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We establish the first connection between 2d Liouville quantum gravity and natural dynamics of random
matrices. In particular, we show that if (U;) is a Brownian motion on the unitary group at equilibrium,
then the measures

| det(U; — €19)|7dtdo

converge in the limit of large dimension to the 2d LQG measure, a properly normalized exponential of
the 2d Gaussian free field. Gaussian free field type fluctuations associated with these dynamics were
first established by Spohn (1998) and convergence to the LQG measure in 2d settings was conjectured
since the work of Webb (2014), who proved the convergence of related one dimensional measures by
using inputs from Riemann-Hilbert theory.

The convergence follows from the first multi-time extension of the result by Widom (1973) on Fisher-
Hartwig asymptotics of Toeplitz determinants with real symbols. To prove these, we develop a general
surgery argument and combine determinantal point processes estimates with stochastic analysis on Lie
group, providing in passing a probabilistic proof of Webb’s 1d result. We believe the techniques will
be more broadly applicable to matrix dynamics out of equilibrium, joint moments of determinants
for classes of correlated random matrices, and the characteristic polynomial of non-Hermitian random
matrices.
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The (random) Gibbs measure e”? converges to the Gaussian multiplicative chaos on the cylinder, with H
the electric field associated to non-intersecting Brownian motions on the circle, z(t).



1 INTRODUCTION
The Gaussian multiplicative chaos (GMC), introduced by Kahane in [66], is the fractal measure

(D dy — lim em@%ﬁwg(z)%dz?
e—0

where ¢, is a mollification of a log-correlated Gaussian field ¢ on a domain D C R? and dz denotes the
Lebesgue measure on R%. The regularization and renormalization are necessary because of the negative
Sobolev regularity of the field. The convergence holds in probability with respect to the topology of weak
convergence and the parameter v € (0,v/2d) since the limit is zero above this range [89,91,[13/88]. The
specific case where ¢ is a two dimensional Gaussian free field (GFF) (a Gaussian field whose covariance
function is the inverse of the Laplacian) or a one dimensional restriction thereof, has proved to be connected
with many different domains in mathematical physics. To name a few, it is the volume form in Liouville
quantum gravity (LQG), a metric measure space corresponding to the formal Riemannian metric tensor
“e7®(dz? +dy?)” [87,/39%/34,55); appears in the scaling limit of random planar maps [75,(78}/80,/57]; interplays
through conformal welding with Schramm Loewner Evolutions and the Conformal Loop Ensemble, the
scaling limit of interfaces in critical spins and percolation models [6|40,/93)/79}/3]; played a central role in the
rigorous formulation and the resolution of Liouville Conformal Field Theory [30L[71,[53]; and appears in the
construction of a stochastic version of the Ricci flow [37]. The literature on this topic is abundant and we
refer to the survey [94] and references therein.

The Brownian motion on the unitary group U(N) is a rich object in random matrix theory. It preserves the
Haar measure and, under this initial condition, its eigenvalues have Circular Unitary Ensemble distribution
at each fixed time. They satisfy the Dyson dynamics [41] on the circle and, by the Karlin-McGregor formula
[67], can be seen as Brownian motions on the unit circle conditioned not to intersect. As ubiquitous in
random matrix theory, we are concerned with the large N limit of observables of this process. The large
N limit of the unitary Brownian motion itself is the free unitary Brownian motion [16,[29] and this has
applications to the large N limit of the Yang-Mills measure on the Euclidean plane with unitary structure
group as observed in [76]. In this paper, we prove the following

Theorem 1.1. Let (Uy) be a unitary Brownian motion at equilibrium, as defined in (@ Then for every
v € (0, 2\/5);
. | det(U; — €?)|
lim -
N—oc0 E(| det(Ut — 619)"}/)
where h is the Gaussian free field on the cylinder R x R/27Z, E(h(z)h(w)) = w(—=Ac) (2, w), where
Ac = 0% + 03. Moreover, the convergence is in distribution with respect to the weak topology.

dtdg = e7"(=)dz (1.1)

The usual parametrization v € (0,v2d) in GMC theory corresponds to log-correlated fields. Here, the
field is 1 log-correlated and by a change of parametrization our result covers this entire range (see (2.16)
below for an exact formula of the covariance of this free field, and background).

In [99], Webb opened a connection between Gaussian multiplicative chaos and random matrix theory by
linking the characteristic polynomial of the Circular Unitary Ensemble (CUE) to a one-dimensional GMC and
conjectured that similar results also hold for the Gaussian Unitary Ensemble, one-dimensional S-ensembles,
and more generally for random matrix models presenting log-correlations, including in dimension two. His
proof and the ones of the following works [14,81] relied on existing results for Fisher-Hartwig asymptotics
based on the Riemann-Hilbert approach (or adaptations thereof). Another approach appeared in [27], still
for d = 1, which showed that the limit of an object different from the characteristic polynomial, the spectral
measure of circular S-ensembles, coincides with a Gaussian multiplicative chaos. In our paper, as an appli-
cation of our main theorem below, we provide the first convergence to the 2d LQG measure, taking a new
angle in viewing this problem as one in random matrix dynamics.

By considering the unit disk instead of a semi-infinite cylinder (i.e., replacing dtdf by e~2!dtdf with
z=e'e? t e (0,00) in the limit (L.1)), Theorem [1.1] translates into convergence towards the measure
e""(?)dz on the unit disk where h is the lateral part in the polar decomposition of the 2d whole plane GFF

h,ie. h(z) = h(z) — f\zIU h; the subtracted process r +— fTU h being a Brownian motion independent of h.



The field h and the associated chaos measure were introduced in the mating of trees [40], used in the proof
of the DOZZ formula [71] and the dynamics of the restriction of & on concentric circles played a crucial role
in the proof of the conformal bootstrap in Liouville theory [53]. The unitary Brownian motion is the most
natural model among random matrix dynamics that induce the field A and its own dynamics.

1.1 Multi-time Fisher-Hartwig asymptotics. The main contribution of this paper is the dynamical

extension of asymptotics of Toeplitz determinants with singularities. In the following discussion, the Fourier
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transform is normalized as fr = [, — and we let

(f, 9= (9 = Y |K| frgr-
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The Toeplitz determinant Dy (f) = det( fj_ k)jv ., has been the subject of many investigations. For example,
a simple version of the strong Szegd theorem states that if f = eV with V real-valued and smooth enough,
D (f) ~ exp(NVp + 3|IV]1) for large dimension.

For a wide class of irregular functions f, Fisher and Hartwig [46] made a seminal general conjecture
about the asymptotic form of Dy (f), which has been corrected by Basor and Tracy [11] and is settled in
full generality [32] by Riemann-Hilbert methods, after multiple important contributions, e.g.|101/101,42]. For
example, in the special case where f(2) = " [ |z —2;|** with m > 1 fixed singularities z; on the unit
circle, o;; > —1/2, and smooth centered real V, the Fisher-Hartwig asymptotics states that

| 20410% 1+a]
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(1 +o(1)), (1.2)

where the Barnes function G is defined in Subsection [2 Motivations in statistical physics for general Fisher-
Hartwig asymptotics are multiple, see in particular the beautiful exposition of applications to the phase
transition of the 2d Ising model in [33].

Such Toeplitz determinant asymptotics are related to random matrix theory as they correspond to mo-
ments of characteristic polynomials of random matrices. For example, the Heine formula implies that the
left-hand side of coincides with E[[[7, |Pn(z;)2% V)] where Py(z) = det(z — U) and U is a
N x N Haar-distributed unitary matrix. The main contribution of our paper is the first Fisher-Hartwig
asymptotics for singularities in space and time. More precisely, Theorem below is a multi-time extension
of , a formula due to Harold Widom in 1973.

To state this main result, we first denote o7 (resp. %) a finite subset of {z =t +1i0,t € R,0 < 0 < 27}
(resp. R), with fixed cardinality but possibly N-dependent points. The functions fs in the statement below
are of regularity > on an arbitrary mesoscopic scale N~179 5 € (0, 1]. We also remind the definition of the

Poisson kernel P; in (2.1)).

Theorem 1.2. Let (Uy) be a unitary Brownian motion at equilibrium, as defined in (@) Let0<0<1,C
be fived constants. There exists € > 0 such that uniformly in maxz |s|+maxy |z| < C, ming, .ey2 2220 €7 —

ezl\ >N 4 €[0,C), fs € s (see Definition , we have

E[ezse@TrfS(Us) H |det(Ut76i0)|'Yz:| — eNZgg J[fs+% 2552(fMP\sfs’\fs’)Hfzzeko{)segA %(P\t—s\*Poc)fs(eie)
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VG T (M) o o

1 + ’YZ) zZ,WE zFw
where the multiplicative constant in O depends on ||, |A)|.

When there is no singularity (& = @), this formula is a dynamical generalization of the strong Szegd
theorem. It can also be thought of as an upgrade to any mesoscopic scale and to exponential generating
functions of Spohn’s convergence of the Dyson Brownian motion dynamics to the free field (see section .

However the main originality and applications of Theorem are due to the logarithmic insertions,
see for example Remarks [6.3] and [6.4] on straightforward corollaries on logarithmically correlated fields,



their maximum and optimal eigenvalues deviations along Dyson Brownian motion. Based on it is
also not hard to obtain that for any smooth space-time curve ¢ in (€l?,t) with Lebesgue measure A\,
| det(U; — €'?)|Yd A\ converges up to normalization to a one dimensional Gaussian multiplicative chaos in the
L! phase (i.e. v < 2 for d = 1). In particular this recovers the fixed time results from [99,81].

The proof of Theorem applies to other singularities: the discontinuities from Imlog. We only stated
our results for Relog for the sake of conciseness, but one can easily state a consequence of the discontinuous
case Imlog. Indeed, define Imlogdet(l — e %U;) = >, Imlog(1l — €@ ®=9) " with the branch choice
Imlog(1—€l¥) = (p—m)/2if ¢ € [0,7), (p+7)/2if p € (—7,0). AsImlogdet(1—eU;)—Imlogdet(1-U;) =
m(N.(0,6) — EN.(0,6)), where N;(0,0) = [{0)(t) € (0,6]}|, we have

lim Zyt 7 "M OO-EN0.0)qrd4h = =)z (1.4)
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for every v € (0,2v/2) and some constants Zy .. The above result relies on an analogue of Theorem see
Equation in the Appendix, which also gives the necessary, straightforward changes for a proof.

Although an extension of Theorem to include Imlog and complex-valued f; is straightforward, a
generalization to complex-valued «y, is not. In the static case, the most general version of Fisher-Hartwig
asymptotics [32] allows general complex exponents, with asymptotics involving a subtle variational problem.
It is not even clear how to formulate a related conjecture in our multi-time setting.

More generally, moments of characteristic polynomials of wide classes of random matrices have been a
topic of major interest, see e.g. [8/19,[23//48] to name a few in the case of integer exponents by algebraic
and supersymmetric methods, and [14}45}25L28}|100] for fractional exponents by Riemann-Hilbert methods.
Theorem initiates joint (fractional) moments for correlated random matrices, a topic connected to the
quenched complexity of high dimensional landscapes [7.|49].

Our paper considers random matrices from the canonical setting, the unitary group, but we expect the
convergence to LQG will remain in other settings (and the proof method through surgery as described below
will apply, although major technical obstacles remain). Such settings include dynamics on other Lie groups,
out of equilibrium or with a Dyson Brownian motion at arbitrary temperature. In fact, the upcoming work
[20] on a non-Hermitian analogue of Fisher-Hartwig asymptotics will follow a scheme similar to the surgery
that we now explain.

1.2 OQutline. To prove our main result, we develop a general surgery argument that allows us to go be-
yond the usual free field limit and which works very roughly speaking as follows: 1) we “cut” the long
range non-singular part of the determinants in and prove a (space-time) decoupling of the resulting
product of localized singularities 2) we carry out a general “gluing operation” for non-singular terms 3) we
evaluate asymptotics of one localized singularity by gluing the opposite of the associated long range non-
singular part to the determinant itself, together with the Selberg integral formula 4) with these in hands, it
remains to glue back the non-singular parts and the additional smooth functions to the localized singularities.

Decoupling. The first ingredient consists in a space-time decoupling of the truncated singularities. Usual
techniques to prove decorrelation for linear statistics or extrema of eigenvalues do not seem to work for the
product of local singularities, either because our functions are not in H'/2 or because such decouplings give
additive error terms. We find a new general multiplicative decorrelation of local linear statistics which can
apply to a large class of determinantal point processes. We prove in Section by using the Eynard-Mehta
machinery, that the process of the eigenvalues at different times is a determinantal point process. Despite
the simplicity of the expression of the kernel we find, it seems that this stationary case has not been de-
rived before (nor with arbitrary initial condition), because there is no canonical ordering as the particles are
winding around the circle. As a second step, to work out the decoupling, the starting point of our proof
is an infinite dimensional version of the Hoffman-Wielandt inequality, applied to a related self-adjoint op-
erator, from which we then extract the sought decoupling of our observable. This is the content of Section[3.2]

Matriz dynamics. Our“gluing” operation starts with the usual method (initiated in random matrix theory
in [59]) of Hamiltonian perturbation and then we a) perform an integration by parts, b) obtain asymptotics.

As explained at the beginning of Section [5] due to our combined multitime and singular settings, step
a) requires an original approach: the integration by parts formula from Proposition encodes information
about eigenvalues but also eigenvectors, while loop equations traditionally correspond to hierarchies only



for particles/eigenvalues. For the proof of Proposition we use the Girsanov theorem on the Lie algebra
uy of the unitary group (the unitary Brownian motion (U) is the solution of a matrix SDE driven by a
Brownian motion (B) on uy). This entails characterizing the Fréchet derivatives of the UBM, DpU; :=
lim._,oe ' (U(B + ¢F); — U(B);) (shifting B in a progressively measurable direction (F) = [; fds), as
solutions of matrix SDEs, and solving explicitly these. We exploit the stationarity of the process to consider
long times so that observables of the UBM are well encoded by the noise driving the process and in particular
by its associated integration by parts formula.

To control the error terms from step a), we prove an averaged (over projections) and multi-time local law
(Proposition the main result of Section 4), which is new including in the context of Hermitian random
matrices. Moreover, to control submiscroscopic errors due to logarithmic singularities, in the key Lemma
we impose an algebraic cancellation property , which holds if we add compensator functions to our
observables of interest (see Section . These compensators are local functions, so they can be included
from the start in the decoupling step, completing the outline of our surgery argument.

In Section [6] by applying the general surgery introduced above, we prove Theorem [T.2]first, and then use
it for our main application, i.e. the convergence to the Liouville quantum gravity measure.

Acknowledgements. We wish to thank Jiaoyang Huang and Ofer Zeitouni for their useful feedback on the
first version of the paper, and Xin Sun for suggesting the extension of our result to some other surfaces. We
are especially grateful to Ahmet Keles for his many suggestions which helped improve this work. P.B. was
supported by the NSF grant DMS 2054851 and a Simons fellowship.

2 PRELIMINARIES

Basic notations. In this paper, d\ denotes the Lebesgue measure on the unit circle U, and dm the Lebesgue
measure on C. We remind that the Fourier coefficients of f are defined as f; = i OQW e k0 £(0)dh. The
Poisson kernel plays an important role and is normalized as follows:

27 —i
Pz = [ feReIFZ 0 5 ik (2.1)

0 1 zei0—t g
keZ

Its restriction to U is given by P, f(e'?) =3, fre~Iklteiko
The Barnes G-function is defined as the Weierstrass product

G(Z-|— 1) _ (27r)z/2 242214 (1+’Y) lo_o[ ( ) 62’9_2.

Here, and only here, « is the Euler constant. The Barnes function satisfies the functional equation G(z+1) =
I'(2)G(z) where T is the Gamma function.

Moreover, for a matrix A, Tr(A4) =Y, A; ; and we denote by AT the transpose of A. A* = AT If M,N
are two complex valued matrices, (M, N) = Tr(MTN) and (M, N),w = Re(M, N).
Finally, the statement of Theorem makes use the following functional space .#5 ¢ described below.

Definition 2.1. For 0 < k < 1 and k € N we introduce the norm on {f : U — R}

k

”fHoo,k,rc = ZNJ(K71)|‘f(J)||oo

=0

We define Ay ¢ as the set of functions g : U — R supported on an arc of length N~1** and smooth on that
scale in the sense that ||g|lec,3x < C. For 0 <0 < 1, let S5 be the set of functions f : U — R which can
be written as

f=Y_fi, m<ClogN, fi € Axc (k€ [6,1)).



Note that for any g € A, ¢ we have gy < Cmin(N 1" N;;K), so |lgl%4 < C. Thus, f € % ¢ implies

[fllx = O(log N).

Two examples of particular interest are as follows. First, functions of type f(el’) = g(N1=%(0 — ))
with g compactly supported and € are in A, c C ¢ for any C > 0 and k € [4,1]. Second, any
regularization of the function f(el?) = log |¢! —e!?| on scale N =1 is in .%5 ¢ for fixed, large enough C' (e.g.
0 N0 [ f(e¥)x(N'72(0 — +))de with x > 0 smooth, compactly supported, [y = 1).

2.1 Unitary Brownian motion. With its most common normalization, the Brownian motion on the
unitary group U(N) satisfies the following stochastic differential equation (SDE)

- - 1~

dU; = Upd B — iUtdt (2.2)

where dB; is a Brownian motion on the space of skew Hermitian matrices. We consider an orthogonal basis of
skew Hermitian matrices for (-, -)g; given by matrices of the form F(Ek ¢—Eur), ﬁ(Ek’gﬁ-E[’k), ﬁEk’k.

