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Consider N ×N symmetric one-dimensional random band matrices with general distribution of the
entries and band width W > N3/4+ε for any ε > 0. In the bulk of the spectrum and in the large N

limit, we obtain the following results.

(i) The semicircle law holds up to the scale N−1+ε for any ε > 0.

(ii) The eigenvalues locally converge to the point process given by the Gaussian orthogonal
ensemble at any fixed energy.

(iii) All eigenvectors are delocalized, meaning their L∞ norms are all simultaneously bounded by
N−

1
2
+ε (after normalization in L2) with overwhelming probability, for any ε > 0.

(iv) Quantum unique ergodicity holds, in the sense that the local L2 mass of eigenvectors becomes
equidistributed with overwhelming probability.

We extend the mean-field reduction method [4], which required W = Ω(N), to the current setting
W > N3/4+ε. Two new ideas are: (1) A new estimate on the “generalized resolvent” of band matrices
when W > N3/4+ε. Its proof, along with an improved fluctuation average estimate, will be presented
in parts 2 and 3 of this series [6,37]. (2) A strong (high probability) version of the quantum unique
ergodicity property of random matrices. For its proof, we construct perfect matching observables of
eigenvector overlaps and show they satisfying the eigenvector moment flow equation [7] under the
matrix Brownian motions.
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1 Introduction

1.1 Random matrices beyond mean field. In Wigner’s vision, random matrices play the role of a
mean-field model for large quantum systems of high complexity. His paradigm has been confirmed with
significant progress in understanding the universal behavior of many random graph and random matrix
models. However, regarding his core thesis that random matrix can be used to model non mean-field
systems, our understanding is much more limited. Even for one of the simplest non mean-field models, the
random Schrödinger operator, there is no result concerning the existence of the delocalized regime, in which
random matrix statistics are expected to hold.

A slightly more tractable model is the random band matrix characterized by the property that Hij

becomes negligible if dist(i, j) exceeds a parameter, W , called the band width. In general, i, j are lattice
points in Zd but in this article we consider only the case d = 1. Based on numerics, it was conjectured [9,10]
that the eigenvectors of band matrices satisfy a localization-delocalization transition, in the bulk of the
spectrum, with a corresponding sharp transition for the eigenvalues distribution [18]:

(i) for W �
√
N , delocalization and Gaussian orthogonal ensemble (GOE) spectral statistics hold;

(ii) for W �
√
N , eigenstates are localized and the eigenvalues converge to a Poisson point process.

This transition was also supported by heuristic arguments [36] and a nonrigorous supersymmetry method [19].
There have been many partial results concerning localization-delocalization for band matrices. For general

distribution of the matrix entries, localization of eigenvectors was first shown for W � N1/8 [28], and
improved to W � N1/7 for Gaussian entries [26]. Delocalization was proved in some averaged sense, for
W � N6/7 in [14], W � N4/5 in [15], W � N7/9 in [20]. The Green’s function was controlled down to the
scale Im z �W−1 in [17], implying a lower bound of order W for the localization length of all eigenvectors.
We mention also that at the edge of the spectrum, the transition for 1d band matrices (with critical exponent
N5/6) was understood in [33], thanks to the method of moments.

When the entries of band matrices are Gaussian with some specific covariance profile, one can apply
supersymmetry techniques (see [13] and [34] for overviews). With this method, for d = 3, precise estimates
on the density of states [12] were first obtained. Then, random matrix local spectral statistics were proved
for W = Ω(N) [30], and delocalization was obtained for all eigenvectors when W � N6/7 and the first four
moments of the matrix entries match the Gaussian ones [2] (these results assume complex entries and hold in
part of the bulk). Still with the supersymmetry technique, a transition around N1/2 was proved in [29, 31],
concerning moments of characteristics polynomials.

1.2 Mean Field reduction and quantum unique ergodicity. The main difficulties to analyze spectral
properties of band matrices with general entries are two-folds.

(i) There is currently no effective diagrammatical method to estimate the Green’s function when Im z �
W−1, while delocalization of eigenvectors requires estimates up to Im z � N−1.

(ii) For the universality of local spectral statistics, the comparison method used for mean-field models does
not apply to band matrices since the majority of matrix elements (effectively) vanish.

In an earlier paper [4], we proposed a mean-field reduction method to prove universality of local spectral
statistics for band matrices with W = Ω(N). This method relies on a notion much stronger than delocaliza-
tion, the probabilistic quantum unique ergodicity (QUE). Historically, QUE was introduced by Rudnick and
Sarnak [27] asserting that for negatively curved compact Riemannian manifolds, all high energy Laplacian
eigenfunctions become completely flat. Quantum ergodicity, essentially an averaged version of QUE, had
previously been proved for more general manifolds [11, 32, 38]. For d-regular graphs, the eigenvectors of the
discrete Laplacian also satisfy quantum ergodicity, under certain assumptions on the injectivity radius and
spectral gap of the adjacency matrices [1].

A probabilistic version of QUE was proposed and proved for Wigner matrices in [7]. To state it, let H
be a size N random matrix with eigenvectors ψj associated to eigenvalues λj . Then, there exists ε > 0 such
that for any deterministic 1 6 j 6 N and I ⊂ J1, NK, for any δ > 0 we have

P

(∣∣∣∑
i∈I
|ψj(i)|2 −

|I|
N

∣∣∣ > δ

)
6 N−ε/δ2. (1.1)
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To explain the mean field reduction, we block-decompose a band matrix H and its eigenvectors:

H =

(
A B∗

B D

)
, ψj =

(
wj

pj

)
, (1.2)

where A is a W ×W Wigner matrix. From the eigenvector equation Hψj = λjψj ,

Qλjwj = λjwj , where Qe = A−B∗ 1

D − e
B. (1.3)

Thus wj is an eigenvector to Qe with eigenvalue λj when e = λj . The basic observation from the earlier
paper [4] can be summarized as follows. Suppose that the probabilistic QUE for the eigenvectors of H holds.
Then the eigenvalues to H near a fixed energy E can be reconstructed from the eigenvalues of Qe near the
origin with e near E. Thus if we can prove the spectral universality for Qe, the same statement holds for
H. On the other hand, to establish QUE for the band matrix H, assume first that it holds for the W ×W
operator Qe. If we can substitute e by λj , then the eigenvector ψj is flat in the first W coordinates. Clearly,
we can stitch together the flatnesses of ψj in sufficiently many windows of size W to establish the global
flatness of ψj provided that the error in each window is sufficiently small.

To summarize, the mean field reduction method reduces the universality and QUE for the band matrix H
to those of Qe. Thanks to the recent progress on these topics [5,22,23], the inputs to prove these properties
require precise estimates on the Green’s function (Qe − z)−1 only for Im z ∼ N−ε. For probabilistic QUE,
we also need to establish the error probability in the sense of “very high probability”. In the following, we
start with a discussion on the Green’s function (Qe − z)−1.

1.3 Generalized Green’s Functions. It is clear that, if we estimate the Green’s function (Qe − z)−1

directly, some bound on the matrix (D − e)−1 appearing in Qe will be needed. Since e is real, estimating
(D − e)−1 is clearly a much harder problem than estimating the original Green’s function (H − z′)−1.
Fortunately, we only need this estimate with Im z ∼ N−ε. Clearly, one can interpret (Qe − z)−1 as the
W ×W corner of the generalized Green’s function

G(z, w) =

(
H −

(
z IW 0

0 w IN−W

))−1

(1.4)

when w = e. In [4], we use a somehow involved induction argument and an uncertainty principle to estimate
G(z, e) for W = Ω(N). In this work, we provide accurate estimates, Theorem 4.5, on G(z, e) for Im z ∼ N−ε
when W � N3/4. Our method is to derive a self consistent equation for the (off-diagonal) entires of
the generalized Green’s function (a similar equation for the standard Green’s function was called the T
equation [16]). Notice that Ward’s identity, which is instrumental in many random matrix estimations, is
not valid for generalized Green’s functions. More precisely, Ward’s identity asserts that for any Green’s
function of a Hermitian operator H, ∑

j

|Gij(z)|2 6 (Im z)−1 ImGii. (1.5)

For the generalized Green’s function G(z, w), the last property fails. Our strategy is to establish an estimate
on
∑
j |Gij(z)|2 by successively decreasing the imaginary part of w and using repeatedly the self-consistent

T equation in each step. Besides overcoming this difficulty, we also devise a new diagrammatic expansion in
deriving the T equation. Finally, we remark that the main condition W � N3/4 is mainly used in estimating
G(z, e). Besides extending the region of validity from W = Ω(N) to W � N3/4, our current approach allows
the estimate on G(z, e) to be completely independent from all other arguments in this work (e.g., the mean
field reduction). The proof of Theorem 4.5 will be delayed to parts 2 and 3 of this series.

1.4 Probabilistic QUE with high probability. The proof of the quantum unique ergodicity (1.1) for
Qe in [4] relies on two different tools.

(i) A priori estimates on the Green’s function (Qe − z)−1 (for large Im z) provide flatness of eigenvectors
on average (quantum ergodicity). This a priori information is necessary to obtain the following.

(ii) The eigenvector moment flow from [7] is a random walk in a dynamic random environment whose
relaxation means flatness of individual eigenvectors (quantum unique ergodicity).
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We have just outlined our new estimates on the Green’s function (Qe − z)−1 for W � N3/4. The main new
technique developed in this work concerns (ii): Theorem 2.5 states that

Quantum ergodicity implies a strong quantum unique ergodicity after adding a small GOE component.

Compared to (1.1), this new result is a strong probabilistic QUE, as it first allows much more general
observables of eigenvectors and is valid with probability 1 − N−D for any D > 0. Therefore all bulk
eigenvectors are now simultaneously flat. The proof of Theorem 2.5 relies on a remarkable combinatorial
identity: the perfect matching observables defined in (2.15) satisfy the eigenvector moment flow parabolic
equation, see Theorem 2.6.

Thanks to this new strong, version of QUE, the eigenvectors of Qe are flat for all e in a discrete subset of
size NC for any C fixed. Thus to establish flatness of ψj on the first W coordinates, we only need to compare

eigenvectors of Qe and Qλj for |e−λj | 6 N−C with C a large constant. An eigenvector perturbation formula
is enough to compute the difference between these eigenvectors, with sufficient a priori estimates given by a
weak uncertainty principle as developed in [4].

Therefore, our work presents an improvement from W = Ω(N) [4] to W � N3/4 thanks to new results
both on (i) and (ii). As discussed in Remark 4.7, our hypothesis W � N3/4 for delocalization comes from
the generalized Green’s function estimates (ii). Heuristics for the transition at band width N1/2 are given
in the same remark.

1.5 The model and results. All results in this paper apply to both real and complex band matrices.
For the definiteness of notation, we consider only the real symmetric case and we use the convention that all
eigenvectors are real. In the following definition, ZN denotes the set of residues mod N so that our matrices
are assumed to have periodic boundary condition.

Definition 1.1 (Band matrix HN with bandwidth WN ). Let HN be a N × N matrix with real centered
entries (Hij, i, j ∈ ZN ) which are independent up to the condition Hij = Hji. We say that HN is band
matrix with bandwidth W = WN if

sij := E|Hij |2= f(i− j) (1.6)

for some f : ZN → R satisfying
∑
x∈ZN f(x) = 1, and there exist a small positive constant cs and a large

constant Cs such that

csW
−1 · 1|x|6W 6 f(x) 6 CsW

−1 · 1|x|6CsW , x ∈ ZN . (1.7)

The method in this paper also allows to treat cases with progressive decay of the variance away from the
diagonal (e.g. f(x) 6 CsW

−1 ·1|x|6CsW instead of f(x) 6 CsW
−1 ·1|x|6W ), or variants with exponentially

small mass away from the band width. We work under the hypothesis (1.7) for simplicity.

For technical reasons we assume the following condition on the fourth moment of the matrix entries:
there is εm > 0 (here the subscript m indicates the moment condition) such that for |i− j| 6W ,

min
|i−j|6W

(
E ξ4

ij − (E ξ3
ij)

2 − 1
)
> N−εm , (1.8)

where ξij := Hij(sij)
−1/2 is the normalized random variable with mean zero and variance one. It is well-

known that for any real random variable ξ with mean zero and variance 1, E ξ4 − (E ξ3)2 − 1 > 0 and the
equality holds if and only if ξ is a Bernoulli random variable (Lemma 28 of [35]). Therefore, one simply has
εm = 0 when the ξij ’s (|i− j| 6 W ) all have the same law, different from the Bernoulli distribution. In the
more general setting (1.8), all our results are restricted to 0 6 εm < 1/2 because of the following condition
(1.11).

We also assume that for some δd > 0 (subscript d stands for “decay”) we have

sup
N,i,j

E
(
eδdWH2

ij

)
<∞. (1.9)

This tail condition can be weakened to a finite high moment condition. We assume (1.9) mainly for the
convenience of presentation. The constants in the following theorems depend on the fixed parameters cs,
Cs, εm and δd, in (1.7), (1.8) and (1.9), but we will only track of the dependence on εm.
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Denote the eigenvalues of H by λ1 6 . . . 6 λN , and let (ψk)Nk=1 be the corresponding L2-normalized
eigenvector, i.e., Hψk = λkψk. Thanks to the condition

∑
f(x) = 1, it is known that the empirical spectral

measure 1
N

∑N
k=1 δλk converges almost surely to the Wigner semicircle law with density

ρsc(x) =
1

2π

√
(4− x2)+.

The concept of localization/delocalization can be defined in many ways. For definiteness, we use the L∞

norm. For any small constant c > 0 and τ > 0, one expects that

P
(
N−τ 6 min(N,W 2)‖ψk‖2∞ 6 Nτ for all k ∈ JcN, (1− c)NK

)
= 1− o(1), (1.10)

meaning that a localization-delocalization phase transition occurs at logN W = 1/2, where logN W =
logW/ logN . Our first result proves (1.10) in the delocalization regime logN W > 3/4.

Theorem 1.2 (Delocalization for logN W > 3/4). Let (HN )N>1 be band matrices with band width WN

satisfying the conditions (1.8) and (1.9). Recall that εm > 0 is defined in (1.8). Suppose that for some
constant a > 0,

logN W > max

(
3

4
,

1

2
+ εm

)
+ a. (1.11)

For any (small) constants κ, τ > 0 and (large) D > 0, there exists N0 such that for all N > N0 we have

P
(
‖ψk‖2∞ 6 N−1+τ for all k ∈ JκN, (1− κ)NK

)
> 1−N−D. (1.12)

The above delocalization holds together with a local semicircle law down to the optimal scale.

Theorem 1.3 (Local semicircle law for logN W > 3/4). Under the same assumptions as Theorem 1.2,
there exists ε > 0 such that for any (small) κ, τ > 0 and (large) D > 0 there exists N0 such that for any
E1, E2 ∈ [−2 + κ, 2− κ] and any N > N0 we have

P

(∣∣∣∣∣# {λk ∈ [E1, E2]} −N
∫ E2

E1

dρsc

∣∣∣∣∣ < Nτ + |E1 − E2|N1−ε

)
> 1−N−D. (1.13)

In the following fixed energy universality statement, we denote ρ
(k)
H the k-point correlation function

(understood in the sense of distributions) for the spectral measure of a N ×N random matrix H.

Theorem 1.4 (Universality for logN W > 3/4). Under the same assumptions as Theorem 1.2, for any
κ > 0, any integer k and any smooth test function O ∈ C∞(Rk) with compact support, there are constants
c, C > 0 such that for any |E| 6 2− κ we have∣∣∣∣∫

Rk
O(a)ρ

(k)
H

(
E +

a

Nρsc(E)

)
da−

∫
Rk
O(a)ρ

(k)
GOE

(
E +

a

Nρsc(E)

)
da

∣∣∣∣ 6 CN−c. (1.14)

For the proof of Theorems 1.2, 1.3 and 1.4, the first step is to show that delocalization, the local semicircle
law, eigenvalues universality and quantum unique ergodicity hold under the following additional assumption:
H is a Gaussian divisible band matrix, i.e., there exists independent band matrices H1 and H2 with the
same width W and c > 0 such that H1 satisfies (1.8) and (1.9), and

H = H1 +H2 where (H2)ij = 1|i−j|6W · (1 + 1ij)
1/2 · N (0, c W−1N−εm). (1.15)

Remember that εm is defined in (1.8). Here, c is a small enough constant depending only on δd from (1.9).

Theorem 1.5. Assume that H is a band matrix of type (1.15), with band width WN satisfying (1.11).

(i) The eigenvectors are delocalized as in (1.12).

(ii) The eigenvalues satisfy the local semicircle law as in (1.13).

(iii) Fixed energy universality holds as in (1.14).

(iv) For any (small) τ, κ > 0, and (large) D > 0, there exists N0 > 0 such that for any N > N0 we have

P

(∣∣∣∣∣NW
`+W∑
α=`

|ψj(α)|2 − 1

∣∣∣∣∣ < N−
3
2a+τ for all 1 6 j, ` 6 N such that |λj | 6 2− κ

)
> 1−N−D,

where a > 0 was given in (1.11) and all indices are defined modulo N .
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1.6 Organization of the paper. This work is essentially divided in two parts.

The first part (Sections 2 and 3) concerns quantum unique ergodicity for mean field blocks, and improves
on the estimate (1.1): Theorem 2.5 gives flatness of the eigenvectors with overwhelming probability, and
with optimal fluctuations scale for the L2 mass of eigenvectors on subsets of J1, NK. This result is the main
technical novelty of our work.

The first aspect of the proof is algebraic (Section 2). A new function of the eigenvectors overlaps is
defined in equation (2.15), and it follows the eigenvector moment flow dynamics, see Theorem 2.6. These
dynamics of perfect matching observables generalize an earlier observation from [7]. In this previous work,
the eigenvectors evolution was related to a random walk in a dynamic random environment, after dimension
reduction through projection on a given fixed direction. Projections can now occur on an arbitrary number
of directions, see Remark 2.8. The proof of Theorem 2.6 is combinatorial and given at the end of Section 2.

The second aspect of the proof of Theorem 2.5 is analytic (Section 3). As proved by a sequence of
maximum principles and approximations with short range dynamics, the eigenvector moment flow reaches
equilibrium after some time depending on the initial condition. This allows to identify the scale of the perfect
matching observables. Our proof is more involved than the Hölder regularity of the eigenvector moment flow
in [7], because our observables are more general: in [7], the scale of observables was a priori known and the
dynamics were used to identify the distribution of fluctuations.

The second part of the paper (Sections 4 and 5) applies the strong form of quantum unique ergodicity to
delocalization for random band matrices. First, Theorem 1.5 is proved by the mean field reduction technique
from [4], then it is extended to more general band matrices by a moment matching argument.

The proof of Theorem 1.5 (Section 4) is sketched in Subsection 4.2. Subsection 4.4 contains the first
important input for the proof: the resolvent estimates for (Qe − z)−1. As explained after (1.4), these
estimates from Theorem 4.5 amount to a form of quantum ergodicity for the eigenvectors of Qe. From this
a priori estimate, quantum unique ergodicity is deduced for the Gaussian divisible version of Qe (Subsection
4.5). To access flatness of eigenvectors of our original eigenvectors ψk, we need to patch QUE estimates for
eigenvectors of Qe when e = λk. By a net argument in e, with mesh size N−C (C is fixed and arbitrarily
large because Theorem 2.5 holds with overwhelming probability), we only need to control eigenvector shifts
under tiny perturbations in e. This is the role of another input for the proof of Theorem 1.5, the weak
uncertainty principle. It is inspired by a more difficult result from [4], and proved in Subsection 4.6. We
refer to (4.59) for eigenvectors bounds thanks to the weak uncertainty principle. Subsection 4.7 concludes
the proof of Theorem 1.5.

In Section 5, delocalization, local semicircle law and universality (Theorems 1.2, 1.3 and 1.4) are obtained

beyond the Gaussian divisible ensemble. The proof relies on moment matching, exhibiting a matrix H̃ of
type (1.15) whose first four moments of the entries match those of H. This idea appeared in [35] for the
purpose of universality for Wigner matrices, and required some a priori information on delocalization and
local semicircle law. In our work, such information is only available for H̃, by Theorem 1.5. It is extended to
H thanks to an implementation of the moment matching strategy at the level of the Green’s functions [17],

and a self-consistent method to obtain these estimates by continuously interpolating from H̃ to H [21].

