi

z2 + yi

(

w

z

)ν

× exp

(

z2 − w2 − 2zi
√

u + 2wi
√
v

s

)

w + z√
w

√
z

1

z

×
(

2(z + w)− 2s(z + w)

N
∑

i=1

yi

(w2 + yi )(z2 + yi )
− 2i

√
v

)

(3.20)

and

R′
1,N(x0) = − 1

2i (
√
v − √

u)

∫

γ

(

−1 + e
(

−i
2(

√
v−√

u)x0
s

)

)

N
∏

i=1

w2 + yi

x2
0 + yi

(

w

x0

)ν

× exp

(

x2
0 − w2 − 2x0i

√
u + 2wi

√
v

s

)

w + x0√
w

√
x0

1

x0

×
(

2(x0 + w)− 2s(x0 + w)

N
∑

i=1

yi

(w2 + yi )(x2
0 + yi )

− 2i
√
v

)

.

(3.21)

PROPOSITION3.11 We find that the kernel K1,N can be rewritten

(3.22) K1,N(u, v; y) = S1,N + R′
1,N(x0)− R′

1,N(x1).

Remark3.12. The two contoursŴ andγ in (3.20) can now cross each other since
we have removed the singularity1

w−z.
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PROOF OFPROPOSITION3.11: In the expression of the kernelK1,N , we make
the change of variablesz 7→ βz, w 7→ βw, for β real close to 1. We then obtain
for the two “half-contours”Ŵ0 andŴ1 definingŴ and for

E(z, w) = exp

(

z2 − w2 − 2ziu + 2iwv

s

)

the following:

∫

Ŵj

dz
∫

γ

dwE(z, w)
1

w − z

N
∏

i=1

w2 + yi

z2 + yi

w + z√
w

√
z

−
∫

Ŵj

dz
∫

γ

dw
β

w − z
E(βz, βw)

N
∏

i=1

β2w2 + yi

β2z2 + yi

w + z√
w

√
z

(3.23)

=
∫ xj

1
β

xj

dz
∫

γ

dw
β

w − z
E(βz, βw)

N
∏

i=1

w2 + yi

z2 + yi

w + z√
w

√
z

(3.24)

:= R1,N, j .

Consider the kernelR1,N, j defined in (3.24). This kernel admits a derivative
with respect toβ taken atβ = 1, which, as we will see later, can be analyzed by a
saddle point method. We set

(3.25) R1,N = d

dβ
(R1,N,0 + R1,N,1)

∣

∣

∣

∣

β=1

.

Then in (3.23) we make the change of variablesz −→ bz, w −→ bw, with b
very close to 1 and differentiate with respect tob. This modifies the contour but by
Cauchy’s theorem we can deform back toŴ andγ . This gives

(3.26) − K1,N(u, v; y) =

R1,N +
{∫

Ŵ

∫

γ

N
∏

i=1

w2 + yi

z2 + yi

(

w

z

)ν
w + z√
w

√
z

1

s(w − z)
E(z, w)

×
(

−2w2 + 2z2 − 2i
√

uz+ 2i
√
vw + 2s

N
∑

i=1

(

w2

w2 + yi
− z2

z2 + yi

)

)

dw dz

}

.

Using that

∂K1,N

∂
√

u
=
∫

Ŵ

∫

γ

dz dw

(

−2i z

s

)(

w

z

)ν
w + z

w − z

1√
w

√
z

N
∏

i=1

w2 + yi

z2 + yi
E(z, w),
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(3.26) can be rewritten

(3.27) K1,N + (−
√

u +
√
v)

∂

∂
√

u
K1,N =

{

1

s

∫

γ2

∫

Ŵ2

N
∏

i=1

w2 + yi

z2 + yi

w + z√
w

√
z

(

w

z

)ν

exp

(

z2 − w2 − 2zi
√

u + 2wi
√
v

s

)

×
(

2(z + w)− 2s(w + z)
N
∑

i=1

yi

(w2 + yi )(z2 + yi )
− 2i

√
v

)

dw dz

}

+ R1,N .

Solving the ordinary differential equation (3.27) then gives (3.22). Because we
have now removed the singularity the two contours,Ŵ andγ , can cross each other.
Proposition 3.11 is now proven. �

We will here write the kernelS1,N in a way more suitable for the saddle point
analysis. The same rewriting can be done for the kernelsR′

1,N .

Define

G(w, z; y) =
N
∏

i=1

w2 + yi

z2 + yi

(

w

z

)ν
w + z√
w

√
z

exp

(

z2 − w2

s

)

exp

(

2i
√
vw − 2i

√
uz

s

)

and

(3.28) hN(z) =
(

1 − exp
{2i z(

√
v−√

u)
s

}

2i (
√

u − √
v)

)

.

PROPOSITION3.13 The kernel S1,N can be written

S1,N =
∫

Ŵ

∫

γ

gN(z, w)exp

(

ĜN,
√
v(z)− ĜN,

√
v(w)

s

)

×
(

w

z

)ν
w + z√
w

√
z
hN(z)dw dz

(3.29)

whereĜN,u(z) = z2 − 2i zu − s
∑N

i=1 log(z2 + yi ) and

(3.30) gN(z, w) =
Ĝ

′
N,

√
v
(z)− Ĝ

′
N,

√
v
(w)

z − w
+

Ĝ
′
N,

√
v
(w)

z
.
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PROOF OFPROPOSITION3.13: The exponential term intervening in the corre-
lation kernelS1,N defined in (3.20) (and in the kernelsR′

1,N) can be written

G(w, z; y)
1 − e

−2i z(
√
v−√

u)
s

2i (
√
v − √

u)
=

exp
{

s−1
(

−ĜN,
√
v(w)+ ĜN,

√
v(z)

)}

hN(z).

(3.31)

Now defining

(3.32) g1
N(z, w) = 2

z

(

z + w − (z + w)s
N
∑

i=1

yi

(w2 + yi )(z2 + yi )
− i

√
v

)

,

it is easily checked that, as a direct consequence of the method used to getrid of
1

w−z,

g1
N(z, w) = gN(z, w) =

Ĝ
′
N,

√
v
(z)− Ĝ

′
N,

√
v
(w)

z − w
+

Ĝ
′
N,

√
v
(w)

z
.

�

4 Concentration of Measure

In this section, we prove some results that will be needed to localize the critical
points in the exponential terms of the preceding kernels, when the matrixH is ran-
dom. To this end, we need to prove the uniform convergence (inw) of the random
term

∏

i (w
2 − yi ) towards its a.s. limit. To obtain this uniform convergence, we

will need to replacePN by a new probability distribution: the aim of this section
is to prove that such a replacement does not affect the limiting behavior of local
eigenvalue statistics.

4.1 Preliminaries

We choose the principal branch on the complex plane cut alongR− for the
logarithm branch. Provided we chooseγl far from the eigenvalues, we can write

(4.1)
N
∏

i=1

(w2 + yi ) = exp
∫

log(w2 + y)dµN(y)

with µN the spectral measure ofH ∗H .
From now on, we will consider a random matrixW and assume thatP, the law

of the entries ofW, satisfies

(4.2)
∫

z d P(z) = 0,
∫

|zz∗|d P(z) = σ 2
1 = 1

4
.