Here, E}, ¢ is the matrix whose £, £ entry is 1 and other entries are 0. Note that this is an orthonormal basis
for N{(-,-)oz. We write this basis {X1,..., Xn2}. The Brownian motion (B;) can be realized as

By =Y X,Bf (2.3)
k

where the (Bk)’s are independent standard Brownian motions. It goes back to Dyson [41] that the eigenvalues
Z of (Uy) satisfy

1 1 ZLZj 1
dzy = —=i%dBy — — I_dt — —z,dt. 2.4
FTUN TR N,szfzj 2 (24)

J#k
In this paper, it will be more natural to consider a small time change in the unitary Brownian motion:

the normalization
Ut = Ugt, (25)

in other words the dynamics
dU; = V2U,dB; — U,dt, (2.6)

will provide convergence to the free field on the cylinder with its canonical, locally isotropic, covariance func-
tion E(h(z)h(w)) = m(—A¢) (2, w), as in Theorem Moreover, corresponds to the normalization
in [97], the first result on convergence of dynamics of random matrix type to the free field, as explained
in Subsection Indeed Spohn considers the S-Dyson Brownian motion on the unit circle, i.e. the time
evolution of N particles on the unit circle {eiel(t), ,elfn (t)} satisfying

do; = o Z cot ( > dt + \/EdBj(t) (2.7)

where the (Bj)’s are independent standard Brownian motions. For the unitary Brownian motions strong
solutions exist as |24, Theorem 3.1] proves more generally that for 5 > 1, the particles almost surely do not
collide but almost surely do when 8 € (0,1). With z, = €!%, the dynamics (2.7) reads

. / ZkZ4 zZ
de = 12 dBk - - Z il dt + ]S(g - ].)d gzkdt (28)

Zk—Z]

By comparing (2.4]) and (2.8]), the dynamics of the eigenvalues of the unitary Brownian motion as normalized
in (2.5)) coincide with the S-Dyson Brownian motion from [97] when S = 2.
Finally, we will use the It6 formula for the considered dynamics (2.6):

df(U) =vV2) L, fUNABE + Ay f(Ur)dt, (2.9)
k

where Lx f(U) = %u:of(UetX) and Ay f(U) =, dt2 o (Ue e!X*) is the Laplacian on U(N).



2.2 The characteristic polynomial process and the free field. In the paragraphs below, starting
from a formal application of Spohn’s result [97], we explain how the large dimension limit of the logarithm
of the characteristic polynomial process is naturally related with dynamics associated with the GFF. These
explanations are not necessary for proving our theorems, but they shed some lights on the structure of the
main objects we consider. We also use this as an opportunity to set some notations and record covariance
identities that we will use, in particular when stating the convergence to the chaos measures e? and e".
Characteristic polynomial process induced by the Dyson dynamics. Given the dynamics 7
Spohn [97] considered the stochastic process (indexed by functions f) given by

N
n(f.) = 3 F(6;00)).
j=1

As Eén(f,t) = Nfo = NA f, it is natural to restrict to functions f with zero mean and Spohn proved that
the limiting dynamics are given, with Ay = (9/06)2, by

dé(f,t) = &(=(8/2)V—Auf, t)dt + dW(f, 1), (2.10)

where dW(f,t) is a Gaussian noise characterized by E(dW(f,t)dW(g, s)) = 26(t — s)dtds 5~ 027r flz)g(x)dx.
Now, we discuss the characteristic polynomial process induced by these dynamics, namely

hN(t’x) = gN(fl'at)7 (211)

where f,(6) := log|el? — €| = —Re D k1 relkleike — D k1 +cos(k(@ — z)). This field has zero mean
in the sense that for every N,t, fU hn(t,-) = 0. We formally take f = f, in (2.10) and look for the induced
dynamics. Note first that /—(9/90)2f.(0) = \/—(9/0z)%f.(0) so the drift is given by —g(—AU)l/z.

Concerning the noise part, it is clearly white in time, and when ¢ = s an elementary calculation gives

1 2m
EW(fo. OW(fy: 1)) = 25— | [2(0)1,(0)d0 = mo(x —y).
0
With W an L?()\) space-time white noise with zero mean (see below ([2.14)) for a representation with Brownian
motions), it is natural to expect from Spohn’s result that

dh, = _g(_AU)l/thdt + V/aW (dz, dt). (2.12)

Note also that [ h¢(z)dz = 0 for every t € R since hy(x) = limy ) log el () — giz|,

Dynamics of the averaged trace of the 2d GFF on Euclidean circles. We consider here the trace of
the whole-plane GFF on Euclidean circles and explain in which sense the dynamics (2.12)) are related to it.
The whole-plane GFF can be seen as a o-finite measure (with Lebesgue measure on the zero mode) or as a
random field modulo constant. Recalling that in the context of characteristic polynomials fU hn(t,-) =0,
we are here therefore only interested in hy = ®(e™*+) — f (e~ "), where ® is a whole plane GFF, and this
doesn’t depend on the zero mode of the free field (so, for instance one can take ® to have zero mean on
U for which the covariance is given in [98, Section 2.1.1], for more on the GFF, see [92,[35]). From the
log-covariance of the whole-plane GFF, one has (see, e.g., |71, Section 3]),

max(le”*|, [e”"])

E(hs(e)hi(eY))) = log (2.13)

|e—sei:c _ e—teiy‘ '
In particular, E(ho(e"®)ho(e'¥)) = —log|e® — e'¥| and ho can be realized as hg = Y., Ax(0)cos(k-) +
B (0) sin(k-) where (A;(0)) and (B(0)) are independent Gaussian variables, with A, (0) ~ By (0) ~ N(0, £).
H = H'/? is exactly the Cameron-Martin space of hy.

The Gaussian field given by (2.13)) has the same distribution as the one given by the following dynamics

dhy = —(—Ay)2hedt + V27W (dt, dw), (2.14)

where W is an L?()\) space-time white noise on the unit circle and hy has the distribution of a centered
Gaussian field with covariance given by E(hg(e®)hg(eV)) = —logl|e'™ — e'Y|. The space-time white noise



W(dt,dw) can be realized as 3, Coﬁ')de(t) + Sini\/(g)dwk(t) for some independent standard Brownian
motions (Vi), (Wx). Therefore, with h, = ), Ay(t)cos(k-) + By(t)sin(k-), the above dynamics can be
written as dAg(t) = —kAg(t)dt +/2dVi(t) and, similarly, dBy(t) = —kBy(t)dt ++/2dW;. This is an infinite
dimensional Ornstein-Uhlenbeck process and A (t) = e ** A (0) + \/ifot e Ft=9)qV; (s) (similarly for By).
The identification in law of these two processes follows by a covariance calculation since both fields are
Gaussian. Indeed, using the coordinates z = t +iz, w = s + iy so max(¢, s) = log max(|e*|, |e"]), this follows
from
max (e, |e"])

e =]

Z cos(k(z — y))e—klt—sl — “log|l — e 1l = 1og
k=1 k

Note that if (h;) solves (2.14)), hy = ahy solves dhy = —b(—Ay)Y/2hydt + a\/l;\/ﬂW(dx, dt).

is natural from the point of view of the characteristic polynomial process. From the GFF point of
view, the explicit form of naturally arises from the Markov property of the free field. Indeed, instead
of viewing (h;) as the trace of the free field on e~‘U, it is equivalent to view it as the harmonic part of the
Markov decomposition of ® on e™*ID, hy(z) = Hhyu(z) where H denotes the harmonic extension. Then,
writing ® = hg + ¢g on D, where ¢ is an independent GFF with zero boundary values, it follows that

hi(2) = ho(e™"2) + Hi(go)(e™"2), (2.15)

where H; denotes the harmonic projection on e~*ID. readily implies that (h;) is a Markov process. On
the circle w € U, formally, < 3t 1= oho(e™ tw) = %lt:OHho(e_tw) = 0, Hhy where 9, is the inward pointing
normal derivative and 9, H is the Dirichlet-to-Neumann operator, which here coincides with —(—Ay)'/2.
This is a formal way for retrieving the drift part of . In fact, from and using the martingale
problem approach, one can rigorously prove that the dynamics of (h;) are given by . This approach is
more robust and avoids having to guess the exact dynamics. For more details, a generalization can be found
in [36] which considers instead of Euclidean growth the metric growth associated with the LQG metric.

Free field on the cylinder. When = 2, the covariance of the limiting field associated with (2.12) is

E(h(2)h(w)) = % log W - % 3 we—k“—sl —P_Clz—) (2.16)
k>1

where 1
Cr,y) =C(z—y) = ) log |el* — e'Y|. (2.17)

This is an expression of the Green function associated with the Laplacian on C:=Rx U Ac = 07 + 93.
Indeed, with F'( § k) = 5= Jp Jy F(t,z)e " e * o didz, we have F(t,x) = 5=>, 0 Jp F f k)elFreltd¢ so
—AcF(t,z) = 5= Z,#O fR k2 +£2) (E, k:)e“”eitgdf and (—Ac¢)~! has symbol given by 1ziz
the covariance kernel

+ e We retrieve

1lm 1t§
(=Ac)'F(t,x) Z/ (&, k 5dé = F(s,y)(=A") (s, 25 t, y)dsdy

k70 RxU

where (—Ac¢)~Y(s, z;t,y) is given by

1 eik(w—y)eiﬁ(t—s) (z— y)elf(t s) 1 elk(m y)elwk(t s)
(277)22/ K24 2 271'22/ 1+g/k) 27T2Z/| Trwr
k#0 /R k70
By using + fR o <2 dw = e 17l we get = Zk#) il etk@z=y)e=lkllt=sl = L Zk>1 we”k”t—s' hence
E(h(2)h(w)) = E(h(s, 2)h(t,y)) = 7(=Ac) (s, 2;t,y). (2.18)

2.3 Submicroscopic smoothing. In this section, we explain that in our main result Theorem[I.2] without
loss of generality we can assume that the logarithmic singularities from the determinants are smoothed on
a submicroscopic scale. More precisely, given a fixed small parameter a > 0, we define in the following
logarithms smoothed on scale

p= N*lfoz.



Definition 2.2. For any z € 0D consider the following functions the functions £3,¢* : 0D — R.
— 03 (w) = log |z —wl, 7 (2€'?) = 07 (ze7¥), €7 (w) = log |z — w| when |z —w| > 2p, €3 (w) = log p when
0< |z —w| < p, and [05(7 ()| < Cpmin(p, |z — €))% for any k > 1.
- 02 (w) = [x,(p)log|e¥w — z|dp where x > 0 is smooth, even, supported on [—1,1], [x = 1, and
xp(x) = p~tx(z/p). Note that (_ also satisfies |('31’Z€z_ (e¥)] < Crmin(p, |z — e¥|)7F.
The following lemmas show that Theorem only needs to be proved for ¢4, ¢_.
Lemma 2.3. With the notations from Theorem[I.3, for some fized ¢ > 0 we have
E[ezse@ Tr f5(Us) H |det(Ut _ 6i9)|72} gE[eZsE@ Tr fo(Us)+2 . —irigew V= Tréiig(Ut)}
Z=t+ifc o

E{ezseﬂf Tr fs(Us) H | det(U; — eie)ryz} ZE[eZse@ Tr fs(Us)+ 2o ciqivew V2 Treejg(Ut)} (11— N_a/2)
z=t+i0c€ o/

b

_ N f fo—E(log N)?

Proof. The first inequality is trivial because £5° (¢™) > log | — e| for any real 6, 1.
The second inequality relies on invariance by rotation and Jensen’s inequality: Denoting X a random
variable with density x,, we have

EI:eZse,%T\rfS(Us)+ZZ:t+i€€r?{ 'szrlog\Utfeie|:| _ /E[ezseggTrfs(ei“"Us)JrZz:tﬁoeo{ V= ’I‘rlog\ei“’Utfeie|:|Xp(<p)d<p

_ ]EEX [ezseﬁe Tr fs(eiXU5)+Zz:t+ieeg{ 72 Trlog |eiXUtfei8|:|

> E [6256@ TrEx fs (e Us)+2, o ipew 1-Ex Trlogle!™ U“_eiel}
. i0

—E [ezse@ T fo(Ua)+ 5 e yioe 7= Tr <Ut>}’

where

Faw) =[x twe)ap. (2.19)
After ordering 0 < 02(s) — 01(s) < ... < On(s) — 01(s) < 27, we now consider the rigidity event
2n(j—i), _ N©
2 = N {|9j(3)—9i(5)—T|< N}

SEB,IKi<j<N

where ¢ can be any constant chosen in (0, ) and § is the regularity scale from the assumptions of Theorem
m From (5.5) and a union bound we know that P(%°) < e~¢1°8N)” Together with the Cauchy-Schwarz
inequality, Lemma [2.6] below and Lemma this implies

E [ezseg Tr fo(UD)+ 5 pioens 7= Tl <Ut>]1%} < N T f fa—illog N)?

prom Definiton [flloe < (log N)N'=%, and on Z we have #{0; € suppfs} < log N, so that on Z we
have
I Tefo(Us) — Trfs(Us)| < N° - (log N’ N' PN -1 - < N7/2,

The conclusion immediately follows. O

Next, we establish the reverse inequalities to recover the log-singularities from their smooth approxima-
tions. For our purpose, it suffices to prove these reverse inequalities in the single-time, single log-singularity
case. The argument relies on a simple asymptotic result for the Hua-Pickrell kernel, K"P(¥)  which is the
correlation kernel of the determinantal point process associated with the biased measure on the particles
defined by

| det(U — 1d)|Y }
[|det(U — Id)|"]

where v > 0. The following key observation about this kernel follows directly from Theorem 3.6 and
Proposition 3.7 in [22].

EFOf0))=E|f(U)g



Lemma 2.4. Fiz some C > 0 and let v € [0,C] be a constant. Then, there exists a ¢ > 0 depending only
on C such that for every N € N and 6 € [— % %]
|[KTPM(0,6) < e[ N1,

As a corollary, by Hadamard’s inequality,

Pt (9, ) < HKHP (6;,0:) < 1016 - - - 6| N+ (2.20)
where pI,;IP(W) is the k-point correlation function.

Lemma 2.5. Given a,C >0 and p= N7, for any v € [0, C] we have,

E[eyTreir(U)] [GVTrIOg\U*Id‘](lJrO(N*a)), (2.21)

<E
Ele" ™)) > Eley Trlee U= (1 4 O(N/2)), (2.22)
where the implicit constants depend only on C'.
Proof. We omit the superscript 1 in ¢4 and ¢_ for simplicity and define a counting set
A, := {number of eigenangles in [—3p, 3p] is exactly k}.

Then

N
E[efyTr£+(U)] _ E[]IAO . efyTrlog\U—Id\] + ZE[]IAJC ,e’yTrZ_F(U)}
k=1

N
< B¢y Trlog [U-1d]) (1 n Z EHPO[1,, - &7 Trt+—log |1~|><U>D,
k=1

For any k> 1

4
EHP(’Y)[]lAk ,e’yTr([+—log|1—‘|)(U)] < EHP(’Y){ Z 5(&1 ,,,,, k)([ 3p, 3p] ) H(|ap|)w}]
25

il,...,ikeﬂN]] j=1
and distict

4c

)Ic-HcV
Na

</ H(ép )7 c*1016 - - 0,V N*HVAg, ... Ay, < (~—
[ 3p73p]’“ ‘ |

where we have used equation ([2.20). Substituting this gives the necessary bound.
Moving onto the second inequality, (2.22), we introduce an intermediate function in order to evaluate
long range and short range separately:

C:=(1—=xe) log|l—-|+xe-£-

where ¢ := N=17%/2 and x.(2) is a smooth bump function on unit circle that is 1 if |z — 1| < ¢, and 0 if
|z — 1| > 2e. Short range can be handled similarly to the proof of the inequality (2.21)). We define

By, := {number of eigenangles in [—3¢, 3¢] is exactly k}
and let £ . be defined analogously to £, , except with ¢ is used as the scaling parameter in place of p. Then,

E[e'\/TrZ(U)] _ ]E[efyTrlog\U—Id| ]+ Z (E eﬂw U)] E[]lBkevTrlog\U—Id\])
k=1

NE

— E[ey Trlog U-1dl] O( E[]lBkewTré%E(U)]) — Ele7 TrloglU-1dI) (1 L O(N—9/2))  (2.23)

k

Il
—
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where in the second inequality we used ¢4 . > ¢ and ¢4 . > log|l — -| and the last equality is as shown
during the proof of equation (2.21)).

Finally, we finish the proof by showing E| = E[e? ™) (1 + O(N—2/2)). Consider the rigidity
set, i.e. when the eigenangles are ordered, 0 < 6; < ... < 0y < 27, and
27k © }

o — )< L
|0 N| N

evTrf—(U)}

g - {
1<k<N

log log N

where ¢ = (log N)'°8°& N for which we have P(%°¢) < e~ (g N)
calculations show that on ¢, Tr(¢ — ¢_)(U) < ¢>*N~“. Hence,

(see, e.g., equation (1.8) in [73]). Simple

]E[efyTrZ,(U)] _ E[]lg e’yTrZ(U)](l +O(N7a/2)) +0 (P(gc)l/Q]E[GQ'yTrZ,(U)}I/Q)
:]E[e'yTre(U)}(l+O(N7a/2))—|—]?(§c)1/20(E[627Tr£+’5(U)}1/2)
:E[evTrlog\U—Id\](l+O(N—a/2))

where we have used ¢4 . > ¢ and ¢4 . > (_ in the second equality and equations (2.23)), (2.21) with Lemma
in the third. O

Lemma 2.6. Let Ki_f,ﬁe_w be as in Definition . Then there exists C = C(a) such that
1 1 < Clog N

Proof. We prove the result for ¢, (the proof for ¢_ is identical). Without loss of generality we consider
() := €L.(%). For k> p~' we have [6x| S &2 [0 Sk™?p~", so that 37,5 - [K] - [€x* S 1.
For k < p~', we note that {, = [7_£(p)el*dp = k=1 [ €/(p)(e** — e~¢)dp, and

T ) ) 1/k T
| / 0 (@)(*% — e k) dy| < / min(p~", o~ Ykpdp + | /l/ke’«o)sin(kso)dw

S1+k71 0" () cos(kp)dep| + k1 (1/k) < 1.
1/k

We have proved /y, Skl fork<pt so Zkgp*I k\éﬂ < log N and the proof is complete. O

3 MULTI-TIME DETERMINANTAL POINT PROCESS

1d Markov processes such as random walks or diffusions conditioned not to intersect arise in many statistical
mechanics models. In the continuous setting, the Karlin-McGregor formula [67] allows to understand the
probability distribution of these non-intersecting paths by viewing them as measures defined by products of
several determinants. The Eynard-Mehta theorem states that these are determinantal point processes (point
processes for which the correlation functions can be expressed as determinants of an associated kernel), a large
class that appears in random matrix theory, growth processes, directed polymers, tilings and combinatorics,
to name a few. Nice introductions and more background can be found in [64,/18] and references therein.