Finally, although this work focuses on symmetric matrices, the method applies to the Hermitian class.
The only substantial difference is the algebraic part of QUE for mean-field models: the perfect matching
observables are defined in a different way for real and complex matrices, as explained in the Appendix.

2 Quantum unique ergodicity for deformed matrices

This and the next sections are self-sufficient. In these sections, the size of the matrices is denoted by n. The
main result (Theorem 2.5) will then be applied to mean-field blocks of type Qe from (1.3) (or more precisely
its generalization Qge , see (4.10)), i.e. for n = W .

2.1 Eigenvectors dynamics. In this subsection, we first recall the stochastic differential equation for
the eigenvectors under the Dyson Brownian motion, as stated in [7, Section 2].

The matrix Brownian motion dynamics are defined as follows, either at the matrix, eigenvalues or eigen-
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vectors level (remember we only consider the symmetric case, the Hermitian one being detailed in the
Appendix). Let B be a n× n matrix such that Bij(i < j) and Bii/

√
2 are independent standard Brownian

motions, and Bij = Bji. We abbreviate Z(t) = B(t)/
√
n. The n× n symmetric Dyson Brownian motion K

with initial value K(0) = V is defined as

K(t) = V + Z(t). (2.1)

Let λ0 ∈ Σn = {λ1 < · · · < λn}, u0 ∈ O(n). The symmetric Dyson Brownian motion/vector flow with
initial condition (λ1, . . . , λn) = λ0, (u1, . . . , un) = u0, is defined through the dynamics

dλk =
dBkk√
n

+

 1

n

∑
` 6=k

1

λk − λ`

 dt, (2.2)

duk =
1√
n

∑
6̀=k

dBk`
λk − λ`

u` −
1

2n

∑
` 6=k

dt

(λk − λ`)2
uk. (2.3)

With a slight abuse of notation, we will write λt either for (λ1(t), . . . , λn(t)) or for the n×n diagonal matrix
with entries λ1(t), . . . , λn(t).

The link between the previously defined matrix and spectral dynamics is given as follows. See [7] for
a proof, with the main ideas being due to McKean [24] for the existence and uniqueness of solutions, and
Bru [8] for the eigenvector dynamics, in the Wishart case.

Theorem 2.1. The following statements about the Dyson Brownian motion and eigenvalue/vector flow hold.

(a) Existence and strong uniqueness hold for the system of stochastic differential equations (2.2), (2.3). Let
(λt,ut)t>0 be the solution. Almost surely, for any t > 0 we have λt ∈ Σn and ut ∈ O(n).

(b) Let (K(t))t>0 be a symmetric Dyson Brownian motion with initial condition K(0) = u0λ0u
∗
0, λ0 ∈ Σn.

Then the processes (K(t))t>0 and (utλtu
∗
t )t>0 have the same distribution.

(c) Existence and strong uniqueness hold for (2.2). For any T > 0, let ν
K(0)
T be the distribution of (λt)06t6T

with initial value the spectrum of a matrix K(0). For 0 6 T 6 T0 and any given continuous trajectory

λ = (λt)06t6T0
⊂ Σn, existence and strong uniqueness holds for (2.3) on [0, T ]. Let µ

K(0),λ
T be the

distribution of (ut)06t6T with the initial matrix K(0) and the path λ given.

Let F be continuous bounded, from the set of continuous paths (on [0, T ]) on n× n symmetric matrices
to R. Then for any initial matrix K(0) we have

EK(0)(F ((K(t))06t6T )) =

∫
dν

K(0)
T (λ)

∫
dµ

K(0),λ
T (u)F ((utλtu

∗
t )06t6T ).

Following [7], we introduce the notations (the dependence in t will often be omitted for ck`, 1 6 k < ` 6 n)

ck`(t) =
1

n(λk(t)− λ`(t))2
, (2.4)

uk∂u` =

n∑
α=1

uk(α)∂u`(α), (2.5)

X
(s)
k` = uk∂u` − u`∂uk ,

We then have the following generator for the eigenvector dynamics. For a proof, see [7].

Lemma 2.2. For the diffusion (2.3) the generator acting on smooth functions f : Rn2 → R is

L
(s)
t =

∑
16k<`6n

ck`(t)(X
(s)
k` )2.

The above lemma means dE(g(ut))/dt = E(L
(s)
t g(ut)) for the stochastic differential equation (2.3).
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2.2 Main result. Let I be a deterministic subset of J1, nK. We denote the eigenvectors overlaps as

pij =
∑
α∈I

ui(α)uj(α), i 6= j ∈ J1, nK

pii =
∑
α∈I

ui(α)2 − C0, i ∈ J1, nK (2.6)

where C0 is an arbitrary but fixed constant independent of i. We will eventually choose C0 = |I|/n so that
the diagonal overlaps are properly normalized, but many results in this section do not depend the actual
value of C0. Moreover, these overlaps are functions of t (u satisfies the dynamics (2.3)) but this dependence
is omitted in the notation.

Remember the notation (2.1) and denote

G(t, z) =
1

K(t)− z
.

For a matrix H, we abbreviate the Stieltjes transform as

mH(z) =
1

n
Tr

1

H − z
.

Assumption 2.3 (Notations and conditions for relaxation flow). Fix a small number a > 0. A matrix V is
said to be bounded if the norm of V is bounded, i.e., there is a constant C1 > 0 such that

‖V ‖ := ‖V ‖op 6 nC1 . (2.7)

A deterministic matrix V is called (η∗, η
∗, r)-regular at E0 if η∗, η

∗ and r satisfy

n−1+a 6 η∗, η∗n
a 6 r 6 n−aη∗, η∗na 6 1 (2.8)

and there exists C2 such that the imaginary part of the Stieltjes transform of V is bounded from above and
below by

C−1
2 6 =(mV (z)) 6 C2, mV (z) :=

1

n
Tr(V − z)−1, (2.9)

uniformly for any
z ∈ {E + iη : E ∈ [E0 − r, E0 + r], η∗ 6 η 6 η∗}.

Our main result not only requires the above hypothesis about the Stieltjes transform, but also the
folllowing estimates on individual diagonal resolvent entries.

Assumption 2.4. The following holds uniformly in z ∈ {E + iη : E ∈ [E0 − r, E0 + r], η∗ < η < η∗}.

(i) Diagonal entries all have the same order:

ImG(0, z)ii 6
2

n
ImTrG(0, z). (2.10)

(ii) There exists a constant 0 < c < 1 such that the averages over I and J1, nK coincide up to n−c:∣∣∣∣∣ 1

|I|
∑
i∈I

G(0, z)ii −
1

n
TrG(0, z)

∣∣∣∣∣ 6 n−c. (2.11)

In the remainder of this article, to simplify the exposition we also assume that the deterministic set I
from (2.6) satisfies

|I| > cn (2.12)

for some small fixed constant c. This is enough for our purpose, as |I| ∼ n/2 in the next sections. We define,
for any r > 0 and 0 < κ < 1,

Irκ(E) := IE,(1−κ)r, IE,r = (E − r, E + r). (2.13)

The main result of this section is the following, where we choose C0 = |I|/N in (2.6).
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Theorem 2.5 (Quantum unique ergodicity for deformed matrices). Remember the notation (2.6) for the
centered partial overlaps, take C0 = |I|/n and assume (2.12). Under Assumption 2.3 and Assumption 2.4,
the following statement holds. For any (small) κ, ε > 0, (large) D > 0 and i, j ∈ J1, nK, for any t0, t1 such
that naη∗ 6 t0 6 t1 6 n−ar, we have

P
(
∃ t0 < t < t1 : 1λi(t),λj(t)∈Iκr (E0) (|pii|+ |pij |) > nε

(
1

nc
+

1√
nt0

))
6 n−D (2.14)

for large enough N . Here, the constant c is from (2.11). In other words, the errors consist of the initial
error n−c and the dynamical error (nt0)−1/2.

2.3 Perfect matching observables. We will need the following notations.
First, as in [7], we define η : J1, nK→ N where ηj := η(j) is interpreted as the number of particles at the

site j. Thus η denotes the configuration space of particles. We denote N (η) =
∑
j ηj = d the total number

of particles. Define ηi,j to be the configuration obtained by moving one particle from i to j. If there is no
particle at i then ηi,j = η. Notice that there is a direction and the particle is moved from i to j.

Second, for any given configuration η, consider the set of vertices

Vη = {(i, a) : 1 6 i 6 n, 1 6 a 6 2ηi}.

Let Gη be the set of perfect matchings of the complete graph on Vη, i.e. this is the set of graphs G with
vertices Vη and edges E(G) ⊂ {{v1, v2} : v1 ∈ Vη, v2 ∈ Vη, v1 6= v2} being a partition of Vη.

1 i1 i2 i3 n

(a) A configuration η with N (η) = 6, ηi1 = 2,
ηi2 = 3, ηi3 = 1.

1 i1 i2
i3 n

(b) A perfect matching G ∈ Gη. Here, P (G) =
pi1i1pi1i2p

2
i2i2pi2i3pi3i1 .

Third, for any given edge e = {(i1, a1), (i2, a2)}, we define p(e) = pi1,i2 , P (G) =
∏
e∈E(G) p(e) and

f
(s)
λ,t(η) =

1

M(η)
E

∑
G∈Gη

P (G) | λ

 , M(η) =

n∏
i=1

(2ηi)!!, (2.15)

where (2m)!! =
∏
k62m,k odd k is the number of perfect matchings of the complete graph on 2m vertices.

Remarkably, the above function f satisfies a parabolic partial differential equation.

Theorem 2.6 (Perfect matching observables for the eigenvector moment flow: symmetric case). Suppose

that u is the solution to the symmetric eigenvector dynamics (2.3) and f
(s)
λ,t(η) is given by (2.15). Then f

(s)
λ,t

satisfies the equation

∂tf
(s)
λ,t = B(s)(t)f

(s)
λ,t , (2.16)

B(s)(t)f(η) =
∑
k 6=`

ck`(t)2ηk(1 + 2η`)
(
f(ηk`)− f(η)

)
. (2.17)

Remark 2.7. An important property of the eigenvector moment flow is the reversibility with respect to a
simple explicit equilibrium measure:

π(η) =

n∏
p=1

φ(ηp), φ(k) =

k∏
i=1

(
1− 1

2i

)
. (2.18)
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For any function f on the configuration space, the Dirichlet form is given by∑
η

π(η)f(η)B(t)f(η) =
∑
η

π(η)
∑
i 6=j

cijηi(1 + 2ηj)
(
f(ηij)− f(η)

)2
.

Remark 2.8. The above theorem is independent of our choice of C0 and of the canonical basis and, more
remarkably, the projection vectors don’t have to be orthogonal. More precisely, let (qα)α∈I be any family of
fixed vectors. Define

pij =
∑
α∈I
〈ui,qα〉〈uj ,qα〉 i 6= j ∈ J1, nK,

pii =
∑
α∈I
〈ui,qα〉2 − C0, i ∈ J1, nK,

and ft,λ accordingly. Then (2.16) holds. In particular, Theorem 2.6 generalizes [7, Theorem 3.1 (i)] by just
choosing |I| = 1.

2.4 Proof of Theorem 2.6. To start the proof of Theorem 2.6, let

g(η) =
1

M(η)

∑
G∈Gη

P (G) (2.19)

and let 1 6 k < ` 6 n be fixed for the rest of this subsection. We abbreviate X = X
(s)
k` . Using Lemma 2.2,

we only need to prove

X2g(η) = 2ηk(1 + 2η`)(g(ηk`)− g(η)) + 2η`(1 + 2ηk)(g(η`k)− g(η)). (2.20)

We therefore want to calculate X2P (G) for any G ∈ Gη. For that purpose, we first need the following
definition.

Definition 2.9. Let η and k < ` be fixed. The following notations will be useful for calculating X2P (G).

(i) Vi ⊂ Vη is the set of vertices of type (i, a), 1 6 a 6 2ηi.

(ii) For any two vertices v, w ∈ Vk ∪ V`, we denote

ε(v, w) =

{
1 if v, w are in the same Vi, i = k or `
−1 if v, w are in different Vi ′s.

(iii) Let G ∈ Gη and v, w ∈ Vk ∪ V`.
Assume v ∈ Vk and w ∈ V`. Then we define SwvG = SvwG ∈ Gη as the perfect matching obtained by
transposition of v and w. More precisely, let τvw be the permutation of Vη transposing v and w. Then

E(SvwG) = {{τv,w(v1), τv,w(v2)} : {v1, v2} ∈ E(G)}.

Assume v = (k, a) and w = (k, b) (a < b) are both in Vk. Then we define SwvG = SvwG ∈ Gηk` as the
perfect matching obtained by a jump of v and w to `. More precisely, let jvw = jwv be the following
bijection from Vη to Vηk` : jvw(v) = (`, 2η` + 1), jvw(w) = (`, 2η` + 2), jvw((k, c)) = (k, c− 2) if b < c,
jvw((k, c)) = (k, c− 1) if a < c < b and jvw(v1) = v1 in all other cases. Then

E(SvwG) = {{jv,w(v1), jv,w(v2)} : {v1, v2} ∈ E(G)}.

A similar definition applies if both v and w are in V`, the jump now being towards k.

In this proof, for any set A we denote A2
∗ = {(a, b) ∈ A2 : a 6= b}. The following result is the key step in

our proof of Theorem 2.6.

Lemma 2.10. For any G ∈ Gη, we have

X2P (G) =
∑

(v,w)∈(Vk∪V`)2∗

ε(v, w)P (SvwG)− (2ηk + 2η`)P (G). (2.21)
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v w

i k `

Svw

(a) The map Svw in case of a transposition.

v

w

i k `

Svw

(b) The map Svw in case of a jump.

We postpone the proof of the above lemma and first finish the proof of Theorem 2.6. Let

h(η) =
∑
G∈Gη

P (G).

Note that if v ∈ Vk and w ∈ V`, Svw is a permutation of Gη. Moreover, if v and w are both in Vk, Svw is a
bijection from Gη to Gηk` . The summation of (2.21) over all G ∈ Gη therefore gives

X2h(η) =
∑

(v,w)∈(Vk)2∗

∑
G∈Gη

P (SvwG) +
∑

(v,w)∈(V`)2∗

∑
G∈Gη

P (SvwG)− 2
∑

(v,w)∈Vk×V`

∑
G∈Gη

P (SvwG)− 2(ηk + η`)h(η)

=
∑

(v,w)∈(Vk)2∗

h(ηk`) +
∑

(v,w)∈(V`)2∗

h(η`k)− 2
∑

(v,w)∈Vk×V`

h(η)− 2(ηk + η`)h(η)

X2h(η) = 2ηk(2ηk − 1)h(ηk`) + 2η`(2η` − 1)h(η`k)− (2ηk(2η` + 1) + 2η`(2ηk + 1))h(η).

The above equation implies (2.20) after renormalization byM(η). This concludes the proof of Theorem 2.6.

Proof of Lemma 2.10. Let G ∈ Gη and 1 6 k < ` 6 n be fixed. The Leibniz rule applies: for any smooth

functions f, g((ui(α))16i,α6n) : Rn2 → R we have X(fg) = fX(g) + gX(f), so that

X2P (G) =
∑

(e1,e2)∈E(G)2∗

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) +
∑

e1∈E(G)

X2p(e1)
∏

e∈E(G)\{e1}

p(e). (2.22)

The above sums will be decomposed depending of the following edge group (single, double or transverse):

Es = E(G) ∩ {{v, w} : v ∈ Vk ∪ V`, w 6∈ Vk ∪ V`}, (2.23)

Ed = E(G) ∩ {{v, w} : (v, w) ∈ V2
k ∪ V2

` }, (2.24)

Et = E(G) ∩ {{v, w} : v ∈ Vk, w ∈ V`}. (2.25)

For any v ∈ Vη, let ev be the edge containing v and v′ be the vertex such that ev = {v, v′}. We denote

Vs = {v ∈ Vk ∪ V` : {v, v′} ∈ Es},
Vd = {v ∈ Vk ∪ V` : {v, v′} ∈ Ed},
Vt = {v ∈ Vk ∪ V` : {v, v′} ∈ Et}.

Our calculations will be based on the following basic facts: if e 6∈ Es ∪ Ed ∪ Et then Xk`p(e) = 0, and

Xpki = −p`i, (2.26)

Xpk` = pkk − p``, (2.27)

Xp`` = 2pk`. (2.28)

From (2.22) we have X2P (G) = (I) + (II) + (III) + (IV) + (V) + (VI) + (VII) + (VIII) + (IX) where all
terms are defined and calculated below. First,

(I) :=
∑

(e1,e2)∈(Es)2∗

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
∑

(v,w)∈(Vs)2∗

Xp{w,w′}Xp{v,v′}
∏

e∈E(G)\{ev,ew}

p(e).
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From (2.26), Xp{v,v′}Xp{w,w′} = −p{w,v′}p{v,w′} if v and w are in distinct Vi’s, and Xp{v,v′}Xp{w,w′} =
p{jv,w(v),v′}p{jv,w(w),w′} if they are both in the same Vi. In all cases, we proved

(I) =
∑

(v,w)∈(Vs)2∗

ε(v, w)P (SvwG). (2.29)

We now consider

(II) :=
∑

(e1,e2)∈Es×Ed∪Ed×Es

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
∑

(v,w)∈Vs×Vd

Xp{v,v′}Xp{w,w′}
∏

e∈E(G)\{ev,ew}

p(e).

For the second equality, note that vertices on a double edge need to be weighted by a factor 1/2. From (2.28)
and (2.26), Xp{v,v′}Xp{w,w′} = −2p{w,v′}Xp{v,w′} if v and w are in distinct Vi’s, and 2p{jvw(v),v′}p{jvw(w),w′}
if they are in the same Vi. We therefore have

(II) =
∑

(v,w)∈Vs×Vd∪Vd×Vs

ε(v, w)P (SvwG). (2.30)

For the contribution of

(III) :=
∑

(e1,e2)∈(Ed)2∗

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
1

4

∑
(v,w)∈(Vd)2∗:w 6=v′

Xp{v,v′}Xp{w,w′}
∏

e∈E(G)\{ev,ew}

p(e),

from (2.28) we haveXp{v,v′}Xp{w,w′} = −4p{w,v′}Xp{v,w′} if v and w are in distinct Vi’s, 2p{jvw(v),v′}p{jvw(w),w′}
if they are in the same Vi. We therefore proved

(III) =
∑

(v,w)∈(Vd)2∗

ε(v, w)P (SvwG)−
∑
v∈Vd

P (Svv′G). (2.31)

We now calculate

(IV) :=
∑
e1∈Es

X2p(e1)
∏

e∈E(G)\{e1}

p(e) =
∑
v∈Vs

X2p{v,v′}
∏

e∈E(G)\{ev}

p(e) = −
∑
v∈Vs

P (G) (2.32)

where we used (2.26) twice to obtain X2p{v,v′} = −p{v,v′}. For the term

(V) :=
∑
e1∈Ed

X2p(e1)
∏

e∈E(G)\{e1}

p(e) =
1

2

∑
v∈Vd

X2p{v,v′}
∏

e∈E(G)\{e1}

p(e),

note that we have X2p{v,v′} = 2pkk − 2p`` if v ∈ V`, 2p`` − 2pkk otherwise. This yields

(V) =
∑
v∈Vd

(P (Sv,v′(G))− P (G)). (2.33)

We now consider cases where transverse edges appear:

(VI) :=
∑

(e1,e2)∈Es×Et∪Et×Es

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) = 2
∑

v∈Vs,{w,w′}∈Et

Xp{v,v′}Xp{w,w′}
∏

e∈E(G)\{ev,ew}

p(e).