Such a condition on the variance ofP is not restrictive. It can indeed be achieved
by rescaling the entries of the random matrixX. In particular, conditions (4.2)
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ensure convergence of the spectral measure ofH ∗H to the Marchenko-Pastur law
with density

(4.3) ρ(x) = 2

π

√
1 − x√

x
.

Condition (4.2) also implies that the limiting spectral measure of1
N X∗X is then

given by Marchenko-Pastur’s law with parameter 1/4 + a2; we denoteρ = ρa the
density of this probability measure. We also resett = s/2 = a2/N.

The idea is then, roughly speaking, to replace the random terms interveningin
the correlation kernel by their almost sure limit expressed in terms of Marchenko-
Pastur’s distribution. This will be done using concentration results we will now
establish. We have made the assumptions to ensure the convergence ofdµN to the
law ρ of a squared Wigner random variable. Yet we need to prove some uniform
convergence of (4.1) towards

∫ 1
0 log−((i z)2 − y)dρ(y). This will now be proven

with the results of [14] on concentration of measure. For convenience, noticing that
∏N

i=1(w
2 + yi ) = H(iw) for H(w) =

∏N
i=1(yi −w2), we will prove concentration

results forF , and then just a rotation in the complex plane will be enough.
Let us recall the results of Guionnet-Zeitouni and those of Bai, which will be

the basis for what follows.

PROPOSITION4.1 ([14]) Let Y be an N× M matrix, N ≤ M, with independent
entries Yk,l of law Pk,l . Set PN,M =

∏N
k=1

∏M
l=1 Pk,l , Z = Y Y∗.

If the Pk,l are supported in a compact set K , for any function f so that g(x) =
f (x2) is convex and has finite Lipschitz norm|g|l , for any δ > δ0(N + M) =
4|K |√π |g|l/(N + M),

PN,M

(

|trN( f (Z))− E(trN( f (Z)))| > δ
M + N

N

)

≤

2 exp

(

−(δ − δ0)
2(N + M)2

4|K |2|g|2l

)

wheretrN denotes the normalized trace.

Remark4.2. In fact,g is to be seen as a function of the(p+N)×(p+N)Hermitian
matrix RW(Y)

(

0 Y
Y∗ 0

)

.

From the discussion before corollary 1.8 in [14], this is the Lipschitz norm of this
function that we have to consider. In particular, ifH has entries bounded by 1, then
RW2 has a spectral radius of orderN + p.

PROPOSITION4.3 ([1]) Let Y be an N× M matrix, N ≤ M, with independent
entries Yk,l of law Pk,l . We assume the entries are centered of variance1 and admit



20 G. BEN AROUS AND S. PÉCHÉ

moments up to order4. Let FN be the empirical spectral distribution of1N Y∗Y;
then we have

‖E FN − Fp/N‖∞ = O(N− 5
48).

To ensure that‖Fp/N − F1‖ = O(N−5/48), where F1 = F is the limiting
Marchenko-Pastur distribution function, one needs to assumeν = O(N43/48). This
is the reason for the restriction we have made onν.

4.2 Concentration of Measure

Set

(4.4) �R,η = {z : Im(z) ∈ [η, R],Re(z) < R}.

Let λ(H) = (λ1(H), . . . , λN(H)) be the spectrum ofH ∗H . We here prove con-
centration results assuming that the entriesWj,k are random variables of lawPj,k. In
particular, they do not need to be identically distributed, yet of the same variance.
We also establish concentration results for an arbitrary parameter

γ := lim
N→∞

p

N
≥ 1.

THEOREM 4.4 Assume the entries of H admit moments up to order q where q is
strictly greater than8 and let R, η > 0 be given. There exists0 < ξ < 1

4 − 2
q and

a probability measure with compact support on Mp,N(C), denoted dPN , such that
for any symmetric function F∈ L∞(RN

+) and forα = −2 + q(1
4 − ξ),

(4.5)

∣

∣

∣

∣

∫

Mp,N (C)

F(λ(H))d PN(H)−
∫

Mp,N (C)

F(λ(H))dPN(H)

∣

∣

∣

∣

≤ 1

Nα
‖F‖∞

and

(4.6) sup
z∈�R,η

∣

∣

∣

∣

1

N
tr log−(z2 − M)−

∫ 1

0
log−(z2 − y)dρ(y)

∣

∣

∣

∣

≤ C N−ξ ,

PN almost surely.

PROOF: In view of Proposition 4.1, we first need to replacePN by a measure
with compact support. This is the object of the following lemma.

LEMMA 4.5 Let F ∈ L∞(RN) be a symmetric function. There exists a probability
measure PL N on Mp,N(C) with support in[−L N, L N]N p such that

(4.7)

∣

∣

∣

∣

∫

Mp,N (C)

F(λ(H))d PN(H)−
∫

Mp,N (C)

F(λ(H))d PL N (H)

∣

∣

∣

∣

≤ γ ‖F‖∞
N2

Lq
N

.
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PROOF: Set

d P(L)j,k := 1

ZL
j,k

χ[−L N ,L N ]d Pj,k

with ZL
j,k a normalization constant, andZL

N =
∏p

j =1

∏N
k=1 ZL

j,k. For F ∈ L∞, one
can easily show that

(4.8)

∣

∣

∣

∣

∫

Mp,N (C)

F(M)d PN(M)d M −
∫

Mp,N (C)

F(M)d PL N (M)d M

∣

∣

∣

∣

≤

‖F‖∞(1 − ZL
N)

(

1 + 1

ZL
N

)

,

and

1 − ZL
N = P(∃ 1 ≤ j ≤ p,1 ≤ k ≤ N s.t.|Wj,k| ≥ L N)

≤ N psup
j,k

E|Wj,k|q
Lq

N

≤ C
N p

Lq
N

‖F‖∞.(4.9)

L N will be fixed afterwards. �

Now set

(4.10) DN = �R,η ∩ 1

N
Z

2.

Note that♯DN ≤ C N2 for some constantC depending only onR andη.
Set

(4.11) AN( f, δ) =
{

H ∈ MN(C) :
∣

∣

∣

∣

1

N
tr fz(H H ∗)−

∫

fz(x)dρ(x)

∣

∣

∣

∣

≥ δ

}

andAN(δ) =
⋂

z∈DN
AN( fz, δ) where fz(x) = log−(z2 − x).