3.1 The extended kernel. Motivated by universality associated with nonequilibrium eigenvalue statistics,
Pandey and Shukla [82] studied in 1991 the Dyson dynamics with S = 2 started from two initial conditions,
COE and CSE, and expressed their correlation functions as determinants. Below, we show that when started
from equilibrium, namely CUE initial condition, the associated process is a determinantal point process and
provide an expression of its kernel. We have a modern treatment, using the Eynard-Mehta theorem and we
then discuss the case of arbitrary initial conditions. As a comparison, the stationary GUE case where the
Brownian motions are on the real line instead of the circle can be found in [63] (see, e.g., Equation (2.12)).
Here, some extra care is needed, one of the reasons being that there is no canonical ordering of the particles
since they are winding around the unit circle.
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Proposition 3.1. The eigenvalues of the unitary Brownian motion (Uy)iso from @), started from the
Haar measure {(j, %)) ey + 1< j < J} form a determinantal point process with kernel given by

lgg,x;j,y)::¥§§J6—<E§A>ZE%¥ﬂr 3 ek N1yl ey (b N) (3.1)
& 1<k<N
_]12i>je(¥)2—‘“;‘j‘ T et R e (e ) (3.2)
g ke[1,N]e

where x,y here are angles. Namely, for any bounded and measurable function g : [1,J] x U = R, we have

J N k
1;[1;[ 14 g(4, (¢ Z L /[[1 xon) jl;[lg(J,fcj) det (K ((r, x;); (r],xj))” A(d)#(dr).

Sketch of the proof. First, using [56], we give an expression of the transition probability of Brownian
motions on the circle conditioned on non-intersecting for all time. Then, using an argument from [5], we
rewrite it as a product of determinants in order to apply the Eynard-Mehta theorem and compute thereby
an expression of the associated extended kernel.

Proof. To lighten the notations, we prove it for J = 2, the generalization to any fixed J is straightforward.
First, we need a result by Hobson and Werner [56]. In this paper, the authors consider Brownian motions on
the circle killed when intersecting. Conditioning on non-intersecting (for all times) corresponds to considering

the dynamics
1 0; —0;
dg; = Zcot S5 ) dt+dBy(1),
i#]

see (4.1) in their paper, where the 6,’s are the angles and the B;’s are standard Brownian motions. This is
the time change t — ¥ and 8 =2 in (2.7) (so we will eventually take ¢ — 2 in our formula).

Let A ; be the event that trajectories do not intersect between times s and ¢, and P the distribution if
independent BMs on the torus. With the notations from [56], the transition probability ¢; of Z ((4.1) in
[56]) is

]P)((xv 0) - (yv t)v AO,t)]Py(AO,T—t)

qi(z,y) = lim P((2,0) = (3,4) | Aor) = lim

T— o0 T— o0 ]Px(AQT)
— i Pv(Aor—t) o _ et W)
_Tlggom% (z,y) = A(z >‘qt(a: Y), (3.3)

where we used the notation A(z) = [],_,(€'" — €!**) and the result from [56]:

- N(N —1)(N +1
Pa(Aor) o _ene TIAW), A= DO IEED,

Here, g; denotes the transition density of N Brownian motions on the circle killed when any two of them
collide. [56] gives an expression of this term and we borrow an argument by Arista and O’Connell [5, Section
5.1] to rewrite it. When z, y belong to the set {21 < --- < zy < z1 + 27} N{z € [-7,7)},

N—1

g; (e, e) = + Z det (Z n“*pe(@i, y; + 27Tk)>
u=0 keZ

where 17 = ¢'¥ . With v[g the representative of v shifted by £ in {z; <--- <zy <21+ 27} N {2 € [-7,7)}

(i.e., 2; = Zi+¢ mod N), it was remarked in [5] that

N-1
q; (€', V) = det <Z(—1)k(N_1)pt(:ri, yj + 2k7r)) . (3.4)

£=0 kEZ
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The point process induced by the (ordered) vector Z; = {el?1(!) . ¢~ is associated with counting
functions My (Z;) where U is an open subset of U. Using that F(My(w)) is invariant under permutation
and that the application y — yj, is measure preserving, we have

@t (x, yjo) F(Mu (yg)))dy = / at(z, y)F(My (y))dy

ordered

/0 ) PO )y = /

ordered

where “ordered” = {w = (e%*)jqicny @ 21 < -+ < 2y < 21 + 2m,z; € [-m,7)}. So, by using that

|A(y)| = [A(y)| and combining (3.3)) and (3.4)), we have
—1

1 X N
B (Z0) = [ 5 3 ) PO )y = [ wllo) POy )iy
ordaere Z:O orderes

where

et
wiNx(y) = :igi;‘ det (Z(—l)’“w”pt(xi,w + 2k7r)> . (3.5)

kEZ

Note that when y; < -+ < yy < y1 + 2m, for k < £, | — e¥+| = 2|sin(LF)| = 2sin(¥F%) since
ye — Y € (0,2m) hence

_iyk+ye
€ 2

Ayl = [T 2(e% —e) - S =1

2i
k<t

_N(N-1)
2

. . SN—1 N(N-1) . . N—1
AeVr, ... eYN)e 2 S — -5 det(elyq‘u_l_ 2 )).

So, (3.5) is invariant under permutation of the z;’s and under permutation of the y;’s.
Starting from the Haar measure, for symmetric functions F' and G, we have

B(F(Z0)G(2)) [ F@)E.(G(Z0)Aw)Pds

UnN

x [ P@Gwu w)IA@) Py,

Furthermore, |A(xz)|? = [T, (€™ — ™) [, (e7¢ —e7#k) = A(e'™r, ... e™N)A(e™*1,...,e7*N), s0
|A(y)] 2 iy (j—NFL) —ix —izn ), i S —iz; (—NFL) iy (j— N3
|[A(z)|* = det(eV ™27 NA(e7 ™, L e N )e T T2 F=det(e VT 27 ) det (VT 27

|A(2)|

and the joint density is proportional to

det(e 0= det (Z(—l)k(l\[l)pt(a}i, Y+ 21m)> det (e 0= "27)),
kEZ

We conclude that the weight function associated to our random point process is of the form a product of
several determinants. By the Eynard-Mehta theorem [44] (see [64, Section 2] or |18, Theorem 4.2]), this is
a determinantal point process, with kernel given by

K(0,2;0,y) = Z ((G_l)T)i,j(I)i(x)/UT(yaz>\I’j(z)>‘(dz)

1<i,5<N
K(0,z;L,y)= > (G ;®:(2)%,(y)
1<i,j<N
x; = — T *IT”- i(2)1(z,x z ,2)Wi(2 z
K(1,2;0,y) = —T(y, )+1<%:<N((G )7 )i, /U‘I>( )T(z,2)A(d )/UT(Z/ )V;(2)A(dz)
KLoily = 3 (67 [ 70N ()
1<i,j <N U
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where G j = [z ®i(2)T(z,y)¥;(y)A(dz)A(dy) and

i) = e N, Tey) = Y (DN ey 4 2km), @) =V (36)
kEZ
By taking § = —M T — x — y in the summation formula of Lemma (A.1]), we have
1 (o— N+1y 10, N+41y2 1
z,y) = 724 W= )=z (n= )% — Q—Zunwn(x)cbn(y) (3.7)

™
nez neZ

N+1
where u,, = e~ 3(n— )?

*. This and [j; ®;(z)¥;(z)A(dx) = 2mdo(j — 4) imply
| 7w ) = 0w 3

50 Gij = [y @i(x)T(x,y)V;(y)Mdx)A(dy) = [; Ps(x)u; ¥ (x)M(dx) = 2mu;do(j — 7). We observe that
(G55 = 2m)"60(j —i)u; ', T(x,y) = T(y,x) and un11-; = u;. Therefore, we obtain

N N N
K(0,2;0,y) = QIWZZ(SOJ_Z“ 1o, (z)u \I/j(y):%z:ei(x_y)(k_]vf):K(l,m;Ly)
i=1 j=1 =
1 N N1 N+t
K1) = 1 3305t
k=1
N
K(1,2:0,y) = =Y (- NVpy(y, o+ 2kr) + %Ze 3 (k=T iy (=552
keZ =1

2t

~. O

The result follows by using (3.7)), taking ¢ — %

Proposition[3.I]and elementary calculations lead to the following corollary, which expresses the multi-time
covariance of linear statistics in a remarkably simple form, even though we won’t make use of it.

Corollary 3.2 (Covariance of linear statistics). Consider the dynamics (2.6) and denote sgn(z) = 1,50 —
1y<0. For H'Y/? functions f and g, we have for every N, t >0,

o (Zﬂzk(o)),Zg(zk(t») S B s eI 5 g SR,
k k

L Jt
<N -1 sinh (%) SN sinh (%)

Later on, we will use the following pointwise estimates on the off-diagonal terms of the kernel obtained
in Proposition In the following lemma, 7 and p are allowed to depend on N and both are O(N). In our
applications, we will only need cases when they are O(N?) for some 0 < § < 1.

Lemma 3.3 (Pointwise estimates). With x —y = & and t = £, we have as N — oo,

N
1 1 2_ 1 . T+ |/L‘
~K(0,7;1,y) = / eIt 4 0(TH), (3.9)
N 27'(' lz|<1/2 N
1 1 1_.2 . T+ |/J‘
—K(1,z;0,y) = / eli==)mHrzq, L O(—15). (3.10)
N 27'{' | |>1/2 N

Furthermore, when max(t,|u|) > 1, |K(0,2;1,y)| + |K(1, z;0,y)| = O(N/max(7, |u|)).

We won’t need (3.9) and (3.10). The interest stems from the fact that when 7 and |u| are O(1), they
describe the limiting kernel at the microscale.

Proof. The first assertion (3.9)) follows by using a Riemann sum approximation. Indeed, with ¢t = % and
r—y==%& h.
y = &, we have

N 1
1 1 E_ly(k_ ip(k_1_ 1 1 - in(z—1 + ||
- (£ 1)m4ip( ) z(x—1)T+ip(z—3)
NK(Oxly) 27TNE e N MNT273N _27T/06 ez dy —|—O( ~ )
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and we note fol e#(EDTHuGE=3)q = f|2|<1/2 e(=*=1)m+nzq; Along the same lines, we obtain (3.10).

The second assertion (3.10) and the third one follow from elementary calculation. We explain the main
ideas. For (3.10]), we note that the main contribution to Ziv:#\] e((F)*=D)7 ig Z(lfs)Ng\k\gN e((F)*=1)7 <
23 (o N kI<N e~ (=37 < 2(e™ —1)~! = O(N/7). The last one follows by a discrete integration by parts.
Set vy, = e((%)Q’l)T, er = ei%, wo = 0 and wy = e + wi_1 for 1 < k < N. Then, the term of interest,
chvzl e is equal to vywy + Zg:zl(vk — Vp41)wg. Finally, wy, = 25:1 er = O(1)(e'® — 1)~ = O(N/p)
and vy is increasing. O

Out of equilibrium. In the case of non-stationary initial data, the point process of eigenvalues at a fixed
time is also determinantal point process and we provide here an expression of an associated kernel. In
the Hermitian case, a self contained proof can be found in |38, Appendix]. As seen above, the density of
unlabeled eigenvalues (e.g., use a test function which is invariant under permutation) is proportional to

Ant
N € |A(y)| E(N-1)
= det g -1 i Y; + 2k .
wt,x(y) N |A(l’)| € kez( ) pt(z’tay] + ﬂ-)
. L NWN-1) s N-1
Note that when y; < -+ < yn < y; + 27, we saw that we can write |A(y)| =i~ = 2z  det(e:U~17737))

so that, recalling the notation 7" and ¥ in (3.6]), we can identify (up to multiplicative constant) the weights
det T'(x;, y;) det ¥;(y,;). This is a biorthogonal ensemble (see [18, Section 4]) so a determinantal point

process whose correlation kernel is given by Kt,x(z,y) Zz . AT TT(Jiz, z)VU,;(y) where, using (3.8)), 4;; =
Ju T (i) (9)A(dy) = u; ¥ (2:) and u, = e 2

)%t Now, by recalling Cramer’s formula,

- _ det(col ¢ of A is replaced by b)
)ijbj = (A1), = )
Z ] ) det(A)

j=1

and we find

ZT in det line ¢ of A is replaced by ¥(y )) (3.11)

Ky U, ( 02
ta(%9) Z (s det(A)

We denote by A* the matrix for which the line i in A is replaced by ¥(y), i.e., A;;J = U;(y) for j < N.
Recalling (3.6]), we have

det A = Huj det ¥ (z;) HuJHe i ( zl)H €T — el®

1<j

det A* = Huj det ( xk)lk#-l—u "W (y M=) -

On the line 4, we use (with B; ~ N(0,t)), u 161?/(3 D = Ee~ "z BrelwtB)U=1) So, with simplifications
coming from the quotient of Vandermonde determmants

A’ iy+B: _ giz; (V=B
det A" _i(y—en (N5 - N5l B &= k][ sin(——)
det A L1 eizi _ elzj 11 Sin(mi,ajj)

JF#i J#i 2
and, going back to (3.11]), we obtain
1/ 1Bt y—iBy—x;
sin( )

This expression is the analog of the Hermitian one used, e.g., in [61,/38]. By using the residue theorem and
expressing E as an integral, it is possible to give a contour integral representation of (3.12)).
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3.2 Asymptotic space-time decoupling. In the context of random matrices, using the determinant
point processes machinery to obtain correlation/decorrelation estimates is not uncommon. A good illustra-
tion of the typical techniques can be found in [83] which exploits the kernel obtained for the GUE minor
process in [65] to derive such estimates. The starting point is usually a norm estimate for the differences
of Fredholm determinants such as | det(I + A) — det(I + B)| < |A — Ble!AIHIBl (see |83, Section 6.3]) or
a similar inequality for 2-regularized determinants (see [83, Section 10]). In our problem, such inequalities
do not seem to be adapted since they give an additive error term and we look for a multiplicative one. We
introduce here a method adapted for such errors.
For j € [1,J] and E;’s on the unit circle, we define

i) = B s e (1 () A= N (3.13)

where  is fixed, smooth, x(z) € [0,1], x(z) = 1 for || < 1 and x(z) = 0 for |z| > 2 (and recall Definition [2.2]
for the definition of ¢, ). Here x € (0, 1) is fixed. The main result of this section, concerning the decoupling
of the eigenvalues of the unitary Brownian motion (2.5)), is the following.

Pr0p0s1t10n 3.4 (Decoupling). Let 6 > 0, C > 1 such that ming»; |(E;,t:) — (Ej,t5)] = N9 and

€ [0,C] for any singularity z. Then for any 0 < o, k < 1o we have
J N J N

HHfJ(Zz(tJ)) = HE [H fj(zi(tj)) (1 +O(N—5/3)).
j=1li=1 j=1 i1

Proof. The proof is easier to follow and has simpler notations for J = 2 but generalizes immediately to an
arbitrary fixed J. In this case we write d = max(u, 7) where p = N|E; — Ey| and 7 = N|t; — to|, so d = N°.
Furthermore, the proposition is equivalent to prove that

N
Hh1 Zi tl Hho Z to ] =K thl(zi(tl ]

where hj;(x) = %, since they are equal up to a multiplicative constant.
J J

S(14+O(NT3y),

H ho Zl to

First step: operators, spectra. We introduce k; = /1 — h;. By definition of f, h = 1 for |z — E;| > 2], so
the support of k is of order O(\).
Moreover, for any z we have h;(z) > € where (remember that £, is a smoothing of log on scale N~1~%)

€= hi(E;) = (N:ﬁa +o(1)).

Let K be the kernel for independence between times 0 and t, and K the kernel we are interested in. Let
KC, K be the corresponding convolution kernels, namely K(r, z;s,y) = k() K (r, z; s, y) ks (y).

The spectrum of K is the union of the spectra of Ky and K1, the corresponding fixed time operators. We
have

E [Hu + 2(ho — 1))(2:(0))] = det(1d — 2Ky).
Ashyoze, z— 1+ z(hy — 1) >0 on [0, %), and the left-hand side is > 0 for any = € [0, ;-2), we have

’1—e
1 —zu; # 0 for any = € [0, =) and eigenvalue u; of ICO. We observe that ICO is nonnegative so the spectrum

’1l—e
of ICO is in [0,1 — €), and the same property holds for K£; and K.
We now consider the Fredholm determinant of interest, i.e.

E [H ho(=z(0) T hl(zi(t))] — det(1d — K).

Since the entries of K are real-valued, we also have

E [H ho(z:(0) ] hl(zi(t))} = det(Id — K*),
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& [TT k(e (0) T a(a:()] = det((1d — k)1 — k).

Indeed, the multiplication rule for determinants det(I + A)det(I + B) = det((I + A)(I + B)) is justified for
trace class operators A and B. Here, this follows by an argument similar to the one of [62, Proposition 2.4]

We introduce the operators K := K + K* — KK* and K := K + K* — KK*. Since K is self-adjoint, the
eigenvalues of K are of type pu + p — p? for u € [0,1 — ¢), so its spectrum is included in [0,1 — &2).