Up to transposing w and w′, we can assume that v and w are in the same Vi. With (2.26) and (2.27), a
calculation gives Xp{v,v′}Xp{w,w′} = pjvw(v)v′pjvw(w)w′ − pτvw′ (v)v′pτvw′ (w′)w. This yields

(VI) =
∑

(v,w)∈Vs×Vt∪Vt×Vs

ε(v, w)P (Svw(G)). (2.34)

We also have

(VII) :=
∑

(e1,e2)∈Ed×Et∪Et×Ed

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
∑

v∈Vd,{w,w′}∈Et

Xp{v,v′}Xp{w,w′}
∏

e∈E(G)\{ev,ew}

p(e).
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We can assume v and w are in the same Vi. Then (2.27) and (2.28) giveXp{v,v′}Xp{w,w′} = 2(pjvw(v)v′pjvw(w)w′−
pτvw′ (v)v′pτvw′ (w′)w), so that

(VII) =
∑

(v,w)∈Vd×Vt∪Vt×Vd

ε(v, w)P (Svw(G)). (2.35)

For two transverse edges, we have

(VIII) :=
∑

(e1,e2)∈(Et)2∗

Xp(e1)Xp(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
1

4

∑
(v,w)∈(Vt)2∗,w 6=v′

Xp{v,v′}Xp{w,w′}
∏

e∈E(G)\{ev,ew}

p(e).

Without loss of generality, assume v and w are in the same Vi. Equation (2.27) yields Xp{v,v′}Xp{w,w′} =
p{jv,w(v),v′}p{jv,w(w),w′}+p{jv′,w′ (v′),v}p{jv′,w′ (w′),w}−p{τv,w′ (v),v′}p{τv,w′ (w′),w}−p{τv′,w(v),v}p{τv′,w(w),w′}. We
therefore have

(VIII) =
∑

(v,w)∈(Vt)2∗

ε(v, w)P (Svw(G)) +
∑
v∈Vt

P (G). (2.36)

Finally, from (2.27) we have X2pk` = −4pk`, so that

(IX) :=
∑
e1∈Et

X2p(e1)
∏

e∈E(G)\{e1}

p(e) = −2
∑
v∈Vt

P (G) (2.37)

By summation of all equations (2.29), (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), the right
hand sides of (2.21) and (2.22) exactly coincide, concluding the proof of Lemma 2.10.

3 Analysis of the eigenvector moment flow

Before getting into the details of the proof of Theorem 2.5, i.e. relaxation for the eigenvector moment flow
(2.17), we note substantial differences with the setting and proof from [7]. The dynamics equation (2.17)
already appeared in [7], but the observables associated with the equation (2.17) are now much more general
(see Remark 2.8), and their natural scale (i.e., the order of the sizes of these observables) is not known a
priori.

Indeed, in [7], the order of magnitude of ft(η) was a priori known: ft(η) = E(|
√
n〈q, uk〉|d | λ) 6 nε

thanks to the local law. The eigenvector moment flow was used in [7] to find fluctuations around this scale.
On the contrary, in the current paper, the eigenvector moment flow (2.17) allows to find the natural scale

for a wider class of observables. For |I| ∼ cn, local laws only give the trivial estimate |pii| 6 1 for example,
although the dynamics yield Theorem 2.5, i.e. |pii| 6 n−1/2+ε for t approaching 1.

This differences about observables and scales require the following notable novelties in the proof of
Theorem 2.5:

(i) The decomposition between long-range and short-range dynamics is now more intricate. In particular,
our bound on the long-range contribution improves in inductive steps (see Lemma 3.5 to be compared
with [7, Lemma 6.1]).

(ii) The maximum principle, Proposition 3.7, also gives stronger results once it is used inductively, on
space-time embedded domains, while the analogue [7, Theorem 7.4] only required one time step.

In summary, the error terms in the finite speed of propagation and the maximum principle estimates
depend on the size of ft(η). In this paper, the a priori bound on ft(η) is far from its real size. Hence we
need to bootstrap our estimates in a suitable way in order to get a sharp estimate at the end of the proof.

We now introduce a few notations which will be useful in the statement and proof of the following Lemma
3.1, and the following of this section. For a fixed fixed and arbitrarily small ω > 0, we define the control
parameter

ψ = nω

with ω 6 a/100, and the following time and spectral domains:

Tω(η∗, η
∗, r) =

{
t : η∗ψ 6 t 6 ψ−1 r

}
, (3.1)
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3.1 A priori estimates. For K(t) in (2.1), we denote the initial matrix V = U0Λ0U
∗
0 , where Λ0 =

diag{λ1(0), · · · , λn(0)}, and U0 is the orthogonal matrix of its eigenvectors. Let mfc,t be the Stieltjes trans-
form of the free convolution between the empirical spectral measure of V and the Gaussian orthogonal
ensemble Zt. Then mfc,t solves the equation

m
(n)
fc,t(z) = mV

(
z + t m

(n)
fc,t(z)

)
=

1

n

n∑
i=1

gi(t, z), gi(t, z) :=
1

λi(0)− z − tmfc,t(z)
. (3.2)

Here m
(n)
fc,t(z) is the Stieltjes transform of a measure with density denoted ρ

(n)
fc,t. For notational convenience

we will suppress the superscript and use the notations mfc,t(z), ρfc,t.

The typical location γi(s) of the ith eigenvalue λi(s) is defined through
∫ γi(s)
−∞ dρfc,s = i

n . We also recall
the following stability property of the typical locations, see [23, Lemma 3.4]: for any 0 < q1 < q2 < 1 and
ω > 0, for large enough n we have, for all s, t ∈ Tω(η∗, η

∗, r),

{i : γi(s) ∈ IE0,q1r} ⊂ {i : γi(t) ∈ IE0,q2r}. (3.3)

Lemma 3.1 (Delocalization for deformed matrices). Let τ > 0 and let ui,t denote the normalized eigenvector
of K(t) in (2.1), whose eigenvalues are λi,t, 1 6 i 6 n. We assume that t ∈ Tω(η∗, η

∗, r), V is (η∗, η
∗, r)-

regular at E0 and bounded as in (2.7), and that there exists C > 0 such that for any D > 0, for large enough
n we have

P
(
∃E ∈ IE0,r, η∗ < η < rn−ω : ImG(0, E + iη)ii > C

)
6 n−D (3.4)

for any 1 6 i 6 n. Here G(0, z) is the Green function of the initial matrix V . Then for any κ, τ,D > 0,
provided that n is sufficiently large we have

P
(
1|λk,t−E0|6(1−κ)r ‖uk,t‖2∞ > n−1+τ

)
6 n−D

uniformly in 1 6 k 6 n .

Remark 3.2. This lemma is essentially a restatement of [5, Theorem 2.1], which holds in the domain
{z = E + iη : E ∈ Irκ(E0), ψ4/n 6 η 6 1− κr} under the (η∗, 1, r)-regularity for V , see [5, Assumption 1.3].

In the above lemma the assumption is weaker: we only have (η∗, η
∗, r)-regularity for V . A simple

inspection of the proof of [5, Theorem 2.1] shows that its conclusion remains, in the restricted domain
ψ4/n 6 η 6 rn−ω (which will be sufficient for our purpose) under this (η∗, η

∗, r)-regularity assumption.

Proof. We bound the eigenvectors coordinates by the diagonal entries of the resolvent through

|uk,t(i)|2 6 n−1+τ ImG(t, λk,t + in−1+τ )ii. (3.5)

If |λk,t − E0| 6 (1− κ)r, denoting z = λk,t + in−1+τ we have

z ∈ {E + iη : |E − E0| < (1− κ)r,
ψ4

n
6 η 6 rη∗ψ−1}. (3.6)

The local law from [5, Theorem 2.1] with the domain adjustment from Remark 3.2 states that G(t, z) is well
approximated by U0 diag{g1(t, z), g2(t, z), . . . , gn(t, z)}U∗0 , i.e., for any η∗ � t � r and any unit vector q,
uniformly for any z as in (3.6), the following holds with overwhelming probability:∣∣∣∣∣〈q, G(t, z)q〉 −

n∑
i=1

〈ui(0),q〉2gi(t, z)

∣∣∣∣∣ 6 ψ2

√
nη

Im

(
n∑
i=1

〈ui(0),q〉2gi(t, z)

)
. (3.7)

Clearly, we can restate the last result as

|〈q, G(t, z)q〉 − 〈q, G(0, z + tmfc,t(z))q〉| 6
ψ2

√
nη

Im〈q, G(0, z + tmfc,t(z))q〉, (3.8)

where G(0, z) is the Green’s function of V . Since ψ2/
√
nη 6 1, we have

|ImG(t, z)ii − ImG(0, z + tmfc,t(z))ii| 6 ImG(0, z + tmfc,t(z))ii. (3.9)
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From [5, Proposition 2.2], for some fixed constant C > 0 we have C−1 < Immfc,t(z) < C and |Remfc,t(z)| <
C log n, so that Re(z + tmfc,t(z)) ∈ IE0,r and η∗ < Im(z + tmfc,t(z)) < n−ωr. With (3.4), we deduce that

ImG(0, z + tmfc,t(z))ii 6 C (3.10)

with overwhelming probability. Equations (3.5), (3.9), (3.10) conclude the proof.

Similarly to [5, 7], we split split the operator B(t) from (2.17) into a short-range part and a long range
part through a short range parameter `: B(t) = S (t) + L (t), with

(S ft)(η) =
∑

0<|j−k|6`

cjk(t)2ηj(1 + 2ηk)
(
ft(η

jk)− ft(η)
)
,

(L ft)(η) =
∑
|j−k|>`

cjk(t)2ηj(1 + 2ηk)
(
ft(η

jk)− ft(η)
)
.

Notice that S and L are also reversible with respect to the measure π from (2.18). We denote by UB(s, t)
(US (s, t) and UL (s, t)) the semigroup associated with B (S and L ) from time s to t, i.e.

∂tUB(s, t) = B(t)UB(s, t).

For a fixed κ > 0, consider the following “distance” on n particle configurations:

d(η, ξ) = max
16α6d

#{i ∈ J1, nK : γi(t0) ∈ Irκ(E0), i ∈ Jxα, yαK ∪ Jyα, xαK}, (3.11)

where η: 1 6 x1 6 x2 6 · · · 6 xd 6 n and ξ: 1 6 y1 6 y2 6 · · · 6 yd 6 n, and the initial an initial time t0
defined in the next lemma. Note that we use the notation d for d̃ defined in [5, equation (3.10)].

Lemma 3.3. Assume the initial estimates (2.7), (2.8), (2.9) and (2.11) hold. We fix times t0, t1, and the
range parameter `, such that

ψη∗ 6 t0 6 t1 6
`

nψ
6

r

ψ10
. (3.12)

The matrix Brownian motion (K(s))06s6t1 defined in Subsection (2.1)) induces a measure on the space of
eigenvalues and eigenvectors (λ(s),u(s)) for 0 6 s 6 t1, such that, for any κ > 0, the following event A
holds with overwhelming probability:

(i) The eigenvalue rigidity estimate holds: supt06s6t1 |ms(z)−mfc,s(z)| 6 ψ(nη)−1 uniformly in z ∈ Dκ,
and supt06s6t1 |λi(s)− γi(s)| 6 ψn−1 uniformly for indices i such that γi(s) ∈ Iκr (E0).

(ii) When we condition on the trajectory λ ∈ A, with overwhelming probability, the following holds:

sup
t06s6t1

|G(s, z)ii −G(0, z + smfc,s(z))ii| 6 C
ψ2

√
nη
, (3.13)

sup
t06s6t1

∣∣∣∣∣ 1

|I|
∑
i∈I

G(s, z)ii −
1

n
TrG(s, z)

∣∣∣∣∣ 6 Cψ2

nc
+
Cψ4

nη
, (3.14)

uniformly in z ∈ Dκ, where b, c are defined in is defined in Assumption 2.4.

(iii) Finite speed of propagation holds: for any d there exists Cd, cd > 0 such that uniformly, for any
function h on the space of d particle configurations, and particle configuration ξ which is away from
the support of h in the sense that d(η, ξ) > ψ`, we have for any η in the support of h that

sup
t06s′6s6t1

US (s′, s)h(ξ) 6 Cd‖h‖∞nde−cdψ. (3.15)
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Proof. The statement (i) was proved in [23, Theorem 3.3 and 3.5], and (3.13) and (iii) were given in Theorem
2.1 and Lemma 3.4 of [5] respectively. For the proof of (3.14), we decompose

1

|I|
∑
i∈I

G(s, z)ii −
1

n
TrG(s, z) =

1

|I|
∑
i∈I

(G(s, z)ii −G(0, z + smfc,s(z))ii)

+

 1

|I|
∑
i∈I

G(0, z + smfc,s(z))ii −
1

n

∑
16i6n

G(0, z + smfc,s(z))ii

− 1

n

∑
16i6n

(G(s, z)ii −G(0, z + smfc,s(z))ii)

(3.16)

The second sum is exactly the left hand side of (2.11), so it is bounded by n−c. The third sum is just the
difference between Stieltjes transforms and it was proved in [23, Theorem 3.3] is of order at most nε/(nη)
thanks to (3.8). Notice that we have used mfc,s(z) = G(0, z + smfc,s(z)) by definition.

The first sum of the last displayed equation is of same type as the third one, except that the average is
over not all entries but a macroscopic fraction of them. The proof in [23, Theorem 3.3], based on a fluctuation
averaging lemma, can be replicated to yield that∣∣∣∣∣ 1

|I|
∑
i∈I

(G(s, z)ii −G(0, z + smfc,s(z))ii)

∣∣∣∣∣ 6 nε

nη

with overwhelming probability. This completes the proof of Lemma 3.3.

Remark 3.4. The following is an elementary consequence of the above rigidity estimate (i) together with
(3.3). For any t0 6 s 6 t1 and and interval I ⊂ Irκ(E0) with |I| > ψ4/n, we have

C−1|I|n 6 #{i : γi(s) ∈ I}+ #{i : λi(s) ∈ I} 6 C|I|n. (3.17)

3.2 Approximation with short range dynamics. We introduce the notation

S
(u,v)
I = sup

η⊂I,u6s6v
fs(η).

for the following lemma. Moreover, for i ∈ Z and J ⊂ Z, let d(i, J) = infj∈J |i − j|. Finally, from here, we
assume that the number of particles of the eigenvector moment flow is even, i.e.

d = 2m.

Lemma 3.5. Under the assumptions of Lemma 3.3, consider λ ∈ A, with A defined in the same lemma.
Consider the perfect matching observables fu from (A.3). Then, for large enough n, for any intervals
Jin ⊂ {i : γi(t0) ∈ Ir2κ(E)} and Jout = {i : d(i, Jin) 6 ψ`}, any d-particle configuration ξ supported on Jin,
and any t0 < u < v < t1 we have

|((UB(u, v)−US (u, v))fu) (ξ)| 6 ψ4n|u− v|
`

(
S

(u,v)
Jout

+
1

nc
(S

(u,v)
Jout

)
d−1
d +

1

`
(S

(u,v)
Jout

)
d−2
d

)
.

Proof. We first define, similarly to [5, 7], the following flattening operators on the space of functions of
configurations with d points:

(Flata(f))(η) =

{
f(η), if η ⊂ {i : d(i, Jin) 6 a},

0, otherwise,

By Duhamel’s formula,

((US (u, v)−UB(u, v)) fu) (ξ) =

∫ v

u

US (s, v)L (s)fs(ξ)ds.

Notice that d(supp(L (s)fs − Flatψ`(L (s)fs)), ξ} > ψ`. Therefore by the finite speed of propagation (3.15)
in Lemma 3.3 of US , we have

|(US (s, v)L (s)fs)(ξ)| = |US (s, v)Flatψ`(L (s)fs)(ξ)|+ O(e−cψ/2)

6 max
η̃
|Flatψ`(L (s)fs)(η̃)|+ O(e−cψ/2). (3.18)
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where in the last inequality, we used that US is a contraction in L∞.
Let η̃ be a configuration {(i1, j1), . . . , (id, jd)}, with support in Jout. In view of (3.18), we only need to

prove that

|(L (s)fs)(η̃)| 6 ψ4n

`

(
S

(u,v)
Jout

+
1

nc
(S

(u,v)
Jout

)
d−1
d +

1

`
(S

(u,v)
Jout

)
d−2
d

)
. (3.19)

We have

L (s)fs(η̃) 6

∣∣∣∣∣∣
∑
|j−k|>`

fs(η̃
jk)

n(λj − λk)2

∣∣∣∣∣∣+ |fs(η̃)|
∑

16p6d,|ip−k|>`

1

n(λip − λk)2
.

Notice that ip ∈ Jout, and thus λip(s) ∈ Irκ(E0). We denote ηq = 2q`/n. From the local law and a dyadic
decomposition we have

∑
k:|ip−k|>`

1

n(λip − λk)2
6
dlog2 n/`e∑

q=1

1

ηq

∑
k

ηq
n((λip − λk)2 + η2

q )
6
n

`
,

so that the second term on the right hand side of (3.19) is bounded by the right hand side of (3.18), as
desired.

More subtle bounds are required for∑
|j−k|>`

fs(η̃
jk)

n(λj − λk)2
=

∑
|j−k|>`,η̃k=0

fs(η̃
jk)

n(λj − λk)2
+ O

( n
`2

)
sup

u6s6v,η⊂Jout
|fs(η)|

where we used that η̃jk ⊂ Jout if η̃k 6= 0, and 1/(n(λj − λk)2) 6 1/(n(`/n)2) for |j − k| > `, by rigidity, see
Lemma 3.3 (i). For fixed p, we therefore want to bound∑

|ip−k|>`,η̃k=0

∑
G∈G

η̃
ipk

E(P (G) | λ)

n(λip − λk)2
= (I) + (II)

where (I) corresponds to perfect matchings such that {(k, 1), (k, 2)} is not an edge, and (II) corresponds to
perfect matchings with an edge of type {(k, 1), (k, 2)}. More precisely,

(I) =
∑

16q1,q26d

E

P (q1,q2)(p(e)e∈Eη̃ )
∑

|k−ip|>`,η̃k=0

piq1kpiq2k

n(λip − λk)2
| λ

 ,

(II) = E

P (p)((p(e)e∈Eη̃ ))
∑

|k−ip|>`,η̃k=0

pkk
n(λip − λk)2

| λ

 ,

with Eη̃ the set of all possible edges between between vetices from Vη̃, P (p,q) is a finite sum of monic
monomials of degree d− 2, and , P (p) is a finite sum of monic monomials of degree d− 1.

To bound (I), we simply write

∑
|k−ip|>`,η̃k=0

piq1kpiq2k

n(λip − λk)2
= O

(
1

n(`/n)2

∑
k

(p2
iq1k

+ p2
iq2k

)

)
= O

(
nε
|I|
`2

)
,

where we slightly changed the meaning of pkk (only in the equation above and the equation below, pkk =∑
α∈I uk(α)2, i.e. C0 = 0 in (2.6)) and used the elementary identity

∑
k

p2
ik =

∑
α∈I

ui(α)2 = O

(
nε
|I|
n

)
. (3.20)

The above second equality follows from Lemma 3.1. Moreover, with Lemma 3.6, we have

E
(
|P (q1,q2)(p(e)e∈Eη̃ )| | λ

)
= O

(
sup

u6s6v,η⊂Jout
|fs(η)|1N (η)=d−2

)
= O

(
(S

(u,v)
Jout

)
d−2
d

)
,
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where we used Hölder’s inequality and Lemma 3.6. This concludes our estimate for (I).
The term (II) is more complicated to bound. For fixed p and s, let E1 = γip−`, E

−
1 = γip−`−nε ,

E+
1 = γip−`+nε , E2 = γip+`, E

−
2 = γip+`−nε , E

+
2 = γip+`+nε . We also define the contour Γ as the rectangle

with vertices E1 ± i `n , E2 ± i `n . Let

f(z) =
∑

k:γk 6∈[E−1 ,E
+
2 ]

pkk
n(z − λk)

(3.21)

g(z) =
∑

k:γk 6∈[E−1 ,E
+
1 ]∪[E−2 ,E

+
2 ]

pkk
n(z − λk)

We now assume |z − λip | 6 n−ε `n . By Cauchy’s formula, we have

f(z) =
1

2πi

∫
Γ

f(ξ)

ξ − z
dξ =

1

2πi

∫
Γ

g(ξ)

ξ − z
dξ,

where for the second equality we used that, for any λk (and z) inside Γ we have∫
Γ

dξ

(ξ − λk)(ξ − z)
= 0,

from a residue calculus. Define Γint = {z = E + iη : E = E1 or E2, |η| < nε/n} and Γext = Γ/Γint. We first
bound the contribution due to small η: we have∣∣∣∣∫

Γint

g(ξ)

ξ − z
dξ

∣∣∣∣ 6 n

`

∫
Γint

∑
k<ip−`−nε
ip+`+nε<k

ip−`+nε<k<ip+`−nε

|pkk|
n|λk − ξ|

We simply bound |pkk| by 1 and obtain that the corresponding integral is at most∣∣∣∣∫
Γint

g(ξ)

ξ − z
dξ

∣∣∣∣ 6 n

`

nε

n

∑
k>`

1

n(k/n)
= O

(
nε

`

)
.