To use concentration results, from the remark following Proposition 4.1, we
need to control the Lipschitz norm ofy −→ log−(z2 − y2) := fz(y2). Herey
is to be seen as an eigenvalue ofRW(H) that is of spectral radius smaller than
L N

√
N, since we have truncated the entries ofH . Then, combining Proposition

4.1 and Proposition 4.3, we obtain that for| f |l = | f |Lip + ‖F‖∞, there exist some
constantsC1 andC2 such that if we set

(4.12) δ0(N) = C1L| f |l
N

+ C2| f |Lip′ N− 5
48,

where this time| f |Lip′ is the Lipschitz norm ofy 7→ log−(z2 − y), then for all
z ∈ AN(δ), we have

(4.13) PL N

[
∣

∣

∣

∣

1

N
tr fz(H H ∗)−

∫

fz(x)dρ(x)

∣

∣

∣

∣

≥ δ

]

≤ 4e
− (δ−δo)24N2

C L2| f |2l .

Then, provided Im(z2) > δ, we can prove as in [21] that

(4.14) | f |l = | f |Lip + ‖F‖∞ ≤ C(L N

√
N + log(L N

√
N)).
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Otherwise for Im(z) > δ andz close to the imaginary axis, we can bound this norm
thanks to the bounded variation theorem, to find that

(4.15) | f |l ≤ C(δ)L N

√
N.

To sum up, one needs

(1) N p
Lq

N
≪ 1 and

(2)
L2

N

√
N

N ≤ 1.

SetL N = N
1
4−ξ .

(2) is obviously satisfied, and (1) is true forq > 9 providedξ is small enough.
Eventually, one shows that∀z ∈ �R,η, one hasδ0(N) < C N−ξ , and

PL N

[∣

∣

∣

∣

1

N
tr fz(H

∗H)−
∫

fz(x)dρ(x)

∣

∣

∣

∣

≥ N−ξ
]

≤ Ce−C N2ξ

for some nonnegative constant C.

We can now estimate the probability of the complement of the eventAN(N−ξ )
using thatp ∼ γ N:

(4.16) PL N [AN(N
−ξ )c] ≤ C N2 exp{−C N2ξ }.

Set

(4.17) dPN(H) = 1

PL N (AN (N−ξ ))
d PL N 11(AN(N

−ξ )).

Then Theorem 4.4 is proven forz ∈ DN , and we can extend it to allz ∈ �R,η by a
straightforward approximation argument. �

From now on we replaced PN by dPN and define for any integerN andC > 0

(4.18) YR,η =
{

y ∈ R
N
+ : sup

z∈�R,η

∣

∣

∣

∣

∫

log−(z2 − y)dρ(y)− 1

N

∑

log−(z2 − yi )

∣

∣

∣

∣

≤ C N−ξ
}

.

Let us recall that, by (4.6),̄PN(sp(H ∗H) ∈ YR,η) = 1 for all N ≥ 1, where “sp”
stands for “spectrum.”

5 Saddle Point for the Bulk Correlation Functions under P̄N

In this section, we show that under̄PN , a saddle point analysis of the local
eigenvalue statistics can be achieved.
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5.1 Preliminaries
In this subsection we consider the kernelS1,N as written in Proposition 3.13

(the other kernels will be analyzed similarly). We can now use the concentration
results established in the preceding section to say that, uniformly forz varying in a
compact set,

1

N

N
∑

i=1

log(z2 + yi )

is well approximated by its nonrandom limit, given in terms of Marchenko-Pastur’s
law. Because the variance of the entries ofW has been set equal to14, the spectral
measure ofH ∗H converges to Marchenko-Pastur’s law with density

2

π
√

x

√
1 − x,

and recall thats = a2/N.
Now let uN be a sequence converging tou = √

u0, a point in the bulk. Here,
we introduceuN becauseu = u0 + x

N andv = u0 + y
N vary around the point in the

bulk u0, which can be first ignored in the search of saddle points.
Define

(5.1) Ĝu(z) = z2 − 2uiz − a2
∫

log(z2 + x)dρ(x),

whereρ is the Marchenko-Pastur distribution with parameterσ 2 = 1
4 + a2. Here

Ĝu(z) is the almost sure limit of the exponential term̂GN,u(z) = z2 − 2i zu −
s
∑N

i=1 log(z2 + yi ). First from (4.18) and Cauchy’s formula, we know there exists
a constantC such that for allN ≥ 1, u in a compact setK , andz ∈ �R/2,2η, P̄N

a.s.,

|Ĝ′
N(z)− Ĝ

′
u(z)| ≤ C(N−ξ + |u − uN |),

|Ĝ′′
N(z)− Ĝ

′′
u(z)| ≤ C(N−ξ + |u − uN |).

(5.2)

This will enable us to replaceuN by its limit in the integrand.

Comparison with the Exponential Term for the Hermitian Case

Let u be a fixed point,u ∈
[√

1 + 4a2δ0,
√

1 + 4a2(1 − δ0)
]

, 0 < δ0 < 1.
Introduce

GN,−u(i z) = −ĜN,u(z),

GN,u(z) = z2 − 2uz+ a2
∫

log(y − z2)dµN(y),

Gu(z) = z2 − 2uz+ a2
∫

log(y − z2)dρ(y),(5.3)

Fu(z) = z2 − 2uz

2
+ a2

∫

log(z − t)σ (t)dt,(5.4)
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σ being the underlying density function of Wigner’s semicircle law.
The reason for introducing these functions is that the eigenvalues we consider

have asymptotically the same law as that of the squares of the eigenvalues of a
Hermitian matrix. To be more precise, we will show that the exponential term is of
the same form as the Johansson-Wigner ensemble.

Then we find from (5.3), (5.4), and the definition ofρ andσ that

(5.5) G
′
u(z) = 2F

′
u(z),

whereFu is the exponential term for the Hermitian case studied in [21]. We now
make a saddle point forS1,N , noticing that the exponential term can be written
ĜN,u(w) = −2FN,−u(iw) for FN being the same exponential term as [21]. It will
thus be enough to prove the results forFN . Therefore we will refer to Johansson’s
saddle point analysis of the kernel of Hermitian Brownian motion [21].

Critical Points

Set
√

u =
√

1 + 4a2 cosθc. Since we will constantly refer to Johansson’s re-
sults [21], we will do a saddle point forFN , and then a rotation of−π

2 will give the
result. Johansson’s computations show that the critical points forFu are given by
the equation

F
′
u(z) = (z −

√
u)+ 2a2(z −

√

z2 − 1) = 0,

and the critical pointŝzc of Ĝu are just1i zc, wherezc are those ofFu. Setting

(5.6) z = S(x) = 1

2

(

x + 1

x

)

,

one obtains that the critical points forFu are given byzc = S(±xc) with

(5.7) xc =
√

1 + 4a2 exp±i θc = 2σ exp±i θc.

5.2 Contours for an Arbitrary Point in the Bulk

Let us notero =
√

1 + 4a2 androe±i θo the critical points defined in (5.6)–(5.7).
Considerδ > 0, ǫ > 0 small enough. We now define the contours we will use

in the saddle point analysis. Let the contours forz be defined by

Ŵ+
1 (t) = 1

i
S(roei δ − t), − ∞ < t ≤ 0;

Ŵ+
2 (t) = 1

i
S(roei t ), 1 < t ≤ 1− ǫ;

Ŵ+
3 (t) = 1

i
S(roei t ), 1− ǫ < t ≤ 1+ ǫ;

Ŵ+
4 (t) = 1

i
S(roei t ), 1+ ǫ < t ≤ π − δ;

Ŵ+
5 (t) = 1

i
S(roei (π−δ) − t), ∞ > t ≥ 0,



UNIVERSALITY OF LOCAL SPECTRAL STATISTICS 25

ωcωc

Γ

γ + −

FIGURE 5.1. Contours for the bulk.