Second step: Hojj‘man Wielandt mequalzty We know that if we order the eigenvalues A; (resp. 5\) of
K+ K*—KK* (resp. K+ K — ICIC*) properly, we have by the Hoffman-Wielandt inequality (more precisely
an infinite dimension version from [68],

ST = A <K =K = [[(K+ K" — KK*) — (K + K* — KK*)||s
< OK - Kl4s + C(IK|1As + IKIEs)IK — Kl

We will use this and the estimates on the kernel to prove the following inequalities,

IK[as = O(N®), K =Klus = O(N®/d), /> |hi—Aif2 < |[K —K|us = O(N*/d).  (3.14)

Let us mention an important consequence for what follows: this implies, for N large enough, for any 4,
—1/2< M <1 =2+ 0O(N?**/d) =1 — £ + o(e?), when N?%/d = o(£?). (3.15)

For the first inequality, since \; > X\ — [\ — i = —|Ai — M|, 05, o [Aef? < 325 1A — Aif? = o(1) when
N?2% = o(d), which will be the case. So for large enough N, for any i we have \; > f%. For the second one,
for any i, A < A + |Ai — Ai| <1 —e2 + O(N2%/d).

Now, we prove these estimates. From (3.1) and since the size of the support of k; is O(N ~'**), we have
J 1ki(2) K (0,230, )ki(y) [P dady < < CY N2 50 |[Klus = O(N™).

Furthermore ||K — K|lus = O(N"/d) since Lemma gives a pointwise upper bound O(N/d) on the
off-diagonal terms of the kernel and the size of the support is O(N ~**). Therefore, we find |K — K||gs =
O(NZ?:/d).

Third step: expansion of eigenvalues. We will conclude by proving

‘logIE [H h (=) T hg(zi(t))} —logE [H h (2:(0)) T haza(2) ] } - N 4K (3.16)

We bound from above the left-hand side above by expressing it with Fredholm determinants and using the
following expansion of the logarithm for K (and similarly for K),

PV
log det((Id — K)(Id — K*)) = logdet(Id — K) = — Z TJ
J€>1
Thus, we obtain with m to be chosen,
i P 5\ /4
|log det(Id — K) — log det(Id — K)| < > ’Tr (K') — Te(K" ‘/H 3 ‘ﬂ%
=1 j=214>2m

First, we bound from above the contribution for £ > m,

A1 A1 1 . _ N
< — < —IKlgs € —
Z 14 m EJ: 1—1A;| = me? 1Kl me?

j=1,em

where we used \; € [—1/2,1—¢2/2] in the second inequality. We proceed similarly to bound the contribution
of the A’s.
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Now we prove that the remaining term Y, |Tr(K*) — Tr(KY)| /¢ = m O(N*:/d). For £ =1, we use

| Tr(K - K)| = | Te(KK* = KK*)| = [[IKllfis = IK]is| < 1K = Kllus (I1Klls + [1Kllus) = O(N**/d).

For ¢ > 2, we write

Tr(K") — Te(KY)| /6 < 30N = M1/ < DT = Dl + [N

%

Then, by Cauchy-Schwarz we have

o= Nl < Z A= NP2 O PV <K - K us[K s = O(N*/d),

%

where we used the Hoffman-Wielandt inequality, the fact that |A;| < 1 and ¢ > 2 in the second inequality.
The term with |\;| can be bounded similarly.
Altogether the left-hand side in (3.16) is bounded from above (up to a multiplicative constant) by

,,N;Z NZ By taking m = v/d/e, we get %.

Conclusion. We explain how we choose the parameters o, &, given d, C. Recalling d = max(u,7) > N?,

e < N7@+%)  for any choice 0 < a,k < % we have ];[22; = o(1) in (3.15)) and i:v\j; = N~%/3 in the
right-hand side of (3.16)). O

4 RESOLVENT ESTIMATES

This section proves quantitative limits for the unitary analogue of the resolvent. Some of our intermediate
results are similar to existing local laws proved for random self-adjoint matrices (see e.g. results and references
from |43, Chapter 6]). These resolvent estimates are the source of the almost optimal scales in Theorem
and follow from a family of stochastic advection equations. As explained in the following subsection,
dynamical methods for rigidity of the eigenvalues or bounds on eigenvectors have been increasingly important
in random matrix theory. We obtain for the first time optimal resolvent estimates in both a multi-time and
full rank setting, in the Proposition This is made possible thanks to (1) Lemma below which covers
arbitrary projections of the resolvent, (2) an iterative method to obtain first estimates on eigenvalues, then
finite rank diagonal projections of the resolvent, then finite rank off-diagonal projections, and finally full
rank.

The methods in this section could apply to some initial conditions out of equilibrium. For the sake of
simplicity we only consider dynamics close to equilibrium, as this paper’s main goal is showing a connection
between random matrix dynamics and Liouville quantum gravity, not proving its universality.

4.1 Stochastic advection equation for general observables. This subsection proves the stochastic
advection equation for a generalization of the Borel transform

z4 €0 24U,
il sz—elek(t) NTT z2—=U)’
which is defined, for any N x N deterministic matrix A, as

mea(z) = T <ztgz -A). (4.1)

The lemma below is instrumental for all results of this section.

Lemma 4.1. Under the unitary Brownian motion dynamics (@, we have

dmy a(z) = z2my(2)0,my a(z)dt + 22T ( U >
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At equilibrium we have E(m;(z)) = 1|;/>1 —1|;|<1, so from the above lemma at leading order m; 4 should
be well approximated by the solution of the advection equation

() = 2L — L )0 f2), (4.2

which has characteristics
2 = Zet]l|z|>1 + Z€7t1‘2‘<1. (43)

In other words we expect
me,a(z) = mo,a(2t)-

It has been known since Pastur’s work [86] that the Stieltjes transform of the Hermitian Dyson Brownian
motion satisfies an advection equation analogous to , in the limit of large dimension. More general
resolvent dynamics corresponding to A with rank one can be used for regularization and universality purpose,
as proved first in [74], for eigenvalues statistics at the edge of deformed Wigner matrices. For the same model,
[12,/96] used stochastic advection equations and characteristics to understand the shape of bulk eigenvectors.
Moreover, the stochastic complex Burgers equation for the Stieltjes transform extends to general S-ensembles
and allows to prove rigidity of the particles [58,/1], also through regularization along the characteristics. For
a general class of discrete particle systems, analogues of the Stieltjes transform were also recently shown to
satisfy equations of type [52].

More directly relevant to our model, the unitary Brownian motion, complex Burgers equation for the
Borel transform were first shown by Biane [15,/16], and they are instrumental in Adhikari and Landon’s
recent result on optimal location of eigenvalues out of equilibrium, starting at identity [2].

While most of these works focus on the trace of the resolvent, Lemma [4.1| considers general full-rank
projections observables: it covers the Stieltjes transform (i.e. A = Id below, used in Proposition , one-
dimensional projections (i.e. A = gq*, used in Proposition , and a full-rank A is needed for the proof of
Proposition a main estimate towards Theorem (1.2

Proof of Lemma[{.1. Recall the definition of the skew Hermitian Brownian motion in (2.3). From Ito’s
formula (2.9)), we have

z4+U 1
dz—U_2Zdz—U

1 S 1 1 , 1 1 1 1
=22 m\/?UXkdBt —+2 (Z —UX 2 UXp, UXp, U) dt
k

U kz—U+ z—U z—U z—

k
1 1 U 1 1 1
=2 UvV2dB -2 dt +4 UX UX dt.
LU V2 '2-U Z(z—U)Q JrZ;Z—U T T
We have used Zgjl X? = —Id. This implies (we use that for any two complex valued matrices P and Q,

SV Tr(PXpQXy) = —N~1 Tr(P) Tr(Q))

dTr (z i_ gA) = 22Trz _1 UAZ [_]UﬁdB - 2zTr(Z_UU)2Adt — 4ZN71TI‘(Z _UU)ZATrZ [_JUdt
= 2zTrZ _1 UA%ﬁdB + 22N*182Tr§ i— ZATr%dt + QZNflazTrz i_ ZATrZ _UUdt.
As % + ZE’U = %zfg, we obtain the expected result. O
4.2 Rigidity. The following parameters
@ = ellos 10gN)2,A = (log N)? (4.4)

will often be used in this section, and so will be the notation

Mo = ||v] = 1].
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We order 0 < 6
consider v, =

) < ... < 6On(s) < 27 and for any ¢t > s we define 0;(¢) < ... < Ox(t) by continuity. We
and the followmg good sets,

6 ~
9 = ﬂ {0k7k|<f\[}a = ﬂ {|9k*’7k|<%}-

1<k<N

Or(s
k
N

We also denote 6(t) = (01(t),...,0x5(t)). The proposition below is a unitary analogue of classical rigidity
results for Hermitian random matrices, see [43] and references therein.

Proposition 4.2. For any D > 0 there exists Ny such that for any N > Ny we have

P () {6 e9|0(s)ed | >1—e sM”,

s<E<s+A

Proof. The proof will proceed through (1) resolvent estimate at fixed space and time, (2) uniform extension
to any time and mesoscopic scales, (3) extension to submicroscopic scales, (4) rigidity of gaps between eigen-
values, (5) rigidity of positions.

First step: resolvent estimate. We choose A = Id/N in Lemma which gives (in this section we define
new independent Brownian motions through dBjx(s) = (PsdB(s)Py);; with P, unitary diagonalizing U,
Us = P;D,P;, and abbreviate B; = Bj;)

dma(2) = ma(2)20,ma(2)d 2}\@; Z 2. (4.5)

The following implementation of invariance along characteristics in this first step is similar to the proof of
|2 Theorem 1.2].
Without loss of generality we assume s = 0 and we first consider some |z| € [1 + ©%/5/N,2]. Equations

[5) and (L3) imply

2v/2iz al A -
A (z1-) = (M) = D2t (ze)du + =5 ;(ZH k(zz(u))dek(u). (4.6)

We consider the stopping time (with respect to the filtration generated by Bi,..., By)

L
7 = inf {u € 10,4]: Imuze) = 11> 5 } At (4.7)

Zt—u

with the convention inf @ = +o0o. We also abbreviate

s . N
M(s) = / mwt_“2< A AB(w).

N3/2 = (o — 21 (u))?

From R
e my(z
4.8
|z|271 Nz\zfz )2’ (48)

the quadratic variation of the martingale (M (s A 7))s (the sum of the quadratic variations of its real and
imaginary parts) is bounded at time s with

|2t |2du C /S |2 —u*Re(my (2t—u)) C
< du < : 4.9
W e S, G )

where we have used |Re(my (2 )) — 1| = o(1) because u < 7 and 7, > ¢*/N. This classically implies (see
e.g. |95, Appendix B.6, equation (18)]) that for any D > 0 there exists Ny such that P(Nocs<t{|Msnr| <
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/ . /
J\f;:i 1) > 1—e M for any N > Ny. More precisely we have P(|Ma,| < I\}";:i) > 1 — e 20ogN)”

and uniformity in time follows from a grid argument similar to the second step of this proof detailed below.
1/20 . . e
On the event Nogs<i{|Msnr| < A}"T}, which has overwhelming probability, for any s < t A7 from 1|
Zt—s

we have, denoting h(s) = mgsar(zt—sar) — 1,
p1/20 11/10

s 2
h(s)| < —ul B |0 iy (2t—v)|d
|h(s)] /0 |2t —ul - |P(w)| - 0210 (26 —u)] “*ant_s +ant_s

where we have used |mg(z) —1| < /10 /(N7.) by Riemann sum approximation because 6(0) € ¢. Together
with |0,m| < 2(Rem) - (]2|*> — 1)~ from (4.8), this implies

S |Zt_u|2R,e mu/\T(zt—u/\T) ¥
o)1 < [ ) - ETE =

11/10 11/10

- °|h(w)] @
g 1 1/10 / | d C
( T ) o log|zi_ul ut Nn,,_ .’

Zt—s

where we successively relied on the inequalities z/(z? — 1) < 1/(2logz) for > 1, |[Re(my(2i—)) — 1| <

fo/? < 90_1/10 for u < 7 and n, > 908/5/N. The integral form of Gronwall lemma then implies
11/10 s 1 14 1/10) e dr
h(s)| <C +C 11/10/ e( ® w loglz¢—rl dqy.
()l Nne,_, 4 o N1z, log |z

dr ) _ log |z¢—u|
log |zt —r| log |zt —s]

< C. Thus we have obtained

The antiderivative of (log|z;—.|) ™" is loglog |2;—|, so exp([’ . Moreover for our param-

log |zt —u| )8071/10

eters we always have (7=

11/10 s 1 12/10
14 11/10/ ¥
h(s)| K C——+C ——du < —.
R Nz, v o Nne, loglzi—s| Nns,
This proves that

3/2

14 —(log N)P
Pl |ms(zi—r) —1] > —— ) < e V8 .
<| (zt—r) — 1 N%_T)

By definition of 7 this implies P(7 = t) > 1 — e~ (o8 N)D, and therefore there exists Ny such that for any
N > No, 14+ ¢%°/N < |z] <2and 0 < t < A,

16/10
F (mt<z> 1> ) el (4.10)

Second step: Uniformity in space and time. Let D > 0 be fixed and large, M = e'0(og N)D, (z:)1<i<m (resp.

(tj)1<j<n) be points in |z| € [1 + ¢¥°/N, 2] (vesp. [0, A]) such that for any such |z| € [1 + ¢®//N, 2] there
exists z; with |z — 2| <K N4 (resp. 0 =11 < - <ty = A, [tj41 —t;] < e’S(IOgN)D). Then by union bound
in (4.10)), there exists Ny such that for N > Ny we have

O17/10
P (ﬂl<i,j<M{|mtJ (z) =1 < 7

}> >1— ¢ 20es )7 (4.11)

2

Moreover, for any fixed z; and t;, a bracket calculation and again, for example [95, Appendix B.6, equation
(18)]), imply

N ) -3 —100(log N)P
P(, max It =, ()] > N ) < - (1.12)
Equations (4.11), (4.12)) and a union bound give existence of Ny such that, for N > Ny,
18/10
P <ﬂ1<z<M,o<t<A{|mt(Zi) -1 < 9?\”7 }> >1— ¢ (osN)” (4.13)

The function z +— my(2) is deterministically N2-Lipschitz for |z| > 1+ ¢8/5/N. Therefore from the previous
equation, for some Ny, N > Ny implies

P N (Ime(z) =1 < B} | > 1= e~ oe”, (4.14)
14¢%/% /N <|2|<2,0<t<A
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Third step: Extension below microscopic scales. We now consider |z| € [1,1+ ¢%/N]. Let 2’ have the same
argument as z and 1,» = ¢%/N. The following always holds, for some universal C:

Remy(z) < " Re my(2). (4.15)

UE

Therefore, for any arc I of length at most ¢?/N centered at |w| = 1, denoting w; = w(1 + |I]), under the
event considered in (4.14)) we have

2
" Thw!
Z]].zi(t)ej < CZ Twr = (0 le(t)|2 < CNny, Remy(wr) < CanI?7 Rem;(w') < Cp*Remy(w') < Cp?,

wr

and, denoting n, = e*n., Z = 212 so that 1z, = 1y, we obtain by using | arg(z) — arg(z;)| < Clz — 2] in
1+n. k

the first inequality and —log(p?/N) < ¢ < »3/(Nn,) in the last one (with k£ > 0 in all series below),

C largz — argz;| _ C 1
I < = Y EeETASAl 2
[Ty (2)] NZ |z — 22 N _ Z |z — 2|
i kE>0,eFn. <|z—zi|<eFt1n,

C  {lz — 2| < ?/N}| T Cy? ©°
<= < C R

N2 ek, +5 N2 Gl S Np. T Z emi(Zx) < Jp -

k20 p2/N<eFn,<1,i p2/N<eFn. <1
(4.16)

From (4.15) with |Remy(z) — 1] < 1+ Remy(2), (4.16]) and their analogue for 1/2 < |z| < 1, (4.14) extends

into (we denote s(2) = 1,51 — 1),j<1)

4
Pl N ) s <2 | 21— ts) (417)

1/2<|z|<2,0<t<A M=

Fourth step: Rigidity of gaps. The inclusion
¢’ ¢°
N {Ime(2) —mo(z)| < 7~} € ) 10:06) = 6;(8) = (v — )| < ) (4.18)
1/2<|2|<2,0<t<A M= 0<t<A
1<i<j<N

holds for large enough N thanks to the following classical argument based on the Helffer-Sjostrand formula
(A.8). Here we follow [2, Section 6.2]. Let g(z) = 1 for argz € [v; + ¢*/N,v; — ¢*/N], g(z) = 0 for
arg z € [v4,75]% and |¢'| < CN/p*, |g"| < C(N/p*)%. We pick x from on scale 1. On the set from the
left-hand side of (4.18), we have, denoting s(2) = m(2) — (Lju>1 — Ljw|<1),

S oat) = 5 [ Botwymel) ™ = 2 [ 2050 Lo Turc) m(“’)+/ i (w)s() )

[+ [ gty )

As 0(0) € 4, we have mo(w;) = (Ljwp)>1 — Ljuj<1) + O( ) so on the set from the left-hand side of (4 ,
s(z) = O( N:f/’w ). Together with the decomposition (A thlb gives

2i(t)) = eied—e 4. el? (€)X (r)|rdr "(e%)Res(re'?)x(r) log rdr
S ot®) = N [ o) 5400 [ ol 1 @)W irdrad 2 | (e Restren(r)og rarad

0+ do . .
= N/g(ele)% +O(¢*) + 2/9 ) g" (%) Res(re?)x(r) log rdrdd
>

With an integration by parts as in [2, Equation (6.20)], the remaining integral term is also O(¢?).
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Similarly we have 3 h(z;(t)) = 2& [ h + O(p*) where h has the same regularity as g and h(z) = 1 for
arg z € [v;,7;), h(z) = 0 for arg z € [y; — ¢*/N,~v; + ¢*/N]¢. These estimates on > g(z;(t)) and Y h(z;(t))
prove (4.18]), which together with (4.14) gives

Pl {16:t) = 6;(t) = (i =)l < %} >1— e (s, (4.19)
0<t<A
1<i<j<N
Fifth step: rigidity of positions. Let 6(t) = >°,0;(t). Then (2.7) gives df(t =2V~ 2dB,(t) = v2dB(t)

where B is a standard Brownian motion. This implies that for any D > 0 there exists NO buch that for
N> Ny

P (Mo<i<a{l0(t) — 6(0)] < ¢}) > 1 — e (ox M, (4.20)

We now write
1Y 1Y 1Y
A0 =3 = 35 2 (00 = 5(0) = (=) + 5 D00 =500 + 7 20,00 -

With probability 1 — e~(°¢M” | the following holds. For all i and ¢ € [0, A] the first term is at most ©°/N
(from (4.19)), the second is at most ¢/N (by (4.20)), and the last one is at most Cip/N because 8(0) € 4.
This concludes the proof. O

4.3 Finite rank projections. The result below shows the following: eigenvectors perturbations under
mean field noise are simply given at the level of the resolvent by moving the spectral parameter through the
characteristics. It is a simple analogue of |21, Theorem 2.1], which considers Hermitian perturbations out of
equilibrium, but our dynamical proof is different from [21], which proceeds through the Schur complement
formula. Such estimates on arbitrary (finite rank) projections of the resolvent first appeared in the context
of Wigner and covariance matrices, see e.g. [17] and references therein.