We now bound the contribution from Γext. On this domain, we can afford extending the definition of g to
the full sum 1 6 k 6 n, up to an error of order

nε
n

`

∫
ΓExt

|pkk|
n|ξ − E1|

6
nε

`
.

We therefore proved

f(z) 6
n

`

∫
ΓExt

∣∣∣∣∣∣ 1n
∑

16k6n

pkk
ξ − λk

∣∣∣∣∣∣ |dξ|+ nε

`
6
n

`

∫
ΓExt

(
ψ4

n Im ξ
+
ψ

nc

)
|dξ|+ nε

`
= O(nε)

(
1

`
+

1

nc

)
, (3.22)

where we used (3.14) in the second inequality. We conclude that ∂zf(λip) = O(nε)n`
(

1
` + 1

nc

)
, so that

(II) = O
( n
`2

+
n

`nc

)
(S

(u,v)
Jout

)
d−1
d

where we used Hölder’s inequality and Lemma 3.6. This concludes the proof of (3.19) and the lemma (note

that n
`2 (S

(u,v)
Jout

)
d−1
d = O( n`2 (S

(u,v)
Jout

)
d−2
d )).

Lemma 3.6. Denote by η the configuration with m particles at site i, m particles at site j and no particles
elsewhere. Moreover, denote by η(1) (η(2) resp.) the configurations with d = 2m particles on the site i (site
j resp.) and no particles elsewhere. Then there exists C1, C2, C > 0 depending only on d such that for any
i < j and any time s we have

E
(
pij(s)

d | λ
)
6 C1fλ,s(η

(1)) + C2fλ,s(η
(2)) + Cfλ,s(η).
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Proof. From (A.3), we have

fλ,s(η) = adE(pdij | λ) +
∑

α+β+γ=d,α<d

bα,β,γE(pαijp
β
iip

γ
jj | λ) (3.23)

for some coefficients ad > 0, bα,β,γ > 0. From Young’s inequality, for any ε > 0 we have∣∣∣E(pαijp
β
iip

γ
jj | λ)

∣∣∣ 6 αε2

d
E(pdij | λ) +

β

dε
E(pdii | λ) +

γ

dε
E(pdjj | λ). (3.24)

Equations (3.23) and (3.24) imply

E(pdij | λ) 6
fλ,s(η)

ad
+

∑
α+β+γ=d,α<d

bα,β,γ
ad

(
αε2

d
E(pdij | λ) +

βE(pdii | λ) + γE(pdjj | λ)

dε

)
.

The result follows by choosing ε = ε(d) small enough.

3.3 Maximum principle. Iterations of the following proposition will give the main result, Theorem 2.5.

Proposition 3.7. For any eigenvalue trajectory (λ(s))06s6t1 ∈ A defined in Lemma 3.3, let f be a solution
of the d-particle eigenvector moment flow (2.16) with initial matrix K(0). For any C > 0, there exists n0

such that for any n > n0 the following holds. For any intervals Jin ⊂ {i : γi(t0) ∈ Ir3κ(E0)}, Jout = {i :
d(i, Jin) 6 nr/ψ}, and [t, t+ u] ⊂ [t0, t1] with u > t/ψ, we have

S
(t+u

2 ,t+u)

Jin
6 ψ3

((u
r

)1/2

+
1

nt

)
S

(t,t+u)
Jout

+
ψ3

nc
(S

(t,t+u)
Jout

)
d−1
d +

ψ3

nt
(S

(t,t+u)
Jout

)
d−2
d + n−C . (3.25)

Proof. For a general number of particles d, consider now the following modification of the eigenvector moment
flow (2.16). We only keep the short-range dynamics (depending on the short range parameter `, chosen later)
and modify the initial condition to be zero when there is a particle far from Jin:

∂sgs = S (s)gs, t 6 s 6 t+ u,

gt(η) = (Avft)(η),
(3.26)

where

Av(f) =
3ψ

nr

∑
1
3
nr
ψ <a<

2
3
nr
ψ

Flata(f).

We can write
Av(f)(η) = aηf(η)

for some coefficient aη ∈ [0, 1] (aη = 0 if η 6⊂ Jout, aη = 1 if η ⊂ Jin). We will only use the elementary
property

|aη − aξ| 6
ψ

nr
d(η, ξ), (3.27)

where the distance is defined in (3.11).
For any η ⊂ Jin, we have

|fs(η)− gs(η)| 6 |(UB(t, s)ft −US (t, s)ft) (η)|+ |US (t, s)(ft −Avft)(η)|

6 ψ4nu

`

(
S

(t,t+u)
Jout

+
1

nc
(S

(t,t+u)
Jout

)
d−1
d +

1

`
(S

(t,t+u)
Jout

)
d−2
d

)
+ e−cψ/2, (3.28)

where we bounded the first term by Lemma 3.5, and the second term by finite speed of propagation (3.15),
since ft0 −Avft0 vanishes for any ξ such that ξ ⊂ {i : d(i, Jin) 6 nr/3ψ} (note that ψ` 6 nr/3ψ).

In the following we will prove that for large enough n we have

sup
η⊂Jin,t+u

2 6s6t+u
gs(η) 6 ψ

(
nu

`
+

`

nr
+
ψ2

nt

)
S

(t,t+u)
Jout

+
ψ

nc
(S

(t,t+u)
Jout

)
d−1
d + ψ

(
nu

`2
+
ψ2

nt

)
(S

(t,t+u)
Jout

)
d−2
d + n−C (3.29)
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by a maximum principle argument. Equations (3.28) and (3.29) together give the expected result (3.25) by
choosing

` = nψ2(ur)1/2,

which satisfies (3.12) If the left hand side of (3.29) is smaller than n−C , there is nothing to prove. It it is
greater thn n−C , by the finite speed of propagation property (3.15), for any t < s < t+u, the configuration(s)
η̃ such that

gs(η̃) = sup
η
gs(η)

need to be supported in {i : d(i, Jin) 6 3
4
nr
ψ }.

From the dynamics (3.26), for any parameter ψ4/n 6 η 6 `/n to be chosen, we have

∂tgs(η̃) =
∑

0<|j−k|6`

cjk2η̃j(1 + 2η̃k)
(
gs(η̃

jk)− gs(η̃)
)
6
C

n

∑
16p6d,

k:0<|ip−k|6`

gs(η̃
ipk)− gs(η̃)

(λip − λk)2 + η2

=
1

nη

∑
16p6d,

k:0<|ip−k|6`

Im
gs(η̃

ipk)

zip − λk
− 1

nη
gs(η̃)

∑
16p6d,

k:0<|ip−k|6`

= 1

zip − λk
(3.30)

where we define zip = λip + iη. For the second term in (3.30), note that

∑
16p6d,

k:0<|ip−k|6`

= 1

zip − λk
>

d∑
p=1

∑
k:0<|ip−k|6`

η

(λip − λk)2 + η2
>

d∑
p=1

∑
k:|λk−λip |6η

η

2η2
& n,

where we used (3.17). For the first term in (3.30), we claim that for any fixed p we have

1

n

∑
k:0<|ip−k|6`

Im
gs(η̃

ipk)

zip − λk
= O (ψ)

(
1

nη
+

`

nr
+
nu

`

)
S

(t,t+u)
Jout

+ O (ψ)
1

nc
(S

(t,t+u)
Jout

)
d−1
d + O (ψ)

(
1

nη
+
nu

`2

)
(S

(t,t+u)
Jout

)
d−2
d . (3.31)

For this, we can bound the left hand side of (3.31) by (3.32) + (3.33) + (3.34) where

Im
∑

k:0<|k−ip|6`

1

n

(US (t, s)Avft)(η̃
ipk)− (AvUS (t, s)ft)(η̃

ipk)

zip − λk
, (3.32)

Im
∑

k:0<|ip−k|6`

1

n

(AvUS (t, s)ft)(η̃
ipk)− (AvUB(t, s)ft)(η̃

ipk)

zip − λk
, (3.33)

Im
∑

k:0<|ip−k|6`

1

n

(AvUB(t, s)ft)(η̃
ipk)

zip − λk
. (3.34)

The term (3.32) will be controlled by finite speed of propagation; (3.33) will be controlled by Lemma 3.5,
and (3.34) by the local law.

To bound (3.32), we write

(US (t, s)Avft)(η̃
ipk)− (AvUS (t, s)ft)(η̃

ipk) =
2ψ

nr

∑
nr
2ψ<a<

nr
ψ

(US (t, s)Flataft − FlataUS (t, s)ft) (η̃ipk).

For fixed a, let L1 ⊂ L2 be defined as L1 = {i : d(i, Jin) 6 a−ψ`}, L2 = {i : d(i, Jin) 6 a+ψ`}. We consider
three cases: η̃ipk 6⊂ L2, η̃ipk ⊂ L1, or neither of them.

For η̃ipk 6⊂ L2, by our definition, FlataUS (t, s)ft(η̃
ipk) = 0. By the finite speed of propagation (3.15),

the total mass of US (t, s)Flataft outside L2 is exponentially small. In particular, |US (t, s)Flataft(η̃
ipk)| 6

exp(−cψ/2).
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For η̃ipk ⊂ L1, we have∣∣(US (t, s)Flataft − FlataUS (t, s)ft) (η̃ipk)
∣∣ =
∣∣(US (t, s)Flataft −US (t, s)ft) (η̃ipk)

∣∣
=| (US (t, s) (ft − Flataft)) (η̃ipk)| 6 exp(−cψ/2),

we used the finite speed of propagation (3.15) in the last inequality, since ft − Flataft vanishes for any ξ
supported in {i : d(i, Jin) 6 a}.

For the last case, we have η̃ipk ⊂ L2, and some particle(s) of η̃ipk is in L2/L1. There are at most 2nψ`
such a. Moreover, since US is a contraction in L∞, we have∣∣(US (t, s)Flataft − FlataUS (t, s)ft) (η̃ipk)

∣∣
6 |US (t, s)Flataft|+

∣∣FlataUS (t, s)Flata+2ψ`ft(η̃
ip,k)

∣∣+
∣∣FlataUS (t, s) (ft − Flata+2ψ`ft) (η̃ipk)

∣∣
6‖Flataft‖∞ + ‖Flata+ψ`ft‖∞ + e−cψ/2.

We bound ‖Flataft‖∞, ‖Flata+2ψ`ft‖∞ 6 S
(t,t+u)
Jout

. From these estimates, we have (3.32) 6 ψ2 `
nrS

(t0,t0+u)
Jout

.

We now bound (3.33). For |k − ip| 6 `, η̃ipk is supported in {i : γi(t0) ∈ Ir2κ(E)}, so that we can apply
Lemma 3.5:∣∣(AvUS (t, s)ft)(η̃

ipk)− (AvUB(t, s)ft)(η̃
ipk)

∣∣ 6 ∣∣(US (t, s)ft −UB(t, s)ft)(η̃
ipk)

∣∣
6 ψ4nu

`

(
S

(t,t+u)
Jout

+
1

nc
(S

(t,t+u)
Jout

)
d−1
d +

1

`
(S

(t,t+u)
Jout

)
d−2
d

)
.

As a consequence, we have

(3.33) 6 ψ4nu

`

(
S

(t,t+u)
Jout

+
1

nc
(S

(t,t+u)
Jout

)
d−1
d +

1

`
(S

(t,t+u)
Jout

)
d−2
d

)
.

Finally for (3.34), note that η̃ipk is supported on Jout, so that

1

n
Im

∑
k:0<|ip−k|6`

(Avft)(η̃
ipk)

zip − λk
=

1

n
Im

∑
k:0<|ip−k|6`

aη̃ft(η̃
ipk) + (aη̃ipk − aη̃)ft(η̃

ipk)

zip − λk

=
aη̃
n

Im
∑

k:0<|ip−k|6`

ft(η̃
ipk)

zip − λk
+ O

(
ψ
`

nr
S

(t,t+u)
Jout

)
,

where we used that |aη̃ipk − aη̃| 6 ψd(η̃, η̃ipk)/(nr) 6 ψ`/(nr) from (3.27).

In the above imaginary part, the contribution of all k ∈ {i1, . . . , id} is of order 1
nηS

(t,t+u)
Jout

, so that (here

k0 is any index not in {i1, . . . , id})

1

n
Im

∑
k:0<|ip−k|6`

ft(η̃
ipk)

zip − λk
=

1

n

1

M(η̃ipk0)
Im

∑
k:0<|ip−k|6`

∑
G∈G

η̃
ipk

E(P (G) | λ)

zip − λk
+ O

(
1

nη
S

(t,t+u)
Jout

)

= (I) + (II) + O

(
1

nη
S

(t,t+u)
Jout

)
where (I) corresponds to perfect matchings for which {(k, 1), (k, 2)} is not an edge, and (II) corresponds to
perfect matchings for which {(k, 1), (k, 2)} is an edge. More precisely,

(I) = Im
∑

16q1,q26d

E

P (q1,q2)(p(e)e∈Eη̃ )
∑

k:0<|ip−k|6`

piq1kpiq2k

n(zip − λk)
| λ

 ,

(II) = ImE

P (p)((p(e)e∈Eη̃ ))
∑

k:0<|ip−k|6`

pkk
n(zip − λk)

| λ

 ,
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with Eη̃ the set of all possible edges between between vertices from Vη̃, P (p,q) is a finite sum of monic
monomials of degree n− 2, and , P (p) is a finite sum of monic monomials of degree n− 1.

To bound (I), we simply write

Im
∑

k:0<|ip−k|6`

piq1kpiq2k

n(zip − λk)
= O

(
1

nη

∑
k

(p2
iq1k

+ p2
iq2k

)

)
= O

(
1

nη
nε
|I|
n

)
.

Here we slightly changed the meaning of pkk (in both equations above and below, pkk =
∑
α∈I uk(α)2, i.e.

C0 = 0 in (2.6)) and used the elementary identity (3.20). The above second equality follows from Lemma
3.1.

Moreover, with Lemma 3.6, we have

E
(
|P (q1,q2)(p(e)e∈Eη̃ )| | λ

)
= O

(
sup

t6s6t+u,η⊂Jout
|fs(η)|1N (η)=n−2

)
= O

(
(S

(t,t+u)
Jout

)
d−2
d

)
,

where we used Hölder’s inequality and Lemma 3.6. This concludes our bound for (I), 1
nη (S

(t,t+u)
Jout

)
d−2
d .

More subtle bounds are required for the term (II).

Im
∑

k:0<|ip−k|6`

pkk
n(zip − λk)

= O

(
1

nη
+

1

nc

)
− Im

∑
k:|ip−k|>`

pkk
n(zip − λk)

where we used (3.14). This last term can be bounded exactly as between (3.21) and (3.22), and we obtain

Im
∑

k:0<|ip−k|6`

pkk
n(zip − λk)

= O

(
1

nη
+

1

nc

)
,

where we used that η 6 `/n. This concludes the proof of (3.31).
We define h(s) = supη gs(η). Equations (3.30) and (3.31) yield

h′(s) 6
Cψ

η

((
1

nη
+

`

nr
+
nu

`

)
S

(t,t+u)
Jout

+
1

nc
(S

(t,t+u)
Jout

)
d−1
d +

(
1

nη
+
nu

`2

)
(S

(t,t+u)
Jout

)
d−2
d

)
− ch(s)

η

for any t < s < t+ u. We now chose η = t/ψ2, so that u/η > ψ, and obtain

h(s) < Cψ

(
1

nη
+

`

nr
+
nu

`

)
S

(t,t+u)
Jout

+ C
ψ

nc
(S

(t,t+u)
Jout

)
d−1
d + Cψ

(
1

nη
+
nu

`2

)
(S

(t,t+u)
Jout

)
d−2
d + n−C

for any t+ u/2 < s < t+ u, which is (3.29) and concludes the proof.

Proof of Theorem 2.5. We proceed by iterating the bound from Proposition 3.7. We are given a small ε such
that ε < a/5 and a large D > 0, as in the statement of Theorem 2.5.

We first choose d = b5D/εc, and define (implicitly, for Ji+1){
s0 = t0
si+1 = si+t1

2

,

{
J0 = {i : γi(t0) ∈ Ir3κ(E0)}
Ji = {i : d(i, Ji+1) 6 nr

ψ }
.

A direct application of Proposition 3.7 together with the bounds n−1+a 6 t0 6 t1 6 n−ar yields

S
(si+1,t1)
Ji+1

6 ψ3
(
n−a/2 + 2in−a

)
S

(si,t1)
Ji

+
ψ3

nc
(S

(si,t1)
Jout

)
d−1
d +

ψ32i

nt0
(S

(si,t1)
Ji

)
d−2
d + n−C .

In particular, we have

S
(si+1,t1)
Ji+1

6 n−ε/3S
(si,t1)
Ji

provided that

(S
(si,t0)
Ji

)1/d >
nε/22i√
nt1

+
nε/2

nc
.
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This implies that for k = b4ε−1c we have∣∣∣(S(sk,t1)
Jk

)1/d
∣∣∣ 6 n3ε/4

√
nt0

+
n3ε/4

nc
.

For each fixed i, by choosing η as the configuration with d = 2m particles on the site i and no particles
elsewhere, we have |pii(s)|d 6 Cdfs(η). Hence by Markov’s inequality, the last displayed equation implies
that

P
(
∃ sk < t < t1 : 1λi(t)∈Ir4κ(E0)|pii| > nε

(
1

nc
+

1√
nt0

))
6 (nε)

−d
(
n3ε/4

)d
6 n−D.

Here we used that {i : γi(t0) ∈ Ir4κ(E0)} ⊂ Jk because k nrψ < κr for k = b4ε−1c and n large enough.

Finally, by Lemma 3.6, pdij can be estimated in terms ft, pii and pjj . Hence the previous estimate also
holds if we replace 1λi(t)∈Ir4κ(E0)|pii| by 1λi(t),λj(t)∈Ir4κ(E0)|pij |. This concludes the proof of the theorem, up
to redefining t0 and κ by a constant factor.

4 Mean-field reduction

This section proves Theorem 1.5. We actually just need to prove it when a tiny GOE regularization is added,
as explained in the next paragraph.

4.1 Small regularization. Consider matrices of type

H = H1 +H2 +N−AHG where HG
ij

(d)
= (1 + 1ij)

1/2 · N (0, N−1), (4.1)

where H1 and H2 are defined in (1.15). Our main result in this section is the following result.

Theorem 4.1. Let A > 10 be any fixed constant. Assume that H is a band matrix of type (4.1), with band
width WN satisfying (1.11).

(i) The eigenvectors are delocalized as in (1.12).

(ii) The eigenvalues satisfy the local semicircle law as in (1.13).

(iii) Fixed energy universality holds as in (1.14).

(iv) For any (small) τ, κ > 0, and (large) D > 0, there exists N0 > 0 such that for any N > N0 we have

P

(∣∣∣∣∣NW
`+W∑
α=`

|ψj(α)|2 − 1

∣∣∣∣∣ < N−
3
2a+τ for all 1 6 j, ` 6 N such that |λj | 6 2− κ

)
> 1−N−D, (4.2)

where a > 0 was given in (1.11) and all indices are defined modulo N .

The same results hold for all submatrices of H of type H(k) = (Hij)i,j∈J1,NK\{k}.

The following simple lemma shows that all properties of delocalization only need to be established for
the slightly regularized matrices. It is proved by perturbative arguments.

Lemma 4.2. Theorem 4.1 implies Theorem 1.5.

