
Liouville quantum gravity from random matrix dynamics

Paul Bourgade

Courant Institute,

New York University

bourgade@cims.nyu.edu

Hugo Falconet

Courant Institute,

New York University

hugo.falconet@cims.nyu.edu

We establish the first connection between 2d Liouville quantum gravity and natural dynamics of random
matrices. In particular, we show that if (Ut) is a Brownian motion on the unitary group at equilibrium,
then the measures

| det(Ut − eiθ)|γdtdθ

converge in the limit of large dimension to the 2d LQG measure, a properly normalized exponential of
the 2d Gaussian free field. Gaussian free field type fluctuations associated with these dynamics were
first established by Spohn (1998) and convergence to the LQG measure in 2d settings was conjectured
since the work of Webb (2014), who proved the convergence of related one dimensional measures by
using inputs from Riemann-Hilbert theory.

The convergence follows from the first multi-time extension of the result by Widom (1973) on Fisher-
Hartwig asymptotics of Toeplitz determinants with real symbols. To prove these, we develop a general
surgery argument and combine determinantal point processes estimates with stochastic analysis on Lie
group, providing in passing a probabilistic proof of Webb’s 1d result. We believe the techniques will
be more broadly applicable to matrix dynamics out of equilibrium, joint moments of determinants
for classes of correlated random matrices, and the characteristic polynomial of non-Hermitian random
matrices.
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eγH(θ,t)

H =
∑

log |zk(t)− eiθ|

t

The (random) Gibbs measure eγH converges to the Gaussian multiplicative chaos on the cylinder, with H
the electric field associated to non-intersecting Brownian motions on the circle, z(t).
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1 Introduction

The Gaussian multiplicative chaos (GMC), introduced by Kahane in [66], is the fractal measure

eγφ(z)dz := lim
ε→0

eγφε(z)−
γ2

2 E(φε(z)
2)dz,

where φε is a mollification of a log-correlated Gaussian field φ on a domain D ⊂ Rd and dz denotes the
Lebesgue measure on Rd. The regularization and renormalization are necessary because of the negative
Sobolev regularity of the field. The convergence holds in probability with respect to the topology of weak
convergence and the parameter γ ∈ (0,

√
2d) since the limit is zero above this range [89, 91, 13, 88]. The

specific case where φ is a two dimensional Gaussian free field (GFF) (a Gaussian field whose covariance
function is the inverse of the Laplacian) or a one dimensional restriction thereof, has proved to be connected
with many different domains in mathematical physics. To name a few, it is the volume form in Liouville
quantum gravity (LQG), a metric measure space corresponding to the formal Riemannian metric tensor
“eγφ(dx2 +dy2)” [87,39,34,55]; appears in the scaling limit of random planar maps [75,78,80,57]; interplays
through conformal welding with Schramm Loewner Evolutions and the Conformal Loop Ensemble, the
scaling limit of interfaces in critical spins and percolation models [6,40,93,79,3]; played a central role in the
rigorous formulation and the resolution of Liouville Conformal Field Theory [30, 71, 53]; and appears in the
construction of a stochastic version of the Ricci flow [37]. The literature on this topic is abundant and we
refer to the survey [94] and references therein.

The Brownian motion on the unitary group U(N) is a rich object in random matrix theory. It preserves the
Haar measure and, under this initial condition, its eigenvalues have Circular Unitary Ensemble distribution
at each fixed time. They satisfy the Dyson dynamics [41] on the circle and, by the Karlin-McGregor formula
[67], can be seen as Brownian motions on the unit circle conditioned not to intersect. As ubiquitous in
random matrix theory, we are concerned with the large N limit of observables of this process. The large
N limit of the unitary Brownian motion itself is the free unitary Brownian motion [16, 29] and this has
applications to the large N limit of the Yang-Mills measure on the Euclidean plane with unitary structure
group as observed in [76]. In this paper, we prove the following

Theorem 1.1. Let (Ut) be a unitary Brownian motion at equilibrium, as defined in (2.6). Then for every
γ ∈ (0, 2

√
2),

lim
N→∞

|det(Ut − eiθ)|γ

E(|det(Ut − eiθ)|γ)
dtdθ = eγh(z)dz (1.1)

where h is the Gaussian free field on the cylinder R × R/2πZ, E(h(z)h(w)) = π(−∆C)
−1(z, w), where

∆C = ∂2
t + ∂2

θ . Moreover, the convergence is in distribution with respect to the weak topology.

The usual parametrization γ ∈ (0,
√

2d) in GMC theory corresponds to log-correlated fields. Here, the
field is 1

2 log-correlated and by a change of parametrization our result covers this entire range (see (2.16)
below for an exact formula of the covariance of this free field, and background).

In [99], Webb opened a connection between Gaussian multiplicative chaos and random matrix theory by
linking the characteristic polynomial of the Circular Unitary Ensemble (CUE) to a one-dimensional GMC and
conjectured that similar results also hold for the Gaussian Unitary Ensemble, one-dimensional β-ensembles,
and more generally for random matrix models presenting log-correlations, including in dimension two. His
proof and the ones of the following works [14, 81] relied on existing results for Fisher-Hartwig asymptotics
based on the Riemann-Hilbert approach (or adaptations thereof). Another approach appeared in [27], still
for d = 1, which showed that the limit of an object different from the characteristic polynomial, the spectral
measure of circular β-ensembles, coincides with a Gaussian multiplicative chaos. In our paper, as an appli-
cation of our main theorem below, we provide the first convergence to the 2d LQG measure, taking a new
angle in viewing this problem as one in random matrix dynamics.

By considering the unit disk instead of a semi-infinite cylinder (i.e., replacing dtdθ by e−2tdtdθ with
z = e−teiθ, t ∈ (0,∞) in the limit (1.1)), Theorem 1.1 translates into convergence towards the measure
eγh̄(z)dz on the unit disk where h̄ is the lateral part in the polar decomposition of the 2d whole plane GFF
h, i.e. h̄(z) = h(z) − −

∫
|z|U h; the subtracted process r 7→ −

∫
rU h being a Brownian motion independent of h̄.
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The field h̄ and the associated chaos measure were introduced in the mating of trees [40], used in the proof
of the DOZZ formula [71] and the dynamics of the restriction of h̄ on concentric circles played a crucial role
in the proof of the conformal bootstrap in Liouville theory [53]. The unitary Brownian motion is the most
natural model among random matrix dynamics that induce the field h̄ and its own dynamics.

1.1 Multi-time Fisher-Hartwig asymptotics. The main contribution of this paper is the dynamical
extension of asymptotics of Toeplitz determinants with singularities. In the following discussion, the Fourier

transform is normalized as f̂k =
∫ 2π

0
f(eiθ)e−ikθ dθ

2π and we let

(f, g)H = (f, g)H1/2 =
∑
k∈Z
|k| f̂kĝ−k.

The Toeplitz determinant DN (f) = det(f̂j−k)N−1
j,k=0 has been the subject of many investigations. For example,

a simple version of the strong Szegő theorem states that if f = eV with V real-valued and smooth enough,
DN (f) ∼ exp(NV̂0 + 1

2‖V ‖
2
H) for large dimension.

For a wide class of irregular functions f , Fisher and Hartwig [46] made a seminal general conjecture
about the asymptotic form of DN (f), which has been corrected by Basor and Tracy [11] and is settled in
full generality [32] by Riemann-Hilbert methods, after multiple important contributions, e.g.[10,101,42]. For
example, in the special case where f(z) = eV (z)

∏m
j=1 |z−zj |2αj with m > 1 fixed singularities zj on the unit

circle, αj > −1/2, and smooth centered real V , the Fisher-Hartwig asymptotics states that

DN (f) = e
1
2‖V ‖

2
H−

∑m
j=1 αjV (zj)N

∑m
j=1 α

2
j

∏
16j<k6m

|zj − zk|−2αjαk

m∏
j=1

G(1 + αj)
2

G(1 + 2αj)
(1 + o(1)), (1.2)

where the Barnes function G is defined in Subsection 2. Motivations in statistical physics for general Fisher-
Hartwig asymptotics are multiple, see in particular the beautiful exposition of applications to the phase
transition of the 2d Ising model in [33].

Such Toeplitz determinant asymptotics are related to random matrix theory as they correspond to mo-
ments of characteristic polynomials of random matrices. For example, the Heine formula implies that the
left-hand side of (1.2) coincides with E[

∏m
j=1 |PN (zj)|2αjeTrV (U)], where PN (z) = det(z − U) and U is a

N × N Haar-distributed unitary matrix. The main contribution of our paper is the first Fisher-Hartwig
asymptotics for singularities in space and time. More precisely, Theorem 1.2 below is a multi-time extension
of (1.2), a formula due to Harold Widom in 1973.

To state this main result, we first denote A (resp. B) a finite subset of {z = t + iθ, t ∈ R, 0 6 θ 6 2π}
(resp. R), with fixed cardinality but possibly N -dependent points. The functions fs in the statement below
are of regularity C 3 on an arbitrary mesoscopic scale N−1+δ, δ ∈ (0, 1]. We also remind the definition of the
Poisson kernel Pt in (2.1).

Theorem 1.2. Let (Ut) be a unitary Brownian motion at equilibrium, as defined in (2.6). Let 0 < δ 6 1, C
be fixed constants. There exists ε > 0 such that uniformly in maxB |s|+maxA |z| 6 C, min(z,z′)∈A 2,z 6=z′ |ez−
ez
′ | > N−1+δ, γz ∈ [0, C], fs ∈ Sδ,C (see Definition 2.1), we have

E
[
e
∑
s∈B Tr fs(Us)

∏
z=t+iθ∈A

|det(Ut−eiθ)|γz
]

= eN
∑

B
−
∫
fs+

1
2

∑
B2 (fs,P|s−s′|fs′ )H−

∑
z∈A ,s∈B

γz
2 (P|t−s|−P∞)fs(e

iθ)

×
∏
A

N
γ2z
4

G(1 + γz
2 )2

G(1 + γz)

∏
z,w∈A ,z 6=w

(
max(|ez|, |ew|)
|ez − ew|

) 1
4γzγw

(1 + O(N−ε)) (1.3)

where the multiplicative constant in O depends on |A |, |B|.

When there is no singularity (A = ∅), this formula is a dynamical generalization of the strong Szegő
theorem. It can also be thought of as an upgrade to any mesoscopic scale and to exponential generating
functions of Spohn’s convergence of the Dyson Brownian motion dynamics to the free field (see section 2.2).

However the main originality and applications of Theorem 1.2 are due to the logarithmic insertions,
see for example Remarks 6.3 and 6.4 on straightforward corollaries on logarithmically correlated fields,
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their maximum and optimal eigenvalues deviations along Dyson Brownian motion. Based on (1.3) it is
also not hard to obtain that for any smooth space-time curve C in (eiθ, t) with Lebesgue measure λC ,
|det(Ut−eiθ)|γdλC converges up to normalization to a one dimensional Gaussian multiplicative chaos in the
L1 phase (i.e. γ < 2 for d = 1). In particular this recovers the fixed time results from [99,81].

The proof of Theorem 1.2 applies to other singularities: the discontinuities from Im log. We only stated
our results for Re log for the sake of conciseness, but one can easily state a consequence of the discontinuous
case Im log. Indeed, define Im log det(1 − e−iθUt) =

∑
k Im log(1 − ei(θk(t)−θ)), with the branch choice

Im log(1−eiϕ) = (ϕ−π)/2 if ϕ ∈ [0, π), (ϕ+π)/2 if ϕ ∈ (−π, 0). As Im log det(1−e−iθUt)−Im log det(1−Ut) =
π(Nt(0, θ)− ENt(0, θ)), where Nt(0, θ) =

∣∣{θk(t) ∈ (0, θ]}
∣∣, we have

lim
N→∞

Z−1
N,γ e

γ π(Nt(0,θ)−ENt(0,θ))dtdθ = eγh(z)dz (1.4)

for every γ ∈ (0, 2
√

2) and some constants ZN,γ . The above result relies on an analogue of Theorem 1.2, see
Equation (A.12) in the Appendix, which also gives the necessary, straightforward changes for a proof.

Although an extension of Theorem 1.2 to include Im log and complex-valued fs is straightforward, a
generalization to complex-valued γz is not. In the static case, the most general version of Fisher-Hartwig
asymptotics [32] allows general complex exponents, with asymptotics involving a subtle variational problem.
It is not even clear how to formulate a related conjecture in our multi-time setting.

More generally, moments of characteristic polynomials of wide classes of random matrices have been a
topic of major interest, see e.g. [8, 19, 23, 48] to name a few in the case of integer exponents by algebraic
and supersymmetric methods, and [14,45,25,28,100] for fractional exponents by Riemann-Hilbert methods.
Theorem 1.2 initiates joint (fractional) moments for correlated random matrices, a topic connected to the
quenched complexity of high dimensional landscapes [7, 49].

Our paper considers random matrices from the canonical setting, the unitary group, but we expect the
convergence to LQG will remain in other settings (and the proof method through surgery as described below
will apply, although major technical obstacles remain). Such settings include dynamics on other Lie groups,
out of equilibrium or with a Dyson Brownian motion at arbitrary temperature. In fact, the upcoming work
[20] on a non-Hermitian analogue of Fisher-Hartwig asymptotics will follow a scheme similar to the surgery
that we now explain.

1.2 Outline. To prove our main result, we develop a general surgery argument that allows us to go be-
yond the usual free field limit and which works very roughly speaking as follows: 1) we “cut” the long
range non-singular part of the determinants in (1.3) and prove a (space-time) decoupling of the resulting
product of localized singularities 2) we carry out a general “gluing operation” for non-singular terms 3) we
evaluate asymptotics of one localized singularity by gluing the opposite of the associated long range non-
singular part to the determinant itself, together with the Selberg integral formula 4) with these in hands, it
remains to glue back the non-singular parts and the additional smooth functions to the localized singularities.

Decoupling. The first ingredient consists in a space-time decoupling of the truncated singularities. Usual
techniques to prove decorrelation for linear statistics or extrema of eigenvalues do not seem to work for the
product of local singularities, either because our functions are not in H1/2 or because such decouplings give
additive error terms. We find a new general multiplicative decorrelation of local linear statistics which can
apply to a large class of determinantal point processes. We prove in Section 3.1, by using the Eynard-Mehta
machinery, that the process of the eigenvalues at different times is a determinantal point process. Despite
the simplicity of the expression of the kernel we find, it seems that this stationary case has not been de-
rived before (nor with arbitrary initial condition), because there is no canonical ordering as the particles are
winding around the circle. As a second step, to work out the decoupling, the starting point of our proof
is an infinite dimensional version of the Hoffman-Wielandt inequality, applied to a related self-adjoint op-
erator, from which we then extract the sought decoupling of our observable. This is the content of Section 3.2.

Matrix dynamics. Our“gluing” operation starts with the usual method (initiated in random matrix theory
in [59]) of Hamiltonian perturbation and then we a) perform an integration by parts, b) obtain asymptotics.

As explained at the beginning of Section 5, due to our combined multitime and singular settings, step
a) requires an original approach: the integration by parts formula from Proposition 5.3 encodes information
about eigenvalues but also eigenvectors, while loop equations traditionally correspond to hierarchies only

4



for particles/eigenvalues. For the proof of Proposition 5.3, we use the Girsanov theorem on the Lie algebra
uN of the unitary group (the unitary Brownian motion (U) is the solution of a matrix SDE driven by a
Brownian motion (B) on uN ). This entails characterizing the Fréchet derivatives of the UBM, DFUt :=
limε→0 ε

−1(U(B + εF )t − U(B)t) (shifting B in a progressively measurable direction (F ) =
∫ ·

0
fsds), as

solutions of matrix SDEs, and solving explicitly these. We exploit the stationarity of the process to consider
long times so that observables of the UBM are well encoded by the noise driving the process and in particular
by its associated integration by parts formula.

To control the error terms from step a), we prove an averaged (over projections) and multi-time local law
(Proposition 4.5, the main result of Section 4), which is new including in the context of Hermitian random
matrices. Moreover, to control submiscroscopic errors due to logarithmic singularities, in the key Lemma
5.6, we impose an algebraic cancellation property (5.8), which holds if we add compensator functions to our
observables of interest (see Section 6.1). These compensators are local functions, so they can be included
from the start in the decoupling step, completing the outline of our surgery argument.

In Section 6, by applying the general surgery introduced above, we prove Theorem 1.2 first, and then use
it for our main application, i.e. the convergence to the Liouville quantum gravity measure.

Acknowledgements. We wish to thank Jiaoyang Huang and Ofer Zeitouni for their useful feedback on the
first version of the paper, and Xin Sun for suggesting the extension of our result to some other surfaces. We
are especially grateful to Ahmet Keles for his many suggestions which helped improve this work. P.B. was
supported by the NSF grant DMS 2054851 and a Simons fellowship.

2 Preliminaries

Basic notations. In this paper, dλ denotes the Lebesgue measure on the unit circle U, and dm the Lebesgue

measure on C. We remind that the Fourier coefficients of f are defined as f̂k = 1
2π

∫ 2π

0
e−ikθf(θ)dθ. The

Poisson kernel plays an important role and is normalized as follows:

Ptf(z) =

∫ 2π

0

f(eiθ)Re
1 + ze−iθ−t

1− ze−iθ−t
dθ

2π
=
∑
k∈Z

f̂ke
−|k|tzk. (2.1)

Its restriction to U is given by Ptf(eiθ) =
∑
k f̂ke

−|k|teikθ.
The Barnes G-function is defined as the Weierstrass product

G(z + 1) = (2π)z/2e−
z+z2(1+γ)

2

∞∏
k=1

(
1 +

z

k

)k
e
z2

2k−z.

Here, and only here, γ is the Euler constant. The Barnes function satisfies the functional equation G(z+1) =
Γ(z)G(z) where Γ is the Gamma function.

Moreover, for a matrix A, Tr(A) =
∑
iAi,i and we denote by AT the transpose of A. A∗ = AT . If M,N

are two complex valued matrices, 〈M,N〉 = Tr(M
T
N) and 〈M,N〉R = Re〈M,N〉.

Finally, the statement of Theorem 1.2 makes use the following functional space Sδ,C described below.

Definition 2.1. For 0 < κ 6 1 and k ∈ N we introduce the norm on {f : U→ R}

‖f‖∞,k,κ =

k∑
j=0

N j(κ−1)‖f (j)‖∞.

We define Aκ,C as the set of functions g : U→ R supported on an arc of length N−1+κ and smooth on that
scale in the sense that ‖g‖∞,3,κ 6 C. For 0 < δ 6 1, let Sδ,C be the set of functions f : U → R which can
be written as

f =

m∑
i=1

fi, m 6 C logN, fi ∈ Aκ,C (κ ∈ [δ, 1]).
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Note that for any g ∈ Aκ,C we have ĝk 6 C min(N−1+κ, N
1−κ

k2 ), so ‖g‖2H 6 C. Thus, f ∈ Sδ,C implies
‖f‖H = O(logN).

Two examples of particular interest are as follows. First, functions of type f(eiθ) = g(N1−κ(θ − ϕ))
with g compactly supported and C 3 are in Aκ,C ⊂ Sδ,C for any C > 0 and κ ∈ [δ, 1]. Second, any
regularization of the function f(eiθ) = log |eiθ−eiϕ| on scale N−1+δ is in Sδ,C for fixed, large enough C (e.g.
θ 7→ N1−δ ∫ f(eiψ)χ(N1−δ(θ − ψ))dψ with χ > 0 smooth, compactly supported,

∫
χ = 1).

2.1 Unitary Brownian motion. With its most common normalization, the Brownian motion on the
unitary group U(N) satisfies the following stochastic differential equation (SDE)

dŨt = ŨtdBt −
1

2
Ũtdt (2.2)

where dBt is a Brownian motion on the space of skew Hermitian matrices. We consider an orthogonal basis of
skew Hermitian matrices for 〈·, ·〉R given by matrices of the form 1√

2N
(Ek,`−E`,k), i√

2N
(Ek,`+E`,k), i√

N
Ek,k.