Proposition 4.3. For any D > 0 there exists Ny such that for any N > No and q¢ € CN F,-measurable
(Fs=0(Uy,u<s)), |qf =1, we have

Z+Ut Zt—s+US © Zts+U 1D
: o B Re 0(s)e G | >1— e lozM”,
S<tQ+A{< 7Ut 2~ zt—s — Us ) N {2, ~ >}| (s)

In=1>¢*° /N
Note that the above real part is always positive.
Proof. We choose A = q¢* in Lemma [4.1] This gives

Z+Ut
Z*Ut

i} 1
dgi(z) = my(2)20.q:(2) + 22¢ 7\/§dBt q where q;(2) = (q, q).
z=U z=U
We can assume s = 0 and first consider some |z| > 1+ ¢?°/N. Then, with orthonormal eigenvectors u;(s)

diagonalizing Us,
221z, . zj(u) 1 .
dqu(zt—u) = (mu(thu)_1)Zt7u8ZQu<Zt7u)du+W ;q Uj(u)mdByk( )muk(u) q,

(4.21)
where the BJ i are independent Brownian motions defined before . We define the stopping times

1/10
. 14
;= inf e [0,¢] : — qu(zi—u)| > ——R , 4.22
g =1n {u [0,t] : |go(2t) — qu(2zt—u)] TN er(Zt)} (4.22)
8
ri= inf{u € [0,4] : Ik € [1, N, |05 (u) — 7e| > ‘;} (4.23)
o:I=TANATg (4.24)
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The quadratic variation of the martingale term in (4.21]) stopped at ¢ is bounded with

N/ Z| 2 u|2|z Q7uj( )>|2 . |<q,uk( N/U |Zt u| Re qu(zt u)))zdugcw

,u—z )|2 |Zt7u - 1+ |Zt u|) 77zt “ Nn,_, ’

where we have used Zj ‘fff;((“u)))ll; = ‘Z‘f}ilRe Gu(2). Similarly to the estimate after 1) this implies that
J o

ﬁn Re go(2¢) with probability 1 —e~(°8 N” Moreover, the finite
Zt—o

variation error term from (4.21)) is bounded with

this martingale term is bounded with

[ lecdbmated 1o o [* ] Renlam g, O Rent)  Clen)
0 0 ant—u 772““(1 + |Zt*u|) ant—a \/ N’r]zt,(, ’

where we have first used that for u < 7 we have m,(z) — 1 = O(p®/(Nn,)), and finally we have used
72,1 > ©*°/N. We have therefore proved that for any D > 0 there is a Ny such that for N > Ny and
|z] > 14 ¢*°/N we have

p1/10
P |qo(2t—05) — > ——
|q (Zt ) qO(Zt)| \/WN

By definition of 7, this implies P(oc = 7) > 1 — e~ (g )” . Moreover, from Proposition P(r =t) >
1 — e—(logN)? (this proposition naturally also holds when replacing exponents ¢, ¢ defining ff,f!ﬁ with
05, %), so we have proved

901/9 log N)P
P |Qt(z)_QO(Zt)‘>WRGQO(zt) < e~ o8 M)

Uniformity in ¢ € [0,A] and 7, € [¢*°/N,1/2] follows easily by a grid argument similar to the second step
in the proof of Proposition

Finally, for uniformity in 7, > 1/2, denote f(z) = (q, z"’gz q), 9(z) = {q, 2"‘50 q). We have proved that

with overwhelming probability |£(z) -1 < %. As f/g—1 — 0 as |z| — oo, the Cauchy integral

Reqo<zt>> < eeE M,

formula for z outside the contour |w| = 6/5 gives, for |z| > 7/5, f/g(z) —1 = O(Iz’l;/\/gﬁ), which concludes the
proof. O

Polarization in Proposition shows that if u,(s), up(s) are normalized eigenvectors of U(s) and a # b,
then for |z| > 1+ p?Y/N we have

et t D (L L)
PR AR NG T s — 2a(5)? | J2t—s — 20(s)?

with overwhelming probability. This error term is not enough for Proposition in the next subsection, so
we first obtain the following essentially optimal bound.

[(ua(s),

Proposition 4.4. For any D,e > 0 there exists Ny such that for any N > Ny and uq(s) uy(s) € CN

eigenvectors of U(s) associated to distinct eigenvalues (lug| = |up| = 1) we have
) 220 M (4 [ )N 1 | s
P T (s))] == 0(s)e G | >1—e (osN)7
e Y o P ] e LA
n.>N®/N

Proof. We choose A = uy(s)uq(s)* in Lemma[4.1] and we abbreviate a = u,(s), b = uy(s). Defining

z+ U

pi(z) = P?b( ):<a’z—7Ut

b),
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this gives
1

z=U
We can assume s = 0. Note that po(z;) = 0 and we want to bound p:(z). We first consider some |z| >
1+ ¢%°/N. Then

dpi(2) = me(2)20,p(2) + 22ua(s)*%\/§d3t up(8).

2v/2iz_y, . zj(u) - 1 .
dpy(zi—v) = (mu(zt_u)—l)zt_u(?zpu(zt_u)dquW kzja uj(u)mdBjk(u)muk(u) b,

(4.26)
where the Bjj are independent Brownian motions and Bj; = B; from .6), and wug(s) are orthonormal
eigenvectors diagonalizing U;. The quadratic variation of the martingale term in (4.26]) is bounded with

C /t |2¢—u|? Zt—y + U(u) 2t + U(u)
& Re(a, 2= 2\ hRep, e T2 W gy gy,
S AR i P ) Lt 7o R Uy sy

From Proposition with probability 1 — e3¢ " this is bounded with

c /t 1 2+ U(0) 2+ U(0) C nz (L4 |2]) n2, (14 |24])
el Rela aRe(b "2 pvdy < t t ,
N Jo ni,u < 2t — U(O) > < 2t — U(O) > Nn, \Zt - Za(0)|2 |Zt - zb(O)\Q

so that with probability 1—e—2(°8 M the martingale term in (4.26]) is bounded with \/ﬁ Izﬁiz(to()lﬁlzfﬂlb(o)‘ ,

which is the expected error.

A new difficulty comes from the finite variation error term in (4.26)): for a # b, Re p®® has no a priori
sign. We therefore first simply bound |9,p%?| < m(Re p2® + Rep®?) and use Proposition and its
proof to obtain

"%z Re pi(siu) + Re phl(ze0)
o Nmp, Nz (L [2e—ul)
o ¥ o0z, (L+[2]) < 1 N 1 )
= N, Nn, |2t — 24 (0)12  |2ze — 2(0)]2 )~
We have therefore proved, that, for any D > 0 there exists Ny such that for any N > Ny, with probability
1 — e~ (08 N)” we have

t
/ |zt—ul - [mu(2t—0) — 1] - |3sz’b(Zt—u)|du < du
0

- (Re i (20) + Re " (20)) <

o0 (o)) < e (Lt [=]) 1 L e (Lt =) < 1 1 )
' VN [z = 2a(0)] - [z — 2(0)) N 26 = 2a(0)[2 |2 — 2(0)[?

for any n, > ¢39/N and t € [0, A] (uniformity in z,¢ requires (1) an omitted grid argument identical to the
second step in the proof of Proposition 4.2| for n, € [¢®°/N,1/2],t € [0,A], (2) a contour integral argument
similar to the end of the proof of Proposition to extend to 7, > 1/2).

We now iterate by injecting this estimate in the finite variation term from . More precisely, consider
the following induction hypothesis (P,): For any D > 0 there exists Ny = Ny(n, D), such that for any
N > Ny, a,b € [1, N], the following holds with probability 1—e~ (8 NP forany 0 <t < Aandn. > @30 /N
we have

ab O, (14 |z4) 1 ©%"n2, (14 |z4]) 1 1
|pt (z)| < . 5+ 5 -
VN 2t = 2a(0)] - |2t — 2 (0)] (Nn2)n |zt = 24(0)[2  [2: — 2,(0)]

We have just proved (P;), and to prove that (P,) implies (P,41) we just need to improve on the finite
variation term. By Cauchy’s formula,

t t o8 MAaX|y 2, _,|=r, P (w))|
[ el = 110 lau < [ £ B e du
0 0 ant—u Nzi—w
< /t |Zt7u| g08(n+1)nzt(1 + |Zt|) 1 + SDS(TL""l)nzt(l + |Zt|) ) ( 1 + 1
o NuZ_, VAN, 2t = 2a(0)] - [2¢ — 26(0)] (Nnz, )" |2t = 2a(0)]* * [2¢ — 2(0)[?
o SO, (1 [z 1 PO (L L)
VN7 |2t = 2a(0)] - |2t — 26(0))] (N )+t 2t = 2a(0)[* |20 — 2(0)]?

This completes the induction and the proof of the proposition by choosing n = 100/e (now n, > N¢/N). O
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4.4 Full rank projections. We now prove the main estimate to reach optimal scales for multi-time loop
equations, concerning the following resolvent projection,

Tr <w—|—Ut v+t Us> _ ZLZ%(S)@%(S) w+Utuk(5)>_ (4.27)

w—U; v—"Us v — z1(8) Tw— Uy

If we add the error estimates from Proposition on the above right-hand side, for example for 7, ~ 1,
the obtained bound is \/N/ny,, far worse than the bound 1/7,, below. The key source of improvement to
achieve the optimal result below is Proposition [£.4] The averaged and multi-time local law below seems to
be new, including in the context of Hermitian random matrices.

In the following statement, we use the notation d(v, w) = max(|jv — w|, |v — ﬁb

Proposition 4.5. For any D,e > 0 there exists Ny such that for any N > Ny we have

w+Us v+ U wy—s +Us v+ Us
P( ﬂ {Tr( L. >—Tr< ! . )‘

w—U; v—U; wi_s —Ugs v —Ug
s<t<s+A t s t—s s s
77'u)77w6(07%]

< NE(1+|wth|) i 1 )}|9(8)€g) 21_6—(10gN)D-
d(v, wt—S) min(l, N%) Nw \/Ww min(nw,,g ) Wv)

Proof. We can again assume s = 0, and first consider the case |w| € [1 + N¢/N,3/2], |v| € (1,3/2]. Lemma
.w1th A= z+g° gives

w + U, wi + U ¢
Tr <w — U: . A) —Tr (w: — UZ -A) = /0 Wiy (M (Wi —y) — 1) Oy, 4 (Wi—y,)dus

+2/OtwtuTr( L 4 de) (4.28)

Wiy — Uy Wiy — Uy

The above stochastic integral can also be written

\F/ Z Wiy 2 (1) (uj(u), Auy,(u))d Bj (u)

Wt—a — Z] ) Wt—y — Zk(u)

where the Bjk are independent, standard Brownian motions. Abbreviating £ = u,(0) and using the spectral

decomposition A =3, Zf" (8% £0*, the bracket of the above stochastic integral is (we denote, in this proof,

(z,y) = 2*y)

c L ! wj(u), Aug(u)|*du

N Jo 2 T 5P s — e 00 A
O [yl 1 . a2
_N/O szm_ufzj( A T—— ;< 3 (0,048 ur(w) T— 7| d

N/o Z LA ACLRE7AC) L )|2|U}t_ujZk(u)P<uj(u),€1><€1,uk(u)><uj(u),€2><f2,uk(U)>du

—20,(0) v — 2¢,(0) |wi—o — 25 (u

£1,02,5
2
/ Z U+Z€1 0 w‘wt_ |2 Z <€2’uj(u)><uj(u)7£1> du
N 0 01,42 v Z@ O Zey (0) j |wtfu - Zj(u)|2
1 2

w)m du. (4.29)

‘“2’ (R ™= U(u)

N nwt w 0y 0o |’U-Z@1(O)|~|’U—Zg2(0)‘

Note that 2Re1ﬁfg = wtl _w +U where w* = w™!, so that we can apply Proposition to bound the

w—U w* —

above: With probability 1 — 6_4(1°g N the contribution from {1 # L5 in the above sum leads to evaluating
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Z N¢ 7772“(1 + |wt|2) 1 1 _ ]\/vl+E Z 1 + |wt|)7’w,
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As n,, > N~'*¢ by Proposition the following holds with overwhelming probability:

1 Nw Thw C Clog N
- t <C ! A< L, <n + 57— 1y, >n.
N 2 ve 1V = 2e(0)] - Jwy — 2,(0)? loAl> A (U= Al Jwg — A2 d(v,we) S d(v,we) T
L:lv—2¢(0)|>
2¢e 2e
1 Z T, - < N T, < N 1 .
[v — 2(0)] - |[wy — 2¢(0)]2 =~ N, d(v,we)? ~ N1y d(v, wy)

£:|v—zg(0)|<NTE

so that we have obtained

77wa, 77'UJf C NQE
A < 1 1 .
N Z [v = 2¢(0)] - Jwy — 2¢(0 / v — Al - |we — )\|2 d(v,wy) n“’t<"”+d(v, we) min(1, Nn,) e 2
(4.30)
Moreover, the contribution from the diagonal terms in (4.29)) leads to a sum evaluated with Proposition

1 Wi + Uw) \2 c wy + 2(0)\ C(1+ |wi*)na,
2 P (Re“’ wtu—mu)@) <L op (Rewt—mm) <2 O - wr— O

and similarly to (4.30) we obtain

1 Z U e C 1 n C 1
N 2= Jv = 2(0)]2 - Jwi — 2(0)[ ~ mud(v,we)2 "™ " pyd(v, wy)? min(1, Ny, )2~ ">

Using the previous four estimates in 1 , with probability 1 — e—3(og N )” the bracket of |D is bounded
with

N2 /t 1 1+ Jwe? 1+ |wg? du < N22(1 + |wy]?) ( 1 N 1
min(1, Nno)? Jo 0%, \Nw,_,d(v,we)?  min(ne,, me)d(v,we)? ) d(v,w)?min(l, Nno)? 02, 1 min(ne,,17,) "
. : BN _ _,—2(log N)P : N (A+]we]) (L 1
so, with probability 1 —e , (4.28) is smaller than Tomwn) min (LN (nw + \/m) We now

consider the error term due to the finite variation term, based on (4.27):

1 1 Wiy + Uu
G N i
| wmu,A(wt U))| |’U _ Zk;( )‘ nwt7u<1 ¥ |w1§7u‘> €< Wt—y — Uu >

Z 1 1 < CN1te
[0 = 2 (0)] 1w, _,, (1 + |wi—ul) [we = 26 (0)] s, (1 + [we—ul)d(v, wy) min(1, Nop,)

SO
NE
Nwd(v, wy) min(1, Nn,)’

t
[ il i) = 11 D a () <
0

This concludes the proof of the proposition for |w| € [1 + N¢/N,3/2], |v| € (1,3/2]. The proof for |w| €
[1/2,1— N¢/NJ, |v| € [1/2,1) is strictly similar, and uniformity in v, w and ¢ € [0, A] follows from the same
grid argument as in the second step in the proof of Proposition

We now consider the case |w| € (1,1 + N¢/N] and |v| € (1,3/2], relying on the following analogue of
(4.15)), where we now denote w’ with the same argument as w such that 7, = N~1*¢:

(4.31)

In the sequence below we start with (4.27)), use (4.31)) and proceed similarly to (4.16) to bound the contri-
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bution from Im(g, :tgi q), denoting w;, with the same argument as w such that 7, = e,

'LU+Ut ’U+U0 C U)+Ut ’UJ+Ut
T : <SS — 2 (Re(u(0), 0 ‘I 0), 0 ‘
(et ) > ooy (RO R0+ [0 5 o)
C Ne¢ w' + Uy wj + U
< R 0), 0 R 0), L——ux(0
Z}; |v = 2(0)| \ Nnw e{ur(0) w' — Utuk( )+ N Z e{ux(0) w; — UtUk( )
/N<ein,<1
C N¢€ U}’-f—U() (w-)t+U0
<> Re(up,(0), ———=>up(0)) + D Re(u(0), - HE——ui(0))
v =2 (0)] \ Nnw w; = Uo Ne/Ngomu<l (w;)e = Uo
C Ne _ w, + 2,(0) (w;i)e + 2z1(0)
= Re—% + Re—2-— =
; v = 2(0)] <an w20 0) T 2w vt ), — 0
C N nw (1+ w; Nw.), (14 [(w;
DT A et R DI e
& k Nw t k N¢/N<ein, <1 7t k
As in (4.30), we have
N N1+s
‘ < ; ;
2 o O i~ OF < (v, wf) min(L, o)
and similarly for the terms involving (wj;):, which gives, as wy is close to wy,
w+ Uy v+ Uy NeE(1 4 |we])
T . < . 4.32
‘ g (w -U v— Uo> Nwd(v, w) min(1, Nn,) (4:32)
The analogous estimate with U; replaced with Uy, and w replaced with w; gives
wi+Up v+ Uy Ne(d + Jwe)
Tr . < ; . 4.33
’ (wt - Uy UU0> N, d(v, wy) min(1, Nn,) ( )

This concludes the proof for |w| € [1,1 4+ N¢/N] and |v| € (1,3/2]. The proof when |w| € [1 — N¢/N,1]
follows the same argument. O

5 LOOP EQUATIONS VIA STOCHASTIC ANALYSIS ON THE UNITARY GROUP

Integration by parts at the level of matrix process (and not at the level of the two-dimensional interacting
particle systems constituted by its eigenvalues) has a particularly simple form in the case of the Dyson
dynamics for the Gaussian Unitary Ensemble: M (t) is distributed according to e *M(0) + V1 — e 2tG
where G is a GUE matrix of size N, whose density is proportional to e~N Tr(H DH , and G is independent
of M(0), the initial condition. Here, DH is the Lebesgue measure on Hermitian matrices. The explicit
potential in e~V Te(H*) DH makes integration by parts tractable and this has been used for instance in
[38, Lemma 4.1] in the context of mesoscopic equilibrium for linear statistics in the GUE Dyson’s Brownian
motion. However, this very nice structure does not extend to the unitary Brownian motion and we use
instead stochastic calculus on this Lie group, in particular Girsanov theorem and exact solutions of some
matrix SDEs that characterize Fréchet derivatives as an alternative (Section 5.1 below).