Ŵ−
j (t) = −Ŵ+

j (t).

We cut this contour so that it does not crossR−, as in Section 3.4. Then letto be
such that Im(S(t0w2)) = η andτ = Re(S(t0w2)). η will be fixed afterwards. One
then defines the contour forw, in the case Re(F(wc(uo))) > limη→0 Re(F(iη)):

γ+
1 (t) = 1

i
(τ + i t ), 0 ≤ t ≤ η,

γ+
2 (t) = 1

i
S(twc), to ≤ t ≤ 1 − ǫ,

γ+
3 (t) = 1

i
S(twc), 1 − ǫ ≤ t ≤ 1 + ǫ,

γ+
4 (t) = 1

i
S(twc), 1 + ǫ ≤ t ≤ +∞,

and

(5.8) γ−
j (t) = −γ+

j (t).

Or if Re(x2
c) ≥ 0, we define the contourγ asγ+ = 1

i (wc + i t ), t ∈ R
+, and

γ− = 1
i (wc − i t ), t ∈ R

+. This is the modification of the contour needed to obtain
the asymptotics of the correlation kernel in the whole bulk of the spectrum (see
Appendix A for an explanation).

Finally, setŴ =
∑5

j =1(Ŵ
+
j − Ŵ−

j ) andγ =
∑4

j =1(γ
+
j − γ−

j ). A plot of the
contours is given by Figure 5.1.
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Define

L N(τ ) = 1

s

∫

γ3

∫

Ŵ3

(

w

z

)ν
w + z√
w

√
z

gN(z, w)

× exp

(

ĜN,
√
v(z)− ĜN,

√
v(w)

s

)

hN(z)dw dz.

LEMMA 5.1 We can find Ro, ηo, ǫ, andδ positive such that the contoursγ±
3 andŴ±

3
belong to some neighborhood ofẑ±

c included in�Ro/2,2ηo and such that∀N ≥ 1,
u, v in a compact set K ,̄PN a.s.,

(5.9) |S1,N − L N(τ )| ≤ Ce−cN

for some constant c> 0.

PROOF: The proof is exactly the same as the one given by Johansson [21].�

5.3 Saddle Point Analysis

By (5.2), the critical pointszN for FN satisfy

(5.10) |ẑ±
N − ẑ±

c | ≤ C(N−ξ + |u − uN |).
One can then deform the contoursγ3 (respectively,Ŵ3) into contoursγN (respec-
tively, ŴN) within aC1 distance at mostC(N−ξ + |u − uN |) leaving the endpoints
unchanged and such thatγN(0)± = ŵ±

N,c andŴN(0)± = ẑ±
N,c. We can also choose

these contours such that, for|t | < ǫ,

Ŵ±
N(t) = 1

i
S(w±

N,c exp±i t ) and γ±
N (t) = 1

i
S(z±

N,c(1 + t)).

Using the contours defined in the preceding subsection, we then obtain by astan-
dard saddle point argument

Lb,d
N

2πNρ(u)
=

(

1 + O

(

1√
N

))

(

ŵd
N,c + ẑb

N,c

)

hN

(

ẑb
N,c

)

sNρ(u)
√

ŵd
N,c

√

ẑb
N,c

× gN
(

ŵd
N,c, ẑ

b
N,c

)

(

ŵd
N,c

ẑb
N,c

)ν

×
((

Ŵd
N

)′
(0)
)(

γ b
N

)′
(0)exp

{

s−1
(

ĜN,
√
v

(

ẑb
N,c

)

− ĜN,
√
v

(

ŵd
N,c

))}

√

−Ĝ
′′
N,

√
v

(

ẑb
N,c

)(

Ŵb
N

)′
(0)2

√

Ĝ
′′
N,

√
v
(ŵd

N,c)
(

γ d
N

)′
(0)2

.

(5.11)

whereb andd stand for± according to the contourŴ±
3 (respectively,γ±

3 ) along
which the integration is performed.
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As already observed, the two critical points are the same, denotedẑc, and one
can check from (3.30) and the definitions of the contoursŴN andγN that

gN
(

ẑ+
c , ẑ

−
c

)

= gN
(

ẑ−
c , ẑ

+
c

)

= 0,

gN
(

ẑ+
c , ẑ

+
c

)

= Ĝ
′′
N,

√
v

(

ẑ+
c

)

, gN
(

ẑ−
c , ẑ

−
c

)

= Ĝ
′′
N,

√
v

(

ẑ−
c

)

(

γ b
N

)′
(0) = bS

′(
wb

N

)

ŵb
N,c,

(

Ŵb
N

)′
(0) = ŵb

N,1S
′(
wb

N

)

.

BecauseĜN,
√
v(ŵ

+
c ) = ĜN,

√
v(ŵ

−
c ), we can consider just the joint contribution of

equal critical points. That is, we consider onlyL++
N andL−−

N . We obtain that

(5.12)
S1,N

Nρ(u)
=
(

1 + O

(

1√
N

))

×
∑

b=±1

−bi

sNρ(u)

(

ŵb
c

ẑb
c

)ν

exp

(

ĜN,
√
v

(

ŵb
c

)

− ĜN,
√
v

(

ẑb
c

)

s

)

hN

(

ẑb
c

) ŵb
c + ẑb

c
√

ŵb
c

√

ẑb
c

.

Now, for wc = zc = w+ with positive real and imaginary parts, for instance,
the large exponential terms cancel each other, and we only have to examinethe
contribution ofhN . Define thenh as

(5.13) h(w) = 1

Nρ(u)(uv)1/4
hN(w).

Then, taking (5.10) into account and assumingξ < 5
96, we have for some constant

C

(5.14)

∣

∣

∣

∣

1

2iπNρ(u)
L++

N (τ )+ h(ẑ+
c )

∣

∣

∣

∣

≤ C(|u − uN | + N−ξ ).

We have the same kind of formula forL−−
N .

We have that

(5.15)
2 N

a2 ẑ±
c

(

u1/2
N −

(

uN + τ
Nρ(u)

)1/2)

a2ρ(u)
= τ(wo ± iπ).

So at the end, adding the contribution ofw+
c and ofw−

c (which gives the conjugate),
we obtain

(5.16)
1

Nρ(u)

(

−h
(

ẑ+
c

)

+ h
(

ẑ−
c

))

= −2
sinπτ

πτ
exp{−woτ }.

Thus
1

2iπNρ(u)
S1,N = −2

sinπτ

πτ
exp{−woτ }

(

1 + O

(

1√
N

))

.