Here, Ek,` is the matrix whose k, ` entry is 1 and other entries are 0. Note that this is an orthonormal basis
for N〈·, ·〉R. We write this basis {X1, . . . , XN2}. The Brownian motion (Bt) can be realized as

Bt =
∑
k

XkB̃
k
t (2.3)

where the (B̃k)’s are independent standard Brownian motions. It goes back to Dyson [41] that the eigenvalues
z̃k of (Ũt) satisfy

dz̃k =
1√
N

iz̃kdBk −
1

N

∑
j 6=k

z̃kz̃j
z̃k − z̃j

dt− 1

2
z̃kdt. (2.4)

In this paper, it will be more natural to consider a small time change in the unitary Brownian motion:
the normalization

Ut := Ũ2t, (2.5)

in other words the dynamics

dUt =
√

2UtdBt − Utdt, (2.6)

will provide convergence to the free field on the cylinder with its canonical, locally isotropic, covariance func-
tion E(h(z)h(w)) = π(−∆C)

−1(z, w), as in Theorem 1.1. Moreover, (2.6) corresponds to the normalization
in [97], the first result on convergence of dynamics of random matrix type to the free field, as explained
in Subsection 2.2. Indeed Spohn considers the β-Dyson Brownian motion on the unit circle, i.e. the time
evolution of N particles on the unit circle {eiθ1(t), . . . , eiθN (t)} satisfying

dθj =
β

2N

∑
i 6=j

cot

(
θj − θi

2

)
dt+

√
2

N
dBj(t) (2.7)

where the (Bj)’s are independent standard Brownian motions. For the unitary Brownian motions strong
solutions exist as [24, Theorem 3.1] proves more generally that for β > 1, the particles almost surely do not
collide but almost surely do when β ∈ (0, 1). With zk = eiθk , the dynamics (2.7) reads

dzk = izk

√
2

N
dBk −

β

N

∑
j 6=k

zkzj
zk − zj

dt+
zk
N

(
β

2
− 1)dt− β

2
zkdt. (2.8)

By comparing (2.4) and (2.8), the dynamics of the eigenvalues of the unitary Brownian motion as normalized
in (2.5) coincide with the β-Dyson Brownian motion from [97] when β = 2.

Finally, we will use the Itô formula for the considered dynamics (2.6):

df(Ut) =
√

2
∑
k

LXkf(Ut)dB̃
k
t + ∆U(N)f(Ut)dt, (2.9)

where LXf(U) = d
dt |t=0

f(UetX) and ∆U(N)f(U) =
∑
k
d2

dt2 |t=0
f(UetXk) is the Laplacian on U(N).
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2.2 The characteristic polynomial process and the free field. In the paragraphs below, starting
from a formal application of Spohn’s result [97], we explain how the large dimension limit of the logarithm
of the characteristic polynomial process is naturally related with dynamics associated with the GFF. These
explanations are not necessary for proving our theorems, but they shed some lights on the structure of the
main objects we consider. We also use this as an opportunity to set some notations and record covariance
identities that we will use, in particular when stating the convergence to the chaos measures eγh and eγh̄.

Characteristic polynomial process induced by the Dyson dynamics. Given the dynamics (2.7),
Spohn [97] considered the stochastic process (indexed by functions f) given by

ξN (f, t) :=

N∑
j=1

f(θj(t)).

As EξN (f, t) = Nf̂0 = N−
∫
f , it is natural to restrict to functions f with zero mean and Spohn proved that

the limiting dynamics are given, with ∆U = (∂/∂θ)2, by

dξ(f, t) = ξ(−(β/2)
√
−∆Uf, t)dt+ dW(f ′, t), (2.10)

where dW(f, t) is a Gaussian noise characterized by E(dW(f, t)dW(g, s)) = 2δ(t− s)dtds 1
2π

∫ 2π

0
f(x)g(x)dx.

Now, we discuss the characteristic polynomial process induced by these dynamics, namely

hN (t, x) := ξN (fx, t), (2.11)

where fx(θ) := log |eiθ − eix| = −Re
∑
k>1

1
ke

ikθe−ikx = −
∑
k>1

1
k cos(k(θ − x)). This field has zero mean

in the sense that for every N, t,
∫
U hN (t, ·) = 0. We formally take f = fx in (2.10) and look for the induced

dynamics. Note first that
√
−(∂/∂θ)2fx(θ) =

√
−(∂/∂x)2fx(θ) so the drift is given by −β2 (−∆U)1/2.

Concerning the noise part, it is clearly white in time, and when t = s an elementary calculation gives

E(W(f ′x, t)W(f ′y, t)) = 2
1

2π

∫ 2π

0

f ′x(θ)f ′y(θ)dθ = πδ(x− y).

With W an L2(λ) space-time white noise with zero mean (see below (2.14) for a representation with Brownian
motions), it is natural to expect from Spohn’s result that

dht = −β
2

(−∆U)1/2htdt+
√
πW (dx, dt). (2.12)

Note also that
∫
U ht(x)dx = 0 for every t ∈ R since ht(x) = limN

∑
log |eiθNk (t) − eix|.

Dynamics of the averaged trace of the 2d GFF on Euclidean circles. We consider here the trace of
the whole-plane GFF on Euclidean circles and explain in which sense the dynamics (2.12) are related to it.
The whole-plane GFF can be seen as a σ-finite measure (with Lebesgue measure on the zero mode) or as a
random field modulo constant. Recalling that in the context of characteristic polynomials

∫
U hN (t, ·) = 0,

we are here therefore only interested in ht = Φ(e−t·) − −
∫

Φ(e−t·), where Φ is a whole plane GFF, and this
doesn’t depend on the zero mode of the free field (so, for instance one can take Φ to have zero mean on
U for which the covariance is given in [98, Section 2.1.1], for more on the GFF, see [92, 35]). From the
log-covariance of the whole-plane GFF, one has (see, e.g., [71, Section 3]),

E(hs(e
ix)ht(e

iy))) = log
max(|e−s|, |e−t|)
|e−seix − e−teiy|

. (2.13)

In particular, E(h0(eix)h0(eiy)) = − log |eix − eiy| and h0 can be realized as h0 =
∑
k Ak(0) cos(k·) +

Bk(0) sin(k·) where (Ak(0)) and (Bk(0)) are independent Gaussian variables, with Ak(0) ∼ Bk(0) ∼ N (0, 1
k ).

H = H1/2 is exactly the Cameron-Martin space of h0.
The Gaussian field given by (2.13) has the same distribution as the one given by the following dynamics

dht = −(−∆U)1/2htdt+
√

2πW (dt,dw), (2.14)

where W is an L2(λ) space-time white noise on the unit circle and h0 has the distribution of a centered
Gaussian field with covariance given by E(h0(eix)h0(eiy)) = − log |eix − eiy|. The space-time white noise
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W (dt,dw) can be realized as
∑
k>1

cos(k·)√
π

dVk(t) + sin(k·)√
π

dWk(t) for some independent standard Brownian

motions (Vk), (Wk). Therefore, with ht =
∑
k Ak(t) cos(k·) + Bk(t) sin(k·), the above dynamics can be

written as dAk(t) = −kAk(t)dt+
√

2dVk(t) and, similarly, dBk(t) = −kBk(t)dt+
√

2dWt. This is an infinite

dimensional Ornstein-Uhlenbeck process and Ak(t) = e−ktAk(0) +
√

2
∫ t

0
e−k(t−s)dVk(s) (similarly for Bk).

The identification in law of these two processes follows by a covariance calculation since both fields are
Gaussian. Indeed, using the coordinates z = t+ ix, w = s+ iy so max(t, s) = log max(|ez|, |ew|), this follows
from ∑

k>1

cos(k(x− y))

k
e−k|t−s| = − log |1− e−|t−s|ei(y−x)| = log

max(|ez|, |ew|)
|ez − ew|

.

Note that if (ht) solves (2.14), h̃t = ahbt solves dh̃t = −b(−∆U)1/2h̃tdt+ a
√
b
√

2πW̃ (dx, dt).
(2.12) is natural from the point of view of the characteristic polynomial process. From the GFF point of

view, the explicit form of (2.14) naturally arises from the Markov property of the free field. Indeed, instead
of viewing (ht) as the trace of the free field on e−tU, it is equivalent to view it as the harmonic part of the
Markov decomposition of Φ on e−tD, ht(z) = Hht|U(z) where H denotes the harmonic extension. Then,
writing Φ = h0 + φ0 on D, where φ0 is an independent GFF with zero boundary values, it follows that

ht(z) = h0(e−tz) +Ht(φ0)(e−tz), (2.15)

where Ht denotes the harmonic projection on e−tD. (2.15) readily implies that (ht) is a Markov process. On
the circle w ∈ U, formally, d

dt |t=0
h0(e−tw) = d

dt |t=0
Hh0(e−tw) = ∂nHh0 where ∂n is the inward pointing

normal derivative and ∂nH is the Dirichlet-to-Neumann operator, which here coincides with −(−∆U)1/2.
This is a formal way for retrieving the drift part of (2.14). In fact, from (2.15) and using the martingale
problem approach, one can rigorously prove that the dynamics of (ht) are given by (2.14). This approach is
more robust and avoids having to guess the exact dynamics. For more details, a generalization can be found
in [36] which considers instead of Euclidean growth the metric growth associated with the LQG metric.

Free field on the cylinder. When β = 2, the covariance of the limiting field associated with (2.12) is

E(h(z)h(w)) =
1

2
log

max(|ez|, |ew|)
|ez − ew|

=
1

2

∑
k>1

cos(k(x− y))

k
e−k|t−s| = P|t−s|C(x− y) (2.16)

where

C(x, y) = C(x− y) = −1

2
log |eix − eiy|. (2.17)

This is an expression of the Green function associated with the Laplacian on C := R × U, ∆C = ∂2
t + ∂2

θ .

Indeed, with F̂ (ξ, k) := 1
2π

∫
R
∫
U F (t, x)e−itξe−ikxdtdx, we have F (t, x) = 1

2π

∑
k 6=0

∫
R F̂ (ξ, k)eikxeitξdξ so

−∆CF (t, x) = 1
2π

∑
k 6=0

∫
R(k2 + ξ2)F̂ (ξ, k)eikxeitξdξ and (−∆C)

−1 has symbol given by 1
k2+ξ2 . We retrieve

the covariance kernel

(−∆C)
−1F (t, x) =

1

2π

∑
k 6=0

∫
R
F̂ (ξ, k)

eikxeitξ

k2 + ξ2
dξ =

∫
R×U

F (s, y)(−∆−1
C )(s, x; t, y)dsdy

where (−∆C)
−1(s, x; t, y) is given by

1

(2π)2

∑
k 6=0

∫
R

eik(x−y)eiξ(t−s)

k2 + ξ2
dξ =

1

(2π)2

∑
k 6=0

∫
R

1

k2

eik(x−y)eiξ(t−s)

1 + (ξ/k)2
dξ =

1

(2π)2

∑
k 6=0

∫
R

1

|k|
eik(x−y)eiωk(t−s)

1 + ω2
dω.

By using 1
π

∫
R

eiωx

1+ω2 dω = e−|x|, we get 1
4π

∑
k 6=0

1
|k|e

ik(x−y)e−|k||t−s| = 1
2π

∑
k>1

cos(k(x−y))
k e−|k||t−s| hence

E(h(z)h(w)) = E(h(s, x)h(t, y)) = π(−∆C)
−1(s, x; t, y). (2.18)

2.3 Submicroscopic smoothing. In this section, we explain that in our main result Theorem 1.2, without
loss of generality we can assume that the logarithmic singularities from the determinants are smoothed on
a submicroscopic scale. More precisely, given a fixed small parameter α > 0, we define in the following
logarithms smoothed on scale

ρ = N−1−α.
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Definition 2.2. For any z ∈ ∂D consider the following functions the functions `z+, `
z
− : ∂D→ R.

– `z+(w) > log |z−w|, `z+(zeiϕ) = `z+(ze−iϕ), `z+(w) = log |z−w| when |z−w| > 2ρ, `z+(w) = log ρ when
0 < |z − w| < ρ, and |∂kψ`z+(eiψ)| 6 Ck min(ρ, |z − eiψ|)−k for any k > 1.

– `z−(w) =
∫
χρ(ϕ) log |eiϕw − z|dϕ where χ > 0 is smooth, even, supported on [−1, 1],

∫
χ = 1, and

χρ(x) = ρ−1χ(x/ρ). Note that `− also satisfies |∂kψ`z−(eiψ)| 6 Ck min(ρ, |z − eiψ|)−k.

The following lemmas show that Theorem 1.2 only needs to be proved for `+, `−.

Lemma 2.3. With the notations from Theorem 1.2, for some fixed c̃ > 0 we have

E
[
e
∑
s∈B Tr fs(Us)

∏
z=t+iθ∈A

|det(Ut − eiθ)|γz
]
6E

[
e
∑
s∈B Tr fs(Us)+

∑
z=t+iθ∈A γz Tr `e

iθ

+ (Ut)
]
,

E
[
e
∑
s∈B Tr fs(Us)

∏
z=t+iθ∈A

|det(Ut − eiθ)|γz
]
>E

[
e
∑
s∈B Tr fs(Us)+

∑
z=t+iθ∈A γz Tr `e

iθ

− (Ut)
]
· (1−N−α/2)

− eN
∑

B
−
∫
fs−c̃(logN)2 .

Proof. The first inequality is trivial because `e
iθ

+ (eiψ) > log |eiθ − eiψ| for any real θ, ψ.
The second inequality relies on invariance by rotation and Jensen’s inequality: Denoting X a random

variable with density χρ, we have

E
[
e
∑
s∈B Tr fs(Us)+

∑
z=t+iθ∈A γz Tr log |Ut−eiθ|

]
=

∫
E
[
e
∑
s∈B Tr fs(e

iϕUs)+
∑
z=t+iθ∈A γz Tr log |eiϕUt−eiθ|

]
χρ(ϕ)dϕ

= EEX
[
e
∑
s∈B Tr fs(e

iXUs)+
∑
z=t+iθ∈A γz Tr log |eiXUt−eiθ|

]
> E

[
e
∑
s∈B TrEXfs(eiXUs)+

∑
z=t+iθ∈A γzEX Tr log |eiXUt−eiθ|

]
= E

[
e
∑
s∈B Tr f̃s(Us)+

∑
z=t+iθ∈A γz Tr `e

iθ

− (Ut)
]
,

where

f̃s(w) =

∫
χρ(ϕ)fs(we

iϕ)dϕ. (2.19)

After ordering 0 6 θ2(s)− θ1(s) 6 . . . 6 θN (s)− θ1(s) 6 2π, we now consider the rigidity event

R =
⋂

s∈B,16i<j6N

{|θj(s)− θi(s)−
2π(j − i)

N
| 6 N c

N
}

where c can be any constant chosen in (0, δ) and δ is the regularity scale from the assumptions of Theorem

1.2. From (5.5) and a union bound we know that P(Rc) 6 e−c(logN)2 . Together with the Cauchy-Schwarz
inequality, Lemma 2.6 below and Lemma 5.4, this implies

E
[
e
∑
s∈B Tr f̃s(Us)+

∑
z=t+iθ∈A γz Tr `e

iθ

− (Ut)1Rc

]
6 eN

∑
B
−
∫
fs−c̃(logN)2 .

From Definiton 2.1, ‖f ′s‖∞ 6 (logN)N1−δ, and on R we have #{θi ∈ suppfs} . logN , so that on R we
have

|Trf̃s(Us)− Trfs(Us)| 6 Nδ · (logN)2N1−δN−1−α 6 N−α/2.

The conclusion immediately follows.

Next, we establish the reverse inequalities to recover the log-singularities from their smooth approxima-
tions. For our purpose, it suffices to prove these reverse inequalities in the single-time, single log-singularity
case. The argument relies on a simple asymptotic result for the Hua–Pickrell kernel, KHP(γ), which is the
correlation kernel of the determinantal point process associated with the biased measure on the particles
defined by

EHP(γ)[f(U)] := E
[
f(U)

|det(U − Id)|γ

E[|det(U − Id)|γ ]

]
where γ > 0. The following key observation about this kernel follows directly from Theorem 3.6 and
Proposition 3.7 in [22].
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Lemma 2.4. Fix some C > 0 and let γ ∈ [0, C] be a constant. Then, there exists a c > 0 depending only
on C such that for every N ∈ N and θ ∈ [− 1

N ,
1
N ],

|KHP(γ)(θ, θ)| 6 c|θ|γN1+γ .

As a corollary, by Hadamard’s inequality,

ρ
HP(γ)
k (θ1, . . . , θk) 6

k∏
i=1

KHP(γ)(θi, θi) 6 ck|θ1θ2 · · · θk|γNk(1+γ) (2.20)

where ρ
HP(γ)
k is the k-point correlation function.

Lemma 2.5. Given α,C > 0 and ρ = N−1−α, for any γ ∈ [0, C] we have,

E[eγ Tr `1+(U)] 6 E[eγ Tr log |U−Id|](1 + O(N−α)), (2.21)

E[eγ Tr `1−(U)] > E[eγ Tr log |U−Id|](1 + O(N−α/2)), (2.22)

where the implicit constants depend only on C.

Proof. We omit the superscript 1 in `+ and `− for simplicity and define a counting set

Ak := {number of eigenangles in [−3ρ, 3ρ] is exactly k}.

Then

E[eγ Tr `+(U)] = E[1A0
· eγ Tr log |U−Id|] +

N∑
k=1

E[1Ak · eγ Tr `+(U)]

6 E[eγ Tr log |U−Id|]
(

1 +

N∑
k=1

EHP(γ)[1Ak · eγ Tr(`+−log |1−·|)(U)]
)
.

For any k > 1,

EHP(γ)[1Ak · eγ Tr(`+−log |1−·|)(U)] 6 EHP(γ)
[ ∑
i1,...,ik∈[[N ]]
and distict

δ(θi1 ,...,θik )([−3ρ, 3ρ]k) ·
k∏
j=1

(
4ρ

|θij |
)γ
]
]

6
∫

[−3ρ,3ρ]k

k∏
j=1

(
4ρ

|θj |
)γck|θ1θ2 · · · θk|γNk(1+γ)dθ1 . . . dθk 6 (

4c

Nα
)k+kγ

where we have used equation (2.20). Substituting this gives the necessary bound.
Moving onto the second inequality, (2.22), we introduce an intermediate function in order to evaluate

long range and short range separately:

` := (1− χε) · log |1− · |+ χε · `−

where ε := N−1−α/2 and χε(z) is a smooth bump function on unit circle that is 1 if |z − 1| < ε, and 0 if
|z − 1| > 2ε. Short range can be handled similarly to the proof of the inequality (2.21). We define

Bk := {number of eigenangles in [−3ε, 3ε] is exactly k}

and let `+,ε be defined analogously to `+, except with ε is used as the scaling parameter in place of ρ. Then,

E[eγ Tr `(U)] = E[eγ Tr log |U−Id|] +

∞∑
k=1

(
E[1Bke

γ Tr `(U)]− E[1Bke
γ Tr log |U−Id|]

)
= E[eγ Tr log |U−Id|] +O

( ∞∑
k=1

E[1Bke
γ Tr `+,ε(U)]

)
= E[eγ Tr log |U−Id|](1 + O(N−α/2)) (2.23)
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where in the second inequality we used `+,ε > ` and `+,ε > log |1 − · | and the last equality is as shown
during the proof of equation (2.21).

Finally, we finish the proof by showing E[eγ Tr `−(U)] = E[eγ Tr `(U)](1 + O(N−α/2)). Consider the rigidity
set, i.e. when the eigenangles are ordered, 0 6 θ1 6 . . . 6 θN 6 2π, and

G̃ =
⋂

16k6N

{
|θk −

2πk

N
| 6 ϕ

N

}

where ϕ = (logN)log logN for which we have P(G̃ c) 6 e−(logN)log logN

(see, e.g., equation (1.8) in [73]). Simple

calculations show that on G̃ , Tr(`− `−)(U) 6 ϕ2N−α. Hence,

E[eγ Tr `−(U)] = E[1G̃ · e
γ Tr `(U)](1 + O(N−α/2)) + O

(
P(G̃ c)1/2E[e2γ Tr `−(U)]1/2

)
= E[eγ Tr `(U)](1 + O(N−α/2)) + P(G̃ c)1/2 O

(
E[e2γ Tr `+,ε(U)]1/2

)
= E[eγ Tr log |U−Id|](1 + O(N−α/2))

where we have used `+,ε > ` and `+,ε > `− in the second equality and equations (2.23), (2.21) with Lemma
6.1 in the third.