Such integration by parts often carry the name loop equations in random matrix theory [59], where they
traditionally relate correlation functions of particle systems (see [47,/54,90]), i.e. only eigenvalues in the
context of random matrices. In our multitime and singular setting, the integration by parts formula (see
Proposition encodes information/correlations about eigenvalues but also eigenvectors.

5.1 Fréchet derivatives as explicit solutions of matriz SDEs. As in the previous sections, the
Brownian motion (U;) on the unitary group is defined through ([2.6), i.e.

dU, = V2U,dB, — U,dt
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where (B;) is a Brownian motion on the space of skew Hermitian matrices. Note that if M is Hermitian and
N is skew-Hermitian, then (M, N)g := Re(Tr(MTN)) =0.

Lemma 5.1 (Representation of UBM derivatives). Consider a predictable bounded and continuous skew
Hermitian valued process (fs) and set Fy := fot fsds. Then in L?(P) and almost surely,

DpU; = lir%e’l(U(B +eF), —U(B),) =V2 (/t USfSUslds> Us. (5.1)
E—r 0

Proof. First, we show that V; := DpU, exists and solves, in integral form,
Vo=0,  dV, = V2VidB, — V,dt + V2U, f,dt.
Indeed, with U(®) := U(B + F) which solves
AU®) = V2UE (B, + eF,) — U dt = vVoU P dB, — U dt + ev/2U f,dt
and V() :=e=1(U(®) — U7), which satisfies V.*) = 0 and
av® = vav9aB, — v&dt + V2(UL - U,) fudt + V2U, fidt
we obtain (by an L? estimate, Gronwall lemma and a continuity estimate), when ¢ | 0,
AV, = V2V, dB; — Vdt + V2U, f,dt. (5.2)

Most importantly, this equation has an explicit solution. Recalling that dU, = v2U,dB, — U,dt, taking the
conjugate transpose and using that dB; is skew Hermitian, we have

AUyt = —V2dB U - U7t
An application of It6’s formula gives
dV,U; ' = (V2VidB; — Vidt + V2U, f,dt) U + Vi(—V2dB,U; ' — U tdt) + 2V,d B, (—d B, U )
=\V2U, f, U dt
where we used dB;dB; = —1I to obtain the second equality, hence . O

In the case of 1d Brownian motion, the Cameron-Martin’s formula implies, for deterministic shift (f)

1 -
E </ f.dB; - q)(B)> 4 g (GEIJ fodBo—5 ffsdsq)(B)>
0

de |le=0

= i /@(B)e*% fo d(Bs—eF.)d(B:—<Fs) DB
d5|£=0
d

de |le=0

E (cb(B +5/0‘ fsds)) =E(Dp®(B))

where F' = fo fsds. The calculation above is formal but can be made rigorous (DB stands for the “Lebesgue
measure” on the space of continuous paths, which does not exist). The generalization to the Brownian
motion on skew Hermitian matrices is straightforward and we have,

/DF@(B)Q*% I 1dBspR — —/@(B)DF (e*% lo \Istllé) DB

1 "1 2
:N/ o(B) /O (fs,dBg)e™ > Jo 14B:Iapp (5.3)

where DB formally stands for the Lebesgue measure on skew Hermitian valued continuous paths. The
necessity of N = o~2 in the potential V(B) = 513 fol |dBs||3 can be checked by computing, with Fy = it]
and recalling (2.3),

¢ ¢ ¢
o?Nt = 02/ | F.||3ds = Var/ (dFs,dBgs)m = Var/ Re(Tr(ildBy)) = t.
0 0 0

The Girsanov theorem gives an extension to predictable processes.
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Lemma 5.2 (Integration by parts for (B;)). Consider a predictable bounded and continuous skew Hermitian

valued process (fs) and set Fy := fot fsds. Suppose that ®(B) € L?(P) is measurable with respect to B and
that Dp®(B) exists almost surely and in L*(P). Then,

E[Dpd(B)] = NE {@(B) /0 t<f57st>m] .

Proposition 5.3 (Integration by parts for (U;)). With F = [, fsds and ® as above, we have

E [cp(B) /Ot<fs,st>m} = %]E [Dr®(B)], and  DpU, =2 </Ot USfSUslds> Uy. (5.4)

Furthermore, for a matriz valued bounded and continuous predictable process (hs) (not necessarily skew
Hermitian), and with a finite number of positive times t; and € functions g; on the unit circle, we have

t ) min(t,t;)
E l/ Tr(hsdBs) HeTrgi(U“)] = _% ZE Tr <9}(Utj)Ut,-/ UshsU; tds HeTrg'i(Ufi) .
0 i J 0 i

Proof. The first statement is immediate from the lemmas [5.2] and For the second statement, we denote
by ps (resp. pg) the projection on skew Hermitian (resp. Hermitian) matrices. Since these spaces are
orthogonal for (-, -)sy and dB is skew Hermitian,

Re(Tr(hdB)) = — Re(Tr(ps(h)*dB)) + Re Tr(pg (h)dB) = —(ps(h),dB)s + 0.

Given that i : M +— iM maps Hermitian matrices to skew Hermitian ones, and skew Hermitian matrices to
Hermitian ones, we have

Im(Tr(hdB)) = Re(—iTr(hdB)) = Re(Tr(—ips(h)dB)) + Re(Tr(—ipg (h)dB)) = 0 + (ipu (h), dB)x.

We suppose that the product [, reduces to one term since the generalization is straightforward. We have

t t t
E/ Tr(hydB,)e™ 9V :]E/ (—ps(hs), dBg)pe 9l +i]E/ (ipp (hs), dBg)pye T 9(U)
0 0

0
V2 V2

t t
ETr (g'wt)Ut / Us<ps<hs>>Uslds) (oo 4 Y2ip (g'(UaUt / UsipHms)Uslds) (o)
0 0

N N
2 t
_ Vg <g’(Ut)Ut/ UShSU;IdseTf-‘J(Ut)) .
N 0
In the second equality, we used (5.4) and the third equality follows from —pg(h) + i2pg(h) = —h. O

5.2 Biased measures and error terms. In this section, we will use the following a priori estimate by
Johansson as an input.

Lemma 5.4 (|60, Lemma 2.9]). If f is real and || f|lu < oo, then
E [6Trf(U)} < NFot3IIfIE
An immediate consequence with f chosen as g below (4.18)) is
P(O(s) € 9) > 1 — ¢ (e M) (5.5)

where ¢ is defined as the rigidity event at the beginning of Section
Let /" be a regularization of log (around the singularity h) on scale ¢ > N~2. Let

D=Djysc (5.6)

denote the family of laws biased by ex1<i<s UG) where J is fixed, f; is either an element in .5 ¢ (see
Definition 2.1)) or f; = A¢", 0 <A< C and h € [0,27), t; € [0,C].
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For any P in D we denote by E the expected value under P, and the dependence in f;,¢; will sometimes
be emphasized trough Pg, E¢.

We will use the following a priori estimates without systematically referencing them, when transferring
an estimate for a biased measure from the Haar measure: Under the Haar measure there exists C’ such that,
uniformly in f € %5 and 0 < A < C, we have

E[eTrffE(Trf)] < eC'(logN)27 ]E[e,\ﬂéhfwmeh)] < oC'log N (5.7)
Both inequalities follows from Lemma and ||f||F < C(logN)? (due to our assumptlon [ € o),
16134 < Clog N (see Lemman As an example of application, Equations | . .7), Holder and Jensen
inequalities imply P¢(0(s) € 4) > 1 — e~ (o8 N

“-]) and R = (log N)*e.

For the following lemma, we recall the notation d(v,w) = max(|Jv — w|, |[v — T

Lemma 5.5 (Application of the full rank projection estimate). Let ¢ € (0,1) be arbitrary. Uniformly in
Mo, Mw € [0,1/2], P € D, —R < s < C and max(0,s) < t < C, we have

1 v+ Us U, _ Lwg v+ Ug U,
NE [TY<U_US (w_Ut)2>} N w [Tr(”_Us (wt—s_US)2>}
O(N®)(1 + |we—s]) 1 1

. (—+ .
Nw AV, w—s) Min(L, Nny) "N /mw min(ne,__,10)

)

Proof. We first prove the result under the unbiased measure, i.e. f = 0. We have
1 v+ Us U, 1 v+ Usw+ Uy
—E |T = ———0,E |T .
N [r(v—Us(w—Ut)Zﬂ 2N {r(v—Usw—Utﬂ
With the Cauchy formula, under the event E from Proposition [£.5 we have

1 v+ Us U, Wy g v+ U, U,
e Ip-— =T 150
‘N { 1F<U—Us (w—Ut)Q) P r(v—Us (wt—s—Us)Q) e | (s)e%”

Ne(1+ fwy]) 1 1
Mo d(v; we—s) min(L, Nopw) "0/ min (0, 170)

<

).

Furthermore, the same result holds without 1 nor the conditioning, by using the trivial estimate on the
integrand (e.g. NY/(n,m?2)), the rigidity estimate and the isotropic law from Proposition P(E |
0(s) €94)>1— e (ogN )" This completes the proof for the equilibrium measure.

We now consider P¢ € D. On the event E, the same estimates hold for P¢(0(s) € 4) and P¢(E | 0(s) € ¢),
as explained before the statement of the lemma, so the above proof applies to the biased measures. O

5.3 Asymptotics of the loop equations. The following Lemma will be the main tool for the “gluing”
operation mentioned in subsection It relies on the integration by parts formula from Proposition
the consequences of the local law and rigidity estimates for biased measures Lemma [5.5] the first section in
the appendix to express our result in terms of Fourier coefficients, and various smoothings.

Lemma 5.6. Let C > 0 and § € (0,1) be arbitrary. Consider h, € S5 (see Deﬁnition where r € I,
I a set of at most C' times in [0,C], possibly N-dependent. Let P¢ denote the law of the unitary Brownian

motion at equilibrium biased by e>=rex T iU+ piocw 7= Tl (U) yhere A, B and fs are as defined in
Theorem and 4 is as defined in Deﬁm'tion with reqularization scale N='=%, «a = §/6.
We also assume that for any t + 16 € & we have (see (A.6|) for the definition of H)

> HP,_yhe(e?) = 0. (5.8)

rel

Then for any small € > 0 we have

ZEf[Trh N][] e FIT (08, ()t S eIk (), ()

rel rel, t+19€£f keZ TEI,tE%,k:EZ
+ O5.0(N7/42) (5.9)
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Remark 5.7. In the above statement, every {4 can be replaced by £_ without any change to the proof.

Proof. To simplify the notations we assume that Z = &, as the functions f; are more regular that the
logarithmic singularities ff’H which represent the key difficulty. The contribution of the fs’s can be included
following the method below with only notational changes. We also abbreviate ¢ into ¢ along the proof.

First step: integral representation. First, from (4.6) we have

" 2\/§ wT*SUS "
r = _ r T dB s r—s) rfsaz K r—s ds.
my(w) =m_g(wryrg) + /_R N I <(wr_s U (s)) + /_R(m (wr—s) — s(w))w ms(wy—_s)ds
Remember the decomposition of h, into O(log N) many functions from the sets A¢ o, (£ € [d,1]). We start
evaluating the trace of a function h from A ¢ for an arbitrary £ € [d,1]. Together with the representation
(A.8), this implies (remember we denote s(z) = 1},|>1 — 1};)<1) that for any h

]Ef(TTh(UT))—N][h— _7/5 h(w) - Egm_ R(wHR)—s(w)]dmlﬁw) (5.10)
—E / () - / B [(ma(wy_s) — 8())wy_ B (wy_s)] dsdmuf“’) (5.11)

/a h(w f/ Tr (Wi’;jUgs)QdB(s)) me(“’) (5.12)

where we have chosen the second order quasi-analytic extension A (contrary to the first order in (A.2)) and
N~1%¢€ as the scale of the associated bump function y in

h(re?) = (h(ew) — i1 () log h”(ew)i(loi r) ) X(r). (5.13)

The first term (5.10) above is easily shown to be subpolynomial in N because w4 g is either superpolyno-
mially large or close to 0. The second term (5.11)) is also negligible by the bound

10wk < (|B] 4+ nul B[+ 05| B1) - X |+ [0 |0, - X (5.14)
Indeed denoting 79 = N~1*¢, with (4.17) we obtain

1
(EII)| < N / (1++77)- mo/2<n M

1
[0,770]2 % Mo 778’) /0 N(n+s) N(n+s)?

Second step: injecting the integration by parts formula. To evaluate (5.12)) we rely on the integration by
parts formula from Proposition

E¢ UTRTr <(w:U:_iU[‘]:>2dB(s))] :—% 3 E [Tr (Eel(Ut)V,f(w)ﬂ (5.15)

- t+ifeof

g

dsdndf <
sdn S N

where, for 1 < j < N,

tAT tAT
_sU. wy— U,
Vrtw:\/ﬁ UshUs_lds-Uzﬁ/ _resYs (s Us.
( ) -R (wr—s - Us)2 ! —-r \Wr—s— Us)z !
We can write £ = 3" g,,, where the sum is over O(A) terms (recall A in (4.4)) and g,, supported on an

arc of length 1/(Ne™), —log N < m < alog N, ZkZO(Ne )ngfff)Hoo < C'log N. The number of considered
gm’s is O((log N)?) thanks to the initial smoothing on scale N1~ in Section[2.3] We can therefore assume,
until further notice, without loss of generality that ¢/ term inside the Tr coincides with such a g,,, and we
define € = e~ /N.

From (A.8) (Jv| = 1 in v¢? (v) below) we can write
1 o/ t N \@ 0/ thr wy_sUs
~Ee [Tr (e (U)V! (w)))] - WEf {Tr (Utz (Ut)/ s

—R (U},r.,s — US

tnr v+ U wy_sU —, dm(v)
_ EeTr r—sUs d : 00 1
27N / / f (v — U (wy—s — US)Q) sOul?(v) - (516)
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where for further error estimates it will be pertinent to choose ¢ = £ for y. in the definition of the above

vl here we use the first order quasi-analytic extension given in (A.1).