Proof. Let H ′ = H1+H2 have distribution (1.15) and H = H ′+N−AHG, with respective ordered eigenvalues
and eigenvectors λ′k,ψ

′
k, λk,ψk. Let A = {‖HG‖∞ 6 N−A−1/2+ε}. By Gaussian decay of the entries of

HG, for any ε, C > 0, for large enough N we have

P(A) > 1−N−C . (4.3)

The conclusions (ii) and (iii) of Theorem 1.5 forH ′ therefore follow from the Hoffman-Wieland inequality:

sup
k
|λk − λ′k|1A 6 N1/2

(∑
k

|λk − λ′k|2
)1/2

1A 6 N1/2(Tr(H ′ −H)2)1/21A 6 N−A+3. (4.4)
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Moreover, the conclusions (i) of Theorem 1.5 also holds for H ′. Indeed, we have η−1|ψ′k(i)|2 6 ImG′ii(λ
′
k+

iη) and the simple inequality

‖(H ′ − z)−1‖∞ = ‖(H − z)−1‖∞ + O

(
N2

η2
‖H ′ −H‖∞

)
obtained by resolvent expansion. From the local law and eigenvector delocalization for H, for any z = E+iη,
η > N−1+ε, E ∈ [−2 +κ, 2−κ], for any D > 0 we have P(‖(H − z)−1‖∞ 6 Nε) > 1−N−D for some C > 0,

for large enough N . Moreover, on A we have N2

η2 ‖H
′−H‖∞ 6 N−2, which concludes the proof of (i) for H ′.

The proof of (iv) is more involved. We want to obtain (4.2) for H ′, for a given large D > 0. Take A = 4D
in (4.1) and denote t = N−A. The perturbation formula for the ψk(s)’s, eigenvectors of H ′+sHG associated
to eigenvalues λk(s)’s, is

d

ds
ψk(s) =

∑
` 6=k

〈ψ`(s), HGψk(s)〉
λk(s)− λ`(s)

ψ`(s).

On A, we therefore have

‖ψk −ψ
′
k‖∞ 6 N2

∫ t

0

ds

(
1

|λk(s)− λk+1(s)|
+

1

|λk(s)− λk−1(s)|

)
. (4.5)

Consider eigenvalues λk < λk+1 for H, and λ
(i)
k ∈ (λk, λk+1) be an eigenvalue for the minor H(i), with

associated normalized eigenvector ψ
(i)
k . Denote

A(i)
k =

 ∑
|α−i|<W

|ψ(i)
k (α)2| > W

10N

 .

By QUE for H(i), for any C > 0, for large enough N we have

P(∩i,k:λk∈[−2+κ,2−κ]A
(i)
k ) > 1−N−C . (4.6)

By a Schur complement as in [25, Section 4], for any δ > 0 we have

P
(
{|λk+1 − λk| < δ} ∩ A(1)

k ∩ · · · ∩ A
(N)
k

)
6 NP({|〈H̃(1),ψ

(1)
k 〉| < δ

√
N} ∩ A(1)

k )

where H̃(i) = (Hij)j 6=i. Take δ = N−2D. On A(1)
k , 〈H̃(1),ψ

(1)
k 〉 is a random variable with density bounded

by N2, so that

P
(
{|λk+1 − λk| < δ} ∩ A(1)

k ∩ · · · ∩ A
(N)
k

)
6 N−2D+4.

Moreover, similarly to (4.4), we have sup06s6t |λk(t)−λk(s)|1A 6 N−A+3, which together with the previous
equation gives

P
(
{|λk+1(s)− λk(s)| < δ for some 0 < s < t} ∩ A(1)

k ∩ · · · ∩ A
(N)
k ∩ A

)
6 N−2D+4 +N−A+3. (4.7)

From equations (4.3), (4.5), (4.6) and (4.7), for any C > 0 we have, for large enough N ,

P(‖ψk −ψ
′
k‖∞ < N−A+2+2D) > 1−N−2D+4 −N−A+3 −N−C .

This concludes the proof of QUE for ψ′k, knowing QUE for ψk.

4.2 Notations. We now explain the ideas for the proof of Theorem 4.1. We start with the following
definition which generalizes band matrices by allowing diagonal perturbations.

Definition 4.3 (Definition of Hg
ζ ). For any positive constant ζ and any g ∈ RN , Hζ and Hg

ζ will denote
real symmetric N ×N matrices satisfying the following properties.

The matrix Hζ is centered, it has independent entries up to the symmetry condition which satisfy (1.8),
(1.9) and is of the form

Hζ =

(
Aζ B∗

B D

)
, (4.8)
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where Aζ is a W ×W matrix and

Var((Hζ)ij) = (sζ)ij = sij −
ζ(1 + δij)

W
1i,j∈J1,W K,

where sij = f(i− j) and
∑
x∈ZN f(x) = 1.

The matrix Hg
ζ is defined by(
Hg
ζ

)
ij

:= (Hζ)ij − giδij , Hg
ζ =:

(
Ag
ζ B∗

B Dg

)
, g = (g1, g2, . . . , gN ). (4.9)

We denote the eigenvalues and eigenvectors of Hg
ζ by λgk and ψg

k =

(
wg
k

vg
k

)
where wg

k ∈ RW . In the special

case gj = g1j>W , we will denote Hg
ζ by Hg

ζ , and for ζ = 0 we abbreviate Hg
ζ (resp. Hg

ζ ) by Hg (resp. Hg).

In fact, the matrices Hg we consider will always be of type Hg, up to a translation of the basis indices mod N .

We now define some curves, illustrated in Figure 3 from Subsection 4.3. The eigenvector equation
Hgψg

k = λgkψ
g
k immediately implies that

(Ag −Bg,∗(Dg − λgk)−1Bg)wg
k = λgkw

g
k .

Hence we will consider the eigenvector equation

Qg
eu

g
k(e) = ξgk (e)ug

k(e); Qg
e := (Ag −Bg,∗(Dg − e)−1Bg), (4.10)

where ξgk (e), ug
k(e) are eigenvalues and normalized eigenvectors. From now on, we assume that k is an index

in the bulk of the spectrum for Hg, i.e. for some κ > 0, κN < k < (1− κ)N .
Since the matrix elements have Gaussian components (4.1), it is easy to check that the eigenvalue flows

g → λgk are smooth and non-intersecting with probability one. Assuming that the function g → e = λgk + g
has a regular inverse (for the existence of such an inverse, see Subsection 4.7), for any e close enough to λk,
there exists a g such that e = λgk + g, so that we can define

Ck(e) = λgk.

The curves (Ck(e))16k6Nare labeled in increasing order by their intersections with the diagonal C(e) = e.
We refer to [4, Equation (4.16)] for a detailed discussion of the domain of Ck.

We defined ξi(e) (1 6 i 6 W ), the eigenvalue of Qe = Qg=0
e . A simulation of the curves e → ξ(e) in

given in Figure 3. Since ξi(e) is also an eigenvalue of He−ξi(e), it is equal to Cj(e) for some j. We follow
the convention in [4] to denote k′ ∈ J1,W K to be the index given by the relation ξk′(e ) = Ck(e ). Here
k′ = k′(e) depends on the energy e and ξk′(e)(e) is increasing in k. As e approaches to an eigenvalue of D,
one eigenvalue from ξ(e) tends to ±∞. The other eigenvalues follow the smooth curves Ck and the labels
k′(e) gets shifted by ±1 whenever e crosses an eigenvalue of D. Since the curve Ck passes through (λk, λk),
we have

Hψk = λkψk, ξk′(λk) = λk, ψk =

(
wk

vk

)
, Qλkuk′ = ξk′uk′ , uk′(λk) =

wk

‖wk‖2
. (4.11)

4.3 Outline of proof of Theorem 4.1. We explain the main steps of the proof, with successively QUE
for mean field blocks, QUE for H from (4.1), and its application to local law, universality and delocalization.

First step: QUE for mean-field blocks Qg
e . Remember the definition of H from (4.1) and denote H̃ =

(1 +N−AN+1
N )−1/2H. Consider a parameter ζ = T = N−c where c > εm is defined in (4.22). Then, thanks

to the Gaussian matrix H2 defining H, we can write

H̃ = HT +
√
T

(
HG
W 0
0 0

)
for some HT as defined in (4.8), and HG

W is a W ×W GOE matrix. To this HT we associate Hg
T from

formula (4.9), and denote V = Ag
T −Bg,∗(Dg − e)−1Bg. Consider the flow

Kg,e
T (t) = V + Z(t) (4.12)
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as in (2.1). Notice that we have the equality in distribution

Kg,e
T (t)

(d)
= Kg,e

T−t(0) = Ag
T−t −B

g,∗(Dg − e)−1Bg. (4.13)

In particular, the distributions of Qg
e = Ag −Bg,∗(Dg − e)−1Bg from (4.10) is the same as Kg,e

T (T ).
We therefore obtain QUE for the mean field blocks Qg

e by using Theorem 2.5, i.e. by interpreting this
matrix ensemble as the result of the flow K(T ) = Kg,e

T (T ). As an hypothesis for Theorem 2.5, some estimates
on V = K(0) are necessary, and given in Subsection 4.4.

Second step: QUE for Hg. To simplify the notations we set g = 0, but QUE will be obtained similarly for
any small enough g. For the proof, we combine an ε-net argument with perturbations of eigenvectors.

For this, we first need to choose good points for our net. Let M = NC with C a large constant which
will be chosen in the rigorous proof. We will prove that there is another large number C ′ such that for each
n ∈ Z fixed such that En = nN−C

′ ∈ [−2 + κ, 2− κ], then there is a deterministic en ∈ [En, En+1] (i.e., the
choice of en may depend on the law of D but is independent of the random matrix elements of D)

inf
j
|λDj − en| >M−1

with high probability, where the λDj ’s are eigenvalues of D (recall that λj denotes an eigenvalue of H). In

other words, the bulk eigenvalues of D will stay away from the grid points (en)n∈Z by at least N−C : the
norm of Qen is polynomially bounded, an hypothesis necessary to prove QUE by flow methods.

We now consider QUE for these good points (en)n∈Z. Let J be the W ×W matrix defined by

(J)ij = δij · 116i6W/2. (4.14)

By QUE the mean-field blocks (see Lemma 4.8), for all n and l satisfying |ξl(en)− en| 6W−1 we have∣∣∣∣‖J · ul(en)‖22 −
1

2

∣∣∣∣ 6 N1/2+τ

W
+
N

εm
2 +τ

W 1/2
(4.15)

with overwhelming probability, where τ > 0 an arbitrarily small positive constant and εm is defined in (1.8).
For a given bulk index k, let ẽ = supn{en : en < λk}. Recall that Ck(λk) = λk and k′ ∈ J1,W K is

the index given by the relation ξk′(e) = Ck(e) for all e, as explained in Subsection 4.2. By the eigenvector
perturbation formula for the matrix Qe, we have

d

de
uk′(e) =

∑
6̀=k

u`′(e)

Ck(e)− C`(e)

(
u`′(e), B

∗ 1

(D − e)2
B uk′(e)

)
. (4.16)

Notice that we used the labeling associated with the curve C since Ck(e) is continuous, i.e., the label k, ` does
not change as e pass through the eigenvalues of D. However, the label k′ for the eigenvector depends on e.

Our goal is to approximate uk′(λk), which is proportional to the first W components of the eigenvector
ψk of H, by the eigenvector uk′(ẽ ) which satisfies the QUE by (4.15). Integration gives

‖uk′(ẽ )− uk′(λk)‖ 6 N−C
′

sup
λk6e6ẽ

∑
` 6=k

1

|Ck(e)− C`(e)|

∣∣∣ (u`′(e), B
∗ 1

(D − e)2
B uk′(e)

) ∣∣∣. (4.17)

We will show that for some C1 > 0 the following two estimates hold with high probability.

(i) Level repulsion: for fixed k we have

min
e∈[ ẽ,λk]

min
`:` 6=k

|Ck(e)− C`(e)| > N−C1/2.

(ii) A consequence of the weak uncertainty principle from Section 4.6,

sup
λk6e6ẽ

∣∣∣ (u`′(e), B
∗ 1

(D − e)2
B uk′(e)

) ∣∣∣ 6 NC1/2.
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If these two bounds hold then (4.17) gives stability of the eigenvector under perturbation in e, provided that
C ′ � C1. Delocalization and QUE of uk′(ẽ) therefore imply the same properties for uk′(λk).

Thus, denoting εN the right hand side of (4.15) and Xn =
∑

16i6W/2 |ψk(i+ nW/2)|2, we have

X1

X2
= 1 + O (εN ) (4.18)

with overwhelming probability. Now we can shift the indices by W/2 and repeat the same argument, so that
for any 1 6 ` < m 6 2N/W , we have

X`

Xm
= (1 + O(εN ))

m−`
= 1 + O

(
N

W
εN

)
.

provided that N
W εN = o(1). Summing over ` for fixed m gives, with overwhelming probability,

N

W
Xm =

1

2
+ O

(
N

W
εN

)
. (4.19)

This concludes the outline that QUE for the eigenvector ψk holds, when N
W εN = o(1).

Third step: applications of QUE. We successively outline the proofs of delocalization, universality and local
law for H from (4.1).

Delocalization for the mean field blocks Qg
e holds thanks to a priori resolvent estimates from subsection

4.4, and regularization of the resolvent by Dyson Brownian motion, as in (3.13). By stability as in (4.17), this
delocalization is extended to uk′(λk). As ((uk′(λk))(i))16i6W = (ψk(i))16i6W /‖ψk‖L2(J1,W K), delocalization
for ψk follows from both delocalization of uk′(λk) to the QUE estimate (4.19) about ‖ψk‖L2(J1,W K).

For universality, remember that for any e, Ck(e) = ξk′(e) denotes the eigenvalues of Qe, and that the
intersection points of the curves e → ξk(e) with the diagonal e = ξ are eigenvalues for H (see Figure 3).
Thus λj can be determined by the spectrum ξ(e) for a fixed e, and the slope of the curves e → ξk′(e). On
the one hand, ξ(e) follows GOE statistics as a consequence of [22]. On the other hand, a simple calculation
yields

∂eCk(e) = 1− 1∑W
i=1 |ψ

g
k(i)|2

,

where ψg is the corresponding eigenvector of Hg with g the solution to e = λgk +g. From the QUE (4.19) for
Hg, all slopes are equal at leading order, so that the statistics of λj will be given by those of ξk up to some
trivial scaling. In the same way, the local law for H follows from a local law for Qe by parallel projection.

e

(a) A simulation of eigenvalues of Qe = A −
B∗(D − e)−1B, i.e. functions e 7→ ξj(e). Here
N = 12 and W = 3. The λi’s are the abscissa
of the intersections with the diagonal.

eλ′λ

(b) Framed region of Figure (a) for large N,W :
the curves ξj are almost parallel, with slope
1 − N/W . The eigenvalues of Qe and H are
related by a projection to the diagonal.

Figure 3: The idea of mean-field reduction, from [4]: universality of gaps between eigenvalues for fixed e
implies universality on the diagonal through parallel projection. For e fixed, we label the curves by ξk(e).
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4.4 Generalized resolvent estimates. In this subsection, we do not need to assume (1.8).
Recall that we have added a GOE regularization of size N−A in (4.1). Since N−A is tiny, all resolvent

estimates cited in this paper for matrices are valid after adding this small regularizing GOE. A formal proof
can be obtained by the standard resolvent identity (B−C)−1 = B−1 +B−1CB−1 + · · · , which we will skip.
In this section, all results will be proved without this regularization so as to simplify the notations.

Our first goal is to show that Kg,e
T,t (4.13) is (η∗, η

∗, r)-regular at e = E0, in the sense of Assumption
2.3, for some range of t. The precise choice of the parameters r, T, η∗, η

∗ will be given in (4.22). Recall the
matrix Hg

T,t is defined by

Hg
T,t =

(
Ag
T + Zt B∗

B Dg

)
.

As in (1.4), define the “generalized resolvent” of Hg
T,t by

Gg
T,t(z, e) =

(
Hg
T,t −

(
zIW 0

0 eIN−W

))−1

.

The distribution of Hg
T,t is the same as Hg

T−t defined in (4.9), so we will also denote Gg
T,t(z, e) by Gg

T−t(z, e).

Clearly, the W×W component of Gg
T,t(z, e) is exactly the resolvent (Kg,e

T−t−z)−1. We will state estimates
on this generalized resolvent in Theorem 4.5, an important input for our mean-field reduction method. The
proof appears in the companion papers [6, 37]. On the one hand, the absence of imaginary part on most of
the diagonal elements of the generalized resolvent is a major obstacle to estimate it. On the other hand,
Theorem 4.5 assumes η = Im z is large (almost of order 1), which is a sufficient input to apply Theorem 2.5
and obtain quantum unique ergodicity.

Define Mζ,g
i (z, z̃) as the solution of the self consistent equation

(Mζ,g
i )−1(z, z̃) = −(z̃ − z)1i>W − z − gi −

∑
j

(sζ)ijM
ζ,g
j (z, z̃), z, z̃ ∈ C+ ∪ R

with the constraint that

M0,0
i (z̃, z̃ ) = msc(z̃ + i0+),

the Stieltjes transform of the semicircle law. For simplicity of notations, we denote by Mζ,g(z, z̃) the matrix
with entries

Mζ,g
ij := Mζ,g

i δij .

We will show that Mζ,g(z, z̃) is the limit of the generalized resolvent Gg
ζ (z, z̃ ). For this purpose, we first

collect basic properties of M in the following lemma, which is proved in [6].

Lemma 4.4. Assume |Re z̃ | 6 2− κ for some κ > 0. There exist c, C > 0 such that the following holds.

(i) (Existence and Lipschitz continuity) If

ζ + ‖g‖∞ + |z − z̃| 6 c, (4.20)

then Mζ,g
i (z, z̃) exists and

max
i

∣∣∣Mζ,g
i (z, z̃)−msc(z̃ + i0+)

∣∣∣ 6 C (ζ + ‖g‖∞ + |z − z̃| ) .

If, in addition, we assume ζ ′ + ‖g′‖∞ + |z′ − z̃| 6 c, then

max
i

∣∣∣Mζ′,g′

i (z′, z̃)−Mζ,g
i (z, z̃)

∣∣∣ 6 C (‖g − g′‖∞ + |z′ − z|+ |ζ ′ − ζ|) .

(ii) (Uniqueness) The vector Mζ,g
i (z, z̃), (1 6 i 6 N) is unique under the constraints (4.20) and

max
i

∣∣∣Mζ,g
i (z, z̃)−msc(z̃ + i0+)

∣∣∣ 6 c.
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Since sij from (1.6) is a periodic function of i − j, by the uniqueness of the previous lemma, we have

Mζ,0
i (z, z̃) = Mζ,0

W−i(z, z̃), so that

W/2∑
i=1

Mζ,0
i (z, z̃) =

1

2

W∑
i=1

Mζ,0
i (z, z̃). (4.21)

This equation will be necessary to obtain the quantum ergodicity estimate for Qg
e in (4.28). Our main results

on the generalized resolvent of Hg
ζ is the following, proved in a companion paper.

Theorem 4.5 (Generalized resolvent estimate). Recall η∗, η
∗ and r from Assumptions 2.3 and 2.4. Suppose

these parameters are of the form

η∗ = N−ε∗ , η∗ = N−ε
∗

r = N−ε∗+3ε∗ , T = N−ε∗+ε
∗
, 0 < ε∗ 6 ε∗/20, (4.22)

where T is a new parameter used in the following equation (4.24). Assume that

logN W > max

(
3

4
+ ε∗,

1

2
+ ε∗ + ε∗

)
. (4.23)

For any small τ, κ > 0 and large D, uniformly in |e| < 2 − κ, for large enough N the following holds. For
any deterministic z, ζ and g satisfying

|Re z − e| 6 r, η∗ 6 Im z 6 η∗, 0 6 ζ 6 T, ‖g‖∞ 6W−3/4, (4.24)

we have (we denote ‖A‖max = maxi,j |Aij |)

P
(
‖Gg

ζ (z, e)−Mζ,g(z, e)‖max > Nτ

(
N1/2

W
+

1√
W Imz

))
6 N−D. (4.25)

The following corollary is an immediate consequence of the above generalized resolvent estimate, the
deterministic Lemma 4.4, and (4.21). In the statement, we use the notation Ie,r = (e− r, e+ r) as in (2.13).