We can then drop the constant termw0 by multilinearity of the determinant insofar
as we are interested in correlation functions.
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Remark5.2. We would like to insist here on the fact that this particular form of the
exponential term also justifies the use of a saddle point method. Indeed, concen-
tration results are not strong enough simply to replace

∫

log−(z2 − y)dµN(y) by
its almost sure limit; yet because at the critical points the large exponential terms
exp(s−1ĜN,

√
v(ẑc)) and exp(s−1ĜN,

√
v(ŵc)) cancel each other, one just needs to

know where these critical points lie.

5.4 Asymptotic of the Correlation Kernel under P̄N

Admitting for a while that the contribution from the kernelR′
1,N is negligible,

we obtain that
1

Nρ(u)

−1

8iπs(uv)1/4
KN,1 =

(

1 + O

(

1√
N

))

1

2

sin(πτ)

πτ
,

and the similarly rescaledKN,2 gives the same contribution.
Now, adding all these contributions, we finally get

(5.17)

∣

∣

∣

∣

1

Nρ(u)
KN

(

uN,uN+ τ

Nρ(u)

)

−sin(πτ)

πτ

∣

∣

∣

∣

≤ C(N−ξ+|u−uN |)+Ce−cN.

5.5 Proof of Claim 3.1 and of R′

1,N Being Negligible

We prove in this section the claim stated at the beginning of Section 3.4 and
that the kernelR′

1,N is negligible.

Bessel’s Approximation.We will next use the well-known asymptotic behavior
of Bessel functions [30]. First, for largew, one has

H1
ν (w) =

√

2

πw
exp

(

i

(

w − νπ

2
− π

4

))(

1 + O

(

1√
w

))

.

This asymptotic expansion is valid as long as Im(w) > 0. We can also make use
of the well-known behavior of the Bessel functionJν :

Jν(z) =
√

2

πz
cos

(

z − νπ

2
− π

4

)(

1 + O

(

1√
z

))

,

which is valid for|arg(z)| < π − δ.

Remark5.3. There might be some problem when the contourŴ crossesR−, yet
we will see that the contribution from this part of the contour can be neglected.

Now, we choose the contour for thez-integral given as before except that on
the top side the contourŴ crosses the imaginary axis to encircle thei

√
yi , j =

1, . . . , N. Then we can apply both the approximations of Bessel functions: indeed,
the two curvesγ andŴ remain far away from 0, andγ is located in the positive
imaginary half-plane.

We can first analyze thew-integral (3.17) by an a priori saddle point analysis:
the large exponential term is still a function of the spectral measure1

N

∑

δyi . Thus
we can replaceH1

ν by its approximation with an error of at most of order 1/N1/4.
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Next, whenγ has been moved back toγ = i A + t , keeping an error of at most
1/N1/4, we can chooseŴ to follow the same curve as in the preceding saddle
point analysis except that it crosses the imaginary axis at a distance of atleast 1
from i

√
y1. Then we obtain a similar error. The sole point is the justification of

Bessel’s approximation close to the negative real axis. Yet we know, a priori, that
the contribution forz describing the interval(−ro − i ǫ,−ro + i ǫ) := (x0, x1) and
γ (we can consider the contribution of such contours since they do not cross) is
exponentially small. Thus we can replace the contourŴ by two contoursŴ1 and
Ŵ2 obtained fromŴ by making a cut around the negative real axis. We obtain an
expression of the correlation kernel with an error of order 1/N1/4 as long as we
move the two remaining contours far away from 0.

The Kernel R′1,N . The kernel (3.24) admits a derivative with respect toβ that
can be analyzed by a saddle point approximation: its contribution will be of order
exp(−c0N) for some positivec0. Once more, this is because the relevant critical
points of the exponential terms do not lie close to the real axis, sinceu is a point in
the bulk of the spectrum. We can thus deformγ = i A + R to the contour defined
for the saddle point analysis, that is,γ = i (wc + i t ), t ∈ R. We then use the same
arguments as for the analysis ofS1,N .

The Contribution of(x0, x1). It is clear that, as the curve(x0, x1) lies far away
fromwc, one can deform the contourγ = A + i t so that it is as in the saddle point
analysis. Then the contribution from this part of the contour is negligible.

So far we have obtained universality of correlation functions underP̄N , which
we state in the following proposition:

PROPOSITION5.4 Uniformly for ti and tj varying in a compact set,∃ξ , 0< ξ < 1
2,

such that

(5.18)

∣

∣

∣

∣

1

Nρ(u)
KN

(

u + ti
Nρ(u)

,u + tj

Nρ(u)

)

− sinπ(ti − tj )

π(ti − tj )

∣

∣

∣

∣

≤ C N−ξ ,

PN almost surely.

6 Proof of Universality of Local Eigenvalue Statistics

We will only give the proof of weak universality of correlation functions,since
the proof of the spacing distribution can easily be deduced from [21]. Recall that
we considerf ∈ L∞(Rm)with compact support and thatSm

N( f ) is defined by(1.2)
with ρN = Nρ(u). Given an integerm, we setdtm =

∏m
i=1 dti . We also set, for

t ∈ R andu(t) = u + t/Nρ(u),

(6.1) lim
N→∞

ESm
N( f ) =

lim
N→∞

∫

Rm

f (t1, . . . , tm)
1

(Nρ(u))m
Rm

N(u(t1), . . . ,u(tm))dtm.
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PROOF OFTHEOREM 2.1: We have seen that
∫

Rm

f (t1, . . . , tm)

(Nρ(u))m
Rm

N(u(t1), . . . ,u(tm))dtm =

∫

Mp,N(C)

d PN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x]dxN

whereρN(x, · ) is the density function of the eigenvalues of1
N X∗X knowing H .

Then, using Theorem 4.4 and the remark following it,
∣

∣

∣

∣

∫

Mp,N (C)

d PN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x]dxN

−
∫

Mp,N (C)

dPN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x]dxN

∣

∣

∣

∣

≤ C Nm‖ f ‖∞N2−p( 1
4−ξ) = o(1)

(6.2)

for p > 4(m + 2) andξ small enough.
Moreover,

∫

Mp,N (C)

dPN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x] =

∫

Mp,N (C)

dPN(H)
∫

R
m
+

f (t1, . . . , tm)

× det

(

1

Nρ(u)
KN(u(ti ),u(tj ); y(H))

)m

i, j =1

dtm.

(6.3)

Since f is compactly supported, all theti ’s vary in a compact set, so that we can
use Proposition 5.4. We can then pass to the limitN → ∞, thus proving Theorem
2.1. �

Remark6.1. The class of universality of the sine kernel should also include the
sample covariance matrices with parameterγ 6= 1. In this case, the main difficulty
is probably the analysis of Bessel functions of large degree and large parameter. We
have not found the suitable integral representation of Bessel functionsto achieve
the analysis of correlation functions.