We first use reversibility in the above expectation. In this way, instead of changing the very singular

function zfg: into 52"‘1‘55 and collecting a problematic error term in 7, (the v variable corresponds to

the singular function £¢, while the w variable corresponds to the smooth %), we will change the more regular
function in w and collect an error term 7', as in Lemma
More precisely, by reversibility the above expectation is

Zt’+i9€p{Tr£( Uyr) v4+Up _ wr—sUs Zt,+i9€9{Trl (Ug_yr) v+Ug _ Wr—sUs—s
Ee Tr v—=U, (wr ‘s_Us)Q _ Ee Tr v—Up (w7 s—Ui— 5)

EeZt’+i96g{ Tr£%(Uyr) o EeZuﬁewT‘rf Us—4r)

(5.17)

We denote the above right-hand side as a biased measure E; ;Tr (gfgo wT’jUt*S 2).
g 0 (Wr—s—Ui_s)

With (5.12), (5.15)), (5.16) and (5.17), we have proved that E¢(Tr h(U,)) — Nf h is equal to
— tAr v+ U Wy—s Ui dm(v) dm(w) oie
i [ e -oni) [ (ot ) an e oo

Nerr _R v—Uy (wp—s — v w

Third step: injecting resolvent estimates. With the key Lemma in the above expectation, noting that

Pt W = Wrg—2s We Obtain
Ee¢(Tr h(U N][h— > A(t+i0)+O(NT > E(t+10)) + O(N°F),
t+ifca t+i0c A
e v+Up  wryt—2500 — . dm(v) dm(w)
An(t +10) dgh(w E;Tr T dsdzve? ,
(440 - Nr? / / 7t (U = Up (Wyyt—2s — Uo)2> 5050t (v) v w

tAT
£,(t+10) / 10w |/ (L + [ si-s)

R 77wr s d(v, wy44—2s) min(1, Nn,)
1

Thor—s \/ﬁwrfs min(nwr+t725 ’ 771))

We start with the evaluation of the main terms, A,(t +i0). Importantly the biased measures E;, don’t
depend on s, so that for any D > 0, uniformly in w we can integrate

tAT tAr
Wr4t—25U0 / Wrt—2sU0 _D 1 Uo _D
_ Wrt=2s70 g _ Writ=200 o (NP = —2 20 (a1 o1 )+O(N D).
/—R (Wrtt—25 — Up)? —oo (Writ—25 — Uo)? ( ) 2wjr—y — U (w1~ wi<1) HO( )

Noting that —U = %48 — 1 and [, 8wiz(w)(]1|w|>1 - ]1‘w|<1)dmugw) = 0 (this follows from l) and 1'
when z =0 or z = +00), we have obtained
: 1 = wir—y + Ug / ) v+ Up dm(v) b
A (tHi0) = — ;T Oph(w) =0 g Dyut? (v O(N~D).
(04i0) = gt | ([ D) S (1 = 10 P50 ) e dnel) o)

The first parenthesis is equal to HP,_4h(Up) from li and the second one is simply UOEQI(UO) from {)
This gives

dm(v) dm(w)

ol fwl

x ( )ds|Ds0e?” (v)]

> Ar(t—i—i@):%Eﬂ > I (ZHPV_th(UO)UOg@’(UO))+O(ND).

rel t+ifcof t+i0€ ot rel

We now return to the original regularized logarithm functions £?’s and the functions /hr’s by summing over
all components of the decompositions. Because the logarithmic singularity 1/x of /" (up to scale N~1=2)
is compensated by the vanishing assumption (|5.8)), we claim that

.Y Tr(ZHPT 1 (Uo)Uo (Us ) - Z /WZHP‘T 1 (€)% (1) dw+O(N ~0F2)

t+10€;z¢ rel t+19€,<z¢ rel

- 3 e M=l 19 (hy) ) + O(N™9%€)  (5.18)
rel,t+ifcol keZ
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where the second equality follows by equations and - For the first equality, denoting F(w) =
> HP‘T,ﬂh,.(ei“’)ei“’ée/( @) by rigidiy of the elgenangleb we first have [IN"* " F(0),)— [ F| S N71e [|F)
with overwhelming probability, so we just need to bound [ |F’|. Writing G(w) = >, HP|,_; h,(e™)e™ and
using the key assumption , we have (assuming 6 = 0 without loss of generality)

[1#15 [16@-60) @+ @) @Ik 5 [ 1(66)-GO)-w6 (@) @ldort [ 16/ @) @)+t @)ds

Using Taylor with integral remainder and the bounds || < |w|™2, |¢ (w) + wl ()| < (jw| + N~1=2)~1,
we obtain [|F'| < [|G"] + |G'(0)|log N. Note that ‘(HPV,t‘h,.)/ < Zkez|k(}£7')k| < (log N)2N'=0 as
h, € 5.0 50 G'(0) < (log N)2N'~°. Moreover, from the LHS representation of the Hilbert transform in (A.6)
we easily obtain [ [Hf| < (log N) [ |f|+N~*sup |f’| for any function f,so [|G”| < (logN) Y, [ |Pr—:h!| <
(log N)S°, [ |h] < (log N)2N'=9. This concludes the proof of (5.18).

We now estimate the error term &,(t + i6),

1 tAr 1 —+ |’LU7n+t 2 |)
- il 9 A Pt —ast)
E(t +16) //\6 h | Nm)(nw S )|Opvl |/R ORI dsdm(v)dm(w).

ote that =2 ds < ogd(v,w)|. e contribution from d(v,w) < N™"7 is negligible (e.g. it
Note that [*) GHere=2Dqs < o |log d Th ibution from d N0 is negligibl i

is O(N~—3)) by volume estimate. Hence,

E.(t+16) < N//|a (w Nlm)(i+ L) 0u0l (o) dm(v)dm(w) + O(N—).

w Tw v

From ([5.14)), denoting N~!*¢ by ¢, as x is supported on exp([—2¢, 2¢]), constant equal to 1 on exp([—¢, £]),
we obtain (for some points a,b on the unit circle) that |dgh| < n2e 31 w—a|<4e, and similarly |95000"| <
and vf® from the first order

771;573]1\1;—1)\<45 (remember h is defined from the second order expansion (5.1
(A.1)). Substituting these, we obtain

r B
/Mdm(w) < 1_ for ¢ < 3; /Mdm(v) < i’ for ¢ < 2.
c egc

1 9
M o U

Therefore,

2 2
. %) 1 1 2] 1 1 —5/4
Sr(t+10)<N<€l/2§1/2+€>+1\72(81/253/2+55 <N

where we used @ = §/6 in the last inequality. Combining the estimates for A, and &, concludes the proof. [

6 PROOF OF THE THEOREMS
6.1 Theorem The local decoupling (Section [3) and the asymptotics of the loop equations (Section
allow to prove Theorem through the following surgery. The Selberg formula is a base point.

Lemma 6.1 (One singularity). For any 6 € [0,27], as N — oo,
22 G(1+ 3)?

det(Up — e®)) = Nor -2/

(|e(06>|) G(1+)

Proof. We use the exact expression of the expected value of powers of the characteristic polynomials derived
by Keating and Snaith |69, (6)] (and based on Weyl’s and Selberg’s formulas) to calculate

(1+ O(1/N)).

22 : 2 BTG
lim N~ E[det(Uy — €)' = lim N~ [] LG +7)
N—o0 N—oo

TG+
~ lm N-% 2G(N+1)G(N+1+9) G(1+3)?  G(1+3)?
N GIN+1+2)2 GOG1+7) Gl+y)°
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The second equality followed from the relation G(z + 1) = I'(2)G(z) and the last one from G(1) =1 and the
following asymptotics (see, e.g., Barnes’ original paper on the G function [9, page 269)]):

22 322 2z 1 1
logG(z+1) = ?1ong - + 510g27r — ElongrC’qLOz_mo(;)
Indeed, it gives log G(N+~+1) =log G(N+1)+~vN log N —vyN + l; logN—i—O(%) hence only the quadratic
. . 3 G(N+1)G(N+1+7) _ 42
term in ~ contributes to log W =2-log N + O(3)- 0O

In what follows, we use the notations f; to denote the pair (f,t) where f is a function and ¢ a real number
and we set for any s, ¢,

€(forg0) = Jim Cov(Tr f(U,), Trg(Uh) = Y [klfug-re M1 = (£, P yj0)n. (6.1)
kEZ

We extend it to finite linear combination, €' (fs, Agt +h.) = A€ (fs, 9:) +C (fs, hr) and set €(fs) :== €(fs, fs),

which does not depend on s. With L® := ~, log |e* —-| and t > 0, we record the following identities, obtained
by using (f ) = —% where f,(0) = log el — &',
C(fo, LY) = va > [kl fi - (— 2\k| 1 po)e Il = — 5 (Pef(e) ][f D2, P (%), (6.2)
k#0
G(LE,LY) = Sk 1< eltr ek Y Ikl _ Vﬂy Z cos(k(z —y)) e _ Pz —y) (6.3)
0 IYIP)/y = 2|k| 2|k'| = k’ - ’yszy t Y), .

where the function C is defined in (2.17)).
Lemma 6.2 (One singularity & one smooth function). Lett > 0 and f € S5 ¢ for § € (0,1), then

E(| det(Ut — €i$)|7m6Trf(U0)) — N% M € (fo,Ly Nf f0+ € (fo) (]_ 4 O(N—5/9))
G(1+72)
Proof. Without loss of generality, we suppose f f = 0. We start with replacing the logarithmic singularity
with éem (recall Definition [2.2) here we set the submicroscopic smoothing parameter o = §/15) and for

simplicity we write L% = %Z . Define a function ¢(e™) = x,(w) — xi(w) where x, (resp. x;) is a smooth
bump function that is equal to 1 on [z + N~1+99/20 5 4 N=140/2) (vesp. [z — N=1F9/2 g — N—1499/20]) and
supported in [z + N~1499/20/9 4 4 9N—140/2] (vesp. [z — 2N ~119/2 5 — N—1499/20 /9]) By the principal
value definition of Hilbert transform from , it’s easy to see that Hg(e'”) < log N. On the other hand
using the Fourier space definition of Hilbert transform from 7 HP,f = O(log N). Hence, there exist an
O(1) constant « such that HP, f(e!*) — aHg(e'*) = 0. We choose

p=agq, (6.4)

calling the function p compensator.
Now we apply Lemma adding the local compensator p at the singularity in order to satisfy the
Hilbert transform condition (5.8]),

E(eTr Li(Ut)—&-Tr f(Uo)) — E( Tr L“” (Uf)—i-Trp(Uf)) exp (/ et IOgE( Ter (U)+v Tr f(Uo)+(1—v) Tr p(Uy) )dl/)
_ E( TrLZ(Uf)+Trp(Uf exp </ % pt>Li,t + VfO + (1 _ l/)pt)dl/> (1 + O(N—é/Q))

where by integrating we have fo (fo—pe, LY j+vfo+(1—v)p)dv = € (fo, LY ;) + %‘g(fo, fo)=C(pe, L% 1) —
Jg(pt, p¢). Notice that the expectation is now just a single-time expression and once we prove the following:

1 = X 1
lOgE( Tr LY +Trp(Ut)) = logE(eTrL+(U¢)) +%(pt7Li,t) + icg(pt,pt) + O(N—é/g) (6.5)
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with the approximation %'(fo, L% ;) = €(fo, L§) + O(N~%/9), which can be shown easily by the Fourier
coefficient expression in ([6.1)), we obtain

Yz )2
E(| det(U; — eim)|'yzeTrf(Uo)) < N%Z' Cé[((leQ))e‘f(fo,Lf)eNf fo+%‘€(fo)(1 + O(N—5/9))
147

by Lemma [2.5] Repeating the same steps with lower regularization ¢_ finishes the proof. The proof of

equation (6.5)) is just a straightforward application of the single-time loop equation, it is given in the Ap-
pendix. O

Let A = N~'** be the mesoscopic scale for the small fixed positive constant x < § where 6 is the
separation parameter for the singularities of /. We denote the mesoscopic regularization of logarithm
around €' by ¢5" so that log f; + 7 log(—2)\) = Eﬁ_m - 05" where f; is defined as in equation (3.13) for
z = €. Now, we introduce the notation L% = %Ef = L?IOC + LT"°® where Lﬁ’loc and L7 stands
for local submicroscopically regularized logarithm ~,, (Ej_T - ﬂf\T) and mesoscopic log -regularization 'yzéf\m
respectively. An application of the lemma above (with Lemmas and [2.5)) gives

x,loc 'vﬁ G(l + L)Q 1 (¢ x < x,loc
E(eT L5 W0y = N#F ST 20 =3 (W)= CEE) (1 4 O(N T/ 6.6
( ) G ) ( ( ) (6.6)
since —€(LY8, L% ) + 3C(LYYE) = —3(€(LY,) — %(Lf_lfc)) We are now ready to prove our main

theorem.

Proof of Theorem[I.3 Throughout the proof, ¢ that is used for a small positive constant, may change line
by line. Again, we start with ¢, regularization of log, i.e., we consider the expression

16
E GZse.@TrfS(US)+Zz:t+i95,dTrz-i— (Ue) .

We choose the submicroscopic regularization parameter « (used in the definition of £, ) and the mesoscopic
scale parameter £ (in the definition of £)) so that a,k < § (where < depends on the value of C), where
d is the separation parameter for the singularities at </ appearing in the statement of the theorem. For
convenience, we enumerate the singularities as Kilj (Utj) and write || = J. We denote by £ = Lioc + Lyeg
the decomposition of the regularized log-singularity sum into submicroscopic localized terms and mesoscopic
smoothing parts (see above equation ), and let S denote the remaining smooth contributions. To satisfy
the Hilbert transform vanishing assumption in the loop equation, we introduce local compensator
functions p; = a;q; (see above for the definition of ¢) around each singularity Eij, and denote their sum
by P, where a; is to be determined. The Hilbert transform condition then takes the form:

HP jar (@) HPjypjaa(e™) oo HPyygjjas(@™)] [
HP\tZ—tl\Ch(elz?) HP\tQ—t2|QQ(€1‘T2) S HP\tz—tJ\QJ(BIZQ) Qs
HP\tJ—tl\(h(ei”) HP\t‘,7t2|CI2(€i”) e HP\tthJ‘q‘](eim‘]) o

60 . .
>mtriew HP o405 (€7) + 2 c g HP 1, g fs(e™1)

i . ) .
> imtrigea HP o, 005 (€97) + 32 c g HP g f5(e7).

The square matrix on the left-hand side has diagonal entries < log N and off-diagonal entries O(N ~0%¢).
On the other hand, every entry of the right-hand side vector is O(log N). Hence, there exist O(1) constants
a;’s satisfying this system of linear equations.

We suppose without loss of generality that the smooth functions are centered. Our starting point is the
identity

1
E(65+L) _ E(e£10c+77) exp (/ di log]E(eu(5+£reg—7’)+£1oc+73)dy> )
0 V
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Then, by Proposition |3.4] we have
E(eLoetP) = HE(eTrLij’1°°(U,,j)+Trpj(Utj)) (1 4+ O(N—/3Y)

>+ loc

J
» z,loc )
= JLEE™ T W) @i b R ) (1 o(N ) (6.7)
J

'Ya:j . ,loc xj,loc

2 2 x
_ HN?%gli .1 )) O )WL s, LY+ (1 4 (%))
: Ve
J

where € is a small positive constant depending only on C' and d; the second equality follows from single-time
loop equation similarly to (6.5)) and the third equality follows from . Furthermore, by Lemma

1 1
/ C%/ logE(eu(8+£reg*73)+£1oc+73)dy — / %(8 + Ercg . P, I/(S + Ercg o P) + Eloc + P)dl/ + O(Nfe))
0 0

1 1 1 1
=C (S + Lieg, Lioc) + 5‘5(8 + Lreg) — 5‘5(7’) + 5‘5(7’,8) — B (P, Lioc) + 5%(77, Lreg) + O(NTF)

1

- %%(5) FO(S,0)+ (L) - %Cg(zbc) ~Lem %%(P,S) (P, L1oe) + %%(P,Ereg) +O(N9).

1
2
Altogether, we obtain

’YZ 2
E(e5+E) = (1606801605 T 400 T N7 GO+ ) _4e(tuo+d £, 6w

:!:j,loc
TP LTI C 0 L) 3P+ S %) (1 4 O(N-2)).

It can be easily seen by Fourier space definition of € at that the submicroscopic regularizations in
the second and third exponentials can be replaced by pure logarithmic singularities with a negligible error.
Moreover, due to the separation condition on the singularities, the exponents of the last three exponential
terms in the right-hand side are negligible because the cross terms are negligible. For the sake of brevity we
only discuss it for the first exponential out of those there, i.e. we prove that

%(Lg,loc’Li/,IOC) _ O(N_g)

for any pair of distinct singularities. Indeed, since (f, 9>L2(2A) =3 fkﬁ—k’ %(Ptf, g>L2(2A) = —(P:f,9)n.
Note that

P (w)g(wdw) = [ g(w)a Re (Y fun)A(duw)r(da)
/ /

U2 2m w' — we™?
d / —t d 2 ’ ’ —t . . o o 5
and Eg’tgz_‘ = Ew’ftfée—t = _2(10”“:}(1%‘)27 80, denotlng d= leni#j(|(elmlati) - (ewjvtj” = N°, we

bound from above
|6 (LE, LYY < C(A/N)? -log(A/N)? max(1, min(t 2, [e!* — €| 72)) < N®A?/d? (6.8)

by using Sup|, _ci=|<x/N,jw—eiv|<A/N m < C'max(1, min(t =2, [e!* — e¥|72)).
To conclude, we use (6.1)), (6.2), (6.3) combined with (2.16), This concludes the proof of

]El:ezgegg Tr fs(Us) H I det(Ut_ei9)|7z:| g eN Egg chs""% 2332(f37P|575/|fs’)H_Ezg‘Q{,sg@ ‘YTZ(P\t—s\_Poo)fs(ew)
z=t+ifca

2 G+ %) max(|e?], [ev])\ 77
<[[NT 2% I <w) (1+O(N~9)). (6.9)
o G<1+'Yz) zZ,WEH , zFwW |€ —¢ ‘

For the other direction of the inequality, it suffices to replace all £, smoothings with ¢_’s from the beginning,
the steps are identical. O
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6.2 Theorem In this proof, we prefer simplicity/brevity to generality and present only the details
for the L? phase (namely v € (0,2)). The parameter v is fixed throughout the proof so we drop it from the
notation. In the Gaussian setup, |[13] gave an elementary approach for the convergence of GMC measures for
a natural class of approximations, including the L' phase (corresponding here to v € [2,2v/2) using barrier
estimates. In random matrix theory, the works [72] and [81} Section 3] explain how barrier estimates and in
particular the convergence in the L' phase follow from Theorem

Let u(g) be the 2d GMC measure with parameter y associated to the field hg\E,) (t,) :=P:hyn(t, ). For any

continuous function f on [0,1] x U, the L? norm of f[o 1xU f(dug\s,) — dpn) vanishes when taking N — oo

and then ¢ — 0 (details on this are given below). Furthermore, hS\E,) converges to a smooth Gaussian
field h(®) whose covariance kernel is given by E(P.h(s, z)P:h(t,y)) = 53,5, %f—y»e—w't*'e”a‘k' =
Pocyjt—s|C(z — y) where C(z — y) = E(ho(x)ho(y)). Finally, the GMC e converges to the GMC e7" by
[91, Theorems 3, 25]. Altogether, this concludes the proof of Theorem for v € (0, 2).