Lemma 2.6. Let `iθ+, `
eiθ

− be as in Definition 2.2. Then there exists C̃ = C̃(α) such that

‖`e
iθ

± ‖2H 6 C̃ logN.

Proof. We prove the result for `+ (the proof for `− is identical). Without loss of generality we consider

`(ϕ) := `1+(eiϕ). For k > ρ−1 we have |ˆ̀k| . k−2
∫
|`′′| . k−2ρ−1, so that

∑
|k|>ρ−1 |k| · |ˆ̀k|2 . 1.

For k 6 ρ−1, we note that ˆ̀
k =

∫ π
−π `(ϕ)eikϕdϕ = k−1

∫ π
0
`′(ϕ)(eikϕ − e−ikϕ)dϕ, and

|
∫ π

0

`′(ϕ)(eikϕ − e−ikϕ)dϕ| .
∫ 1/k

0

min(ρ−1, ϕ−1)kϕdϕ+ |
∫ π

1/k

`′(ϕ) sin(kϕ)dϕ|

. 1 + k−1|
∫ π

1/k

`′′(ϕ) cos(kϕ)dϕ|+ k−1`′(1/k) . 1.

We have proved ˆ̀
k . k−1 for k 6 ρ−1, so

∑
k6ρ−1 k|ˆ̀2k| . logN and the proof is complete.

3 Multi-time determinantal point process

1d Markov processes such as random walks or diffusions conditioned not to intersect arise in many statistical
mechanics models. In the continuous setting, the Karlin-McGregor formula [67] allows to understand the
probability distribution of these non-intersecting paths by viewing them as measures defined by products of
several determinants. The Eynard-Mehta theorem states that these are determinantal point processes (point
processes for which the correlation functions can be expressed as determinants of an associated kernel), a large
class that appears in random matrix theory, growth processes, directed polymers, tilings and combinatorics,
to name a few. Nice introductions and more background can be found in [64,18] and references therein.

3.1 The extended kernel. Motivated by universality associated with nonequilibrium eigenvalue statistics,
Pandey and Shukla [82] studied in 1991 the Dyson dynamics with β = 2 started from two initial conditions,
COE and CSE, and expressed their correlation functions as determinants. Below, we show that when started
from equilibrium, namely CUE initial condition, the associated process is a determinantal point process and
provide an expression of its kernel. We have a modern treatment, using the Eynard-Mehta theorem and we
then discuss the case of arbitrary initial conditions. As a comparison, the stationary GUE case where the
Brownian motions are on the real line instead of the circle can be found in [63] (see, e.g., Equation (2.12)).
Here, some extra care is needed, one of the reasons being that there is no canonical ordering of the particles
since they are winding around the unit circle.
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Proposition 3.1. The eigenvalues of the unitary Brownian motion (Ut)t>0 from (2.6), started from the
Haar measure {(j, eiθk(tj))16k6N : 1 6 j 6 J} form a determinantal point process with kernel given by

K(i, x; j, y) =
1i6j

2π
e−(N−1

2 )2
|ti−tj |
N

∑
16k6N

e(k−N+1
2 )2

|ti−tj |
N ei(x−y)(k−N+1

2 ) (3.1)

− 1i>j

2π
e(N−1

2 )2
|ti−tj |
N

∑
k∈[1,N ]c

e−(k−N+1
2 )2

|ti−tj |
N ei(x−y)(k−N+1

2 ), (3.2)

where x, y here are angles. Namely, for any bounded and measurable function g : J1, JK× U→ R, we have

E

 J∏
j=1

N∏
i=1

(1 + g(j, zi(tj))

 =

∞∑
k=0

1

k!

∫
(J1,JK×[0,2π])k

 k∏
j=1

g(j, xj)

det(K((ri, xi); (rj , xj))
k
i,j=1λ(dx)#(dr).

Sketch of the proof. First, using [56], we give an expression of the transition probability of Brownian
motions on the circle conditioned on non-intersecting for all time. Then, using an argument from [5], we
rewrite it as a product of determinants in order to apply the Eynard-Mehta theorem and compute thereby
an expression of the associated extended kernel.

Proof. To lighten the notations, we prove it for J = 2, the generalization to any fixed J is straightforward.
First, we need a result by Hobson and Werner [56]. In this paper, the authors consider Brownian motions on
the circle killed when intersecting. Conditioning on non-intersecting (for all times) corresponds to considering
the dynamics

dθj =
1

2

∑
i6=j

cot

(
θj − θi

2

)
dt+ dBj(t),

see (4.1) in their paper, where the θj ’s are the angles and the Bj ’s are standard Brownian motions. This is
the time change t→ tN

2 and β = 2 in (2.7) (so we will eventually take t→ 2t
N in our formula).

Let As,t be the event that trajectories do not intersect between times s and t, and P the distribution if
independent BMs on the torus. With the notations from [56], the transition probability qt of Z ((4.1) in
[56]) is

qt(x, y) = lim
T→∞

P((x, 0)→ (y, t) | A0,T ) = lim
T→∞

P((x, 0)→ (y, t), A0,t)Py(A0,T−t)

Px(A0,T )

= lim
T→∞

Py(A0,T−t)

Px(A0,T )
q∗t (x, y) = eλN t

|(y)|
|∆(x)|

q∗t (x, y), (3.3)

where we used the notation ∆(x) =
∏
k<`(e

ix` − eixk) and the result from [56]:

Px(A0,T ) ∼
T→∞

cNe
−λNT |∆(x)|, λN :=

N(N − 1)(N + 1)

24
.

Here, q∗t denotes the transition density of N Brownian motions on the circle killed when any two of them
collide. [56] gives an expression of this term and we borrow an argument by Arista and O’Connell [5, Section
5.1] to rewrite it. When x, y belong to the set {z1 < · · · < zN < z1 + 2π} ∩ {z1 ∈ [−π, π)},

q∗t (eix, eiy) =
1

N

N−1∑
u=0

det

(∑
k∈Z

ηukpt(xi, yj + 2πk)

)

where η = ei 2πN . With ν[`] the representative of ν shifted by ` in {z1 < · · · < zN < z1 + 2π} ∩ {z1 ∈ [−π, π)}
(i.e., zi → zi+` mod N ), it was remarked in [5] that

N−1∑
`=0

q∗t (eix, eiy[`]) = det

(∑
k∈Z

(−1)k(N−1)pt(xi, yj + 2kπ)

)
. (3.4)
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The point process induced by the (ordered) vector Zt = {eiθ1(t), . . . , eiθN (t)} is associated with counting
functions MU (Zt) where U is an open subset of U. Using that F (MU (w)) is invariant under permutation
and that the application y 7→ y[`] is measure preserving, we have∫

ordered

qt(x, y[`])F (MU (y))dy =

∫
ordered

qt(x, y[`])F (MU (y[`])))dy =

∫
ordered

qt(x, y)F (MU (y))dy

where “ordered” = {w = (eizi)16i6N : z1 < · · · < zN < z1 + 2π, z1 ∈ [−π, π)}. So, by using that
|∆(y[`])| = |∆(y)| and combining (3.3) and (3.4), we have

Ex(F (MU (Zt))) =

∫
ordered

1

N

N−1∑
`=0

qt(x, y[`])F (MU (y))dy =

∫
ordered

wNt,x(y)F (MU (y))dy

where

wNt,x(y) :=
eλN t

N

|∆(y)|
|∆(x)|

det

(∑
k∈Z

(−1)k(N−1)pt(xi, yj + 2kπ)

)
. (3.5)

Note that when y1 < · · · < yN < y1 + 2π, for k < `, |eiy` − eiyk | = 2| sin(y`−yk2 )| = 2 sin(y`−yk2 ) since
y` − yk ∈ (0, 2π) hence

|∆(y)| =
∏
k<`

2(eiy` − eiyk) · e
−i

yk+y`
2

2i
= i−

N(N−1)
2 ∆(eiy1 , . . . , eiyN )e−iN−1

2

∑
yk = i−

N(N−1)
2 det(eiyi(j−1−N−1

2 )).

So, (3.5) is invariant under permutation of the xi’s and under permutation of the yi’s.
Starting from the Haar measure, for symmetric functions F and G, we have

E(F (Z0)G(Zt)) ∝
∫
UN

F (x)Ex(G(Zt))|∆(x)|2dx

∝
∫

ordered2

F (x)G(y)wNt,x(y)|∆(x)|2dxdy.

Furthermore, |∆(x)|2 =
∏
k<`(e

ix` − eixk)
∏
k<`(e

−ix` − e−ixk) = ∆(eix1 , . . . , eixN )∆(e−ix1 , . . . , e−ixN ), so

|∆(y)|
|∆(x)|

|∆(x)|2 = det(eiyi(j−N+1
2 ))∆(e−ix1 , . . . , e−ixN )e+iN−1

2

∑
xk = det(e−ixi(j−N+1

2 )) det(eiyi(j−N+1
2 ))

and the joint density is proportional to

det(e−ixi(j−N+1
2 )) det

(∑
k∈Z

(−1)k(N−1)pt(xi, yj + 2kπ)

)
det(eiyi(j−N+1

2 )).

We conclude that the weight function associated to our random point process is of the form a product of
several determinants. By the Eynard-Mehta theorem [44] (see [64, Section 2] or [18, Theorem 4.2]), this is
a determinantal point process, with kernel given by

K(0, x; 0, y) =
∑

16i,j6N

((G−1)T )i,jΦi(x)

∫
U
T (y, z)Ψj(z)λ(dz)

K(0, x; 1, y) =
∑

16i,j6N

((G−1)T )i,jΦi(x)Ψj(y)

K(1, x; 0, y) = −T (y, x) +
∑

16i,j6N

((G−1)T )i,j

∫
U

Φi(z)T (z, x)λ(dz)

∫
U
T (y, z)Ψj(z)λ(dz)

K(1, x; 1, y) =
∑

16i,j6N

((G−1)T )i,j

∫
U

Φi(z)T (z, x)λ(dz)Ψj(y)
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where Gi,j =
∫
U2 Φi(x)T (x, y)Ψj(y)λ(dx)λ(dy) and

Φi(x) = e−ix(i−N+1
2 ), T (x, y) =

∑
k∈Z

(−1)k(N−1)pt(x, y + 2kπ), Ψj(x) = eix(j−N+1
2 ). (3.6)

By taking δ = −N+1
2 , x→ x− y in the summation formula of Lemma (A.1), we have

T (x, y) =
1

2π

∑
n∈Z

ei(x−y)(n−N+1
2 )e−

1
2 (n−N+1

2 )2t =
1

2π

∑
n∈Z

unΨn(x)Φn(y) (3.7)

where un = e−
1
2 (n−N+1

2 )2t. This and
∫
U Φi(x)Ψj(x)λ(dx) = 2πδ0(j − i) imply∫
U
T (x, y)Ψj(y)λ(dy) = ujΨj(x) (3.8)

so Gi,j =
∫
U2 Φi(x)T (x, y)Ψj(y)λ(dx)λ(dy) =

∫
U Φi(x)ujΨj(x)λ(dx) = 2πujδ0(j − i). We observe that

((G−1)T )i,j = (2π)−1δ0(j − i)u−1
j , T (x, y) = T (y, x) and uN+1−i = ui. Therefore, we obtain

K(0, x; 0, y) =
1

2π

N∑
i=1

N∑
j=1

δ0(j − i)u−1
j Φi(x)ujΨj(y) =

1

2π

N∑
k=1

ei(x−y)(k−N+1
2 ) = K(1, x; 1, y)

K(0, x; 1, y) =
1

2π

N∑
k=1

e
1
2 (k−N+1

2 )2tei(x−y)(k−N+1
2 )

K(1, x; 0, y) = −
∑
k∈Z

(−1)k(N−1)pt(y, x+ 2kπ) +
1

2π

N∑
k=1

e−
1
2 (k−N+1

2 )2tei(x−y)(k−N+1
2 ).

The result follows by using (3.7), taking t→ 2t
N and conjugating the kernel by e(N−1

2 )2 t
N .

Proposition 3.1 and elementary calculations lead to the following corollary, which expresses the multi-time
covariance of linear statistics in a remarkably simple form, even though we won’t make use of it.

Corollary 3.2 (Covariance of linear statistics). Consider the dynamics (2.6) and denote sgn(x) = 1x>0 −
1x<0. For H1/2 functions f and g, we have for every N , t > 0,

Cov

(∑
k

f(zk(0)),
∑
k

g(zk(t))

)
=

∑
|j|6N−1

f̂j ĝ−j sgn(j)e−|j|t
sinh( j

2t
N )

sinh( jtN )
+
∑
|j|>N

f̂j ĝ−je
−j2 t

N
sinh(jt)

sinh( jtN )
.

Later on, we will use the following pointwise estimates on the off-diagonal terms of the kernel obtained
in Proposition 3.1. In the following lemma, τ and µ are allowed to depend on N and both are O(N). In our
applications, we will only need cases when they are O(Nδ) for some 0 < δ < 1.

Lemma 3.3 (Pointwise estimates). With x− y = µ
N and t = τ

N , we have as N →∞,

1

N
K(0, x; 1, y) =

1

2π

∫
|z|<1/2

e(z2− 1
4 )τ+iµzdz + O(

τ + |µ|
N

), (3.9)

1

N
K(1, x; 0, y) =

1

2π

∫
|z|>1/2

e( 1
4−z

2)τ+iµzdz + O(
τ + |µ|
N

). (3.10)

Furthermore, when max(τ, |µ|)� 1, |K(0, x; 1, y)|+ |K(1, x; 0, y)| = O(N/max(τ, |µ|)).

We won’t need (3.9) and (3.10). The interest stems from the fact that when τ and |µ| are O(1), they
describe the limiting kernel at the microscale.

Proof. The first assertion (3.9) follows by using a Riemann sum approximation. Indeed, with t = τ
N and

x− y = µ
N , we have

1

N
K(0, x; 1, y) =

1

2πN

N∑
k=1

e( kN−
1
N )( kN−1)τ+iµ( kN−

1
2−

1
2N ) =

1

2π

∫ 1

0

ex(x−1)τ+iµ(x− 1
2 )dx+ O(

τ + |µ|
N

)
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and we note
∫ 1

0
ez(z−1)τ+iµ(z− 1

2 )dz =
∫
|z|<1/2

e(z2− 1
4 )τ+iµzdz. Along the same lines, we obtain (3.10).

The second assertion (3.10) and the third one follow from elementary calculation. We explain the main

ideas. For (3.10), we note that the main contribution to
∑N
k=−N e

(( kN )2−1)τ is
∑

(1−ε)N6|k|6N e
(( kN )2−1)τ 6

2
∑

(1−ε)N6|k|6N e
−(1− k

N )τ 6 2(e
τ
N −1)−1 = O(N/τ). The last one follows by a discrete integration by parts.

Set vk = e(( kN )2−1)τ , ek = ei kµN , w0 = 0 and wk = ek + wk−1 for 1 6 k 6 N . Then, the term of interest,∑N
k=1 vkek is equal to vNwN +

∑N−1
k=1 (vk − vk+1)wk. Finally, wk =

∑k
`=1 e` = O(1)(ei µN − 1)−1 = O(N/µ)

and vk is increasing.

Out of equilibrium. In the case of non-stationary initial data, the point process of eigenvalues at a fixed
time is also determinantal point process and we provide here an expression of an associated kernel. In
the Hermitian case, a self contained proof can be found in [38, Appendix]. As seen above, the density of
unlabeled eigenvalues (e.g., use a test function which is invariant under permutation) is proportional to

wNt,x(y) :=
eλN t

N

|∆(y)|
|∆(x)|

det

(∑
k∈Z

(−1)k(N−1)pt(xi, yj + 2kπ)

)
.

Note that when y1 < · · · < yN < y1 + 2π, we saw that we can write |∆(y)| = i−
N(N−1)

2 det(eiyi(j−1−N−1
2 ))

so that, recalling the notation T and Ψ in (3.6), we can identify (up to multiplicative constant) the weights
detT (xi, yj) det Ψi(yj). This is a biorthogonal ensemble (see [18, Section 4]) so a determinantal point

process whose correlation kernel is given by Kt,x(z, y) =
∑N
i,j A

−T
i,j T (xi, z)Ψj(y) where, using (3.8), Ai,j =∫

U T (xi, y)Ψj(y)λ(dy) = ujΨj(xi) and un = e−
1
2 (n−N+1

2 )2t. Now, by recalling Cramer’s formula,

n∑
j=1

(A−1)i,jbj = (A−1b)i =
det(col i of A is replaced by b)

det(A)
,

and we find

Kt,x(z, y) =
∑
i,j

Ψj(y)(A−1)j,iT (xi, z) =
∑
i

T (xi, z)
det(line i of A is replaced by Ψ(y))

det(A)
. (3.11)

We denote by Āi the matrix for which the line i in A is replaced by Ψ(y), i.e., Āii,j = Ψj(y) for j 6 N .
Recalling (3.6), we have

detA = (
∏
j

uj) det Ψj(xi) =
∏
j

uj
∏
i

e−ixi(
N−1

2 )
∏
i<j

(eixj − eixi),

detAi = (
∏
j

uj) det
(
Ψj(xk)1k 6=i + u−1

j Ψj(y)1k=i

)
.

On the line i, we use (with Bt ∼ N (0, t)), u−1
j eiy(j−1) = Ee−

N−1
2 Bte(iy+Bt)(j−1). So, with simplifications

coming from the quotient of Vandermonde determinants

det Āi

detA
= e−i(y−xi)(N−1

2 )Ee−
N−1

2 Bt
∏
j 6=i

eiy+Bt − eixj

eixi − eixj
= E

∏
j 6=i

sin(
y−iBt−xj

2 )

sin(
xi−xj

2 )
,

and, going back to (3.11), we obtain

Kt,x(z, y) =
∑
i

T (xi, z)E
∏
j 6=i

sin(
y−iBt−xj

2 )

sin(
xi−xj

2 )
. (3.12)

This expression is the analog of the Hermitian one used, e.g., in [61, 38]. By using the residue theorem and
expressing E as an integral, it is possible to give a contour integral representation of (3.12).
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3.2 Asymptotic space-time decoupling. In the context of random matrices, using the determinant
point processes machinery to obtain correlation/decorrelation estimates is not uncommon. A good illustra-
tion of the typical techniques can be found in [83] which exploits the kernel obtained for the GUE minor
process in [65] to derive such estimates. The starting point is usually a norm estimate for the differences
of Fredholm determinants such as |det(I + A) − det(I + B)| 6 |A − B|e1+|A|+|B| (see [83, Section 6.3]) or
a similar inequality for 2-regularized determinants (see [83, Section 10]). In our problem, such inequalities
do not seem to be adapted since they give an additive error term and we look for a multiplicative one. We
introduce here a method adapted for such errors.

For j ∈ J1, JK and Ej ’s on the unit circle, we define

fj(z) = eγ`+(z−Ej) χ(
z − Ej
λ

) + eγ log(2λ)

(
1− χ(

z − Ej
λ

)

)
, λ = N−1+κ, (3.13)

where χ is fixed, smooth, χ(z) ∈ [0, 1], χ(z) = 1 for |z| 6 1 and χ(z) = 0 for |z| > 2 (and recall Definition 2.2
for the definition of `+). Here κ ∈ (0, 1) is fixed. The main result of this section, concerning the decoupling
of the eigenvalues of the unitary Brownian motion (2.5), is the following.

Proposition 3.4 (Decoupling). Let δ > 0, C > 1 such that mini 6=j |(Ei, ti) − (Ej , tj)| > N−1+δ and
γz ∈ [0, C] for any singularity z. Then for any 0 6 α, κ 6 δ

100C we have

E

 J∏
j=1

N∏
i=1

fj(zi(tj))

 =

J∏
j=1

E

[
N∏
i=1

fj(zi(tj))

]
(1 + O(N−δ/3)).