Corollary 4.6. We follow the assumptions and conventions of Theorem 4.5. Then for any z = E + iη with
E ∈ Ie,r and η∗ 6 η 6 η∗, any t satisfying 0 6 t 6 T and any fixed (large) number D > 0 the following
statements hold for N large enough:

P
(
∃E ∈ Ie,r,

∣∣∣Im (Kg,e
T−t − z

)−1

kk

∣∣∣ > 2

W
Im Tr

(
Kg,e
T−t − z

)−1
)

6W−D, (4.26)

P
(∣∣∣∣ 1

W
Tr
(
Kg,e
T−t − z

)−1 −msc(z)

∣∣∣∣ > N−ε
∗/2

)
6W−D, (4.27)

P

 max
E∈Ie,r

∣∣∣∣∣∣ 1

W

∑
16k6W/2

(
Kg,e
T−t − z

)−1

kk
− 1

2W
Tr
(
Kg,e
T−t − z

)−1

∣∣∣∣∣∣ > Nτ

(
N1/2

W
+

1√
W Imz

) 6W−D.

(4.28)

In particular, Kg,e
T−t satisfies the regularity assumptions (2.9), (2.10), 2.11) in the range 0 6 t 6 T .

Remark 4.7. This corollary gives control of the error in QUE for mean field blocks and therefore controls
the range of W for which delocalization can be proved.

More precisely, assume ε∗ = 0 to simplify. The error N−c in Assumption 2.4, which governs the error

in Theorem 2.5, is of order N−c ∼ N1/2

W , form (4.28). In order to patch this estimate to get QUE for the

band matrix H, we will need N
W ·

N1/2

W � 1. This explains our condition W � N3/4.

However, the error
√
N
W in (4.28) is taken from (4.25); this error in (4.28) usually can be improved by

taking into account the average of the index k. We believe that the key error term in Theorem 2.5 comes
from the last term in (2.14). If we take t0 close to 1 and replace n by W , this error is of order W−1/2. We
therefore expect that for N

W ·
1

W 1/2 � 1, i.e. W � N2/3, the QUE for band matrices holds. If we additionally
assume that these errors associated to different blocks are centered and asymptotically independent, then the
total error for the QUE of the band matrix H would be ( NW )1/2 · 1

W 1/2 , which is much smaller than 1 when

W � N1/2.
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4.5 Eigenvectors and eigenvalues estimates for mean-field blocks. The following lemma concern-
ing the QUE and related properties of the W ×W matrix Qg

e from (4.10). It is an important building block
for the proof of Theorem 4.1.

For the statement, recall the notations from Subsection 4.2. In particular, the matrix Qg
e and its eigen-

values and eigenvectors ξgk (e) and ug
k(e) are defined in (4.10).

Lemma 4.8. Let H satisfy the assumptions in Theorem 4.1 and κ, τ > 0 be small constants. For e ∈ R, 1 6
k 6W and C > 0, denote by χ the set

χ(k, e, C,g) :=
{
|Dg − e| > N−C

}
∩
{
|ξgk (e)− e| 6W−1

}
. (4.29)

Uniformly in deterministic |e| 6 2− κ, the following statements hold.

(i) (Delocalization) For any C,D > 0, for N large enough, we have

max
‖g‖∞6W−3/4

P
(
{‖ug

k(e)‖2∞ >W−1+τ} ∩ χ(k, e, C,g)
)
6 N−D. (4.30)

(ii) (Level repulsion) For any C,D > 0, there exists N0 = N0(C,D) such that for N > N0(C,D), for any
x > 0 we have

max
k

max
‖g‖∞6W−3/4

P
({ ∣∣ξgk±1(e)− ξgk (e)

∣∣ 6 x

W

}
∩ χ(k, e, C,g)

)
6W τx2−τ +N−D. (4.31)

(iii) (QUE) Recall that εm is defined in (1.11) and J in (4.14). For any C,D > 0, for N large enough,

max
‖g‖∞6W−3/4

P
({∣∣∣‖J · ug

k(e)‖22 −
1

2

∣∣∣ > N1/2+τ

W
+
N

εm
2 +τ

W 1/2

}
∩ χ(k, e, C,g)

)
6 N−D. (4.32)

(iv) (Local law) Take g = 0. There exists ε > 0 which does not depend on τ such that for any C,D > 0,
for sufficiently large N we have

P

({
sup

06e′−e6W−1+ε

∣∣∣∣∣#{k : ξk(e) ∈ [e, e′]
}
−W

∫ e′

e

ρsc(x)dx

∣∣∣∣∣ >W τ

}
∩ {|D − e| > N−C}

)
6 N−D.

(4.33)

Notice that for τ < ε, we have W τ < W
∫ e+W−1+ε

e
ρsc(x)dx.

Remark 4.9. The constraint |ξgk (e)− e| 6W−1 in (4.29) can be replaced by |ξgk (e)− e| 6W−1+ε for some
ε > 0, with little change in the proof. In the application of this lemma in our paper, we only need to use
AW−1 for any large fixed constant A.

Proof. Recall the operator Kg,e
T,t in (4.13) and η∗, η

∗, r and T in (4.22). Denote the eigenvalues and eigen-

vectors of Kg,e
T (t) by λTk (t) and uTk (t). Hence the distributions of the eigenvalue ξgk (e) and eigenvector ug

k(e)
of Qg

e are given by

ξgk (e)
(d)
= λk,T (t), ug

k(e)
(d)
= uk,T (t).

By definition of Kg,e
T (t), it is trivial to prove that for any C0 > 0 there exists C1 such that

1|Dg−e|>N−C0 ‖Kg,e
T (t)‖ 6WC1 (4.34)

holds with a very high probability for any 0 6 t 6 T . Corollary 4.6 and (4.34) imply that Kg,e
T (t) is

(η∗, η
∗, r)-regular (Assumption 2.3) at E0 = e for any 0 6 t 6 T (under the condition 1|Dg−e|>N−C0 ). In

addition, the conditions in Assumption 2.4 are guaranteed by (4.26) and (4.28). By Theorem 2.5, for any
small ε > 0, with overwhelming probability we have∣∣∣‖J · ug

k(e)‖22 −
1

2

∣∣∣ 6W ε

(
N1/2

W
+ (WN−ε∗+ε

∗
)−1/2

)
,

where we have used T defined in (4.22). We now choose ε∗ = εm + ε and ε∗ = ε. For small enough ε, thanks
to (1.11), the constraint (4.23) is satisfied. Together with the above equation, this proves proving (4.32).
Moreover, by (3.13), (Kg,e

T,t − z)
−1
ii is uniformly bounded for z ∈ Dκ and this implies (4.30).

To prove (4.31), we need a level repulsion result from [23].
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Lemma 4.10. (Theorem 3.5 and 3.6 of [23]) Let λi,t denote the eigenvalues of K(t) (2.1) with V (η∗, η
∗, r)-

regular at E0 and bounded as in Definition 2.3. Assume that there exists c < 1 such that

| log η∗| 6 c| log η∗|. (4.35)

Let τ > 0. Then for large enough N , for any x > 0 we have

max
t∈Tω

P
({
|λi,t − E0| 6W−1

}
∩
{
|λi,t − λi±1,t| 6W−1x

})
6W τx2−τ ,

where Tω is defined in (3.1).

We now apply Lemma 4.10 to the flow (4.12). The condition (4.35) is trivially verified by the choice of
ε∗, ε

∗ in Lemma 4.5. Hence Lemma 4.10 implies the level repulsion estimate (4.31).
It remains to prove (4.33). From Lemma 3.3 (i) applied to K0,e

T (t) at time t = T , we have

P

({
sup

06e′−e6W−1+ε

∣∣∣∣∣#{k : ξk(e) ∈ [e, e′]
}
−W

∫ e′

e

ρfc,T (x)dx

∣∣∣∣∣ >W τ

}
∩ {|D − e| > N−C}

)
6 N−D.

We therefore just need to prove ∣∣∣∣∣
∫ e′

e

ρfc,T (x)dx−
∫ e′

e

ρsc(x)dx

∣∣∣∣∣ 6W−1+τ . (4.36)

Recall the following relation between mfc,t and V :

mfc,t(z) = mV (z + t mfc,t(z)) =
1

W
Tr (V − z − t mfc,t(z))

−1
(4.37)

where V = Ag
T −Bg,∗(Dg− e)−1Bg = Kg,e

T . For z = E+ iη with |E− e| 6 r and η∗ 6 η 6 η∗, (4.27) implies
that

mfc,0(z)−msc(z) =
1

W
Tr (V − z)−1 −msc(z) = O(N−ε

∗/2) (4.38)

holds with high probability. Similarly, by (4.27) and (4.37), for any t > 0 we have

mfc,t(z)−msc(z + t mfc,t(z)) =
1

W
Tr (V − z − t mfc,t(z))

−1 −msc(z + t mfc,t(z)) = O(N−ε
∗/2) (4.39)

provided that

η∗ 6 Im(z + t mfc,t(z)) = η + t Immfc,t(z) 6 η∗, |Re(z + t mfc,t(z))− e| 6 r. (4.40)

For t = T as defined in Lemma 4.5, we have

η∗ � T � η∗, T � r/2, |E − e| 6 r/2, 0 6 η 6 η∗/2. (4.41)

Moreover, as proved in [23, Lemma 7.2], for any 0 < η < η∗, we have

c 6 Immfc,T (z) 6 C ′, |mfc,T (z)| < C ′ logN, (4.42)

for some positive constants c, C ′. Equations (4.41) and (4.42) show that the assumption (4.40) holds for
t = T , and concludes the proof of (4.36) by taking η = 0+ in (4.39).

4.6 Regularity and weak uncertainty principle. The GOE component in (4.1) implies the following
regularity property and weak uncertainty principle. This lemma does not require the decomposition (1.15),
i.e., the Gaussian divisibility for the band matrix elements, we state it under this assumption for simplicity.

Lemma 4.11. Let H be as in Theorem 4.1 for some fixed A > 10. Let φ ∈ RN be defined by

φi = 1W6i6N .

31



Recall the notatons from Definition 4.3. Then there exists a (large) constant Cr = Cr(A) (the subscript r is
used to indicate that the constant is related to the regularity) such that for any fixed D > 0

max
‖g‖∞6W 0.9/N

P
(
∃ t : |t| 6 20, k ∈ ZN such that

∣∣∣λg+tφ
k

∣∣∣ 6 20,
∥∥∥wg+tφ

k

∥∥∥2

2
6 N−Cr

)
6 N−D, (4.43)

max
‖g‖∞6W 0.9/N

P

(
∃ e : |e| 6 10, B∗

1

(D g − e)2
B > NCr

(
B∗

1

(D g − e)
B

)2

+NCr

)
6 N−D. (4.44)

The proof of this lemma follows the one for [4, Proposition 3.1]. Lemma 4.11 is weaker in the sense that
the error N±Cr was originally given by order one quantities in [4]. In addition, [4, Proposition 3.1] applies to
any approximate eigenvector without assuming the small GOE regularization N−AHG. On the other hand,
Lemma 4.11 works for W > N3/4+c (in fact, W > N1/2+c is enough), while [4] required W = Ω(N).

Proof of Lemma 4.11. We first note that 0.9 in (4.43) and (4.44) can be replaced by any fixed number less
than 1 in the following arguments.

We will first prove the following form of an uncertainty principle: approximate eigenvectors for Dg have
some weight on the first W coordinates, in the sense that there exists C > 0 such that for any fixed D > 0,

max
‖g‖∞6W 0.9/N

P
(
∃v ∈ RN−W with ‖v‖1 = 1, e ∈ R, ‖B∗v‖2 + ‖(Dg − e)v‖2 6 N−C

)
6 N−D. (4.45)

We first consider B∗v. Thanks to the component N−AHG in (4.1), for any fixed v and 1 6 n 6 W ,
there is an a0 independent of HG such that (B∗v)n = a0 +N−Aξn · v with ξ1, . . . , ξW having independent
Gaussian entries of variance order 1/N . Thus there exists C > 0 such that for any ‖v‖2 = 1, we have

P
(
|(B∗v)n| 6 N−C

)
6 1/2,

for all 1 6 n 6 W . Taking intersection of these independent events, we have proved that there exist
C > 0, c > 0 such that for any v as above,

P
(
‖B∗v‖2 6 N−C

)
6 e−cW . (4.46)

The matrix D in H is itself a band matrix of size N −W and band width W . Denote by λDk be the
eigenvalues of D. The local law in [17, Theorem 2.1] was established up to the scale W−1+τ for any constant
τ > 0, strictly speaking for random band matrices satisfying

∑
j sij = 1. For D, this assumption is violated

for i in a set of size at most 2W , but [17, Theorem 2.1] still holds by elementary adjustments left to the
reader. This theorem implies in particular that with probability 1−N−D

max
e∈R

#{k, λDk ∈ [e, e+W−1+τ ]}
NW−1+τ

6 10. (4.47)

Denote by λD
g

k and ψD
g

k , 1 6 k 6 N − W , the eigenvalues and eigenvectors of Dg. A trivial bound
on the eigenvalue perturbation gives |λDg

k − λDk | = ‖g‖∞ 6 W 0.9/N, so that λD
g

k ∈ [e, e + N−1] implies
λDk ∈ [e−W 0.9/N, e+ 2W 0.9/N ]. Hence with high probability we have∣∣{k : λD

g

k ∈ [e, e+N−1]}
∣∣ 6 ∣∣{j : λDj ∈ [e−W 0.9/N, e+ 2W 0.9/N ]}

∣∣ 6 10W 0.9,

where we have used (4.47) and W 0.9/N >W−1+τ . Hence for any D > 0, for large enough N we have

P
(
∃e ∈ R,

∣∣{k : λD
g

k ∈ [e, e+N−1]}
∣∣ > 30W 0.9

)
6 N−D.

As a consequence, if we define Se = span{ψD
g

k : λD
g

k ∈ [e, e + N−1]}, then dim(Se) = O(W 0.9) with high
probability. For such an Se of dimension O(W 0.9), we can choose a finite set N in the unit sphere of Se
with |N | = NO(W 0.9) such that for any v in the unit sphere there is a p ∈ N such that |v − p| 6 N−C−1

with C being the constant in (4.46). Together with (4.46) and the fact that ‖B‖ 6 N holds with very high
probability, we obtain that there exists C > 0 such that for any fixed D > 0,

P
(
∃v ∈ Se, ‖B∗v‖2 6 N−C

)
6 N−D,
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where we have used e−cWNO(W 0.9) 6 e−c
′W for some c′ > 0. Therefore there exists C > 0 such that for any

fixed e and D > 0, for large enough N we have P(Ae) 6 N−D where

Ae = {∃v ∈ RN−W with ‖v‖ = 1, ‖B∗v‖2 + ‖(Dg − e)v‖2 6 N−C}. (4.48)

By union bound, we also have P(∩e∈N−2CZ,|e|<NCAe) 6 N−D. Moreover, ‖Dg‖ 6 NC with high probability,
so that (4.45) follows easily.

We now show how (4.43) follows from (4.45). By definition Dg+tφ = Dg − t and Ag+tφ = Ag, so the
eigenvector equation is

Agwg+tφ
k +B∗vg+tφ

k = λg+tφ
k wg+tφ

k ,

Bwg+tφ
k + (Dg − t)vg+tφ

k = λg+tφ
k vg+tφ

k .

If ‖wg+tφ
k ‖2 6 N−C for some C > 0, then ‖Agwg+tφ

k ‖ + ‖Bwg+tφ
k ‖ 6 N−C/2 with very high probability.

Hence vg+tφ
k , after normalization, realizes the condition (4.48) with e = t+ λg+tφ

k . Therefore, (4.43) follows
from (4.45).

We now prove (4.44). The event in (4.44) means that for some normalized v ∈ RN−W and |e| < 10,

∥∥ 1

(Dg − e)
Bv
∥∥

2
> NCr

(∥∥B∗ 1

(Dg − e)
Bv
∥∥

2
+ 1

)
. (4.49)

Denoting ṽ = (Dg − e)−1Bv/‖(Dg − e)−1Bv‖2, it follows from (4.49) that

‖(Dg − e)ṽ‖2 =
‖Bv‖2

‖(Dg − e)−1Bv‖2
6

‖Bv‖2
NCr

(∥∥B∗ 1
(Dg−e)Bv

∥∥
2

+ 1
) 6 N−Cr‖Bv‖2,

‖B∗ṽ‖2 =
‖B∗(Dg − e)−1Bv‖2
‖(Dg − e)−1Bv‖2

6 N−Cr .

Since ‖B‖op 6 N with high probability, ṽ realizes the event (4.48), so that (4.45) implies (4.44).

4.7 Proof of Theorem 4.1. We make rigorous our proof sketch from Subsection 4.3. We consider the
full band matrix H, the proof for the minors H(k) being the same up to trivial adjustments.

Recall the notations from Subsection 4.2. There, we assumed that the map g → e = λgk + g has a regular
inverse which enable us to define the curve Ck(e) = λgk. To prove this, a simple perturbation calculation

yields that ∂(λgk + g)/∂g =
∑W
i=1 |ψ

g
k(i)|2 By (4.43), |ψgk(i)|2 > N−Cr for all |g| < 20 for some constant

Cr > 0, with high probability. Thus the invertibility is proved with high probability and from now on we
shall restrict ourselves to this case. By differentiating w.r.t. g in the identity Ck(λgk + g) = λgk, we have

∣∣∣ ∂
∂e
Ck(e)

∣∣∣ =
∣∣∣1− ( W∑

i=1

|ψgk(i)|2
)−1∣∣∣ 6 NCr . (4.50)

We now complete the proof of Theorem 4.1, successively considering QUE for some small mean-field
matrices, then QUE and delocalization for band matrices, the semicircle law, and universality.

Part 1A: QUE for a small matrix. We will prove that a slightly more general form of (1.12) holds for
eigenvectors ψg of Hg with any ‖g‖∞ 6 W−3/4. But for simplicity, we present the proof for g = 0, and
point out the modification for the general case whenever it is needed.

We will prove the following delocalization and QUE for the eigenvector uk′(λk) of Qg
λk

defined in (4.10):

P
(
∃k ∈ J1,W K, j ∈ ZN : |λj | 6 2− κ, ξk(λj) = λj , ‖uk(λj)‖2∞ >W−1+τ

)
6 N−D, (4.51)

P
(
∃k ∈ J1,W K, j ∈ ZN : |λj | 6 2− κ, ξk(λj) = λj ,

∣∣∣∣‖J · uk(λj)‖22 −
1

2

∣∣∣∣ > N
1
2 +τ

W
+
N

εm
2 +τ

W 1/2

)
6 N−D.

(4.52)
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The difference between (4.51)–(4.52) and (4.30)–(4.32) are the randomness of their arguments, i.e., e in
(4.30)–(4.32) is replaced by λj in (4.51)–(4.52). To prove (4.51) and (4.52), our basic strategy is combining
an ε-net argument with a perturbation theory of eigenvectors. Let M = N2C1+2D; here D is the constant
appeared in (4.51) and (4.52) (not to confuse with the notation that D was also used to denote a matrix)
and C1 = D + 6Cr where Cr is the constant in (4.50).

We denote En = nN−C1 , and claim that for each fixed n satisfying [En, En+1] ⊂ [−2 + κ, 2− κ], there is
a deterministic en with En < en < En+1 such that

P
(

inf
j,n
|λDj − en| 6M−1

)
6 N−D (4.53)

where the λDj ’s are the eigenvalues of D. To see this, note that for any η > 0∫ En+1

En

E Im[D − E − iη]−1dE 6 E
∫
R

Im[D − E − iη]−1dE 6 N.

Hence there is an en ∈ [En, En+1] such that, with η = M−1, E Im[D − en − iη]−1 6 CNC1+1. By the

Markov inequality, P
(

infj |λDj − en| 6 M−1
)
6 NC1+1M−1 and (4.53) holds, so that we can restrict our

consideration to the set |D − e| > N−C for any C > 2C1 + 2D. By Lemma 4.8, (4.30), (4.31) and (4.32)
hold. In particular, (4.31) holds with x = N−C1/2. Hence for all n and l satisfying |ξl(en)− en| 6 W−1 we
have

‖ul(en)‖2∞ 6W−1+τ ,

∣∣∣∣‖J · ul(en)‖22 −
1

2

∣∣∣∣ 6 N1/2+τ

W
+
N

εm
2 +τ

W 1/2
, |ξl±1(en)− ξl(en)| > N−C1/2 (4.54)

with probability larger than (1 − N−D − N−C1(1−τ)W 2+τ ) > 1 − 2N−D. Here we have used the choice
C1 = D + 6Cr and τ can be an arbitrarily small number.