Now, we provide some details on the L? estimates. Three terms arise:

E(evhﬁi)(sw)evhﬁi)(t,y)) E<evh§\7)(s7w)evhw(t7y)) E(evhn(s:2)evhn (ty))

, , and .
]E(e'yhg\f)(s,w))]E(e'yhgs)(t,y)) E(e’yhg\?(s,m))]E(e'th(t,y)) E(thN(S’I))E(eWhN(t’y))

Set f, = loglel” — €i*| and f(E) = P.f;. By applying Theorem (with one singularity or one smooth
€ 2 €
function), we obtain the asymptotics of the normalizing constants: limpy oo E(e”hgv)(s’m)) = ¢TI and

2
limy oo N~ TE(eYN(52)) = G(Gl(tijr/ff Still with Theorem (and this time only pairwise terms con-

tribute), we obtain the 2-point asymptotics

]E(evhﬁi) (s,:2) 70 (ty) )

2
© © ~ e T X2 Pl fS ) — eVQP\t—slﬂeC(I*y),
]E(e'YhN (s’£))E(€’th (t,y)) N—o0

E(e'yhﬁi) (s:2) 7N (t9))

~ e
}E(e'yhg\?)(s,w))E(e’th(tﬁy)) N—o00

E(e'YhN (S’w) e'th (t»y) )

E(e’th(s,z))E(e’YhN(t»y)) N:oo

2 .
— L P £ _ e’YzP\tszaC(w—y)’

2
eQPH_S‘C(wfy))’YT X2

where we used ([2.16) for the last equality. Note that the above asymptotics hold uniformly in the domain
allowed for (z,s), (y,t) in Theorem-

With fa;( ) Zk>1 = ( ik(x— y)+e—1k(:c y)) we find (fmfy)H — %Ek}l w and (f-’l(fg)7P|t7.S|f§€))H —
Z cos(k(ac y)) —\t s\k —2¢ek
2 k>1 :

For small mesoscopic contributions, we use the Cauchy-Schwarz inequality and obtain (again from (L.3))
but with a 2v singularity) as N — oo,

27)?

E(e%hﬁ)(&o)) _ N2T :Ng
E(eyh;?(o,o))z N% x2

so, for € small enough, the contributions to the L? norm of the points z,w € [0,1] x U with |z —w| < N~1*¢
vanishes. Therefore, lim, g limy_ o E f[o 1 <t d,u(a) dun))? is equal to

lim F(s,2)f(t,y) (¥ Pre=sis2:0@=v) _ 97 PlucsiseCle—y) 4 o7*Pl—si Cle—v)y = (),
=0 J([0.1)x)?

hence the aforementioned L? estimate. To justify the above limit, let us denote A, := [ f(s,z)f(t, y)e”QP\t*usC(I’y).
Because the integrand is non-negative we have As. — 2A. + Ag > 0 and by Fatou’s lemma we have
liminf. ,o(2Ac — Asc) = Ap; combining these two completes the proof.
This paper is focused on the measures as in our framework the limiting 2d LQG measure is connected with
many topics of 2d random geometry, as outlined above. However, Theorem [L.2| has other direct consequences
which we list below.

38



Remark 6.3. Theorem implies directly the pointwise convergence of hy(z) = log|det(el® — Uy)| (where
z =1t+i0) to a Gaussian logarithmically-correlated field: (1log N)~=*/?(hn(z),hn(2")) converges in distribu-
tion to (N, N.) where these standard Gaussians have asymptotic covariance —log |z —2'|/log N for |z — 2’|
on mesoscopic scale.

Remark 6.4. For Q) any fized compact set in R x U with non-empty interior, yet another corollary is the
asymptotics
(log N)~! max lhn(2)] = V2
zE

in probability, i.e. the space-time analogue of the main result in [4]. For fized time this mazimum is known
up to second order |84], tightness [26] and distribution |85]; it is an interesting question whether Theorem
can help to approach this precision on Q, or if our 2d framework is useful to study fine properties of the
maximum of the 1d restriction of the field.

In the same vein as equation , Theorem (more precisely its natural analogue for Imlog) also
captures the mazimum deviation of the eigenvalues along trajectories. Indeed, ordering the initial eigenangles
at equilibrium 0 < 61(0) < ... < Oy(0) < 27, and denoting v, = 25E, t = N8 (0 < B < 1), we have (in
probability),

N
710(% N ogsgr??gng |0k (8) — vi| = 24/1 4+ 5. (6.10)

Finally, we note two interesting questions related to our results. First, in the context of random tilings,
is the analogue of the maximal deviation of the height function from the hydrodynamic limit. Asymp-
totics of this maximum and convergence to LQG are not known in this context. Moreover, instead of
considering an infinite volume surface, the unitary Brownian bridge with same (Haar-distributed) starting
(t = 0) and ending point (¢ = 1) provides a natural framework in Random Matrix Theory to generate the
LQG measure on a finite volume surface without boundary, the torus R/27Z x R/Z. The general surgery
and some methods developed in this work may apply to these problems.

APPENDIX

In the following paragraphs, we present some standard formulas, accompanied with a proof to be self-
contained and some identities that are used in the manuscript as well as an extension of Theorems and
[I:2] to incorporate jump singularities.

Helffer-Sjéstrand formula, Hilbert transform and Poisson kernel. This paragraph presents the
natural unitary analogue of the classical Helffer-Sj6strand formula, originally used to develop an alternative
functional calculus for self-adjoint operators [31] and of great use in random matrix theory, see [43], and its
interplay with the Poisson kernel.

Let g = g(w) be a quasi-analytic extension of g, i.e. g and § coincide on the unit circle and 95g(w) =
O(J|w] = 1]) (We could also impose d5g(w) = O(||w| — 1|P) for arbitrary fixed p > 1). In practice we often
use the following natural analogue of the Hermitian formulas from [31,/43], with representation in polar
coordinates (w = rel?), as in [2]:

g(w) = (g(e?) —ig' (") log r)x (), (A1)

where xy = x. = 1 on exp([—c¢,¢]), 0 on exp([—2¢,2¢|°), and |x'| < 10c™, |x”| < 10c¢72. Furthermore, we
used the notation ¢’(e'?) for the differential of 6 — g(e'?), and similarly for g”. Note that for this specific
form of g we have
i i0
. . . e .

- (9(e?) —ig' (") log )X (r) + gg"(elebc(r) log 7. (A2)

Let m denote the Lebesgue measure on C. Assume also that § is compactly supported. Green’s theorem
in complex coordinates can be written (in the case of outer boundary)

(&

Opg(w) =

1 . 1 . i
/D@U—,f(w)dm(w) =3 /D(amf — Oy(—if))dm(w) = - /aD (—ifdx + fdy) = —3 fw)dw.

2 aD
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This gives, for any |z| < 1, (note that we have a sign change due to inner boundary)

1 ~ z+wdm(w 1 - z+w) dm(w
L[t WL o (w2t )
T Jjw|>1 z—w W T J|w|>1 zZ—w w

i z+wdw 2 o 2 + el do
= — — =— i . (A3
27 ‘w|zlng—ww /0 gle )z—61927r (A-3)
Similarly, for any |z| > 1,
1 - z 4+ wdm(w 1 _, ozt w) dn(w
L[ o) W2 o (i) o)
™ lw|<1 zZ—w w ™ lw|<1 zZ—w w
i z+wdw Tz te? do
- 7:/ g2 (g
T Jjw|=1 Z—w w 0 z—eif 21

Defining w; = we'lj,|>1 + we™ "Ly <1, from (A.3) and (A.4) we obtain, for any |z| =1,z = e and ¢ > 0

we have

z+wg dm(w 12 pozet4e?dd 1 [P zet 46 dd
o [ oudtu) ) 2 [y X S [ e G
0 ze Tt — 2 Jo

Z—wy W 2 el 27 zet — el 27
14 e telle=0 14 e teil@=2)\ 46 2 1+ e tellv=0 dp
_ i0 - i0
_/0 gle )2 <1 — e~ telle=0) + 1 —etell0=9) | 277 _/0 9(¢")Re 1 — e—teile=0) 27 =Pug(2). (A5

Recall that the Hilbert transform of a function on dD can be defined through a principal value or in Fourier
space:

2m ipy i0 ~
Hf () = Mid% Hf(2) =Y i(lgzr — Teco1) fu2". (A.6)

=0 2
0 tan 5 kez

From (A.3]) and (A.4)), with converging series expansion, we easily obtain

1 _ 7~w.z+wtdm(w):i .
2 </w|>1 /|w<1> Pag(w) z—w; W HP; f(2). (A7)

Finally, for general z we have

1 d 1 d
1 &Dg(w)-Zer m( )——hm 0, nger m(w)
2r Je Z—w w 2T e=0 Jp(z.e)e zZ—w w
i d i d
=1 lim ~wz—’_w—w—igz lim v =g(z). (A.8)
41 e=0 Jo(2,0) Z—w w 2m e=0 Jo(ze) 2 — W

Poisson summation. We denote by p¢(x) the one-dimensional heat kernel on the real line, i.e., pi(z) =
—a2 /2t
€

Vot -
the transformation formula of the theta function.

The formula below is a generalization of the usual Poisson summation formula and is related with

(n+6)2t
2 .

Lemma A.1. For every § € R, z € R and t >0, 3, , X ™ opy(x + 2km) = 3= 3, el o+

Proof. This follows by writing, with B; distributed as a centered Gaussian variable with variance t,

2(k+1)7
6_(”%6)275 _ E z(n+5)Bt Z/ 1(n+6)y dy _ Z/ i(n+d)(u+2km) (’LL + 2k7l')d
kez” 2k keZ
multiplying it by e~ (19 and by summation, i.e.
_ 8% (&
—iy( n+5 ~ ¢ = L in(u—y) i6(u—y) 21k775 )
o am [ (32 e ) s 5 v sy
neL n=—N kEZ

The limit follows from basic properties of the Dirichlet kernel. O
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Single-time loop equation. In this subsection we prove (6.5)).

Loop equations, also called Schwinger-Dyson equations, are functional identities that have long been
a central analytic method in random matrix theory, widely used to study global and local statistics of
eigenvalues, they underpin many modern results on fluctuations, large deviations, etc. The following lines
outline the main steps in proving the equations and , closely following [73].

In this subsection, all the functions are assumed to have domain T = [—7 ] for convenience. Given
function f: T — R, define the centered linear statistics S(f) = Zk 1 f(Ok) fT 0)dd and let v denote the
centered empirical spectral measure, i.e., [ fdv = S(f). The single-time loop equation for the CUE (Lemma
2.1 in |73]) is given by

By (S(-110) = [ ) (0)-do + LB, S0) + ([ 1D tanx y M M0 gy wyaviy))  (29)

where the biased measure is given by E¢[] = E[- E[T((ff))]] and H is defined as in (A.6). By the Fourier

space representation of Hilbert transform one can directly see that for all f € L?(T), —H(Hf) = f — fo a.e.
Moreover, if f € €1(T), the equality holds everywhere on T.

Now, we can discuss the proof of . Since it’s a single-time problem from now on, we omit the time
indices and also write Tr f for Tr f(U). Moreover, because the problem is rotationally symmetric, we can
assume that the singularity is at 0, and so we omit the 2 superscript in L% as well. Applying the loop
equation (A.9) for f = Ly + vp and h = Hp — Hp(0), assuming the second and the third terms in the loop
equation are negligible we obtain,

1 1
E(e™ B+ TPy = B(e™ 4 ) exp (/ % logE(eTrL++VTrp)dV) =E(e™ L) exp </ ]E(L++l,p)(Trp)dy>
0 0

1
=E(e™ ") exp </ Ly + prp)d’/> (1+O(N/9)) = BT ) @b 29wn) (14 O(N /).
0

The key difference between the multi-time loop equation asymptotics (Lemma and the single-time loop
equation, which leads us using the latter one at the end of the proof of Theorem [I.2] is the fact that in the
single-time loop equation the freedom of choice for the constant ¢ in h = Hp + ¢ eliminates the need for the
compensator. Thus, the only things left are to prove the following two estimations

Er, 4up(S((Hp — Hp(0))(Ly + vp)')) = O(N'~ 9, Er, tup // )dV(x)dy(y)) — O(N'-9/%)

(A.10)

for v € [0,1]. For simplicity, we consider the case v = 1, the proof is identical for the other values of v.
Recall that the rigidity holds under this biased measure as discussed as a result of Lemma and
the rigidity can also be expressed as follows: Given the centered eigenangle counting function on [—m, 7],
g(0) =0, Lo, ci—m0) — N(9+ ) we have Pr, +p(sup |g| < (log N)*°) > 1 — N!0 Thus, by integration by
parts (e.g. see Proposition 1. 3 in |73])

et (|S((Hp — Hp(O) (L +5))]) < (o N)™ [ |(Hp — Hp(O)(Lo+ )"+ (Hp) (L +9) |+ 0o(N ).

Substituting the following estimations which can be simply obtained by Taylor expansion, the required result
follows easily

Nk(1726/5) log N 2, T <3N71+6/2
,(Hp)m(m”g{]v_w (log N)2, |z

) . . fork=0,1,2,3. (A.11)
|gﬂ‘fﬂ(log N)Z, otherwise

Here, for the sake of brevity we discuss this upper bound only for (Hp)'(x) when |z| < 3N~1+%/2 the rest
follows by the same way. In the following, the inequalities hold up to an absolute constant factor,

(Hp)' ()] < / \tan 2y PO ay < [ [ ) (2 0y=o1) + o))

sin®(¥5%)

1
7(9 — 27 +0(1

+ [P 2D =2 g, < oy [ 1l oody (19l og N+ o V' 5/2) = O(N*-207%)
! Yy—2% (y_QU)Q ly|<4N—1+8/2 ( )

))’dy
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where we have used the Taylor expansion for p while evaluating the integral over the region |y| < 4N —149/2,
The second inequality in (A.10)) follows similarly: first, applying integration by parts with rigidity (Propo-
sition 1.3 in [73]) we obtain

(][ o)

< (logN)QO/E/T ‘ (Hp)/(ﬂ;)j' (}ip)'(y) _ Z(Hp)((z)_y()}glp)(y) dl’dy—i—O(N_l).

Er,+p

=:(+)

We evaluate this double integral in four separate regions as follows:

[ [ can-sears (ko < [(HR) o (N 572)2 Lo N = O/ Log V)

lyl<an—1+6/2

//IKBN a2 (¥)dady < log N () [l N2 4 [[Hp|| oo (N1 9/2)2dg = O(N'=2/% log N)
ly|>aN—1+8/2 |z|<3N—1+8/2
5
//y|>|x\>3N 1+5/2( Jdzdy < 1Og]\[//y|>\ac|>3N 1+5/2 ||(Hp) ”L‘X’(B‘ ‘/2(1))dzdy* O(N1 /2 log N)
yl<lz|/2 o<l /2
IHD) N2~ (B @) 1Pl L~ (51, 0))

dzd lz| T Ja| dz = O(NY=5/21og N

//y|>glﬂxj3NZ|72rs/z( )dzdy < /z|>3N 146/2 |z ] EE T ( g N)

which completes the proof of (6.5). The only change for the proof of (6.7) is to obtain similar estimations
to (A.11) for HLl_f_)C which can be shown similarly by Taylor expansions.

Jump Singularities. With a few minor changes, the proof of Theorem applies to other singularities:
the discontinuities from Imlog. We only treated the logarithmic singularity from Relog for the sake of
conciseness. Indeed, define Imlogdet(1 — e~ ;) = 3=, Imlog(1 — €' (=9) with the branch choice
Imlog(l — %) = (¢ — ) /2 if ¢ € [0,7), (¢ +7)/2 if ¢ € (—m,0). For later convenience, define arg? =
Imlog(1 — €i=9). Denoting z = t + iz and w = s + iy and assuming 8, € [~C,C] in addition to the
conditions of Theorem when the jump singularities are involved the asymptotic formula in the theorem
reads as follows:

E[ezsmq‘rﬂws) H | det (U, — eiG)|’yze,Bz Imlogdet(l—e’ieUt)}
z=t+ife

— Nl a2 (foPl o fo )i~ e scm (5 (Pems | =Poo) fo ()4 B P H S (1))

y H "fz ﬁQ G 1 + 'Yz + IBz )G(l + l2z _ 1%) H max(\eﬂ, |ew|) %"/z’)’w"r%ﬁzﬁw
G(v. +1)

zZ,WEH zFWw |ez - ew|

H eV=PuCtiarel)(1 L O(N™9)) (A.12)

zZ,WEH ,z#Ww

where we have substituted [69, (71)] for the asymptotics with both jump and log-type singularities and we
have calculated (here we denote £*(#) = log |e'* — €!?|)

R .eikw B 1 .

o, argp) = 3 [kl (A5 Leso)e M = TPy HF(E), (A13)

k0
i 71kx i lky [kllt] — = 7k|t‘

(05, arel) = SO H(- M Jogpe e M = 530 Sk -, (A

k0
o e~k 1 ikyy = lklle _ 14 maX(\e L le*]) N
% (arg, arg?) §O|k| 2ke )e 5 log e e (A.15)
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The explicit computations to obtain (A.12)) require regularizing the singularities at a submicroscopic scale
and performing detailed error term estimates which will not be carried out here.
Given 72 + % < 8, (A.12) allows us to state the following 2d analogue of Theorem 2.5 of [99],

| det(U; — eie)|’Yeﬁglogdet(1,e—i9Ut)

— oV v¥2+B2h(z)
NS E(| det(U; — 619)\veﬁ‘d‘logdct(lftE*ieUt))dtda € dz (A.16)

and in particular for v = 0 this gives . In the above equation the GMC eV’ *+8*(2)d2 is as defined
in Theorem i.e. associated with the Gaussian free field h on the cylinder R x R/27Z, E(h(z)h(w)) =
T(=Ac) (2, w).

When establishing the analogue of Theorem as a result of the asymptotics 7 the key thing to
notice is that given v, = and 8, = 8 for all z € &, the terms involving € (¢%, arg}) will vanish due to:

€ (L5, arg)) + € (], argi) =0
which can be seen by (A.14).
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