Proof. The proof is easier to follow and has simpler notations for J = 2 but generalizes immediately to an
arbitrary fixed J . In this case we write d = max(µ, τ) where µ = N |E1−E0| and τ = N |t1− t0|, so d > Nδ.
Furthermore, the proposition is equivalent to prove that

E

[
N∏
i=1

h1(zi(t1)) ·
N∏
i=1

h0(zi(t0))

]
= E

[
N∏
i=1

h1(zi(t1))

]
· E

[
N∏
i=1

h0(zi(t0))

]
· (1 + O(N−δ/3)),

where hj(x) =
fj(x)

fj(Eje2iλ)
, since they are equal up to a multiplicative constant.

First step: operators, spectra. We introduce ki =
√

1− hi. By definition of f , h = 1 for |z − Ei| > 2λ, so
the support of k is of order O(λ).

Moreover, for any z we have hi(z) > ε where (remember that `+ is a smoothing of log on scale N−1−α)

ε := hi(Ei) =
cγ

(Nκ+α)γ
(1 + o(1)).

Let K̃ be the kernel for independence between times 0 and t, and K the kernel we are interested in. Let
K, K̃ be the corresponding convolution kernels, namely K(r, x; s, y) = kr(x)K(r, x; s, y)ks(y).

The spectrum of K̃ is the union of the spectra of K̃0 and K̃1, the corresponding fixed time operators. We
have

E
[∏

(1 + x(h0 − 1))(zi(0))
]

= det(Id− xK̃0).

As h0 > ε, x 7→ 1 + x(h0 − 1) > 0 on [0, 1
1−ε ), and the left-hand side is > 0 for any x ∈ [0, 1

1−ε ), we have

1−xµi 6= 0 for any x ∈ [0, 1
1−ε ) and eigenvalue µi of K̃0. We observe that K̃0 is nonnegative so the spectrum

of K̃0 is in [0, 1− ε), and the same property holds for K̃1 and K̃.
We now consider the Fredholm determinant of interest, i.e.

E
[∏

h0(zi(0))
∏

h1(zi(t))
]

= det(Id−K).

Since the entries of K are real-valued, we also have

E
[∏

h0(zi(0))
∏

h1(zi(t))
]

= det(Id−K∗),
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so

E
[∏

h0(zi(0))
∏

h1(zi(t))
]2

= det((Id−K)(Id−K∗)).

Indeed, the multiplication rule for determinants det(I +A) det(I +B) = det((I +A)(I +B)) is justified for
trace class operators A and B. Here, this follows by an argument similar to the one of [62, Proposition 2.4]

We introduce the operators K := K + K∗ − KK∗ and K̃ := K̃ + K̃∗ − K̃K̃∗. Since K̃ is self-adjoint, the
eigenvalues of K̃ are of type µ+ µ− µ2 for µ ∈ [0, 1− ε), so its spectrum is included in [0, 1− ε2).

Second step: Hoffman-Wielandt inequality. We know that if we order the eigenvalues λi (resp. λ̃i) of

K+K∗−KK∗ (resp. K̃+ K̃∗−K̃K̃∗) properly, we have by the Hoffman-Wielandt inequality (more precisely
an infinite dimension version from [68],∑

|λi − λ̃i|2 6 ‖K− K̃‖2HS = ‖(K +K∗ −KK∗)− (K̃ + K̃∗ − K̃K̃∗)‖2HS

6 C‖K − K̃‖2HS + C(‖K̃‖2HS + ‖K‖2HS)‖K − K̃‖2HS.

We will use this and the estimates on the kernel to prove the following inequalities,

‖K‖HS = O(Nκ), ‖K − K̃‖HS = O(Nκ/d),
√∑

|λi − λ̃i|2 6 ‖K− K̃‖HS = O(N2κ/d). (3.14)

Let us mention an important consequence for what follows: this implies, for N large enough, for any i,

− 1/2 6 λi 6 1− ε2 + O(N2κ/d) = 1− ε2 + o(ε2), when N2κ/d = o(ε2). (3.15)

For the first inequality, since λi > λ̃i − |λi − λ̃i| > −|λi − λ̃i|,
∑
λi<0 |λi|2 6

∑
i |λi − λ̃i|2 = o(1) when

N2κ = o(d), which will be the case. So for large enough N , for any i we have λi > − 1
2 . For the second one,

for any i, λi 6 λ̃i + |λi − λ̃i| 6 1− ε2 + O(N2κ/d).
Now, we prove these estimates. From (3.1) and since the size of the support of ki is O(N−1+κ), we have∫
|ki(x)K(0, x; 0, y)ki(y)|2dxdy 6 C (N−1+κ)2

N2 N2 so ‖K̃‖HS = O(Nκ).

Furthermore ‖K − K̃‖HS = O(Nκ/d) since Lemma 3.3 gives a pointwise upper bound O(N/d) on the

off-diagonal terms of the kernel and the size of the support is O(N−1+κ). Therefore, we find ‖K− K̃‖HS =
O(N2κ/d).

Third step: expansion of eigenvalues. We will conclude by proving∣∣∣log Ẽ
[∏

h1(zi(0))
∏

h2(zi(t))
]
− logE

[∏
h1(zi(0))

∏
h2(zi(t))

]∣∣∣ = O(
N4κ

ε
√
d

). (3.16)

We bound from above the left-hand side above by expressing it with Fredholm determinants and using the
following expansion of the logarithm for K (and similarly for K̃),

log det((Id−K)(Id−K∗)) = log det(Id−K) = −
∑
j,`>1

λ`j
`
.

Thus, we obtain with m to be chosen,

| log det(Id− K̃)− log det(Id−K)| 6
m∑
`=1

∣∣∣Tr(K`)− Tr(K̃`)
∣∣∣ /`+

∑
j>1,`>m

|λj |` + |λ̃j |`

`
.

First, we bound from above the contribution for ` > m,∑
j>1,`>m

|λj |`

`
6

1

m

∑
j

|λj |2

1− |λj |
6

1

mε2
‖K‖2HS 6

N4κ

mε2

where we used λj ∈ [−1/2, 1−ε2/2] in the second inequality. We proceed similarly to bound the contribution

of the λ̃j ’s.
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Now we prove that the remaining term
∑m
`=1

∣∣∣Tr(K`)− Tr(K̃`)
∣∣∣ /` = mO(N4κ/d). For ` = 1, we use

|Tr(K− K̃)| = |Tr(KK∗ − K̃K̃∗)| = |‖K‖2HS − ‖K̃‖2HS| 6 ‖K − K̃‖HS(‖K‖HS + ‖K̃‖HS) = O(N2κ/d).

For ` > 2, we write∣∣∣Tr(K`)− Tr(K̃`)
∣∣∣ /` 6∑

i

|λ`i − λ̃`i |/` 6
∑
i

|λi − λ̃i|(|λi|`−1 + |λ̃i|`−1).

Then, by Cauchy-Schwarz we have∑
i

|λi − λ̃i||λi|`−1 6 (
∑
i

|λi − λ̃i|2)1/2(
∑
i

|λi|2`−2)1/2 6 ‖K− K̃‖HS‖K‖HS = O(N4κ/d),

where we used the Hoffman-Wielandt inequality, the fact that |λj | 6 1 and ` > 2 in the second inequality.

The term with |λ̃i| can be bounded similarly.
Altogether, the left-hand side in (3.16) is bounded from above (up to a multiplicative constant) by

N4κ

mε2 +mN4κ

d . By taking m =
√
d/ε, we get N4κ

ε
√
d

.

Conclusion. We explain how we choose the parameters α, κ, given δ, C. Recalling d = max(µ, τ) > Nδ,

ε � N−γ(α+κ), for any choice 0 6 α, κ 6 δ
100C we have N2κ

ε2d = o(1) in (3.15) and N4κ

ε
√
d

= N−δ/3 in the

right-hand side of (3.16).

4 Resolvent estimates

This section proves quantitative limits for the unitary analogue of the resolvent. Some of our intermediate
results are similar to existing local laws proved for random self-adjoint matrices (see e.g. results and references
from [43, Chapter 6]). These resolvent estimates are the source of the almost optimal scales in Theorem
1.2, and follow from a family of stochastic advection equations. As explained in the following subsection,
dynamical methods for rigidity of the eigenvalues or bounds on eigenvectors have been increasingly important
in random matrix theory. We obtain for the first time optimal resolvent estimates in both a multi-time and
full rank setting, in the Proposition 4.5. This is made possible thanks to (1) Lemma 4.1 below which covers
arbitrary projections of the resolvent, (2) an iterative method to obtain first estimates on eigenvalues, then
finite rank diagonal projections of the resolvent, then finite rank off-diagonal projections, and finally full
rank.

The methods in this section could apply to some initial conditions out of equilibrium. For the sake of
simplicity we only consider dynamics close to equilibrium, as this paper’s main goal is showing a connection
between random matrix dynamics and Liouville quantum gravity, not proving its universality.

4.1 Stochastic advection equation for general observables. This subsection proves the stochastic
advection equation for a generalization of the Borel transform

mt(z) =
1

N

∑
k

z + eiθk(t)

z − eiθk(t)
=

1

N
Tr

(
z + Ut
z − Ut

)
,

which is defined, for any N ×N deterministic matrix A, as

mt,A(z) = Tr

(
z + Ut
z − Ut

·A
)
. (4.1)

The lemma below is instrumental for all results of this section.

Lemma 4.1. Under the unitary Brownian motion dynamics (2.6), we have

dmt,A(z) = zmt(z)∂zmt,A(z)dt+ 2zTr

(
1

z − U
A

U

z − U
√

2dBt

)
.
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At equilibrium we have E(mt(z)) = 1|z|>1−1|z|<1, so from the above lemma at leading order mt,A should
be well approximated by the solution of the advection equation

d

dt
ft(z) = z(1|z|>1 − 1|z|<1)∂zft(z), (4.2)

which has characteristics

zt = zet1|z|>1 + ze−t1|z|<1. (4.3)

In other words we expect

mt,A(z) ≈ m0,A(zt).

It has been known since Pastur’s work [86] that the Stieltjes transform of the Hermitian Dyson Brownian
motion satisfies an advection equation analogous to (4.2), in the limit of large dimension. More general
resolvent dynamics corresponding to A with rank one can be used for regularization and universality purpose,
as proved first in [74], for eigenvalues statistics at the edge of deformed Wigner matrices. For the same model,
[12,96] used stochastic advection equations and characteristics to understand the shape of bulk eigenvectors.
Moreover, the stochastic complex Burgers equation for the Stieltjes transform extends to general β-ensembles
and allows to prove rigidity of the particles [58,1], also through regularization along the characteristics. For
a general class of discrete particle systems, analogues of the Stieltjes transform were also recently shown to
satisfy equations of type (4.2) [52].

More directly relevant to our model, the unitary Brownian motion, complex Burgers equation for the
Borel transform were first shown by Biane [15, 16], and they are instrumental in Adhikari and Landon’s
recent result on optimal location of eigenvalues out of equilibrium, starting at identity [2].

While most of these works focus on the trace of the resolvent, Lemma 4.1 considers general full-rank
projections observables: it covers the Stieltjes transform (i.e. A = Id below, used in Proposition 4.2), one-
dimensional projections (i.e. A = qq∗, used in Proposition 4.3), and a full-rank A is needed for the proof of
Proposition 4.5, a main estimate towards Theorem 1.2.

Proof of Lemma 4.1. Recall the definition of the skew Hermitian Brownian motion in (2.3). From Itô’s
formula (2.9), we have

d
z + U

z − U
= 2zd

1

z − U

= 2z
∑
k

1

z − U
√

2UXkdB̃kt
1

z − U
+ 2z

(∑
k

1

z − U
UX2

k

1

z − U
+ 2

1

z − U
UXk

1

z − U
UXk

1

z − U

)
dt

= 2z
1

z − U
U
√

2dBt
1

z − U
− 2z

U

(z − U)2
dt+ 4z

∑
k

1

z − U
UXk

1

z − U
UXk

1

z − U
dt.

We have used
∑N2

k=1X
2
k = −Id. This implies (we use that for any two complex valued matrices P and Q,∑N2

k=1 Tr(PXkQXk) = −N−1 Tr(P ) Tr(Q))

dTr

(
z + U

z − U
A

)
= 2zTr

1

z − U
A

U

z − U
√

2dB − 2zTr
U

(z − U)2
Adt− 4zN−1Tr

U

(z − U)2
ATr

U

z − U
dt

= 2zTr
1

z − U
A

U

z − U
√

2dB + 2zN−1∂zTr
z + U

z − U
ATr

Id

2
dt+ 2zN−1∂zTr

z + U

z − U
ATr

U

z − U
dt.

As Id
2 + U

z−U = 1
2
z+U
z−U , we obtain the expected result.

4.2 Rigidity. The following parameters

ϕ = e(log logN)2 ,∆ = (logN)2 (4.4)

will often be used in this section, and so will be the notation

ηv = ||v| − 1|.
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We order 0 6 θ1(s) 6 . . . 6 θN (s) 6 2π and for any t > s we define θ1(t) 6 . . . 6 θN (t) by continuity. We
consider γk = 2πk

N and the following good sets,

G =
⋂

16k6N

{
|θk − γk| 6

ϕ6

N

}
, G̃ =

⋂
16k6N

{
|θk − γk| 6

ϕ

N

}
.

We also denote θ(t) = (θ1(t), . . . , θN (t)). The proposition below is a unitary analogue of classical rigidity
results for Hermitian random matrices, see [43] and references therein.

Proposition 4.2. For any D > 0 there exists N0 such that for any N > N0 we have

P

 ⋂
s6t6s+∆

{θ(t) ∈ G } | θ(s) ∈ G̃

 > 1− e−(logN)D .

Proof. The proof will proceed through (1) resolvent estimate at fixed space and time, (2) uniform extension
to any time and mesoscopic scales, (3) extension to submicroscopic scales, (4) rigidity of gaps between eigen-
values, (5) rigidity of positions.

First step: resolvent estimate. We choose A = Id/N in Lemma 4.1, which gives (in this section we define
new independent Brownian motions through dB̂jk(s) = (PsdB(s)P ∗s )jk with Ps unitary diagonalizing Us,

Us = PsDsP
∗
s , and abbreviate B̂j = B̂jj)

dmt(z) = mt(z)z∂zmt(z)dt+
2
√

2iz

N3/2

N∑
k=1

zk(t)

(z − zk(t))2
dB̂k(t). (4.5)

The following implementation of invariance along characteristics in this first step is similar to the proof of
[2, Theorem 1.2].

Without loss of generality we assume s = 0 and we first consider some |z| ∈ [1 + ϕ8/5/N, 2]. Equations
(4.5) and (4.3) imply

dmu(zt−u) = (mu(zt−u)− 1)zt−u∂zmu(zt−u)du+
2
√

2izt−u
N3/2

N∑
k=1

zk(u)

(zt−u − zk(u))2
dB̂k(u). (4.6)

We consider the stopping time (with respect to the filtration generated by B̂1, . . . , B̂N )

τ = inf

{
u ∈ [0, t] : |mu(zt−u)− 1| > ϕ3/2

Nηzt−u

}
∧ t (4.7)

with the convention inf ∅ = +∞. We also abbreviate

M(s) =

∫ s

0

2
√

2izt−u
N3/2

N∑
k=1

zk(u)

(zt−u − zk(u))2
dB̂k(u).

From
Re mu(z)

|z|2 − 1
=

1

N

∑
j

1

|z − zj(u)|2
, (4.8)

the quadratic variation of the martingale (M(s ∧ τ))s (the sum of the quadratic variations of its real and
imaginary parts) is bounded at time s with

1

N3

∫ s

0

∑
i

|zt−u|2du

|zi(u)− zt−u|4
6

C

N2

∫ s

0

|zt−u|2Re(mu(zt−u))

(1 + |zt−u|)η3
zt−u

du 6
C

N2η2
zt−s

, (4.9)

where we have used |Re(mu(zt−u))−1| = o(1) because u 6 τ and ηz > ϕ8/5/N . This classically implies (see
e.g. [95, Appendix B.6, equation (18)]) that for any D > 0 there exists N0 such that P(∩06s6t{|Ms∧τ | <
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ϕ1/20

Nηzt−s
}) > 1 − e−(logN)D for any N > N0. More precisely we have P(|Ms∧τ | < ϕ1/20

Nηzt−s
) > 1 − e−2(logN)D

and uniformity in time follows from a grid argument similar to the second step of this proof detailed below.

On the event ∩06s6t{|Ms∧τ | < ϕ1/20

Nηzt−s
}, which has overwhelming probability, for any s 6 t∧ τ from (4.6)

we have, denoting h(s) = ms∧τ (zt−s∧τ )− 1,

|h(s)| 6
∫ s

0

|zt−u| · |h(u)| · |∂zmu(zt−u)|du+
ϕ1/20

Nηzt−s
+
ϕ11/10

Nηzt−s

where we have used |m0(z)−1| 6 ϕ11/10/(Nηz) by Riemann sum approximation because θ(0) ∈ G̃ . Together
with |∂zm| 6 2(Rem) · (|z|2 − 1)−1 from (4.8), this implies

|h(s)| 6
∫ s

0

|h(u)| · |zt−u|2Re mu∧τ (zt−u∧τ )

(|zt−u|2 − 1)
du+ C

ϕ11/10

Nηzt−s
6
(

1 + ϕ−1/10
)∫ s

0

|h(u)|
log |zt−u|

du+ C
ϕ11/10

Nηzt−s
,

where we successively relied on the inequalities x/(x2 − 1) < 1/(2 log x) for x > 1, |Re(mu(zt−u)) − 1| 6
ϕ3/2

Nηzt−u
6 ϕ−1/10 for u 6 τ and ηz > ϕ8/5/N . The integral form of Gronwall lemma then implies

|h(s)| 6 C
ϕ11/10

Nηzt−s
+ Cϕ11/10

∫ s

0

1

Nηzt−u log |zt−u|
e

(1+ϕ−1/10)
∫ s
u

dr
log |zt−r| du.

The antiderivative of (log |zt−r|)−1 is log log |zt−r|, so exp(
∫ s
u

dr
log |zt−r| ) = log |zt−u|

log |zt−s| . Moreover for our param-

eters we always have ( log |zt−u|
log |zt−s| )

ϕ−1/10

6 C. Thus we have obtained

|h(s)| 6 C
ϕ11/10

Nηzt−s
+ Cϕ11/10

∫ s

0

1

Nηzt−u log |zt−s|
du 6

ϕ12/10

Nηzt−s
.

This proves that

P
(
|mτ (zt−τ )− 1| > ϕ3/2

Nηzt−τ

)
6 e−(logN)D .