We define
m(λk) = sup

n
{n : en < λk} (4.55)

For simplicity we denote ẽ = em(λk). Recall that Ck(λk) = λk, and thus (4.50) and (4.43) assert that
|∂Ck(e)/∂e| 6 NCr holds with high probability. Since en+1 − en 6 2N−C1 , (4.55) implies |ẽ− λk| 6 2N−C1 .
Since C1 > 6Cr so that N−C1NCr � N−0.8C1 , we have

|Ck(ẽ )− ẽ | 6 |Ck(ẽ )− Ck(λk)|+ |λk − ẽ | 6 NCr |λk − ẽ | 6 2N−C1NCr 6 N−0.8C1 �W−1 (4.56)

with probability larger than 1−N−D.
Recall that k′ ∈ J1,W K is the index given by the relation ξk′(e) = Ck(e) for all e. Applying (4.54) with

en set to be ẽ and using C1 � D, we obtain the level repulsion bound

P
(
|ξk′±1(ẽ )− ξk′(ẽ )| > N−C1/2

)
> 1−N−D.

Together with the continuity argument used in (4.56), the level-repulsion holds between Ck and Ck±1 in the
interval [ ẽ, λk ], i.e.,

P
(
∃ e ∈ [ ẽ, λk], s.t. |Ck±1(e)− Ck(e)| 6 1

2
N−C1/2

)
6 N−D. (4.57)

Integrating the perturbation formula (4.16), we get

uk′(λk) = uk′(ẽ )−
∫ ẽ

λk

∑
` 6=k

u`′(e)

Ck(e)− C`(e)

(
u`′(e), B

∗ 1

(D − e)2
B uk′(e)

)
de (4.58)

Inserting (4.57) into (4.58) and using |ẽ− λk| 6 2N−C1 , we obtain

‖uk′(λk)− uk′(ẽ )‖∞ 6 CN−C1/2 max
e∈[ ẽ,λk]

max
` 6=k

∣∣(u`′ , B∗(D − e)−2Buk′
)∣∣

|C`(e)|+ 1
. (4.59)
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The numerator of the last term can be bounded by using (4.44) so that∣∣(u`′ , B∗(D − e)−2Buk′
)∣∣ 6 NCr

(∥∥B∗(D − e)−1Bu`′
∥∥2

2
+ 1
)1/2 (∥∥B∗(D − e)−1Buk′

∥∥2

2
+ 1
)1/2

. (4.60)

Inserting the identity B∗(D− e)−1Bu`′ = Qeu`′ −Au`′ = ξ`′(e)u`′ −Au`′ into the right hand side of (4.60),
we obtain ∣∣(u`′ , B∗(D − e)−2Buk′

)∣∣ 6 NCr (ξ`′(e) + ‖A‖op + 1) (ξk′(e) + ‖A‖op + 1) .

It is easy to prove that ‖A‖op = O(N) with high probability. Together with the fact that ξk′(e) ∈ [λj , ξk′(ẽ )]
for e ∈ [ ẽ, λk], which follows from ∂eCj(e) < 0, we have proved∣∣(u`′ , B∗(D − e)−2Buk′

)∣∣ 6 NCr+2 (|ξ`′(e)|+ 1) .

Inserting this bound into (4.59), using that ξ`′(e) = C`(e) in the denominator and the choice C1 = D+ 6Cr,
we have proved (4.51) and (4.52).

Notice that the constant Cr is associated with the uncertainty principle in (4.44) and N−C1 is the grid
size. We can make the grid size small by choosing large C1; the price to pay is that the initial data in the
stochastic flow argument becomes large, i.e., the constant C1 in (2.7) is large. However, the results we use on
the stochastic flow (e.g. 4.10) are insensitive to this constant, which is the main reason we can choose C1 large.

Part 1B: Delocalization and QUE for the band matrices. By definition (4.11), uk′(λk) = wk/‖wk‖2. Equa-
tions (4.51) and (4.52) can be written in the following form: for any fixed large D > 0 and small τ > 0,

P

(
∃k ∈ ZN , : |λk| 6 2− κ, max16i6W |ψk(i)|2∑W

i=1 |ψk(i)|2
>W−1+τ

)
6 N−D, (4.61)

P

(
∃k ∈ ZN : |λk| 6 2− κ,

∣∣∣∣∣
∑W/2
i=1 |ψk(i)|2∑W
i=1 |ψk(i)|2

− 1

2

∣∣∣∣∣ > N1/2+τ

W
+
N

εm
2 +τ

W 1/2

)
6 N−D.

Clearly we can shift the indices so that

P

(
∃k ∈ ZN : |λk| 6 2− κ, max

n∈ZN

∣∣∣∣∣
∑W/2
i=1 |ψk(n+ i)|2∑W
i=1 |ψk(n+ i)|2

− 1

2

∣∣∣∣∣ > N1/2+τ

W
+
N

εm
2 +τ

W 1/2

)
6 N−D,

and a similar shifted version of (4.61) holds. Since W,N and εm are related by (1.11), we have N1/2+τ

W +

N
εm
2

+τ

W 1/2 = o(W/N), so that exactly as in (4.18)–(4.19) we obtain

P
(
∃k ∈ ZN , : |λk| 6 2− κ, max

n∈ZN

∣∣∣N
W

W/2∑
i=1

|ψk(i+ n)|2 − 1

2

∣∣∣ > N

W

(
N1/2+τ

W
+
N

εm
2 +τ

W 1/2

))
6 N−D.

when N/W is an integer. If N/W is not an integer, the delocalization estimate (4.61) can be used to lead

to the same conclusion. Moreover, from (1.11) we have N
W ·

N1/2+τ

W < N−2a and N
W ·

N
εm
2

+τ

W 1/2 < N−
3
2a with

a > 0 given in (1.11). We have thus proved the QUE part of Theorem 4.1. Finally, note that the above QUE
for length interval W/2 obviously implies the same estimate for length W .

Finally, the proof of Theorem 4.1 just given above holds for all ‖g‖ 6 W−3/4 since all lemmas were
proved under this assumption. We have thus proved that for any fixed τ,D > 0, for large enough N we have

min
‖g‖6W−3/4

P
(
∃j ∈ ZN , : |λgj | 6 2− κ, N

W

W∑
i=1

|ψg
j (i)|2 = 1 + O(N−

3
2a+τ )

)
> 1−N−D (4.62)

Part 2: the semicircle law. Following the mean-field reduction method, we first prove the following lemma.

Lemma 4.12. Recall the definition of the constant a in (1.11). Under the assumption of Theorem 4.1, for
any fixed e0 with |e0| 6 2− κ we have

max
j

P
(
|λj − e0| 6 N−1+ a

2 and
∣∣∣ (Cj(e0)− e0)− N

W
(λj − e0)

∣∣∣ >W−1− a
10

)
6 N−D. (4.63)
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Proof. Recall the definition of the matrixHg from (4.9) and the relation
∂(g+λgj )

∂g =
∑W
i=1

∣∣ψgj (i)
∣∣2. Integrating

this relation from g0 to 0 with g0 defined by the equation g0 + λg0j = e0, we have∫ 0

g0

W∑
i=1

∣∣ψgj (i)
∣∣2 dg = λj − e0. (4.64)

By (4.62), for each |g| 6 W−3/4 fixed, we have
∑W
i=1

∣∣ψgj (i)
∣∣2 = W/N (1 + O(N−a)) with high probability.

Hence the left side of (4.64) is equal to −g0W/N (1 + O(N−a)) with high probability. By definition, Cj(e0) =
λg0j = e0 − g0. Inserting this relation into (4.64), we have proved (4.63).

We now prove the local semicircle law by using (4.33). For ε > 0 small enough, we consider E2 > E1

with ∆ := E2 − E1 6 N−1+ε. Clearly, we can assume ∆ > 1/N . We apply Lemma 4.12 with the choice
e0 = E1: for any D > 0, for large enough N we have

#

{
k : Ck(e0) ∈

[
e0, e0 + ∆

N

W
− 1

W

]}
6 # {k : λk ∈ [E1, E2]} 6 #

{
k : Ck(e0) ∈

[
e0, e0 + ∆

N

W
+

1

W

]}
with probability 1 −N−D. Since Ck = ξk′ represents the same curve, we can apply (4.33) with the choices
e = E1, e′ − e = ∆N/W − 1/W , or ∆N/W + 1/W. Hence the estimate (4.33) implies the local semicircle
law and we have completed the proof of Theorem 4.1.

Part 3: Eigenvalues local statistics. We rely on fixed energy universality result for a matrix flow, from [22]
(note that the constraint ω0 > 2/3 below is probably not optimal but sufficient in our setting).

Theorem 4.13 (Fixed energy universality for the Dyson Brownian motion [22]). Let V be a n × n deter-
ministic matrix and Z be a n×n standard GOE matrix. Consider H = V +

√
t0Z with t0 = nω0/n. Assume

that V is (n−δ1t0, n−δ2 , nδ3t0) regular at E (see Assumption 2.3) with (c is a universal small constant)

2

3
< ω0 < 1, δ2 < min

(
1− ω0

4
, δ3, c

)
.

Remember the notation ρ
(n)
fc,t0

for the density corresponding to the Stieltjes transform m
(n)
fc,t0

defined in (3.2).

For any smooth test function O ∈ C∞(Rk) with compact support, there are constants c, C > 0 such that∣∣∣∣ ∫
Rk
O(a)p

(k)
H

(
E +

a

Nρ
(n)
fc,t0

(E)

)
da−

∫
Rk
O(a)p

(k)
GOE

(
E +

a

Nρ
(n)
fc,t0

(E)

)
da

∣∣∣∣ 6 Cn−c.

We apply this result to the W ×W matrix flow t → Kg,e
T−t at t = T with the initial data V = Kg,e

T ,
i.e., n = W . By Corollary 4.6, V is (η∗, η

∗, r) regular with the parameters defined in Theorem 4.5. With
η∗, η

∗, r, T defined in (4.22), we have the following identifications

δ3 = 2ε∗ logW N, δ1 = ε∗ logW N, δ2 = ε∗ logW N, 1− ω0 = logW N(ε∗ − ε∗).

The above theorem with e = E gives (we consider the case k = 2 to simplify the presentation)∣∣∣∣ ∫
R2

O(a)p
(2)
QE

(
E +

a

Nρsc(E)

)
da−

∫
R2

O(a)p
(2)
GOE

(
E +

a

Nρsc(E)

)
da

∣∣∣∣ 6 CN−c.

where we replaced ρ
(n)
fc,t0

with ρsc by taking η = 0+ in (4.39). We can write∫
R2

O(a)p
(2)
QE

(
E +

a

Nρsc(E)

)
da =

1

2

∑
k′ 6=j′

EO
(
Wρsc(E)(ξk′ − E),Wρsc(E)(ξj′ − E)

)
=

1

2

∑
k 6=j

EO
(
Wρsc(E)(Ck(E)− E),Wρsc(E)(Cj(E)− E)

)
.

Recall that there is a shift of indices k → k′ (depending on the randomness) so that Ck(E) = ξk′ . In the
expression above, we have summed over all indices and thus this shift is irrelevant for our purpose.

Applying (4.63) with e0 = E, we can substitute Wρsc(E)(Ck(E)−E) with Nρsc(E)(λk−E) + O(W−
a
10 )

in the above equation. Note that (4.63) holds only for eigenvalues in a small neighborhood of E. Since O
is compactly supported, this restriction does not affect the usage of (4.63) in the last equation. Finally, the
error term O(W−a/10) is negligible, which concludes the the proof.
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5 A comparison method

In this section, we prove the theorems 1.2, 1.3 and 1.4. The basic idea follows the Green function comparison
method in [17], interpolating between resolvents of two matrices H and H̃. However, contrary to the setting

from [17], we only have a priori estimates on the Green’s function for H̃, but not for H. A self-consistent
Green function comparison method for band matrices was developed in [2], which only requires estimates on
the Green’s function of one of both matrices. Our a priori estimates on the Green’s function are different so
that we proceed with another self-consistent method from [21].

5.1 Elementary facts. Recall the resolvent of a matrix H can be written as

Gij(z) =
∑
k

ψk(i)ψk(j)

λk − z
, ImGii(E + iη) =

∑
k

η|ψk(i)|2

(E − λk)2 + η2
(5.1)

where ψk is the k-th eigenvector with eigenvalue λk. The following lemma is a classical fact connecting the
Green function with delocalization of eigenvectors and local laws.

Lemma 5.1. Let (HN )N>1 be a sequence of N×N random symmetric matrices. Suppose that for any c > 0
there exists a constant κc > 0 ∈ R such that for any D > 0

inf
j∈JcN,(1−c)NK

P (|λj | 6 2− κc) > 1−N−D (5.2)

provided that N is large enough. Consider the following assertion: for any small κ, τ > 0 and D > 0

sup
|E|62−κ,N−16η61

max
i

(ImGii(z)) = O(Nτ ), (5.3)

sup
|E|62−κ,N−16η61

max
i,j
|Gij(z)| = O(Nτ ), (5.4)

hold with probability larger than 1−N−D. Then

(i) (5.3) implies (1.12).

(ii) (1.12) and (1.13) imply (5.4).

Proof. For any k ∈ JcN, (1−c)NK, by (5.2), we can assume |λk| 6 2−κc for some κc > 0. Then (5.3) implies
that, with high probability,

η−1|ψk(i)|2 6 ImGii(λk + iη) = O(Nτ ), η = N−1,

which is (1.12). On the other hand, the bound (1.12) on ψk(i) and the eigenvalue distribution estimate
(1.13) inserted in (5.1) yield (5.4) by a simple dyadic decomposition.

5.2 Proof of Theorem 1.2. By Theorem 1.5, (1.12) of Theorem 1.2 is just a corollary of the following
lemma. In the remainder of this section, we will prove Lemma 5.2.

Lemma 5.2. If the statement (5.3) holds for all H in (1.15), then (5.3) holds for any H in Theorem 1.2.

To prove Lemma 5.2, note that for each H in Theorem 1.2, there is H̃ of type (1.15) such that the first

four moments of the entries of H and H̃ coincide. A precise statement is the following lemma, about a single
random variable. The proof is easily adapted from [35, Corollary 30] and it is left to the reader.

Lemma 5.3. Let H be a band matrix satisfying the conditions in Theorem 1.2. Then there exists a matrix
ensemble H̃ of the form (1.15) satisfying the assumptions of Theorem 1.5 such that

E(Hij)
n = E(H̃ij)

n, |i− j| 6W, n = 1, 2, 3, 4.
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Proof of Lemma 5.2. Let H be the matrix in Theorem 1.2 and H̃ the one given in Lemma 5.3. Denote by
G̃(z) = (H̃ − z)−1 the Green function of H̃. By Theorem 1.5, (1.12) and (1.13) hold for the eigenvalues and
eigenvectors of H̃. Together with Lemma 5.1, we get

sup
|E|62−κ,N−16η61

‖G̃(z)‖max = O(Nτ ), z = E + iη (5.5)

with probability 1−N−D. We now prove that the same estimate holds for G, i.e.

sup
|E|62−κ,N−16η61

‖G(z)‖max = O(Nτ ). (5.6)

We follow the self-consistent comparison method from [21]. We start with a very weak estimate ‖G(z)‖max 6
η−1, i.e., (5.6) holds for η ∼ 1. For η < 1, let ε0 > 0 be a small parameter and define

ηm = N−mε0 , zm = E + iηm, 1 6 m 6 ε0.

Our goal is to prove by induction that for z = zm, 1 6 m 6 ε−1
0 , (5.6) holds, which implies (5.5). Thus it

remains to prove that if (5.6) holds for z = z′m, 0 6 m′ 6 m, then (5.6) holds for z = zm+1, 1 6 m+1 6 ε−1
0 .

As in [21], we define the symmetric interpolation matrix Hθ by

(Hθ)ij = (1− χθij)H0
ij + χθijH

1
ij , H1 = H, H0 = H̃ (5.7)

where for i 6 j, χθij are i.i.d. Bernoulli random variable such that P(χθij = 1) = θ. DenoteGθ(z) = (Hθ−z)−1.
We can now recast the induction as follows: if for any (small) τ and (large) D, and |E| < 2− κ, we have

max
06θ61

max
m′6m

‖Gθ(zm′)‖max = O(Nτ ), zm′ = E + iηm′

then for any τ and D, and |E| < 2− κ, we have

max
06θ61

‖Gθ(zm+1)‖max = O(Nτ ), zm+1 = E + iηm+1. (5.8)

We know that (5.8) holds for θ = 0 and all m 6 ε−1
0 . Our aim is to prove (5.8) for 0 < θ 6 1.

From [3, Lemma 10.2], we have ‖G(E + iη/r)‖max 6 r‖G(E + iη)‖max for any r > 1. As a consequence,
max06n6m ‖Gθ(zn)‖max = O(Nτ ) implies ‖Gθ(zm+1)‖max = O(Nτ+ε0). Thus it remains to show that, under
the assumption (5.5), if we have

max
06θ61

‖Gθ(zm+1)‖max = O(Nτ+ε0) (5.9)

then (5.8) also holds.
By (5.5), for any p ∈ N and for any τ > 0, we have

max
kl

E|Gθ=0
kl (zm+1)|2p = O(N2pτ ). (5.10)

We will use the following Lemma from [21] to extend the above bound to general θ ∈ [0, 1]:

max
θ

max
kl

E|Gθkl(zm+1)|2p = O(N2pτ ), (5.11)

which completes the proof of (5.8) by Markov’s inequality.

Lemma 5.4. For fixed i, j ∈ ZN , and λ ∈ R, we define the matrix

(
Hθ,λ

(ij)

)
ab

=

{
λ if {a, b} = {i, j},
Hθ
ab if {a, b} 6= {i, j} .

For bounded and smooth F : RN×N → C we have

∂θEF (Hθ) =
∑
i6j

(
EF (H

θ,H1
ij

(ij) )− EF (H
θ,H0

ij

(ij) )

)
.
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We now return to prove (5.11). Choose the function F as follows:

F (X) = Fkl,p,z(X) =
∣∣((X − z)−1)kl

∣∣2p .
By (5.10), for any τ > 0 and p ∈ N, EF (H0) = O(N2τp). Thus, (5.11) for Hθ, 0 6 θ 6 1, follows from
Gronwall’s inequality and the following inequality, to be proved in the remainder of this paragraph (here
and below, z = zm+1): for any p > 100, there exists c > 0 such that∣∣∂θEF (Hθ)

∣∣ =
∣∣∣∑
i,j

(
EF
(
H
θ,H1

ij

(ij)

)
− EF

(
H
θ,H0

ij

(ij)

)) ∣∣∣ 6 N−c
(

1 + EF
(
Hθ
))

(5.12)

for any 0 6 θ 6 1. Note that the above equality is Lemma 5.4.

The matrices H
θ,H1

ij

(ij) and H
θ,H0

ij

(ij) are identical except for the entries (i, j) and (j, i) when |i− j| 6W , so

we now compare them by a perturbative argument. We fix i, j and define

f(λ) = fij,kl,p,z,θ(λ) := Fkl,p,z

(
Hθ,λ

(ij)

)
.

By definition, f(Hθ
ij) = F

(
Hθ
)

with Hθ as in (5.7). The n-th derivative of f , f (n), is a sum of products of

some 2p+ n matrix entries of the resolvent and its conjugate. From (5.9), we therefore have

f (n)(Hθ
ij) = O(N (τ+ε0)(2p+n))

with high probability. By standard iterated resolvent identities, the same bound holds for any y = O(W−1/2+τ ):

f (n)(y) = O(N (τ+ε0)(2p+n)).

with overwhelming probability. Hence, by Taylor’s expansion with respect to y = 0, for any m > 1, we have

EF
(
H
θ,H1

ij

(ij)

)
−EF

(
H
θ,H0

ij

(ij)

)
=

∑
56n6m

E(f (n)(0))

n!