7 Correlation Functions for the Hard Edge

We first show that the correlation kernel of the deformed Laguerre ensemble
can be conveniently rewritten in terms of the Bessel kernel.
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THEOREM 7.1 The correlation kernel of the deformed Laguerre ensemble is also
given by

(7.1) KN(u
2, v2; y) =

4

4iπs3
exp

2νiπ

2

∫

Ŵ

∫

γ

dw dzwz KB

(

2zu

s
,

2wv

s

)

×
N
∏

i=1

w2 − yi

z2 − yi

(

w

z

)ν

exp

(

w2 − z2

s

)

(

1 − s
N
∑

i=1

yi

(w2 − yi )(z2 − yi )

)

where the contourŴ, symmetric around0, encircles the±yi ’s, γ is the imaginary
axis oriented positively0 −→ +∞, 0 −→ −∞, and KB is the kernel defined by

(7.2) KB(x, y) = x I
′
ν(x)Iν(y)− y I

′
ν(y)Iν(x)

x2 − y2
.

Remark7.2. The kernelKB is related to the Bessel kernelK ν
Bes by

exp

(

2νiπ

2

)

KB(2ir ou, i 2rov) = K ν
Bes((rou)2, (rov)

2).

PROOF OFTHEOREM 7.1: The first step is the following lemma:

LEMMA 7.3 Let KB(x, y) be the kernel defined in(7.2). Then

(7.3) β Iν(βy)Iν(βx) = d

dβ

[

β2KB(βx, βy)
]

.

PROOF: One has

β2KB(βx, βy) = 1

x2 − y2

[

βx I
′
ν(βx)Iν(βy)− βy I

′
ν(βy)Iν(βx)

]

.

Thus
d

dβ

[

β2KB(βx, βy)
]

= 1

β(x2 − y2)

{

βx I
′
ν(βx)Iν(βy)− βy I

′
ν(βy)Iν(βx)

+ β2x2I
′′
ν (βx)Iν(βy)− β2y2I

′′
ν (βy)Iν(βx)

+ β2xy I
′
ν(βx)I

′
ν(βy)− β2xy I

′
ν(βx)I

′
ν(βy)

}

= 1

β(x2 − y2)

{[

β2x2I
′′
ν (βx)+ βx I

′
ν(βx)

]

Iν(βy)

−
[

β2y2I
′′
ν (βy)+ βy I

′
ν(βy)

]

Iν(βx)
}

.

(7.4)
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Now, using the fact thatIν is a solution of the differential equation [8]

(7.5) z2w
′′
(z)+ zw

′
(z)− (z2 + ν2)w(z) = 0,

one obtains from (7.4) that

d

dβ

[

β2KB(βx, βy)
]

= 1

β(x2 − y2)

[

β2(x2 − y2)Iν(βx)Iν(βy)
]

,

which is the desired result. �

We come back to the proof of Theorem 7.1 and rewrite the kernel in a different
way. We consider the kernel

RN(u, v; y) =
∫

Ŵ

∫

i R+

dw dz
wz

w2 − z2
Iν

(

2wv

s

)

Iν

(

2zu

s

)

exp

(

w2 − z2

s

)(

w

z

)ν N
∏

i=1

w2 − yi

z2 − yi
.

We first make the change of variablesz 7→ βz, w 7→ βw, and define

(7.6) h(w, z) =
(

w

z

)ν N
∏

i=1

w2 − yi

z2 − yi
,

obtaining

RN(u, v; y) =
∫

Ŵ
′

∫

i R+

dw dz
β2wz

w2 − z2
exp

(

β2w2 − β2z2

s

)

× h(βw, βz)Iν

(

2βwv

s

)

Iν

(

2βzu

s

)

=
∫

Ŵ
′

∫

i R+

dw dz
wz

w2 − z2
exp

(

β2w2 − β2z2

s

)

× h(βw, βz)β
d

dβ
β2KB

(

β
2wv

s
, β

2zu

s

)

.

Now, thanks to Cauchy’s theorem, for thez-integral we can moveŴ
′

back toŴ.
We then integrate overβ, varying froma to 1 (a > 0, which we’ll make tend to 0).
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Thus,
∫ 1

a
RN(u, v; y)dβ =
∫ 1

a
dβ
∫

Ŵ

∫

i R+

dw dz
wz

w2 − z2
h(βw, βz)β

× d

dβ

[

β2KB

(

β
2wv

s
, β

2zu

s

)]

exp

(

β2w2 − β2z2

s

)

.

We can integrate this by parts overβ obtaining

(1 − a)RN(u, v; y) =
∫

dz
∫

dwKB

(

2wv

s
,

2zu

s

)

wz

w2 − z2
exp

(

w2 − z2

s

)

h(w, z)(7.7)

−
∫

dz
∫

dw a3KB

(

a22wv

s
,a22zu

s

)

wz

w2 − z2

× exp

(

a2w
2 − z2

s

)

h(aw,az)

(7.8)

−
∫

dz
∫

dw
∫

dββ2KB

(

β
2wv

s
, β

2zu

s

)

wz

w2 − z2

× exp

(

β2w2 − β2z2

s

)

h(βw, βz)

(7.9)

−
∫

dz
∫

dw
∫

dββ2KB

(

β
2wv

s
, β

2zu

s

)

β
wz

w2 − z2

× 2β

(

w2 − z2 −
N
∑

i=1

(w2 − z2)yi

(β2w2 − yi )(β2z2 − yi )

)

× exp

(

β2w2 − β2z2

s

)

h(βw, βz).

(7.10)

Now, make the change of variablesβz 7→ z, βw 7→ w, in the reverse order to
obtain that

(7.9)+ (7.7) = 0, (7.8) = aR2
N,

whereR2
N is a well-defined integral independent ofa and that (7.10) is precisely

the kernel we want.
We can now pass to the limita −→ 0. Now, we know that the Bessel kernel

has only an artificial singularity atx = y; thus the contours can cross and we can
also extend the contour forz to a contour symmetric with respect to the imaginary
axis. Up to a multiplication by a factor14, we may replaceŴ with two axes parallel
to the real axis and replaceγ with the imaginary axis oriented positively from 0 to
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+∞ and from 0 to−∞, since the integrand is an odd function ofw. Theorem 7.1
is now proven. �

8 Saddle Point Analysis for the Hard Edge

We are now able to proceed to the study of the largeN-asymptotic of the ker-
nel. We will use the results of the saddle point analysis made for the bulk, since
the exponential term is of the same nature. We keep the hypothesisσ 2

1 = 1
4 and

the notations = a2/N. All along this section, we considerdPN(H) defined in
Theorem 4.4 instead ofd PN(H) as before.

SetGN(z) = z2 + 1
N

∑N
i=1 log(−(z2 − yi )) and define

(8.1) gN(z, w) = 1 − s
N
∑

i=1

yi

(w2 − yi )(z2 − yi )

and

(8.2) ro = 1

2

(

√

1 + 4a2 − 1√
1 + 4a2

)

= 1

2

(

2σ − 1

2σ

)

.