By definition of τ this implies P(τ = t) > 1 − e−(logN)D , and therefore there exists N0 such that for any
N > N0, 1 + ϕ8/5/N < |z| < 2 and 0 < t < ∆,

P
(
|mt(z)− 1| > ϕ16/10

Nηz

)
6 e−(logN)D . (4.10)

Second step: Uniformity in space and time. Let D > 0 be fixed and large, M = e10(logN)D , (zi)16i6M (resp.
(tj)16j6M ) be points in |z| ∈ [1 + ϕ8/5/N, 2] (resp. [0,∆]) such that for any such |z| ∈ [1 + ϕ8/5/N, 2] there

exists zi with |z− zi| 6 N−4 (resp. 0 = t1 < · · · < tM = ∆, |tj+1− tj | 6 e−5(logN)D ). Then by union bound
in (4.10), there exists N0 such that for N > N0 we have

P
(
∩16i,j6M{|mtj (zi)− 1| < ϕ17/10

Nηzi
}
)

> 1− e−2(logN)D . (4.11)

Moreover, for any fixed zi and tj , a bracket calculation and again, for example [95, Appendix B.6, equation
(18)]), imply

P
(

max
tj<t<tj+1

|mt(zi)−mtj (zi)| > N−3

)
6 e−100(logN)D . (4.12)

Equations (4.11), (4.12) and a union bound give existence of N0 such that, for N > N0,

P
(
∩16i6M,0<t<∆{|mt(zi)− 1| < ϕ18/10

Nηzi
}
)

> 1− e−(logN)D . (4.13)

The function z 7→ mt(z) is deterministically N2-Lipschitz for |z| > 1 +ϕ8/5/N . Therefore from the previous
equation, for some N0, N > N0 implies

P

 ⋂
1+ϕ8/5/N<|z|<2,0<t<∆

{|mt(z)− 1| 6 ϕ19/10

Nηz
}

 > 1− e−(logN)D . (4.14)
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Third step: Extension below microscopic scales. We now consider |z| ∈ [1, 1 + ϕ2/N ]. Let z′ have the same
argument as z and ηz′ = ϕ2/N . The following always holds, for some universal C:

Remt(z) 6 C
ηz′

ηz
Remt(z

′). (4.15)

Therefore, for any arc I of length at most ϕ2/N centered at |w| = 1, denoting wI = w(1 + |I|), under the
event considered in (4.14) we have

∑
1zi(t)∈I 6 C

∑
i

η2
wI

|wI − zi(t)|2
6 CNηwIRemt(wI) 6 CNηwI

ηw′

ηwI
Remt(w

′) 6 Cϕ2Remt(w
′) 6 Cϕ2,

and, denoting ηk = ekηz, z̃k = z 1+ηk
1+ηz

so that ηz̃k = ηk, we obtain by using | arg(z)− arg(zi)| 6 C|z − zi| in

the first inequality and − log(ϕ2/N) 6 ϕ 6 ϕ3/(Nηz) in the last one (with k > 0 in all series below),

|Immt(z)| 6
C

N

∑
i

|argz − argzi|
|z − zi|2

6
C

N

∑
k>0,ekηz6|z−zi|6ek+1ηz

1

|z − zi|

6
C

N

∑
k>0

∣∣{|z − zi| 6 ϕ2/N}
∣∣

ekηz
+
C

N

∑
ϕ2/N6ekηz61,i

ηk
|z̃k − zi|2

6
Cϕ2

Nηz
+ C

∑
ϕ2/N6ekηz61

Remt(z̃k) 6
ϕ3

Nηz
.

(4.16)

From (4.15) with |Remt(z)− 1| 6 1 + Remt(z), (4.16) and their analogue for 1/2 < |z| < 1, (4.14) extends
into (we denote s(z) = 1|z|>1 − 1|z|<1)

P

 ⋂
1/2<|z|<2,0<t<∆

{|mt(z)− s(z)| 6
ϕ4

Nηz
}

 > 1− e−(logN)D . (4.17)

Fourth step: Rigidity of gaps. The inclusion

⋂
1/2<|z|<2,0<t<∆

{|mt(z)−m0(zt)| 6
ϕ4

Nηz
} ⊂

⋂
06t6∆

16i<j6N

{|θi(t)− θj(t)− (γi − γj)| 6
ϕ5

N
} (4.18)

holds for large enough N thanks to the following classical argument based on the Helffer-Sjöstrand formula
(A.8). Here we follow [2, Section 6.2]. Let g(z) = 1 for arg z ∈ [γi + ϕ4/N, γj − ϕ4/N ], g(z) = 0 for
arg z ∈ [γi, γj ]

c, and |g′| 6 CN/ϕ4, |g′′| 6 C(N/ϕ4)2. We pick χ from (A.8) on scale 1. On the set from the
left-hand side of (4.18), we have, denoting s(z) = mt(z)− (1|w|>1 − 1|w|<1),

∑
g(zi(t)) =

N

2π

∫
C
∂w̄g̃(w)mt(w)

dm(w)

w
=
N

2π

∫
C
∂w̄g̃(w)(1|w|>1−1|w|<1)

dm(w)

w
+

∫
C
∂w̄g̃(w)s(w)

dm(w)

w

= N

∫
g(eiθ)

dθ

2π
+

∫
C
∂w̄g̃(w)s(w)

dm(w)

w
.

As θ(0) ∈ G̃ , we have m0(wt) = (1|w|>1 − 1|w|<1) + O( ϕ
Nηwt

) so on the set from the left-hand side of (4.18),

s(z) = O( ϕ
Nηwt

). Together with the decomposition (A.2) this gives

∑
g(zi(t)) = N

∫
g(eiθ)

dθ

2π
+O(ϕ4)·

∫
(|g(eiθ)|+|g′(eiθ)|)·|χ′(r)|rdrdθ+2

∫
θ,r>1

g′′(eiθ)Res(reiθ)χ(r) log rdrdθ

= N

∫
g(eiθ)

dθ

2π
+ O(ϕ4) + 2

∫
θ,r>1

g′′(eiθ)Res(reiθ)χ(r) log rdrdθ

With an integration by parts as in [2, Equation (6.20)], the remaining integral term is also O(ϕ4).
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Similarly we have
∑
h(zi(t)) = N

2π

∫
h + O(ϕ4) where h has the same regularity as g and h(z) = 1 for

arg z ∈ [γi, γj ], h(z) = 0 for arg z ∈ [γi − ϕ4/N, γj + ϕ4/N ]c. These estimates on
∑
g(zi(t)) and

∑
h(zi(t))

prove (4.18), which together with (4.14) gives

P

 ⋂
06t6∆

16i<j6N

{|θi(t)− θj(t)− (γi − γj)| 6
ϕ5

N
}

 > 1− e−(logN)D . (4.19)

Fifth step: rigidity of positions. Let θ̄(t) =
∑
i θi(t). Then (2.7) gives dθ̄(t) =

∑
j

√
2
N dBj(t) =

√
2dB(t)

where B is a standard Brownian motion. This implies that for any D > 0 there exists N0 such that for
N > N0

P
(
∩0<t<∆{|θ̄(t)− θ̄(0)| 6 ϕ}

)
> 1− e−(logN)D . (4.20)

We now write

θi(t)− γi =
1

N

N∑
j=1

((θi(t)− θj(t))− (γi − γj)) +
1

N

N∑
j=1

(θj(t)− θj(0)) +
1

N

N∑
j=1

(θj(0)− γj).

With probability 1− e−(logN)D , the following holds. For all i and t ∈ [0,∆] the first term is at most ϕ5/N
(from (4.19)), the second is at most ϕ/N (by (4.20)), and the last one is at most Cϕ/N because θ(0) ∈ G̃ .
This concludes the proof.

4.3 Finite rank projections. The result below shows the following: eigenvectors perturbations under
mean field noise are simply given at the level of the resolvent by moving the spectral parameter through the
characteristics. It is a simple analogue of [21, Theorem 2.1], which considers Hermitian perturbations out of
equilibrium, but our dynamical proof is different from [21], which proceeds through the Schur complement
formula. Such estimates on arbitrary (finite rank) projections of the resolvent first appeared in the context
of Wigner and covariance matrices, see e.g. [17] and references therein.

Proposition 4.3. For any D > 0 there exists N0 such that for any N > N0 and q ∈ CN Fs-measurable
(Fs = σ(Uu, u 6 s)), |q| = 1, we have

P

 ⋂
s<t<s+∆
|ηz|>ϕ20/N

{
∣∣∣∣〈q, z + Ut

z − Ut
q〉 − 〈q, zt−s + Us

zt−s − Us
q〉
∣∣∣∣ 6 ϕ√

Nηz
Re〈q, zt−s + Us

zt−s − Us
q〉} | θ(s) ∈ G

 > 1− e−(logN)D .

Note that the above real part is always positive.

Proof. We choose A = qq∗ in Lemma 4.1. This gives

dqt(z) = mt(z)z∂zqt(z) + 2zq∗
U

z − U
√

2dBt
1

z − U
q where qt(z) = 〈q, z + Ut

z − Ut
q〉.

We can assume s = 0 and first consider some |z| > 1 + ϕ20/N . Then, with orthonormal eigenvectors uj(s)
diagonalizing Us,

dqu(zt−u) = (mu(zt−u)−1)zt−u∂zqu(zt−u)du+
2
√

2izt−u
N1/2

∑
k,j

q∗uj(u)
zj(u)

zt−u − zj(u)
dB̂jk(u)

1

zt−u − zk(u)
uk(u)∗q,

(4.21)
where the B̂jk are independent Brownian motions defined before (4.5). We define the stopping times

τq : = inf

{
u ∈ [0, t] : |q0(zt)− qu(zt−u)| > ϕ1/10√

Nηzt−u
Re q0(zt)

}
, (4.22)

τ : = inf

{
u ∈ [0, t] : ∃k ∈ J1, NK, |θk(u)− γk| >

ϕ8

N

}
, (4.23)

σ : = τ ∧ τq. (4.24)
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The quadratic variation of the martingale term in (4.21) stopped at σ is bounded with

C

N

∫ σ

0

∑
j,k

|zt−u|2
|〈q, uj(u)〉|2

|zt−u − zj(u)|2
· |〈q, uk(u)〉|2

|zt−u − zk(u)|2
du 6

C

N

∫ σ

0

|zt−u|2(Re(qu(zt−u)))2

(1 + |zt−u|)2η2
zt−u

du 6 C
Re(q0(zt))

2

Nηzt−σ
,

(4.25)

where we have used
∑
j
|〈q,uj(u)〉|2
|z−zj(u)|2 = 1

|z|2−1Re qu(z). Similarly to the estimate after (4.2), this implies that

this martingale term is bounded with ϕ1/10√
Nηzt−σ

Re q0(zt) with probability 1−e−(logN)D . Moreover, the finite

variation error term from (4.21) is bounded with∫ σ

0

|zt−u|·|mu(zt−u)−1|·|∂zqu(zt−u)|du 6 C

∫ σ

0

ϕ8|zt−u|
Nηzt−u

· Re qu(zt−u)

ηzt−u(1 + |zt−u|)
du 6

Cϕ8 Re q0(zt)

Nηzt−σ
6
C Re q0(zt)√

Nηzt−σ
,

where we have first used that for u < τ we have mu(z) − 1 = O(ϕ8/(Nηz)), and finally we have used
|ηzt−σ | > ϕ20/N . We have therefore proved that for any D > 0 there is a N0 such that for N > N0 and
|z| > 1 + ϕ20/N we have

P

(
|qσ(zt−σ)− q0(zt)| >

ϕ1/10√
Nηzt−σ

Req0(zt)

)
6 e−(logN)D .

By definition of τq this implies P(σ = τ) > 1 − e−(logN)D . Moreover, from Proposition 4.2, P(τ = t) >

1 − e−(logN)D (this proposition naturally also holds when replacing exponents ϕ,ϕ6 defining G , G̃ with
ϕ6, ϕ8), so we have proved

P

(
|qt(z)− q0(zt)| >

ϕ1/9√
Nηzt−σ

Req0(zt)

)
6 e−(logN)D .

Uniformity in t ∈ [0,∆] and ηz ∈ [ϕ20/N, 1/2] follows easily by a grid argument similar to the second step
in the proof of Proposition 4.2.

Finally, for uniformity in ηz > 1/2, denote f(z) = 〈q, z+Utz−Ut q〉, g(z) = 〈q, zt+U0

zt−U0
q〉. We have proved that

with overwhelming probability | fg (z) − 1| 6 ϕ1/9

√
Nηz

. As f/g − 1 → 0 as |z| → ∞, the Cauchy integral

formula for z outside the contour |w| = 6/5 gives, for |z| > 7/5, f/g(z)− 1 = O( ϕ1/9

|z|
√
N

), which concludes the

proof.

Polarization in Proposition 4.3 shows that if ua(s), ub(s) are normalized eigenvectors of U(s) and a 6= b,
then for |z| > 1 + ϕ20/N we have

|〈ua(s),
z + Ut
z − Ut

ub(s)〉| 6 ϕ
ηzt−s(|zt−s|+ 1)

√
Nηz

(
1

|zt−s − za(s)|2
+

1

|zt−s − zb(s)|2

)
with overwhelming probability. This error term is not enough for Proposition 4.5 in the next subsection, so
we first obtain the following essentially optimal bound.

Proposition 4.4. For any D, ε > 0 there exists N0 such that for any N > N0 and ua(s) ub(s) ∈ CN
eigenvectors of U(s) associated to distinct eigenvalues (|ua| = |ub| = 1) we have

P

 ⋂
s<t<s+∆
ηz>N

ε/N

{|〈ua(s),
z + Ut
z − Ut

ub(s)〉| 6
ηzt−s(1 + |zt−s|)Nε

√
Nηz

1

|zt−s − za(s)|
1

|zt−s − zb(s)|
} | θ(s) ∈ G

 > 1−e−(logN)D .

Proof. We choose A = ub(s)ua(s)∗ in Lemma 4.1, and we abbreviate a = ua(s), b = ub(s). Defining

pt(z) = pa,bt (z) = 〈a, z + Ut
z − Ut

b〉,
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this gives

dpt(z) = mt(z)z∂zpt(z) + 2zua(s)∗
U

z − U
√

2dBt
1

z − U
ub(s).

We can assume s = 0. Note that p0(zt) = 0 and we want to bound pt(z). We first consider some |z| >
1 + ϕ30/N . Then

dpu(zt−u) = (mu(zt−u)−1)zt−u∂zpu(zt−u)du+
2
√

2izt−u
N1/2

∑
k,j

a∗uj(u)
zj(u)

zt−u − zj(u)
dB̂jk(u)

1

zt−u − zk(u)
uk(u)∗b,

(4.26)
where the B̂jk are independent Brownian motions and B̂jj = B̂j from (4.6), and uk(s) are orthonormal
eigenvectors diagonalizing Us. The quadratic variation of the martingale term in (4.26) is bounded with

C

N

∫ t

0

|zt−u|2

η2
zt−u(1 + |zt−u|2)

Re〈a, zt−u + U(u)

zt−u − U(u)
a〉Re〈b, zt−u + U(u)

zt−u − U(u)
b〉du.

From Proposition 4.3, with probability 1− e−3(logN)D this is bounded with

C

N

∫ t

0

1

η2
zt−u

Re〈azt + U(0)

zt − U(0)
a〉Re〈bzt + U(0)

zt − U(0)
b〉du 6

C

Nηz

ηzt(1 + |zt|)
|zt − za(0)|2

ηzt(1 + |zt|)
|zt − zb(0)|2

,

so that with probability 1−e−2(logN)D the martingale term in (4.26) is bounded with ϕ√
Nηz

ηzt (1+|zt|)
|zt−za(0)|·|zt−zb(0)| ,

which is the expected error.
A new difficulty comes from the finite variation error term in (4.26): for a 6= b, Re pa,b has no a priori

sign. We therefore first simply bound |∂zpa,bu | 6 C
ηz(1+|z|) (Re pa,au + Re pb,bu ) and use Proposition 4.3 and its

proof to obtain∫ t

0

|zt−u| · |mu(zt−u)− 1| · |∂zpa,bu (zt−u)|du 6
∫ t

0

ϕ8|zt−u|
Nηzt−u

· Re pa,au (zt−u) + Re pb,bu (zt−u)

ηzt−u(1 + |zt−u|)
du

6
ϕ8

Nηz
·
(

Re pa,a0 (zt) + Re pb,b0 (zt)
)
6
ϕ8ηzt(1 + |zt|)

Nηz
·
(

1

|zt − za(0)|2
+

1

|zt − zb(0)|2

)
.

We have therefore proved, that, for any D > 0 there exists N0 such that for any N > N0, with probability

1− e−(logN)D we have

|pa,bt (z)| 6 ϕ8ηzt(1 + |zt|)√
Nηz

1

|zt − za(0)| · |zt − zb(0)|
+
ϕ8ηzt(1 + |zt|)

Nηz
·
(

1

|zt − za(0)|2
+

1

|zt − zb(0)|2

)
for any ηz > ϕ30/N and t ∈ [0,∆] (uniformity in z, t requires (1) an omitted grid argument identical to the
second step in the proof of Proposition 4.2 for ηz ∈ [ϕ30/N, 1/2], t ∈ [0,∆], (2) a contour integral argument
similar to the end of the proof of Proposition 4.3 to extend to ηz > 1/2).

We now iterate by injecting this estimate in the finite variation term from (4.26). More precisely, consider
the following induction hypothesis (Pn): For any D > 0 there exists N0 = N0(n,D), such that for any

N > N0, a, b ∈ J1, NK, the following holds with probability 1−e−(logN)D : for any 0 < t < ∆ and ηz > ϕ30n/N
we have

|pa,bt (z)| 6 ϕ8nηzt(1 + |zt|)√
Nηz

1

|zt − za(0)| · |zt − zb(0)|
+
ϕ8nηzt(1 + |zt|)

(Nηz)n
·
(

1

|zt − za(0)|2
+

1

|zt − zb(0)|2

)
.

We have just proved (P1), and to prove that (Pn) implies (Pn+1) we just need to improve on the finite
variation term. By Cauchy’s formula,∫ t

0

|zt−u| · |mu(zt−u)− 1| · |∂zpa,bu (zt−u)|du 6
∫ t

0

ϕ8|zt−u|
Nηzt−u

·
max|w−zt−u|=ηzt−u/10 |p

a,b
u (w)|

ηzt−u
du

6
∫ t

0

|zt−u|
Nη2

zt−u

(
ϕ8(n+1)ηzt(1 + |zt|)√

Nηzt−u

1

|zt − za(0)| · |zt − zb(0)|
+
ϕ8(n+1)ηzt(1 + |zt|)

(Nηzt−u)n
·
(

1

|zt − za(0)|2
+

1

|zt − zb(0)|2

))
du

6
ϕ8(n+1)ηzt(1 + |zt|)√

Nηz

1

|zt − za(0)| · |zt − zb(0)|
+
ϕ8(n+1)ηzt(1 + |zt|)

(Nηz)n+1
·
(

1

|zt − za(0)|2
+

1

|zt − zb(0)|2

)
.

This completes the induction and the proof of the proposition by choosing n = 100/ε (now ηz > Nε/N).
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4.4 Full rank projections. We now prove the main estimate to reach optimal scales for multi-time loop
equations, concerning the following resolvent projection,

Tr

(
w + Ut
w − Ut

· v + Us
v − Us

)
=
∑
k

v + zk(s)

v − zk(s)
〈uk(s),

w + Ut
w − Ut

uk(s)〉. (4.27)

If we add the error estimates from Proposition 4.3 on the above right-hand side, for example for ηv ∼ 1,
the obtained bound is

√
N/ηw, far worse than the bound 1/ηw below. The key source of improvement to

achieve the optimal result below is Proposition 4.4. The averaged and multi-time local law below seems to
be new, including in the context of Hermitian random matrices.

In the following statement, we use the notation d(v, w) = max(|v − w|, |v − w
|w|2 |).

Proposition 4.5. For any D, ε > 0 there exists N0 such that for any N > N0 we have

P
( ⋂

s<t<s+∆
ηv,ηw∈(0, 12 ]

{
∣∣∣∣Tr

(
w + Ut
w − Ut

· v + Us
v − Us

)
− Tr

(
wt−s + Us
wt−s − Us

· v + Us
v − Us

)∣∣∣∣
6

Nε(1 + |wt−s|)
d(v, wt−s) min(1, Nηv)

(
1

ηw
+

1√
ηw min(ηwt−s , ηv)

)} | θ(s) ∈ G
)
> 1− e−(logN)D .