(
E((H1

ij)
n)− E((H0

ij)
n)
)
+O

(
N (τ+ε0)(2p+m+1)(W−

1
2−τ )m+1

)
where we used that the first four moments of H1

ij and H0
ij are the same. On the one hand, we choose m = p

so that the above error term is at most O(N−
p
10 ) when τ + ε0 < 1/100. On the other hand, f (n)(0) is a sum

of products of some 2p+n matrix entries of the resolvent and its conjugate, among which at least 2p−n are

either
(
Hθ,0

(ij) − z
)−1

kl
or its conjugate. With the resolvent identity, these two quantities are easily bounded

by |Gθkl| + W−1/2+ε for any ε > 2(τ + ε0), with high probability. The remaining 2n resolvent entries are
bounded using (5.9). Therefore, for n 6 p,∣∣∣Ef (n)(0)

∣∣∣ 6 CpN
2n(τ+ε0)

(
E(|Gθkl|2p−n) +W (−1/2+ε)(2p−n)

)
6 CpN

2n(τ+ε0)
(
1 + E(F (Hθ))

)
.

The above estimates together give∣∣∂θEF (Hθ)
∣∣ 6 CpNW

1− 5
2 +10(τ+ε0)(1 + EF (Hθ)) + CpN

1− p
10W.

As W > N3/4 and p > 100, this concludes the proof of the inequality in (5.12) (and Lemma 5.2).

5.3 Proof of Theorem 1.3. We keep the notations from the proof of Lemma 5.2 for H and H̃. On the one
hand, from the local law in Theorem 1.5, for any κ, τ > 0 there exist ε > 0 such that for any z = E+N−1+τ

with −2 + κ < E < 2− κ, ImN−1Tr G̃(z)− Immsc(z) = O(N−ε). On the other hand, by repeating exactly

the proof of Lemma 5.2, the estimate (5.12) also holds for F (X) =
∣∣ImN−1Tr(X − z)−1 − Immsc(z)

∣∣2p , so
that ImN−1TrG(z)− Immsc(z) = O(N−c) for some c > 0. In turn, this implies the local law for H.

5.4 Proof of Theorem 1.4. Again, we follow the notations from the proof of Lemma 5.2 for H and
H̃. Theorem 1.5 gives universality for H̃, so that Theorem 1.4 follows by applying the Green’s functions
comparison theorem from [17]. The input for this theorem is the four moment matching of the matrix entries,

given by construction of H̃, and resolvent bounds as proved for our band matrices in (5.6).
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Appendix Perfect matching observables for Hermitian matrices

Although the main reults of this paper are stated for symmetric matrices, they can be adapted to the
Hermitian class. The only major modification concerns the definition of the perfect matching observables.
We explain below the Hermitian counterpart of Section 2.

Eigenvector dynamics. Let B(h) be a n × n matrix such that <(B
(h)
ij ),=(B

(h)
ij )(i < j) and B

(h)
ii /
√

2 are

independent standard Brownian motions, and B
(h)
ji = (B

(h)
ij )∗. The n×n Hermitian Dyson Brownian motion

K(h) with initial value K(h)(0) is K(h)(t) = K(h)(0) + 1√
2n
B(h)(t).

Let λ0 ∈ Σn, u0 ∈ U(n). The Hermitian Dyson Brownian motion/vector flow with initial condition
(λ1, . . . , λn) = λ0, (u1, . . . , un) = u0, is

dλk =
dB

(h)
kk√
2n

+

 1

n

∑
` 6=k

1

λk − λ`

 dt,

duk =
1√
2n

∑
` 6=k

dB
(h)
k`

λk − λ`
u` −

1

2n

∑
6̀=k

dt

(λk − λ`)2
uk. (A.1)

With the above definitions, the strict analogue of Theorem 2.1 holds in this Hermitian setting.

In addition to (2.4) and (2.5), we define

uk∂u` =

n∑
α=1

uk(α)∂u`(α),

X
(h)
k` = uk∂u` − u`∂uk , X

(h)

k` = uk∂u` − u`∂uk .

Here ∂u` and ∂u` are defined by considering u` as a complex number, i.e., if we write u` = x + iy then
∂u` = 1

2 (∂x − i∂y). The analogue of Lemma 2.2 for the generator is then (see [7])

L
(h)
t =

1

2

∑
16k<`6n

ck`(t)
(
X

(h)
k` X

(h)

k` +X
(h)

k` X
(h)
k`

)
, (A.2)

meaning that dE(g(ut))/dt = E(L
(h)
t g(ut))) for the stochastic differential equation (A.1).

The observables. As in Section 2, let I be a fixed subset of J1, nK, and denote the eigenvector overlaps

pij =
∑
α∈I

ui(α)ūj(α), i 6= j ∈ J1, nK

pii =
∑
α∈I

ui(α)ūi(α)− C0, i ∈ J1, nK

where C0 is an arbitrary but fixed constant independent of i. Note that contrary to the real case, we now
have pij 6= pji for i 6= j.

With this definition, Theorem 2.5 still holds. For the proof, we keep the same definition for our configu-
ration space as in the real case: η : J1, nK→ N where ηj := η(j) is interpreted as the number of particles at
the site j. For any given configuration η, consider the set of vertices

Vη = {(i, a, ε) : 1 6 i 6 n, 1 6 a 6 ηi, ε ∈ {b, w}}.

We represent vertices corresponding to ε = b (resp. ε = w) by a black (resp. white) disk. Let Aη be the graph
with vertices Vη and with edges all possible {v1, v2} with ε1 6= ε2, where v1 = (i1, a1, ε1), v2 = (i2, a2, ε2). In
words, Aη is the complete graph on Vη except that edges between vertices of the same color are forbidden.
Let Gη be the set of perfect matchings of Aη. Let E(G) be the set of edges of a graph G ∈ Gη.
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1 i1 i2 i3 n

(a) A configuration η with N (η) = 6, ηi1 = 2,
ηi2 = 3, ηi3 = 1.

1 i1 i2
i3 n

(b) A perfect matching G ∈ Gη. Here, P (G) =
pi1i1pi1i2pi2i1pi2i2pi2i3pi3i2 .

Moreover, for any given edge e = {(i1, a1, ε1), (i2, a2, ε2)}, we define p(e) = pi1,i2 if ε1 = b, p(e) = pi2,i1
if ε2 = b. Let P (G) =

∏
e∈E(G) p(e) and

f
(h)
λ,t (η) =

1

L(η)
E

∑
G∈Gη

P (G) | λ

 , L(η) =

n∏
i=1

ηi!. (A.3)

We have the following complex analogue of Theorem 2.6.

Theorem A.1 (Perfect matching observables for the eigenvector moment flow: Hermitian case). Suppose

that u is the solution to the Hermitian eigenvector dynamics (A.1), and f
(h)
λ,t is given by (A.3). Then it

satisfies the equation

∂tf
(h)
λ,t = B(h)(t)f

(h)
λ,t ,

B(h)(t)f(η) =
∑
k 6=`

ck`(t)ηk(1 + η`)
(
f(ηk,`)− f(η)

)
.

As in the real case, the above theorem is independent of our choice of the canonical basis, see Remark 2.8.
It therefore generalizes the class of observables for the eigenvector moment flow from [7, Theorem 3.1 (ii)].

Proof of Theorem A.1. We naturally replace the definition (2.19) with

g(η) =
1

L(η)

∑
G∈Gη

P (G)

and let 1 6 k < ` 6 n be fixed for the rest of this subsection. We abbreviate X = X
(h)
k` , X = X

(h)

k` . With
(A.2) the proof reduces to

1

2
(XX̄ + X̄X)g(η) = ηk(1 + η`)(g(ηk`)− g(η)) + η`(1 + ηk)(g(η`k)− g(η)). (A.4)

To calculate 1
2 (XX̄ + X̄X)P (G) for any G ∈ Gη we first need the following definition.

Definition A.2. Let η and k < ` be fixed.

(i) Vi ⊂ Vη is the set of vertices of type (i, a, ε), 1 6 a 6 ηi, ε ∈ {b, w}.

(ii) Vbi ⊂ Vi is the set of vertices of type (i, a, b), 1 6 a 6 ηi, and similarly for Vwi .

(iii) For any two sets, denote A ·B = (A×B) ∪ (B ×A). We define

ε(v1, v2) =

 1 if (v1, v2) ∈ (Vbk · Vwk ) ∪ (Vb` · Vw` ),
−1 if (v1, v2) ∈ (Vbk · Vb` ) ∪ (Vwk · Vw` ),
0 otherwise.

(iv) Let G ∈ Gη and (v1, v2) ∈ (Vk ∪ V`)2
∗.

Assume (v1, v2) ∈ (Vbk · Vb` )∪ (Vwk · Vw` ). Then we define Sv1v2G = Sv2v1G ∈ Gη as the perfect matching
obtained by transposition of v1 and v2. More precisely, let τv1v2 be the permutation of Vη transposing
v1 and v2. Then

E(Sv1v2G) = {{τv1,v2(w1), τv1,v2(w2)} : {w1, w2} ∈ E(G)}.
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Assume (v1, v2) ∈ Vbk · Vwk , and write v1 = (k, a1, b), v2 = (k, a2, w) for example, where 1 6 a1, a2 6 ηk.
Then we define Sv1v2G = Sv2v2G ∈ Gηk` as the perfect matching obtained by a jump of v1 and v2 to `.
More precisely, let jv1v2 = jv2v1 be the following bijection from Vη to Vηk` : jv1v2(v1) = (`, η` + 1, b),
jv1v2(v2) = (`, η` + 1, w), jv1v2((k, c, b)) = (k, c− 1, b) if a1 < c, jv1v2((k, c, w)) = (k, c− 1, w) if a1 < c
and jv1v2(w1) = w1 in all other cases. Then

E(Sv1v2G) = {{jv1v2(w1), jv1v2(w2)} : {w1, w2} ∈ E(G)}.

A similar definition applies if (v1, v2) ∈ Vb` · Vw` , the jump now being towards k.

Finally, if (v1, v2) 6∈ (Vbk ·Vb` )∪(Vwk ·Vw` )∪
(
Vbk · Vwk

)
∪
(
Vb` · Vw`

)
, we define Sv1v2G = G (or any arbitrary

function).

i k `v2

v1

Sv1v2

(a) The map Sv1v2 in case of a transposition.

i k `v2

v1

Sv1v2

(b) The map Sv1v2 in case of a jump.

Below is the main result for the proof of Theorem A.1.

Lemma A.3. For any G ∈ Gη, we have

1

2
(XX̄ + X̄X)P (G) =

1

2

∑
(v1,v2)∈(Vk∪V`)2∗

ε(v1, v2)P (Sv1v2G)− (ηk + η`)P (G). (A.5)

Assuming the above lemma we can complete the proof of Theorem A.1. Let

h(η) =
∑
G∈Gη

P (G).

Note that if (v1, v2) ∈ (Vbk · Vb` )∪ (Vwk · Vw` ), then Sv1v2 is a permutation of Gη. Moreover, if (v1, v2) ∈ Vbk · Vwk
(resp. Vb` · Vw` ) then Sv1v2 is a bijection from Gη to Gηk` (resp. Gη`k). Summing (A.5) over all G ∈ Gη
therefore gives

1

2

(
XX̄ + X̄X

)
h(η) =

1

2

(
2η2
kh(ηk`) + 2η2

`h(η`k)− (2ηkη` + 2η`ηk)h(η)− 2(ηk + η`)h(η)
)

=η2
kh(ηk`) + η2

`h(η`k)− (ηk(η` + 1) + η`(ηk + 1))h(η).

The above equation implies (A.4) after renormalization by L(η). This concludes the proof of Theorem A.1.

Proof of Lemma A.3. Let L = 1
2

(
XX̄ + X̄X

)
. We have

LP (G) =
∑

(e1,e2)∈E(G)2∗

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e) +
∑

e1∈E(G)

Lp(e1)
∏

e∈E(G)\{e1}

p(e). (A.6)

We keep the notations (2.23), (2.24), (2.25) for the single, double and transverse edges. Remember that for
any v ∈ Vη, ev is the unique edge containing v and v′ be the unique vertex such that ev = {v, v′}. We still
denote

Vs = {v ∈ Vk ∪ V` : {v, v′} ∈ Es},
Vd = {v ∈ Vk ∪ V` : {v, v′} ∈ Ed},
Vt = {v ∈ Vk ∪ V` : {v, v′} ∈ Et},
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and Vbk,s the single, black vertices in Vk (and similarly for Vwk,s, etc). We will need the following elementary
rules: if i 6= ` and j 6= k, Xpij = 0, and

Xpik = −pi`, Xp`j = pkj (A.7)

Xp`k = pkk − p``, (A.8)

Xpkk = −pk`, Xp`` = pkk. (A.9)

We also obviously have X̄p = Xp̄. Equation (A.6) can be written as

LP (G) = (I) + (II) + (III) + (IV) + (V) + (VI) + (VII) + (VIII) + (IX)

where all terms are defined and calculated below. First,

(I) :=
∑

(e1,e2)∈(Es)2∗

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
∑

(v1,v2)∈(Vs)2∗

Xp{v1,v′1}X̄p{v2,v′2}
∏

e∈E(G)\{ev1 ,ev2}

p(e).

From (A.7), Xp{v1,v′1}X̄p{v2,v′2} = −p{v2,v′1}p{v1,v′2} if (v1, v2) ∈ (Vb`,s×Vbk,s)∪(Vwk,s×Vw`,s), andXp{v1,v′1}X̄p{v2,v′2} =

p{jv1,v2 (v1),v′1}p{jv1,v2 (v2),v′2} if (v1, v2) ∈ (Vbk,s×Vwk,s)∪(Vb`,s×Vw`,s). In all other cases, Xp{v1,v′1}X̄p{v2,v′2} = 0.
We therefore proved

(I) =
∑

(v1,v2)∈(Vb`,s×V
b
`,s)∪(Vwk,s×V

w
`,s)∪(Vbk,s×V

w
k,s)∪(Vb`,s×V

w
`,s)

ε(v1, v2)P (Sv1v2G) =
1

2

∑
(v1,v2)∈(Vs)2∗

ε(v1, v2)P (Sv1v2G).

(A.10)
We now consider

(II) :=
∑

(e1,e2)∈Es·Ed

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
1

2

∑
(v1,v2)∈Vs·Vd

Xp{v1,v′1}X̄p{v2,v′2}
∏

e∈E(G)\{ev1 ,ev2}

p(e).

We used that vertices on a double edge need to be weighted by a factor 1/2. From (A.7) and (A.9),

Xp{v1,v′1}X̄p{v2,v′2} = −p{v2,v′1}p{v1,v′2} if (v1, v2) ∈
(
Vwk,d × Vw`,s

)
∪ (Vb`,s × Vbk,d) ∪

(
Vb`,d × Vbk,s

)
∪ (Vwk,s × Vw`,d),

Xp{v1,v′1}X̄p{v2,v′2} = p{jv1v2 (v1),v′1}p{jv1v2 (v2),v′2} if (v1, v2) ∈ (Vwk,d × Vbk,s) ∪ (Vb`,d × Vw`,s) ∪ (Vwk,s × Vbk,d) ∪ (Vb`,s × Vw`,d).

We therefore have

(II) =
1

2

∑
(v1,v2)∈Vs·Vd

ε(v1, v2)P (Sv1v2G). (A.11)

Concerning

(III) :=
∑

(e1,e2)∈(Ed)2∗

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
1

4

∑
(v1,v2)∈(Vd)2∗:v1 6=v′2

Xp{v1,v′1}X̄p{v2,v′2}
∏

e∈E(G)\{ev1 ,ev2}

p(e),

using (A.9) we have Xp{v1,v′1}X̄p{v2,v′2} = −p{v2,v′1}p{v1,v′2} if v1 and v2 are in distinct Vi’s and with the same
color, p{jv1v2 (v1),v′1}p{jv1v2 (v2),v′2} if they are in the same Vi with distinct colors. All together, we always have

Xp{v1,v′1}X̄p{v2,v′2} = ε(v1, v2)P (Sv1v2G) + ε(v′1, v2)P (Sv′1v2G). We therefore proved

(III) =
1

4

∑
(v1,v2)∈(Vd)2∗

(
ε(v1, v2)P (Sv1v2G) + ε(v′1, v2)P (Sv′1v2G)

)
− 1

2

∑
v∈Vd

P (Svv′G)

=
1

2

∑
(v1,v2)∈(Vd)2∗

ε(v1, v2)P (Sv1v2G)− 1

2

∑
v∈Vd

P (Svv′G). (A.12)

Our next estimate is a diagonal term, namely

(IV) :=
∑
e1∈Es

Lp(e1)
∏

e∈E(G)\{e1}

p(e) =
∑
v∈Vs

Lp{v,v′}
∏

e∈E(G)\{ev}

p(e) = −1

2

∑
v∈Vs

P (G) (A.13)
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where we used (A.7) twice to obtain Lp{v,v′} = − 1
2p{v,v′}.

Another diagonal term is

(V) :=
∑
e1∈Ed

Lp(e1)
∏

e∈E(G)\{e1}

p(e) =
1

2

∑
v∈Vd

Lp{v,v′}
∏

e∈E(G)\{e1}

p(e).

Note that we have Lp{v,v′} = pkk − p`` if v ∈ V`, p`` − pkk otherwise. This proves

(V) =
1

2

∑
v∈Vd

(P (Svv′(G))− P (G)). (A.14)

We now consider cases where transverse edges appear:

(VI) :=
∑

(e1,e2)∈Es×Et∪Et×Es

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e)

=
∑

v1∈Vs,{v2,v′2}∈Et

(
Xp{v1,v′1}X̄p{v2,v′2} + X̄p{v1,v′1}Xp{v2,v′2}

) ∏
e∈E(G)\{ev1 ,ev2}

p(e).

Up to transposing v2 and v′2, we can assume that v1 and v2 are in the same Vi. With (A.7) and (A.8) a
calculation gives Xp{v1,v′1}X̄p{v2,v′2} + X̄p{v1,v′1}Xp{v2,v′2} = pjv1v2 (v1)v′1

pjv1v2 (v2)v′2
− pτv1v′2 (v1)v′1

pτv1v′2 (v′2)v2 .

This yields

(VI) =
∑

(v1,v2)∈Vs×Vt

ε(v1, v2)P (Sv1v2(G)) =
1

2

∑
(v1,v2)∈Vs·Vt

ε(v1, v2)P (Sv1v2(G)). (A.15)

We also consider

(VII) :=
∑

(e1,e2)∈Ed×Et∪Et×Ed

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e)

=
∑

v1∈Vd,{v2,v′2}∈Et

(
Xp{v1,v′1}X̄p{v1,v′2} + X̄p{v1,v′1}Xp{v1,v′2}

) ∏
e∈E(G)\{ev,ew}

p(e).

Without loss of generality we can assume v1 and v2 are in the same Vi. Assume they also have a differ-
ent color. Then (A.8) and (A.9) give Xp{v1,v′1}X̄p{v1,v′2} + X̄p{v1,v′1}Xp{v2,v′2} = pjv1v2 (v1)v′1

pjv1v2 (v2)v′2
−

pτv1v′2 (v1)v′1
pτv1v′2 (v′2)v2 . If v1 and v2 have the same color, a similar equation holds, permuting v1 and v′1. This

implies

(VII) =
∑

(v1,v2)∈Vd×Vt

ε(v1, v2)P (Sv1v2(G)) =
1

2

∑
(v1,v2)∈Vd·Vt

ε(v1, v2)P (Sv1v2(G)). (A.16)

For two transverse edges, with (A.8) we first compute 1
2 (Xpk`X̄pk`+X̄pk`Xpk`) = 0, and indeed ε(v1, v2) = 0

when v1, v2 are the same color on the same site, or different colors on different sites. Moreover, 1
2 (Xpk`X̄p`k+

X̄pk`Xp`k) = 1
2 (p2

kk + p2
`` − 2pkkp``), so that in all cases we proved

(VIII) :=
∑

(e1,e2)∈(Et)2∗

Xp(e1)X̄p(e2)
∏

e∈E(G)\{e1,e2}

p(e) =
1

2

∑
(v1,v2)∈(V2

t )∗

ε(v1, v2)P (Sv1v2(G). (A.17)

Finally, from (A.8) we have Lpk` = −pk`, so that

(IX) :=
∑
e1∈Et

Lp(e1)
∏

e∈E(G)\{e1}

p(e) = −1

2

∑
v∈Vt

P (G) (A.18)

By summation of all equations (A.10), (A.11), (A.12), (A.13), (A.14), (A.15), (A.16), (A.17), (A.18), the
right hand sides of (A.5) and (2.22) are the same. This concludes the proof of Lemma A.3.
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