LEMMA 8.1 For ro given by(8.2)and setting

u = xa2

N2ro
, v = x′a2

N2ro
,

one has

lim
N→∞

1

2πs

∫

Ŵ

dz
∫

γ

dw KB

(

2zu

s
,

2wv

s

)

wzgN(z, w)

× e{s−1(GN (w)−GN (z))}

= r 2
o K ν

Bes(x
2, x′2).

(8.3)

PROOF OFLEMMA 8.1: This will be the object of the rest of this section. The
core of the argument will again be a saddle point method.

8.1 Contours for the Saddle Point Analysis

Because we have chosenu = x
N for some fixedx, the argument of Bessel

functions is of order 1. This means that the Bessel functions do not contribute to
the leading exponential term to be considered in the saddle point analysis.

Thus, the exponential term to be considered for the equation for the critical
points is given by

(8.4) Go(z) := z2 + s log(−(z2 − y))dρ(y) = 2Fo(z),
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γ

γ

ω

ω

Γ

Γ

−

−
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+

+

FIGURE 8.1. Contours for the hard edge.

whereFo is the exponential term for the Johansson ensemble [21] defined in (5.4).
This is actually the specificationu = 0 in the exponential term of the bulk kernel,
and recall that the negative sign has been introduced to have a definite logarithm.

The critical points are known: they are given byzc = ±ir o, where we again
will be able to use concentration of measure’s results proven in Section 4. We thus
choose the same contours (unrotated) as [21] for eigenvalues of Hermitian matrices
close to 0. This is exactly where the interpretation of eigenvalues of the deformed
Laguerre ensemble as squares of eigenvalues of Hermitian matrices plays arole.

Now we will just indicate what changes from the saddle point analysis of Sec-
tion 5: the contours are chosen so that they correspond to the critical points defined
above, and they are oriented in the same way for the contours forz, whereas the
orientation is inverse for the contour forw lying in the negative half-plane.

8.2 Contribution of gN at the Critical Points

We now turn to the functiongN , defined in (8.1), at the critical points.
Recall the link betweenGN andFN observed for the bulk: the exponential term

is now exactly twice that of the Hermitian case.
One has first

gN(wc, wc) = gN(−wc, wc) = gN(wc,−wc) = gN(−wc,−wc).

Consider now

G
′′
N(z) = 2 − s

N
∑

i=1

(

2yi

(z2 − yi )2
− 2z2

(z2 − yi )2

)

= 2 − s
N
∑

i=1

(

4yi

(z2 − yi )2
+ 2

(z2 − yi )

)

.

(8.5)
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In the largeN-limit, using the results of concentration of measure and the fact that
the critical points satisfy the equation

(8.6) G
′
N(z) = 2z +

N
∑

i=1

2zs

z2 − yi
= 0,

we find

(8.7) lim
N→∞

1

N

N
∑

i=1

1

z2 − yi
=

1
∫

0

1

z2 − y
dρ(y),

where the Marchenko-Pastur distributionρ is the law of the square of a Wigner
variable, still denotedσ . From (8.1), (8.5), and (8.7), we thus obtain that

(8.8) gN(±wc,±wc) = 1

4
G

′′
N(wc).

8.3 Saddle Point Asymptotics

We can now perform the saddle point analysis of the correlation kernel as in
[21]. We obtain that

(8.9)
G

′′
N(z

b
c)(γ

b
N)

′
(0)(Ŵb

N)
′
(0)

√

G
′′
N(w

b
c)(γ

b
N)

′
(0)
√

−G
′′
N(z

b
c)(Ŵ

b
N)

′
(0)

= −bi,

whereb stands for±. We now obtain the exponential convergence towards the
signed sum of the four contributions depending on the different combinations of
±zc and±wc: here the contribution of opposite critical points has to be taken into
account.

Of course, forw = z = +ir o we obtain the Bessel kernel:

(8.10) exp

(

2νiπ

2

)

KB(ir ou, ir ov) = 2K ν
Bes((rou)2, (rov)

2)

Since thew-integrand is an odd function ofw, for z = −w = ir o we get a second
Bessel kernel taking into account the orientation for the contours. The other cases
(z = w = −ir o andz = −w = −ir o) are similar.

Eventually, by the same saddle point argument as for the bulk, using (8.8),(8.9),
and (8.10), we obtain that

lim
N→∞

a4

4N2r 2
o

KN

(

(

xa2

N2ro

)2

,

(

x′a2

2Nro

)2

; y

)

= lim
N→∞

σ 2

4N2
KN

(

σ 2x2

4N2
,
σ 2x′2

4N2
; y

)

= K ν
Bes(x

2, x′2)

(8.11)

whereK ν
Bes is the limiting kernel defined in (1.3).
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Note that the error term in the asymptotic expansion is of order 1/
√

N as for
the bulk correlation under the same conditions of moments. �

Remark8.2. Such a computation has been made forx 6= x′, but it can be extended
to the equality case. One just needs to take the derivative atx′ = x of the right-
hand side of (7.3) to obtain a similar expression forKN(x, x; y). The scaling is the
same and the limit is, of course, the derivative atx of y 7→ K ν

Bes(x, y).

To sum up, we have obtained, as for the bulk, the following result:

PROPOSITION8.3 Let the xi vary in a compact set[0, L]; then, P̄N almost surely,

(8.12)
σ 2

4N2
KN

(

xiσ
2

4N2
,

xjσ
2

4N2
; y

)

= K ν
Bes(xi , xj )

(

1 + O

(

1√
N

)

+ O

(

L

N2

))

.

9 Universality of Eigenvalue Statistics at the Hard Edge

9.1 Proof of Theorem 2.8
Here we give only a sketch of the proof. For the scaling factorρN = 4N2/σ 2,

one has
∣

∣

∣

∣

∫

Mp,N (C)

d PN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x]dxN

−
∫

Mp,N (C)

dPN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x]dxN

∣

∣

∣

∣

≤ C Nm‖ f ‖∞N2−p( 1
4−ξ) = o(1)

(9.1)

for p > 4(m + 2) andξ small enough. And

∫

Mp,N (C)

dPN(H)
∫

R
N
+

ρN(x, y(H))Sm
N( f )[x] =

∫

Mp,N (C)

dPN(H)
∫

R
m
+

f (t1, . . . , tm)det

(

a4

4N2r 2
o

KN

(

a4

4N2r 2
o

xi ,
a4

4N2r 2
o

xj ; y

))m

i, j =1

×
m
∏

i=1

dxi .

(9.2)

Becausef has compact supportK , all xi belong toK ; thus we have
∣

∣

∣

∣

det

(

a4

4N2r 2
o

KN

(

a4xi

4N2r 2
o

,
a4xj

4N2r 2
o

; y

))m

i, j =1

− det
(

K ν
Bes(xi , xj )

)m

i, j =1

∣

∣

∣

∣

≤

C

(

N−ξ + K

N

)

+ Ce−cN,

(9.3)
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which holdsPN a.s. We can then pass to the limitN → ∞.