Proof. We can again assume s = 0, and first consider the case |w| ∈ [1 +Nε/N, 3/2], |v| ∈ (1, 3/2]. Lemma
4.1 with A = v+U0

v−U0
gives

Tr

(
w + Ut
w − Ut

·A
)
− Tr

(
wt + U0

wt − U0
·A
)

=

∫ t

0

wt−u(mu(wt−u)− 1)∂wmu,A(wt−u)du

+ 2

∫ t

0

wt−uTr

(
1

wt−u − Uu
A

Uu
wt−u − Uu

√
2dBu

)
. (4.28)

The above stochastic integral can also be written
√

2√
N

∫ t

0

∑
j,k

wt−u
wt−u − zj(u)

zk(t)

wt−u − zk(u)
〈uj(u), Auk(u)〉dB̂jk(u)

where the B̂jk are independent, standard Brownian motions. Abbreviating ` = u`(0) and using the spectral

decomposition A =
∑
`
v+z`(0)
v−z`(0)``

∗, the bracket of the above stochastic integral is (we denote, in this proof,

〈x, y〉 = x∗y)

C

N

∫ t

0

∑
j,k

|wt−u|2

|wt−u − zj(u)|2
1

|wt−u − zk(u)|2
|〈uj(u), Auk(u)|2du

=
C

N

∫ t

0

∑
j,k

|wt−u|2

|wt−u − zj(u)|2
1

|wt−u − zk(u)|2

∣∣∣∣∣∑
`

〈uj(u), `〉〈`, uk(u)〉v + z`(0)

v − z`(0)

∣∣∣∣∣
2

du

=
C

N

∫ t

0

∑
`1,`2,j,k

v + z`1(0)

v − z`1(0)

v + z`2(0)

v − z`2(0)

|wt−u|2

|wt−u − zj(u)|2
1

|wt−u − zk(u)|2
〈uj(u), `1〉〈`1, uk(u)〉〈uj(u), `2〉〈`2, uk(u)〉du

=
C

N

∫ t

0

∑
`1,`2

v + z`1(0)

v − z`1(0)

v + z`2(0)

v − z`2(0)
|wt−u|2

∣∣∣∣∣∣
∑
j

〈`2, uj(u)〉〈uj(u), `1〉
|wt−u − zj(u)|2

∣∣∣∣∣∣
2

du

6
C

N

∫ t

0

1

η2
wt−u

∑
`1,`2

1

|v − z`1(0)| · |v − z`2(0)|

∣∣∣∣〈`2,(Re
wt−u + U(u)

wt−u − U(u)

)
`1〉
∣∣∣∣2 du. (4.29)

Note that 2Rew+U
w−U = w+U

w−U −
w∗+U
w∗−U where w∗ = w̄−1, so that we can apply Proposition 4.4 to bound the

above: With probability 1− e−4(logN)D the contribution from `1 6= `2 in the above sum leads to evaluating

∑
`1,`2

Nε

|v − z`1(0)| · |v − z`2(0))|
η2
wt(1 + |wt|2)

Nηwt−u

1

|wt − z`1(0)|2
1

|wt − z`2(0)|2
=
N1+ε

ηwt−u

(
1

N

∑
`

(1 + |wt|)ηwt
|v − z`(0)| · |wt − z`(0)|2

)2
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As ηw > N−1+ε, by Proposition 4.2 the following holds with overwhelming probability:

1

N

∑
`:|v−z`(0)|>Nε

N

ηwt
|v − z`(0)| · |wt − z`(0)|2

6 C

∫
|v−λ|>Nε

N

ηwt
|v − λ| · |wt − λ|2

dλ 6
C

d(v, wt)
1ηwt<ηv +

C logN

d(v, wt)
1ηwt>ηv

1

N

∑
`:|v−z`(0)|6Nε

N

ηwt
|v − z`(0)| · |wt − z`(0)|2

6
N2ε

Nηv

ηwt
d(v, wt)2

6
N2ε

Nηv

1

d(v, wt)
.

so that we have obtained

1

N

∑
`

ηwt
|v − z`(0)| · |wt − z`(0)|2

6 C

∫
ηwt

|v − λ| · |wt − λ|2
dλ 6

C

d(v, wt)
1ηwt<ηv+

N2ε

d(v, wt) min(1, Nηv)
1ηwt>ηv .

(4.30)
Moreover, the contribution from the diagonal terms in (4.29) leads to a sum evaluated with Proposition 4.3:

∑
`

1

|v − z`(0)|2

(
Re〈`, wt−u + U(u)

wt−u − U(u)
`〉
)2

6
∑
`

C

|v − z`(0)|2

(
Re
wt + z`(0)

wt − z`(0)

)2

6
∑
`

C(1 + |wt|2)η2
wt

|v − z`(0)|2 · |wt − z`(0)|4
,

and similarly to (4.30) we obtain

1

N

∑
`

η2
wt

|v − z`(0)|2 · |wt − z`(0)|4
6

C

ηwtd(v, wt)2
1ηwt<ηv +

C

ηvd(v, wt)2 min(1, Nηv)2
1ηwt>ηv .

Using the previous four estimates in (4.29), with probability 1− e−3(logN)D the bracket of (4.28) is bounded
with

N2ε

min(1, Nηv)2

∫ t

0

1

η2
wt−u

(
1 + |wt|2

ηwt−ud(v, wt)2
+

1 + |wt|2

min(ηwt , ηv)d(v, wt)2

)
du 6

N2ε(1 + |wt|2)

d(v, wt)2 min(1, Nηv)2
·( 1

η2
w

+
1

ηw min(ηwt , ηv)
),

so, with probability 1− e−2(logN)D , (4.28) is smaller than Nε(1+|wt|)
d(v,wt) min(1,Nηv) · (

1
ηw

+ 1√
ηw min(ηwt ,ηv)

). We now

consider the error term due to the finite variation term, based on (4.27):

|∂wmu,A(wt−u))| 6
∑ 1

|v − zk(0)|
1

ηwt−u(1 + |wt−u|)
Re〈k, wt−u + Uu

wt−u − Uu
k〉

6
∑ C

|v − zk(0)|
1

ηwt−u(1 + |wt−u|)
1

|wt − zk(0)|
6

CN1+ε

ηwt−u(1 + |wt−u|)d(v, wt) min(1, Nηv)

so ∫ t

0

|wt−u| · |mu(wt−u)− 1| · |∂wmu,A(wt−u))|du 6
Nε

ηwd(v, wt) min(1, Nηv)
.

This concludes the proof of the proposition for |w| ∈ [1 + Nε/N, 3/2], |v| ∈ (1, 3/2]. The proof for |w| ∈
[1/2, 1−Nε/N ], |v| ∈ [1/2, 1) is strictly similar, and uniformity in v, w and t ∈ [0,∆] follows from the same
grid argument as in the second step in the proof of Proposition 4.2.

We now consider the case |w| ∈ (1, 1 + Nε/N ] and |v| ∈ (1, 3/2], relying on the following analogue of
(4.15), where we now denote w′ with the same argument as w such that ηw′ = N−1+ε:

Re〈q, w + Ut
w − Ut

q〉 6 C
ηw′

ηw
Re〈qw

′ + Ut
w′ − Ut

q〉. (4.31)

In the sequence below we start with (4.27), use (4.31) and proceed similarly to (4.16) to bound the contri-
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bution from Im〈q, w+Ut
w−Ut q〉, denoting wk with the same argument as w such that ηwk = ekηw:∣∣∣∣Tr

(
w + Ut
w − Ut

· v + U0

v − U0

)∣∣∣∣ 6∑
k

C

|v − zk(0)|

(
Re〈uk(0),

w + Ut
w − Ut

uk(0)〉+
∣∣∣ Im〈uk(0),

w + Ut
w − Ut

uk(0)〉
∣∣∣)

6
∑
k

C

|v − zk(0)|

 Nε

Nηw
Re〈uk(0),

w′ + Ut
w′ − Ut

uk(0)〉+
∑

Nε/N6ejηw61

Re〈uk(0),
wj + Ut
wj − Ut

uk(0)〉


6
∑
k

C

|v − zk(0)|

 Nε

Nηw
Re〈uk(0),

w′t + U0

w′t − U0
uk(0)〉+

∑
Nε/N6ejηw61

Re〈uk(0),
(wj)t + U0

(wj)t − U0
uk(0)〉


=
∑
k

C

|v − zk(0)|

(
Nε

Nηw
Re
w′t + zk(0)

w′t − zk(0)
+
∑

Nε/N6ejηw61
Re

(wj)t + zk(0)

(wj)t − zk(0)

)

6
∑
k

C

|v − zk(0)|

 Nε

Nηw

ηw′t(1 + |w′t|)
|w′t − zk(0)|2

+
∑

Nε/N6ejηw61

η(wj)t(1 + |(wj)t|)
|(wj)t − zk(0)|2

 .

As in (4.30), we have ∑
k

ηw′t
|v − zk(0)| · |w′t − zk(0)|2

6
N1+ε

d(v, w′t) min(1, Nηv)
,

and similarly for the terms involving (wj)t, which gives, as w′t is close to wt,∣∣∣∣Tr

(
w + Ut
w − Ut

· v + U0

v − U0

)∣∣∣∣ 6 Nε(1 + |wt|)
ηwd(v, wt) min(1, Nηv)

. (4.32)

The analogous estimate with Ut replaced with U0, and w replaced with wt gives∣∣∣∣Tr

(
wt + U0

wt − U0
· v + U0

v − U0

)∣∣∣∣ 6 Nε(1 + |wt|)
ηwtd(v, wt) min(1, Nηv)

. (4.33)

This concludes the proof for |w| ∈ [1, 1 + Nε/N ] and |v| ∈ (1, 3/2]. The proof when |w| ∈ [1 − Nε/N, 1]
follows the same argument.

5 Loop equations via stochastic analysis on the unitary group

Integration by parts at the level of matrix process (and not at the level of the two-dimensional interacting
particle systems constituted by its eigenvalues) has a particularly simple form in the case of the Dyson
dynamics for the Gaussian Unitary Ensemble: M(t) is distributed according to e−tM(0) +

√
1− e−2tG

where G is a GUE matrix of size N , whose density is proportional to e−N Tr(H2)DH, and G is independent
of M(0), the initial condition. Here, DH is the Lebesgue measure on Hermitian matrices. The explicit

potential in e−N Tr(H2)DH makes integration by parts tractable and this has been used for instance in
[38, Lemma 4.1] in the context of mesoscopic equilibrium for linear statistics in the GUE Dyson’s Brownian
motion. However, this very nice structure does not extend to the unitary Brownian motion and we use
instead stochastic calculus on this Lie group, in particular Girsanov theorem and exact solutions of some
matrix SDEs that characterize Fréchet derivatives as an alternative (Section 5.1 below).

Such integration by parts often carry the name loop equations in random matrix theory [59], where they
traditionally relate correlation functions of particle systems (see [47, 54, 90]), i.e. only eigenvalues in the
context of random matrices. In our multitime and singular setting, the integration by parts formula (see
Proposition 5.3) encodes information/correlations about eigenvalues but also eigenvectors.

5.1 Fréchet derivatives as explicit solutions of matrix SDEs. As in the previous sections, the
Brownian motion (Ut) on the unitary group is defined through (2.6), i.e.

dUt =
√

2UtdBt − Utdt
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where (Bt) is a Brownian motion on the space of skew Hermitian matrices. Note that if M is Hermitian and

N is skew-Hermitian, then 〈M,N〉R := Re(Tr(M
T
N)) = 0.

Lemma 5.1 (Representation of UBM derivatives). Consider a predictable bounded and continuous skew

Hermitian valued process (fs) and set Ft :=
∫ t

0
fsds. Then in L2(P) and almost surely,

DFUt := lim
ε→0

ε−1(U(B + εF )t − U(B)t) =
√

2

(∫ t

0

UsfsU
−1
s ds

)
Ut. (5.1)

Proof. First, we show that Vt := DFUt exists and solves, in integral form,

V0 = 0, dVt =
√

2VtdBt − Vtdt+
√

2Utftdt.

Indeed, with U (ε) := U(B + εF ) which solves

dU
(ε)
t =

√
2U

(ε)
t d(Bt + εFt)− U (ε)

t dt =
√

2U
(ε)
t dBt − U (ε)

t dt+ ε
√

2U
(ε)
t ftdt

and V (ε) := ε−1(U (ε) − U), which satisfies V
(ε)
0 = 0 and

dV
(ε)
t =

√
2V

(ε)
t dBt − V (ε)

t dt+
√

2(U
(ε)
t − Ut)ftdt+

√
2Utftdt

we obtain (by an L2 estimate, Gronwall lemma and a continuity estimate), when ε ↓ 0,

dVt =
√

2VtdBt − Vtdt+
√

2Utftdt. (5.2)

Most importantly, this equation has an explicit solution. Recalling that dUt =
√

2UtdBt − Utdt, taking the
conjugate transpose and using that dBt is skew Hermitian, we have

dU−1
t = −

√
2dBtU

−1
t − U−1

t dt.

An application of Itô’s formula gives

dVtU
−1
t = (

√
2VtdBt − Vtdt+

√
2Utftdt)U

−1
t + Vt(−

√
2dBtU

−1
t − U−1

t dt) + 2VtdBt(−dBtU
−1
t )

=
√

2UtftU
−1
t dt

where we used dBtdBt = −I to obtain the second equality, hence (5.1).

In the case of 1d Brownian motion, the Cameron-Martin’s formula implies, for deterministic shift (ft)

E
(∫ 1

0

fsdBs · Φ(B)

)
=

d

dε |ε=0
E
(
eε

∫ 1
0
fsdBs− ε

2

2

∫
f2
s dsΦ(B)

)
=

d

dε |ε=0

∫
Φ(B)e−

1
2

∫ 1
0

d(Bs−εFs)d(Bs−εFs)DB

=
d

dε |ε=0
E
(

Φ(B + ε

∫ ·
0

fsds)

)
= E(DFΦ(B))

where F =
∫ ·

0
fsds. The calculation above is formal but can be made rigorous (DB stands for the “Lebesgue

measure” on the space of continuous paths, which does not exist). The generalization to the Brownian
motion on skew Hermitian matrices is straightforward and we have,∫

DFΦ(B)e−
N
2

∫ 1
0
‖dBs‖2RDB = −

∫
Φ(B)DF

(
e−

N
2

∫ 1
0
‖dBs‖2R

)
DB

= N

∫
Φ(B)

∫ 1

0

〈fs,dBs〉Re−
N
2

∫ 1
0
‖dBs‖2RDB (5.3)

where DB formally stands for the Lebesgue measure on skew Hermitian valued continuous paths. The

necessity of N = σ−2 in the potential V (B) = 1
2σ2

∫ 1

0
‖dBs‖2R can be checked by computing, with Ft = itI

and recalling (2.3),

σ2Nt = σ2

∫ t

0

‖F ′s‖2Rds = Var

∫ t

0

〈dFs,dBs〉R = Var

∫ t

0

Re(Tr(iIdBs)) = t.

The Girsanov theorem gives an extension to predictable processes.
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Lemma 5.2 (Integration by parts for (Bt)). Consider a predictable bounded and continuous skew Hermitian

valued process (fs) and set Ft :=
∫ t

0
fsds. Suppose that Φ(B) ∈ L2(P) is measurable with respect to B and

that DFΦ(B) exists almost surely and in L2(P). Then,

E [DFΦ(B)] = NE
[
Φ(B)

∫ t

0

〈fs,dBs〉R
]
.

Proposition 5.3 (Integration by parts for (Ut)). With F =
∫ ·

0
fsds and Φ as above, we have

E
[
Φ(B)

∫ t

0

〈fs,dBs〉R
]

=
1

N
E [DFΦ(B)] , and DFUt =

√
2

(∫ t

0

UsfsU
−1
s ds

)
Ut. (5.4)

Furthermore, for a matrix valued bounded and continuous predictable process (hs) (not necessarily skew
Hermitian), and with a finite number of positive times tj and C 1 functions gj on the unit circle, we have

E

[∫ t

0

Tr(hsdBs)
∏
i

eTr gi(Uti )

]
= −
√

2

N

∑
j

E

[
Tr

(
g′j(Utj )Utj

∫ min(t,tj)

0

UshsU
−1
s ds

)∏
i

eTr gi(Uti )

]
.

Proof. The first statement is immediate from the lemmas 5.2 and 5.1. For the second statement, we denote
by pS (resp. pH) the projection on skew Hermitian (resp. Hermitian) matrices. Since these spaces are
orthogonal for 〈·, ·〉R and dB is skew Hermitian,

Re(Tr(hdB)) = −Re(Tr(pS(h)∗dB)) + Re Tr(pH(h)dB) = −〈pS(h), dB〉R + 0.

Given that i : M 7→ iM maps Hermitian matrices to skew Hermitian ones, and skew Hermitian matrices to
Hermitian ones, we have

Im(Tr(hdB)) = Re(−i Tr(hdB)) = Re(Tr(−ipS(h)dB)) + Re(Tr(−ipH(h)dB)) = 0 + 〈ipH(h), dB〉R.

We suppose that the product
∏
i reduces to one term since the generalization is straightforward. We have

E
∫ t

0

Tr(hsdBs)e
Tr g(Ut) = E

∫ t

0

〈−pS(hs),dBs〉ReTr g(Ut) + iE
∫ t

0

〈ipH(hs),dBs〉ReTr g(Ut)

=

√
2

N
ETr

(
g′(Ut)Ut

∫ t

0

Us(−pS(hs))U
−1
s ds

)
eTr g(Ut) +

√
2

N
iETr

(
g′(Ut)Ut

∫ t

0

UsipH(hs)U
−1
s ds

)
eTr g(Ut)

= −
√

2

N
ETr

(
g′(Ut)Ut

∫ t

0

UshsU
−1
s dseTr g(Ut)

)
.

In the second equality, we used (5.4) and the third equality follows from −pS(h) + i2pH(h) = −h.

5.2 Biased measures and error terms. In this section, we will use the following a priori estimate by
Johansson as an input.

Lemma 5.4 ([60, Lemma 2.9]). If f is real and ‖f‖H <∞, then

E
[
eTrf(U)

]
6 eNf̂0+ 1

2‖f‖
2
H .

An immediate consequence with f chosen as g below (4.18) is

P(θ(s) ∈ G ) > 1− e−(logN)10 , (5.5)

where G is defined as the rigidity event at the beginning of Section 4.2.
Let `h be a regularization of log (around the singularity h) on scale ι > N−2. Let

D = DJ,δ,C (5.6)

denote the family of laws biased by e
∑

16j6J Tr fj(Utj ) where J is fixed, fj is either an element in Sδ,C (see
Definition 2.1) or fj = λ `h, 0 6 λ 6 C and h ∈ [0, 2π), tj ∈ [0, C].

30



For any P in D we denote by E the expected value under P, and the dependence in fj , tj will sometimes
be emphasized trough Pf ,Ef .

We will use the following a priori estimates without systematically referencing them, when transferring
an estimate for a biased measure from the Haar measure: Under the Haar measure there exists C ′ such that,
uniformly in f ∈ Sδ,C and 0 6 λ 6 C, we have

E[eTrf−E(Trf)] 6 eC
′(logN)2 , E[eλTr`h−λE(Tr`h)] 6 eC

′ logN . (5.7)

Both inequalities follows from Lemma 5.4 and ‖f‖2H 6 C(logN)2 (due to our assumption f ∈ Sδ,C),
‖`h‖2H 6 C logN (see Lemma 2.6). As an example of application, Equations (5.5), (5.7), Hölder and Jensen

inequalities imply Pf (θ(s) ∈ G ) > 1− e−(logN)5 .

For the following lemma, we recall the notation d(v, w) = max(|v − w|, |v − w
|w|2 |) and R = (logN)1+c.

Lemma 5.5 (Application of the full rank projection estimate). Let ε ∈ (0, 1) be arbitrary. Uniformly in
ηv, ηw ∈ [0, 1/2], Pf ∈ D, −R 6 s 6 C and max(0, s) 6 t 6 C, we have

1

N
E
[
Tr

(
v + Us
v − Us

Ut
(w − Ut)2

)]
=

1

N

wt−s
w

E
[
Tr

(
v + Us
v − Us

Us
(wt−s − Us)2

)]
+

O(Nε)(1 + |wt−s|)
ηw d(v, wt−s) min(1, Nηv)

(
1

ηw
+

1√
ηw min(ηwt−s , ηv)

)

Proof. We first prove the result under the unbiased measure, i.e. f = 0. We have

1

N
E
[
Tr

(
v + Us
v − Us

Ut
(w − Ut)2

)]
= − 1

2N
∂wE

[
Tr

(
v + Us
v − Us

w + Ut
w − Ut

)]
.

With the Cauchy formula, under the event E from Proposition 4.5 we have∣∣∣∣ 1

N
E
[
Tr

(
v + Us
v − Us

Ut
(w − Ut)2

)
1E −

wt−s
w

Tr

(
v + Us
v − Us

Us
(wt−s − Us)2

)
1E | θ(s) ∈ G

]∣∣∣∣
6

Nε(1 + |wt−s|)
ηw d(v, wt−s) min(1, Nηv)

(
1

ηw
+

1√
ηw min(ηwt−s , ηv)

).

Furthermore, the same result holds without 1E nor the conditioning, by using the trivial estimate on the
integrand (e.g. N6/(ηvη

2
w)), the rigidity estimate (5.5) and the isotropic law from Proposition 4.5: P(E |

θ(s) ∈ G ) > 1− e−(logN)D . This completes the proof for the equilibrium measure.
We now consider Pf ∈ D. On the event E, the same estimates hold for Pf (θ(s) ∈ G ) and Pf (E | θ(s) ∈ G ),

as explained before the statement of the lemma, so the above proof applies to the biased measures.

5.3 Asymptotics of the loop equations. The following Lemma will be the main tool for the “gluing”
operation mentioned in subsection 1.2. It relies on the integration by parts formula from Proposition 5.3,
the consequences of the local law and rigidity estimates for biased measures Lemma 5.5, the first section in
the appendix to express our result in terms of Fourier coefficients, and various smoothings.

Lemma 5.6. Let C > 0 and δ ∈ (0, 1) be arbitrary. Consider hr ∈ Sδ,C (see Definition 2.1) where r ∈ I,
I a set of at most C times in [0, C], possibly N -dependent. Let Pf denote the law of the unitary Brownian

motion at equilibrium biased by e
∑
t∈B Tr ft(Ut)+

∑
z=t+iθ∈A γz Tr `θ+(Ut) where A , B and fs are as defined in

Theorem 1.2 and `+ is as defined in Definition 2.2 with regularization scale N−1−α, α = δ/6.
We also assume that for any t+ iθ ∈ A we have (see (A.6) for the definition of H)∑

r∈I
H P|r−t|hr(e

iθ) = 0. (5.8)

Then for any small ε > 0 we have∑
r∈I

Ef

[
Trhr(Ur)−N−

∫
hr

]
=

∑
r∈I,t+iθ∈A ,k∈Z

e−|k||t−r||k|(̂̀θ+)
k

ˆ(hr)−k+
∑

r∈I,t∈B,k∈Z

e−|k||t−r||k| ˆ(ft)k
ˆ(hr)−k

+ Oδ,C(N−δ/4+ε). (5.9)
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Remark 5.7. In the above statement, every `+ can be replaced by `− without any change to the proof.

Proof. To simplify the notations we assume that B = ∅, as the functions fs are more regular that the
logarithmic singularities `θ+, which represent the key difficulty. The contribution of the fs’s can be included
following the method below with only notational changes. We also abbreviate `+ into ` along the proof.

First step: integral representation. First, from (4.6) we have

mr(w) = m−R(wr+R) +

∫ r

−R

2
√

2

N
Tr

(
wr−sUs

(wr−s − Us)2
dB(s)

)
+

∫ r

−R
(ms(wr−s)− s(w))wr−s∂zms(wr−s)ds.

Remember the decomposition of hr into O(logN) many functions from the sets Aξ,C , (ξ ∈ [δ, 1]). We start
evaluating the trace of a function h from Aξ,C for an arbitrary ξ ∈ [δ, 1]. Together with the representation
(A.8), this implies (remember we denote s(z) = 1|z|>1 − 1|z|<1) that for any h

Ef (Trh(Ur))−N−
∫
h = −N

2π

∫
∂w̄h̃(w) · Ef [m−R(wr+R)− s(w)]

dm(w)

w
(5.10)

−N
2π

∫
∂w̄h̃(w) ·

∫ r

−R
Ef [(ms(wr−s)− s(w))wr−s∂zms(wr−s)] ds

dm(w)

w
(5.11)

− 2
√

2

2π

∫
∂w̄h̃(w) · Ef

∫ r

−R
Tr

(
wr−sUs

(wr−s − Us)2
dB(s)

)
dm(w)

w
(5.12)

where we have chosen the second order quasi-analytic extension h̃ (contrary to the first order in (A.2)) and
N−1+ξ as the scale of the associated bump function χ in

h̃(reiθ) =

(
h(eiθ)− ih′(eiθ) log r − h′′(eiθ) (log r)2

2

)
χ(r). (5.13)

The first term (5.10) above is easily shown to be subpolynomial in N because wr+R is either superpolyno-
mially large or close to 0. The second term (5.11) is also negligible by the bound

|∂w̄h̃| 6 (|h|+ ηw|h′|+ η2
w|h′′|) · |χ′|+ |h′′′|η2

w · |χ|. (5.14)

Indeed denoting η0 = N−1+ξ, with (4.17) we obtain

|(5.11)| . N1+ε

∫∫
[0,η0]2

(
(1 +

η

η0
+
η2

η2
0

) ·
1η0/2<η

η0
+
η2

η3
0

)
·
∫ ∞

0

1

N(η + s)

1

N(η + s)2
dsdηdθ .

Nε

Nη0
.

Second step: injecting the integration by parts formula. To evaluate (5.12) we rely on the integration by
parts formula from Proposition 5.3:

Ef

[∫ r

−R
Tr

(
wr−sUs

(wr−s − Us)2
dB(s)

)]
= − 1

N

∑
t+iθ∈A

Ef

[
Tr
(
`θ
′
(Ut)V

t
r (w)

)]
(5.15)

where, for 1 6 j 6 N ,

V tr (w) =
√

2

∫ t∧r

−R
Us

wr−sUs
(wr−s − Us)2

U−1
s ds · Ut =

√
2

∫ t∧r

−R

wr−sUs
(wr−s − Us)2

ds · Ut.

We can write `θ =
∑
gm where the sum is over O(∆) terms (recall ∆ in (4.4)) and gm supported on an

arc of length 1/(Nem), − logN 6 m 6 α logN ,
∑3
k=0(Nem)k‖g(k)

m ‖∞ 6 C logN . The number of considered
gm’s is O((logN)2) thanks to the initial smoothing on scale N−1−α in Section 2.3. We can therefore assume,
until further notice, without loss of generality that `θ term inside the Tr coincides with such a gm, and we
define ε̃ = e−m/N .

From (A.8) (|v| = 1 in v`θ
′
(v) below) we can write

1

N
Ef

[
Tr
(
`θ
′
(Ut)V

t
r (w))

)]
=

√
2

N
Ef

[
Tr

(
Ut`

θ ′(Ut)

∫ t∧r

−R

wr−sUs
(wr−s − Us)2

ds

)]
= −

√
2

2πN

∫
C

∫ t∧r

−R
EfTr

(
v + Ut
v − Ut

wr−sUs
(wr−s − Us)2

)
ds∂v̄ ṽ`θ

′
(v)

dm(v)

v
, (5.16)
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where for further error estimates it will be pertinent to choose c = ε̃ for χc in the definition of the above

ṽ`θ
′
, here we use the first order quasi-analytic extension given in (A.1).
We first use reversibility in the above expectation. In this way, instead of changing the very singular

function v+Ut
v−Ut into vt−s+Us

vt−s−Us and collecting a problematic error term in η−1
v (the v variable corresponds to

the singular function `θ, while the w variable corresponds to the smooth h), we will change the more regular
function in w and collect an error term η−1

w , as in Lemma 5.5.
More precisely, by reversibility the above expectation is

Ee
∑
t′+iθ∈A Tr `θ(Ut′ )Tr

(
v+Ut
v−Ut

wr−sUs
(wr−s−Us)2

)
Ee

∑
t′+iθ∈A Tr `θ(Ut′ )

=
Ee

∑
t′+iθ∈A Tr `θ(Ut−t′ )Tr

(
v+U0

v−U0

wr−sUt−s
(wr−s−Ut−s)2

)
Ee

∑
t′+iθ∈A Tr `θ(Ut−t′ )

. (5.17)

We denote the above right-hand side as a biased measure Ej,tTr
(
v+U0

v−U0

wr−sUt−s
(wr−s−Ut−s)2

)
.

With (5.12), (5.15), (5.16) and (5.17), we have proved that Ef (Trh(Ur))−N−
∫
h is equal to

− 1

Nπ2

∑
t+iθ∈B

∫∫
∂w̄h̃(w) · ∂v̄ ṽ`θ ′(v)

∫ t∧r

−R
Ej,tTr

(
v + U0

v − U0

wr−sUt−s
(wr−s − Ut−s)2

)
ds

dm(v)

v

dm(w)

w
+ O(N−δ+ε).

Third step: injecting resolvent estimates. With the key Lemma 5.5 in the above expectation, noting that
wt−s
w wr−s = wr+t−2s we obtain

Ef (Trh(Ur))−N−
∫
h =

∑
t+iθ∈A

Ar(t+ iθ) + O(Nε
∑

t+iθ∈B

Er(t+ iθ)) + O(N−δ+ε),

Ar(t+ iθ) := − 1

Nπ2

∫∫
∂w̄h̃(w)

∫ t∧r

−R
Ej,tTr

(
v + U0

v − U0

wr+t−2sU0

(wr+t−2s − U0)2

)
ds∂v̄ ṽ`θ

′
(v)

dm(v)

v

dm(w)

w
,

Er(t+ iθ) :=
1

N

∫∫
|∂w̄h̃(w)|

∫ t∧r

−R

(1 + |wr+t−2s|)
ηwr−s d(v, wr+t−2s) min(1, Nηv)

× (
1

ηwr−s
+

1√
ηwr−s min(ηwr+t−2s

, ηv)
)ds|∂v̄ ṽ`θ ′(v)|dm(v)

|v|
dm(w)

|w|
.

We start with the evaluation of the main terms, Ar(t + iθ). Importantly the biased measures Ej,t don’t
depend on s, so that for any D > 0, uniformly in w we can integrate∫ t∧r

−R

wr+t−2sU0

(wr+t−2s − U0)2
ds =

∫ t∧r

−∞

wr+t−2sU0

(wr+t−2s − U0)2
ds+O(N−D) = −1

2

U0

w|r−t| − U0
·(1|w|>1−1|w|<1)+O(N−D).

Noting that U
w−U = 1

2
w+U
w−U −

1
2 and

∫
C ∂w̄h̃(w)(1|w|>1−1|w|<1)dm(w)

w = 0 (this follows from (A.3) and (A.4)
when z = 0 or z → +∞), we have obtained

Ar(t+iθ) =
1

4Nπ2
Ej,tTr

[(∫
C
∂w̄h̃(w)

w|r−t| + U0

w|r−t| − U0
· (1|w|>1 − 1|w|<1)

dm(w)

w

)(∫
C
∂v̄ ṽ`θ

′
(v)

v + U0

v − U0

dm(v)

v

)]
+O(N−D).

The first parenthesis is equal to H P|r−t|h(U0) from (A.7), and the second one is simply U0`
θ ′(U0) from (A.8).

This gives ∑
r∈I,t+iθ∈A

Ar(t+ iθ) =
1

N
Ej,t

∑
t+iθ∈A

Tr

(∑
r∈I

H P|r−t|h(U0)U0`
θ ′(U0)

)
+ O(N−D).

We now return to the original regularized logarithm functions `θ’s and the functions hr’s by summing over
all components of the decompositions. Because the logarithmic singularity 1/x of `θ

′
(up to scale N−1−α)

is compensated by the vanishing assumption (5.8), we claim that

1

N
Ej,t

∑
t+iθ∈A

Tr

(∑
r∈I

H P|r−t|hr(U0)U0`
θ ′(U0)

)
=

∑
t+iθ∈A

1

2π

∫ 2π

0

∑
r∈I

H P|r−t|hr(e
iω)eiω`θ

′
(eiω)dω+O(N−δ+ε)

=
∑

r∈I,t+iθ∈A ,k∈Z

e−|k||t−r||k| ̂̀θk ˆ(hr)−k + O(N−δ+ε) (5.18)
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where the second equality follows by equations (2.1) and (A.6). For the first equality, denoting F (ω) =∑
r H P|r−t|hr(e

iω)eiω`θ
′
(eiω) by rigidiy of the eigenangles we first have |N−1

∑
F (θk)−

∫
F | . N−1+ε

∫
|F ′|

with overwhelming probability, so we just need to bound
∫
|F ′|. Writing G(ω) =

∑
r H P|r−t|hr(e

iω)eiω and
using the key assumption (5.8), we have (assuming θ = 0 without loss of generality)∫
|F ′| .

∫
|(G(ω)−G(0))`

′′
(ω)+G′(ω)`

′
(ω)|dω .

∫
|(G(ω)−G(0)−ωG′(ω))`

′′
(ω)|dω+

∫
|G′(ω)(`

′
(ω)+ω`′′(ω))|dω

Using Taylor with integral remainder and the bounds |`′′| . |ω|−2, |`′(ω) + ω`′′(ω)| . (|ω| + N−1−α)−1,

we obtain
∫
|F ′| .

∫
|G′′| + |G′(0)| logN. Note that

∣∣∣(H P|r−t|hr
)′∣∣∣ 6 ∑

k∈Z |k ˆ(hr)k| 6 (logN)2N1−δ as

hr ∈ Sδ,C soG′(0) 6 (logN)2N1−δ. Moreover, from the LHS representation of the Hilbert transform in (A.6)
we easily obtain

∫
|Hf | . (logN)

∫
|f |+N−10 sup |f ′| for any function f , so

∫
|G′′| . (logN)

∑
r

∫
|Pr−th′′r | .

(logN)
∑
r

∫
|h′′r | . (logN)2N1−δ. This concludes the proof of (5.18).

We now estimate the error term Er(t+ iθ),

Er(t+ iθ) 6
1

N

∫∫
|∂w̄h̃(w)| 1

ηw
(1 +

1

Nηv
)(

1

ηw
+

1
√
ηwηv

)|∂v̄ ṽ`θ ′(v)|
∫ t∧r

−R

(1 + |wr+t−2s|)
d(v, wr+t−2s)

dsdm(v)dm(w).

Note that
∫ t∧r
−R

(1+|wr+t−2s|)
d(v,wr+t−2s)

ds 6 ϕ | log d(v, w)|. The contribution from d(v, w) 6 N−10 is negligible (e.g. it

is O(N−3)) by volume estimate. Hence,

Er(t+ iθ) 6
ϕ2

N

∫∫
|∂w̄h̃(w)| 1

ηw
(1 +

1

Nηv
)(

1

ηw
+

1
√
ηwηv

)|∂v̄ ṽ`θ ′(v)|dm(v)dm(w) + O(N−3).

From (5.14), denoting N−1+ξ by ε, as χ is supported on exp([−2ε, 2ε]), constant equal to 1 on exp([−ε, ε]),
we obtain (for some points a, b on the unit circle) that |∂w̄h̃| 6 η2

wε
−31|w−a|<4ε, and similarly |∂v̄ ṽ`θ ′| 6

ηv ε̃
−31|v−b|<4ε̃ (remember h̃ is defined from the second order expansion (5.13) and ṽ`θ

′
from the first order

(A.1)). Substituting these, we obtain∫
|∂w̄h̃(w)|

ηcw
dm(w) 6

1

εc−1
, for c < 3;

∫
|∂v̄ ṽ`θ ′(v)|

ηcv
dm(v) 6

1

ε̃c
, for c < 2.

Therefore,

Er(t+ iθ) 6
ϕ2

N

(
1

ε1/2ε̃1/2
+

1

ε

)
+
ϕ2

N2

(
1

ε1/2ε̃3/2
+

1

εε̃

)
6 N−δ/4

where we used α = δ/6 in the last inequality. Combining the estimates for Ar and Er concludes the proof.

6 Proof of the theorems

6.1 Theorem 1.2. The local decoupling (Section 3) and the asymptotics of the loop equations (Section
5) allow to prove Theorem 1.2 through the following surgery. The Selberg formula is a base point.

Lemma 6.1 (One singularity). For any θ ∈ [0, 2π], as N →∞,

E(|det(U0 − eiθ)|γ) = N
γ2

4
G(1 + γ

2 )2

G(1 + γ)
(1 + O(1/N)).

Proof. We use the exact expression of the expected value of powers of the characteristic polynomials derived
by Keating and Snaith [69, (6)] (and based on Weyl’s and Selberg’s formulas) to calculate

lim
N→∞

N−
γ2

4 E|det(U0 − eiθ)|γ = lim
N→∞

N−
γ2

4

N∏
j=1

Γ(j)Γ(j + γ)

Γ(j + γ
2 )2

= lim
N→∞

N−
γ2

4
G(N + 1)G(N + 1 + γ)

G(N + 1 + γ
2 )2

G(1 + γ
2 )2

G(1)G(1 + γ)
=

G(1 + γ
2 )2

G(1 + γ)
.
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The second equality followed from the relation G(z+ 1) = Γ(z)G(z) and the last one from G(1) = 1 and the
following asymptotics (see, e.g., Barnes’ original paper on the G function [9, page 269]):

log G(z + 1) =
z2

2
log z − 3z2

4
+
z

2
log 2π − 1

12
log z + C + Oz→∞(

1

z
)

Indeed, it gives log G(N+γ+1) = log G(N+1)+γN logN−γN+ γ2

2 logN+O( 1
N ) hence only the quadratic

term in γ contributes to log G(N+1)G(N+1+γ)
G(N+1+ γ

2 )2 = γ2

4 logN + O( 1
N ).

In what follows, we use the notations ft to denote the pair (f, t) where f is a function and t a real number
and we set for any s, t,

C (fs, gt) := lim
N→∞

Cov(Tr f(Us),Tr g(Ut)) =
∑
k∈Z
|k|f̂kĝ−ke−|k||t−s| = (f, P|t−s|g)H. (6.1)

We extend it to finite linear combination, C (fs, λgt+hr) = λC (fs, gt)+C (fs, hr) and set C (fs) := C (fs, fs),
which does not depend on s. With Lx := γx log |eix−·| and t > 0, we record the following identities, obtained

by using (̂fx)k = − e
−ikx

2|k| where fx(θ) = log |eix − eiθ|,

C (f0, L
x
t ) = γx

∑
k 6=0

|k|f̂k · (−
eikx

2|k|
1k 6=0)e−|k||t| = −γx

2
(Ptf(eix)−−

∫
f) = −γx

2
(Pt − P∞)f(eix), (6.2)

C (Lx0 , L
y
t ) = γxγy

∑
k 6=0

|k|e
ikx

2|k|
e−iky

2|k|
e−|k|t =

γxγy
2

∑
k>1

cos(k(x− y))

k
e−kt = γxγyPtC(x− y), (6.3)

where the function C is defined in (2.17).

Lemma 6.2 (One singularity & one smooth function). Let t > 0 and f ∈ Sδ,C for δ ∈ (0, 1), then

E(|det(Ut − eix)|γxeTr f(U0)) = N
γ2x
4

G(1 + γx
2 )2

G(1 + γx)
eC (f0,L

x
t )eN−

∫
f0+ 1

2C (f0)(1 + O(N−δ/9)).