9.2 Fluctuations of the Smallest Eigenvalues: Proof of Theorem 2.10

Let E(0, s) be the probability that no eigenvalue of1
N X∗X lies in the interval

[0, s]. Then, by the inclusion-exclusion formula, one has forα = σ 2/4 = a4/4r 2
o

(9.4) E

(

0,
αs

N2

)

=
∫

Mp,N (C)

d PN(H)det(I − KN)L2(0,αs/N2).

We next develop the Fredholm determinant and obtain
(9.5)

E

(

0,
αs

N2

)

=
∫

Mp,N (C)

d PN(H)
∞
∑

m=0

(−1)m

m!

∫ αs
N2

0
det(KN(xi , xj ; y))mi, j =1

m
∏

i=1

dxi .

We can first replacePN by P̄N as in (9.1). Given an integerM , for m < M ,
using Proposition 8.3,

∫ αs
N2

0
det(KN(xi , xj ; y))mi, j =1

m
∏

i=1

dxi

=
∫ s

0
det

(

α

N2
KN

(

αxi

N2
,
αxj

N2
; y

))m

i, j =1

m
∏

i=1

dxi ,

=
∫ s

0
det

(

K ν
Bes(xi , xj )

)m

i, j =1

m
∏

i=1

dxi

(

1 + O

(

1√
N

)

+ O

(

s

N2

)

.

(9.6)

Then we eventually obtain, given a fixedǫ > 0, that

(9.7)
∫ s

0

∑

m≥M

1

m!

∣

∣

∣

∣

det

(

α

N2
KN

(

αxi

N2
,
αxi

N2
; y

))m

i, j =1

∣

∣

∣

∣

≤

∫ s

0

1

M !

∣

∣

∣

∣

det

(

α

N2
KN

(

αxi

N2
,
αxi

N2
; y

))M

i, j =1

∣

∣

∣

∣

< ǫ

for M large enough, since the sum overm is actually finite for fixedN and the
determinant intervening in the right-hand side of (9.7) can be compared to that of
the Bessel kernel for which the result is known. Adding (9.6), (9.7), and the error
term due to the replacement ofPN by P̄N ,

∣

∣det(I − KN)L2(0,s) − det(I − KBes)L2(0,s)

∣

∣

≤
∑

m<M

1

m!C
1√
N

+ 2ǫ + N−ξ

<

(

C

(

N−ξ + 1√
N

))

+ 2ǫ.(9.8)
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Thus

(9.9) lim
N→∞

det(I − KN)L2(0,s) = det(I − K ν
Bes)L2(0,s)

for s in a compact setK , P̄N almost surely.

We can then use the well-known fluctuation results obtained in [37] for the
smallest particle of a determinantal random point field with correlation kernelbeing
the Bessel kernel.

Appendix: Extension of the Domain of Universality

In this subsection, we will prove that Johansson’s proof of universality of local
eigenvalue statistics for Hermitian matrices [21] can be extended to the whole bulk
of the spectrum, giving in turn the same interval of universality for our model.

The model studied in [21] deals with local eigenvalue statistics of random Her-
mitian matrices. LetHN be the space ofN × N hermitian matrices.

DEFINITION A.1 A Johansson-type random matrix M onHN is a random matrix
that can be writtenM = (1/

√
N)M̂ , where the entries of̂M satisfy the follow-

ing conditions: The entrieŝMi j , i ≥ j , are independent random variables with a
Gaussian divisible lawµ with parametersa andσ1 for i > j and of parametersa2
andσ1 for P̂i i .

We noteσ 2, the variance of the Gaussian divisible lawµ, andλ1 ≤ · · · ≤ λN ,
the ordered eigenvalues ofM . In particular, the limiting spectral measure ofM ,
µN = 1

N

∑N
i=1 δλi , is given by the semicircle law defined by the density

σ̃ (x) = 1

2πσ 2

√

4σ 2 − x2 1[−2σ,2σ ](x).

PROPOSITIONA.2 Let u ∈ [δ,4σ 2 − δ] be a point in the bulk of the spectrum.
Then, withρN = Nσ̃ (u) in (1.2),

lim
N→∞

ESm
N( f ) =

∫

Rm

f (t1, . . . , tm)det
(

Ksin(ti , tj )
)m

i, j =1

m
∏

i=1

dti .

SKETCH OF PROOF: We refer to Johansson’s paper [21] and only indicate the
main changes from his proof. The correlation kernel that correspondsto the corre-
lation kernel of the deformed Laguerre ensemble is given by the following double



40 G. BEN AROUS AND S. PÉCHÉ

integral in the complex plane:

(A.1) KN(u, v; y) =

e
v2−u2

2t

(2iπ)2t (u − v)

∫

Ŵ

∫

i R+A

dz dw
1

z

(

1 − e{(v−u) z
t })

N
∏

j =1

w − xj

z − xj

× exp

{

w2 − 2wv − z2 + 2uz

2t

}(

w + z − v − t
N
∑

j =1

yj

(w − yj )(z − yj )

)

,

for some arbitraryA.
Here we assume thatσ 2

1 = 1
4 so that, in view of [21],

lim
N→∞

1

N

N
∑

j =1

δxj = σsc

whereσsc is the semicircle law with density2
π

√
1 − x2. The only step in Johans-

son’s proof that is no longer valid is the choice of the contourγ for thew-integral.
We have to find a contour in the complex plane satisfying the saddle point require-
ments. We consideru =

√
1 + 4a2 cos(θo), for someθo ∈ [δ, π − δ], whereδ > 0

is given.
We recall that the exponential termFu(w) to be analyzed satisfies

F ′
u(w) := w − u

a2
+
∫ 1

−1

1

w − y
dσsc(y)

whereu =
√

1 + 4a2 cosθo. Let us assume cosθo > 0 so that the critical points
(proof of lemma 3.2 in [21])wc and w̄c have positive real part. We notewc =
a′ + ib. For thez-integral, we keep the same contour as chosen in [21]. Consider
the contour

γ (t) := a′ + i t , t ∈ R.

We then have to show that this contour can be chosen to complete a saddle point
analysis of the kernel. Then, alongγ ,

Re

(

d Fu(wc + i t )

dt

)

= −(b + t)

(

1

a2
−
∫ 1

−1

dσ(y)

|wc + i t − y|2
)

:= G(t)(b + t).

We restrict ourselves here tot such thatb + t > η so that concentration results
hold. The functionG(t) is a monotonic function oft2 that anneals att = ±b. This
is enough to obtain that Re(Fu) achieves its maximum atwc andw̄c along this part
of the contourγ .

We then have to show that the contribution fromγ when|b + t | < η is negli-
gible. Using thatwc is a critical point and the expression of(b + t)G(t) as above,
one obtains that

Re(F(a′ + iη))− ReF(wc) ≤ − ηb2

(1 + b2)2
.
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This is enough to obtain that, forη small enough and|t | ≤ η,

Re(F(a′ + i t ))− ReF(wc) ≤ −co

for some positiveco. In the last step, we use that Re(F(a′ + i t )) ≤ Re(F(a′ +
iη))+ η2. The rest of the proof then follows exactly the same steps as in [21].�
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