Proof. Without loss of generality, we suppose −
∫
f = 0. We start with replacing the logarithmic singularity

with `e
ix

+ (recall Definition 2.2, here we set the submicroscopic smoothing parameter α = δ/15) and for

simplicity we write Lx+ = γx`
eix

+ . Define a function q(eiω) = χr(ω)− χl(ω) where χr (resp. χl) is a smooth

bump function that is equal to 1 on [x+N−1+9δ/20, x+N−1+δ/2] (resp. [x−N−1+δ/2, x−N−1+9δ/20]) and
supported in [x + N−1+9δ/20/2, x + 2N−1+δ/2] (resp. [x − 2N−1+δ/2, x − N−1+9δ/20/2]). By the principal
value definition of Hilbert transform from (A.6), it’s easy to see that Hq(eix) � logN . On the other hand
using the Fourier space definition of Hilbert transform from (A.6), HPtf = O(logN). Hence, there exist an
O(1) constant α such that HPtf(eix)− αHq(eix) = 0. We choose

p = αq, (6.4)

calling the function p compensator.
Now we apply Lemma 5.6, adding the local compensator p at the singularity in order to satisfy the

Hilbert transform condition (5.8),

E(eTrLx+(Ut)+Tr f(U0)) = E(eTrLx+(Ut)+Tr p(Ut)) exp

(∫ 1

0

d

dν
logE(eTrLx+(Ut)+ν Tr f(U0)+(1−ν) Tr p(Ut))dν

)
= E(eTrLx+(Ut)+Tr p(Ut)) exp

(∫ 1

0

C (f0 − pt, Lx+,t + νf0 + (1− ν)pt)dν

)
(1 + O(N−δ/9))

where by integrating we have
∫ 1

0
C (f0−pt, Lx+,t+νf0+(1−ν)pt)dν = C (f0, L

x
+,t)+ 1

2C (f0, f0)−C (pt, L
x
+,t)−

1
2C (pt, pt). Notice that the expectation is now just a single-time expression and once we prove the following:

logE(eTrLx++Tr p(Ut)) = logE(eTrLx+(Ut)) + C (pt, L
x
+,t) +

1

2
C (pt, pt) + O(N−δ/9) (6.5)
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with the approximation C (f0, L
x
+,t) = C (f0, L

x
t ) + O(N−δ/9), which can be shown easily by the Fourier

coefficient expression in (6.1), we obtain

E(|det(Ut − eix)|γxeTr f(U0)) 6 N
γ2x
4

G(1 + γx
2 )2

G(1 + γx)
eC (f0,L

x
t )eN−

∫
f0+ 1

2C (f0)(1 + O(N−δ/9))

by Lemma 2.5. Repeating the same steps with lower regularization `− finishes the proof. The proof of
equation (6.5) is just a straightforward application of the single-time loop equation, it is given in the Ap-
pendix.

Let λ = N−1+κ be the mesoscopic scale for the small fixed positive constant κ � δ where δ is the
separation parameter for the singularities of A . We denote the mesoscopic regularization of logarithm
around eix by `e

ix

λ so that log fj + γx log(−2λ) = `e
ix

+ − `eixλ where fj is defined as in equation (3.13) for

z = eix. Now, we introduce the notation Lx+ = γx`
eix

+ = Lx,loc
+ + Lx,reg

+ where Lx,loc
+ and Lx,reg

+ stands

for local submicroscopically regularized logarithm γx(`e
ix

+ − `eixλ ) and mesoscopic log -regularization γx`
eix

λ

respectively. An application of the lemma above (with Lemmas 2.3 and 2.5) gives

E(eTrLx,loc+ (Ut)) = N
γ2x
4

G(1 + γx
2 )2

G(1 + γx)
e−

1
2 (C (Lx+,t)−C (Lx,loc+,t ))(1 + O(N−κ/9)) (6.6)

since −C (Lx,reg
+,t , Lx+,t) + 1

2C (Lx,reg
+,t ) = − 1

2 (C (Lx+,t) − C (Lx,loc
+,t )). We are now ready to prove our main

theorem.

Proof of Theorem 1.2. Throughout the proof, ε that is used for a small positive constant, may change line
by line. Again, we start with `+ regularization of log, i.e., we consider the expression

E
[
e
∑
s∈B Tr fs(Us)+

∑
z=t+iθ∈A Tr `e

iθ

+ (Ut)
]
.

We choose the submicroscopic regularization parameter α (used in the definition of `+) and the mesoscopic
scale parameter κ (in the definition of `λ) so that α, κ � δ (where � depends on the value of C), where
δ is the separation parameter for the singularities at A appearing in the statement of the theorem. For

convenience, we enumerate the singularities as `e
ixj

+ (Utj ) and write |A | = J . We denote by L = Lloc + Lreg

the decomposition of the regularized log-singularity sum into submicroscopic localized terms and mesoscopic
smoothing parts (see above equation (6.6)), and let S denote the remaining smooth contributions. To satisfy
the Hilbert transform vanishing assumption (5.8) in the loop equation, we introduce local compensator
functions pj = αjqj (see above 6.4 for the definition of q) around each singularity `

xj
+ , and denote their sum

by P, where αj is to be determined. The Hilbert transform condition (5.8) then takes the form:


HP|t1−t1|q1(eix1) HP|t1−t2|q2(eix1) · · · HP|t1−tJ |qJ(eix1)
HP|t2−t1|q1(eix2) HP|t2−t2|q2(eix2) · · · HP|t2−tJ |qJ(eix2)

...
...

. . .
...

HP|tJ−t1|q1(eixJ ) HP|tJ−t2|q2(eixJ ) · · · HP|tJ−tJ |qJ(eixJ )



α1

α2

...
αJ



=


∑
z=t+iθ∈A HP|t1−t|`

eiθ

λ (eix1) +
∑
s∈B HP|t1−s|fs(e

ix1)
...∑

z=t+iθ∈A HP|tJ−t|`
eiθ

λ (eixJ ) +
∑
s∈B HP|tJ−s|fs(e

ixJ ).


The square matrix on the left-hand side has diagonal entries � logN and off-diagonal entries O(N−δ+ε).
On the other hand, every entry of the right-hand side vector is O(logN). Hence, there exist O(1) constants
αj ’s satisfying this system of linear equations.

We suppose without loss of generality that the smooth functions are centered. Our starting point is the
identity

E(eS+L) = E(eLloc+P) exp

(∫ 1

0

d

dν
logE(eν(S+Lreg−P)+Lloc+P)dν

)
.
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Then, by Proposition 3.4 we have

E(eLloc+P) =
∏
j

E(eTrL
xj,loc

+ (Utj )+Tr pj(Utj )) · (1 + O(N−δ/3))

=
∏
j

E(eTrL
xj,loc

+ (Utj ))e
C (pj,tj ,L

xj,loc

+,tj
)+ 1

2C (pj,tj ) · (1 + O(N−ε)) (6.7)

=
∏
j

N
γ2xj
4

G(1 +
γxj
2 )2

G(1 + γxj )
e
− 1

2 (C (L
xj
+,tj

)−C (L
xj,loc

+,t ))+C (pj,tj ,L
xj,loc

+,tj
)+ 1

2C (pj,tj )
(1 + O(N−ε))

where ε is a small positive constant depending only on C and δ; the second equality follows from single-time
loop equation similarly to (6.5) and the third equality follows from (6.6). Furthermore, by Lemma 5.6,∫ 1

0

d

dν
logE(eν(S+Lreg−P)+Lloc+P)dν =

∫ 1

0

C (S + Lreg − P, ν(S + Lreg − P) + Lloc + P)dν + O(N−ε))

= C (S + Lreg,Lloc) +
1

2
C (S + Lreg)− 1

2
C (P) +

1

2
C (P,S)− C (P,Lloc) +

1

2
C (P,Lreg) + O(N−ε)

=
1

2
C (S) + C (S,L) +

1

2
C (L)− 1

2
C (Lloc)− 1

2
C (P) +

1

2
C (P,S)− C (P,Lloc) +

1

2
C (P,Lreg) + O(N−ε).

Altogether, we obtain

E(eS+L) = e
1
2C (S)eC (S,L)e

1
2C (L)− 1

2

∑
A C (Lx+,t)

∏
A

N
γ2z
4

G(1 + γz
2 )2

G(1 + γz)
e−

1
2C (Lloc)+ 1

2

∑
A C (Lx,loc+,t )

e
−C (P,Lloc)+

∑|A |
1 C (pj ,L

xj,loc

+,tj
)
e−

1
2C (P)+ 1

2

∑|A |
1 C (pj)(1 + O(N−ε)).

It can be easily seen by Fourier space definition of C at (6.1) that the submicroscopic regularizations in
the second and third exponentials can be replaced by pure logarithmic singularities with a negligible error.
Moreover, due to the separation condition on the singularities, the exponents of the last three exponential
terms in the right-hand side are negligible because the cross terms are negligible. For the sake of brevity we
only discuss it for the first exponential out of those there, i.e. we prove that

C (Lx,loc
0 , Ly,loc

t ) = O(N−ε)

for any pair of distinct singularities. Indeed, since 〈f, g〉L2( λ2π ) =
∑
k f̂kĝ−k, d

dt 〈Ptf, g〉L2( λ2π ) = −〈Ptf, g〉H.

Note that ∫
U

Ptf(w)g(w)λ(dw) =

∫
U2

g(w)
1

2π
Re

(
w′ + we−t

w′ − we−t

)
f(w′)λ(dw)λ(dw′)

and d
dt
w′+we−t

w′−we−t = d
dt

2w′

w′−we−t = −2 w′we−t

(w′−we−t)2 , so, denoting d = N mini6=j(|(eixi , ti) − (eixj , tj)| > Nδ, we

bound from above

|C (Lx,λ0 , Ly,λt )| 6 C(λ/N)2 · log(λ/N)2 max(1,min(t−2, |eix − eiy|−2)) 6 Nκλ2/d2 (6.8)

by using sup|w′−eix|<λ/N,|w−eiy|<λ/N
1

|w′−we−t|2 6 C max(1,min(t−2, |eix − eiy|−2)).

To conclude, we use (6.1), (6.2), (6.3) combined with (2.16), This concludes the proof of

E
[
e
∑
s∈B Tr fs(Us)

∏
z=t+iθ∈A

|det(Ut−eiθ)|γz
]
6 eN

∑
B
−
∫
fs+

1
2

∑
B2 (fs,P|s−s′|fs′ )H−

∑
z∈A ,s∈B

γz
2 (P|t−s|−P∞)fs(e

iθ)

×
∏
A

N
γ2z
4

G(1 + γz
2 )2

G(1 + γz)

∏
z,w∈A ,z 6=w

(
max(|ez|, |ew|)
|ez − ew|

) 1
4γzγw

(1 + O(N−ε)). (6.9)

For the other direction of the inequality, it suffices to replace all `+ smoothings with `−’s from the beginning,
the steps are identical.
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6.2 Theorem 1.1. In this proof, we prefer simplicity/brevity to generality and present only the details
for the L2 phase (namely γ ∈ (0, 2)). The parameter γ is fixed throughout the proof so we drop it from the
notation. In the Gaussian setup, [13] gave an elementary approach for the convergence of GMC measures for
a natural class of approximations, including the L1 phase (corresponding here to γ ∈ [2, 2

√
2) using barrier

estimates. In random matrix theory, the works [72] and [81, Section 3] explain how barrier estimates and in
particular the convergence in the L1 phase follow from Theorem 1.2.

Let µ
(ε)
N be the 2d GMC measure with parameter γ associated to the field h

(ε)
N (t, ·) := PεhN (t, ·). For any

continuous function f on [0, 1] × U, the L2 norm of
∫

[0,1]×U f(dµ
(ε)
N − dµN ) vanishes when taking N → ∞

and then ε → 0 (details on this are given below). Furthermore, h
(ε)
N converges to a smooth Gaussian

field h(ε) whose covariance kernel is given by E(Pεh(s, x)Pεh(t, y)) = 1
2

∑
k>1

cos(k(x−y))
k e−|k||t−s|e−2ε|k| =

P2ε+|t−s|C(x− y) where C(x− y) = E(h0(x)h0(y)). Finally, the GMC eγh
(ε)

converges to the GMC eγh by
[91, Theorems 3, 25]. Altogether, this concludes the proof of Theorem 1.1 for γ ∈ (0, 2).

Now, we provide some details on the L2 estimates. Three terms arise:

E(eγh
(ε)
N (s,x)eγh

(ε)
N (t,y))

E(eγh
(ε)
N (s,x))E(eγh

(ε)
N (t,y))

,
E(eγh

(ε)
N (s,x)eγhN (t,y))

E(eγh
(ε)
N (s,x))E(eγhN (t,y))

, and
E(eγhN (s,x)eγhN (t,y))

E(eγhN (s,x))E(eγhN (t,y))
.

Set fx = log |ei· − eix| and f
(ε)
x = Pεfx. By applying Theorem 1.2 (with one singularity or one smooth

function), we obtain the asymptotics of the normalizing constants: limN→∞ E(eγh
(ε)
N (s,x)) = e

γ2

2 ‖f
(ε)
x ‖

2
H and

limN→∞N−
γ2

4 E(eγhN (s,x)) = G(1+γ/2)2

G(1+γ) . Still with Theorem 1.2 (and this time only pairwise terms con-

tribute), we obtain the 2-point asymptotics

E(eγh
(ε)
N (s,x)eγh

(ε)
N (t,y))

E(eγh
(ε)
N (s,x))E(eγh

(ε)
N (t,y))

∼
N→∞

e
γ2

2 ×2(f(ε)
x ,P|t−s|f

(ε)
y )H = eγ

2P|t−s|+2εC(x−y),

E(eγh
(ε)
N (s,x)eγhN (t,y))

E(eγh
(ε)
N (s,x))E(eγhN (t,y))

∼
N→∞

e−
γ2

2 P|t−s|f
(ε)
x (eiy) = eγ

2P|t−s|+εC(x−y),

E(eγhN (s,x)eγhN (t,y))

E(eγhN (s,x))E(eγhN (t,y))
∼

N→∞
(e2P|t−s|C(x−y))

γ2

4 ×2,

where we used (2.16) for the last equality. Note that the above asymptotics hold uniformly in the domain
allowed for (x, s), (y, t) in Theorem 1.2 .

With fx(y) = −
∑
k>1

1
2k (eik(x−y)+e−ik(x−y)), we find (fx, fy)H = 1

2

∑
k>1

cos(k(x−y))
k and (f

(ε)
x ,P|t−s|f

(ε)
y )H =

1
2

∑
k>1

cos(k(x−y))
k e−|t−s|ke−2εk.

For small mesoscopic contributions, we use the Cauchy-Schwarz inequality and obtain (again from (1.3)
but with a 2γ singularity) as N →∞,

E(e2γh
(ε)
M (0,0))

E(eγh
(ε)
M (0,0))2

� N
(2γ)2

4

N
γ2

2 ×2
= N

γ2

2

so, for ε small enough, the contributions to the L2 norm of the points z, w ∈ [0, 1]×U with |z−w| < N−1+ε

vanishes. Therefore, limε→0 limN→∞ E(
∫

[0,1]×U f(dµ
(ε)
N − dµN ))2 is equal to

lim
ε→0

∫
([0,1]×U)2

f(s, x)f(t, y)(eγ
2P|t−s|+2εC(x−y) − 2eγ

2P|t−s|+εC(x−y) + eγ
2P|t−s|C(x−y)) = 0,

hence the aforementioned L2 estimate. To justify the above limit, let us denoteAω :=
∫
f(s, x)f(t, y)eγ

2P|t−s|+ωC(x−y).
Because the integrand is non-negative we have A2ε − 2Aε + A0 > 0 and by Fatou’s lemma we have
lim infε→0(2Aε −A2ε) > A0; combining these two completes the proof.

This paper is focused on the measures as in our framework the limiting 2d LQG measure is connected with
many topics of 2d random geometry, as outlined above. However, Theorem 1.2 has other direct consequences
which we list below.
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Remark 6.3. Theorem 1.2 implies directly the pointwise convergence of hN (z) = log |det(eiθ − Ut)| (where
z = t+iθ) to a Gaussian logarithmically-correlated field: ( 1

2 logN)−1/2(hN (z), hN (z′)) converges in distribu-
tion to (Nz,Nz′) where these standard Gaussians have asymptotic covariance − log |z−z′|/ logN for |z−z′|
on mesoscopic scale.

Remark 6.4. For Ω any fixed compact set in R × U with non-empty interior, yet another corollary is the
asymptotics

(logN)−1 max
z∈Ω
|hN (z)| →

√
2

in probability, i.e. the space-time analogue of the main result in [4]. For fixed time this maximum is known
up to second order [84], tightness [26] and distribution [85]; it is an interesting question whether Theorem
1.2 can help to approach this precision on Ω, or if our 2d framework is useful to study fine properties of the
maximum of the 1d restriction of the field.

In the same vein as equation (1.4), Theorem 1.2 (more precisely its natural analogue for Im log) also
captures the maximum deviation of the eigenvalues along trajectories. Indeed, ordering the initial eigenangles
at equilibrium 0 6 θ1(0) 6 . . . 6 θN (0) 6 2π, and denoting γk = 2πk

N , t = N−1+β (0 6 β 6 1), we have (in
probability),

N

logN
max

06s6t,16k6N
|θk(s)− γk| → 2

√
1 + β. (6.10)

Finally, we note two interesting questions related to our results. First, in the context of random tilings,
(6.10) is the analogue of the maximal deviation of the height function from the hydrodynamic limit. Asymp-
totics of this maximum and convergence to LQG are not known in this context. Moreover, instead of
considering an infinite volume surface, the unitary Brownian bridge with same (Haar-distributed) starting
(t = 0) and ending point (t = 1) provides a natural framework in Random Matrix Theory to generate the
LQG measure on a finite volume surface without boundary, the torus R/2πZ × R/Z. The general surgery
and some methods developed in this work may apply to these problems.

Appendix

In the following paragraphs, we present some standard formulas, accompanied with a proof to be self-
contained and some identities that are used in the manuscript as well as an extension of Theorems 1.1 and
1.2 to incorporate jump singularities.

Helffer-Sjőstrand formula, Hilbert transform and Poisson kernel. This paragraph presents the
natural unitary analogue of the classical Helffer-Sjőstrand formula, originally used to develop an alternative
functional calculus for self-adjoint operators [31] and of great use in random matrix theory, see [43], and its
interplay with the Poisson kernel.

Let g̃ = g(w) be a quasi-analytic extension of g, i.e. g and g̃ coincide on the unit circle and ∂w̄g̃(w) =
O(||w| − 1|) (We could also impose ∂w̄g̃(w) = O(||w| − 1|p) for arbitrary fixed p > 1). In practice we often
use the following natural analogue of the Hermitian formulas from [31, 43], with representation in polar
coordinates (w = reiθ), as in [2]:

g̃(w) = (g(eiθ)− ig′(eiθ) log r)χ(r), (A.1)

where χ = χc = 1 on exp([−c, c]), 0 on exp([−2c, 2c]c), and |χ′| 6 10c−1, |χ′′| 6 10c−2. Furthermore, we
used the notation g′(eiθ) for the differential of θ 7→ g(eiθ), and similarly for g′′. Note that for this specific
form of g̃ we have

∂w̄g̃(w) =
eiθ

2
(g(eiθ)− ig′(eiθ) log r)χ′(r) +

eiθ

2r
g′′(eiθ)χ(r) log r. (A.2)

Let m denote the Lebesgue measure on C. Assume also that g̃ is compactly supported. Green’s theorem
in complex coordinates can be written (in the case of outer boundary)∫

D

∂w̄f(w)dm(w) =
1

2

∫
D

(∂xf − ∂y(−if))dm(w) =
1

2

∫
∂D

(−ifdx+ fdy) = − i

2

∫
∂D

f(w)dw.
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This gives, for any |z| < 1, (note that we have a sign change due to inner boundary)

1

π

∫
|w|>1

∂w̄g̃(w) · z + w

z − w
dm(w)

w
=

1

π

∫
|w|>1

∂w̄

(
g̃(w)

z + w

z − w

)
dm(w)

w

=
i

2π

∫
|w|=1

g(w)
z + w

z − w
dw

w
= −

∫ 2π

0

g(eiθ)
z + eiθ

z − eiθ

dθ

2π
. (A.3)

Similarly, for any |z| > 1,

1

π

∫
|w|<1

∂w̄g̃(w) · z + w

z − w
dm(w)

w
=

1

π

∫
|w|<1

∂w̄

(
g̃(w)

z + w

z − w

)
dm(w)

w

= − i

2π

∫
|w|=1

g(w)
z + w

z − w
dw

w
=

∫ 2π

0

g(eiθ)
z + eiθ

z − eiθ

dθ

2π
. (A.4)

Defining wt = wet1|w|>1 + we−t1|w|<1, from (A.3) and (A.4) we obtain, for any |z| = 1, z = eiϕ and t > 0
we have

1

2π

∫
C
∂w̄g̃(w) · z + wt

z − wt
dm(w)

w
= −1

2

∫ 2π

0

g(eiθ)
ze−t + eiθ

ze−t − eiθ

dθ

2π
+

1

2

∫ 2π

0

g(eiθ)
zet + eiθ

zet − eiθ

dθ

2π

=

∫ 2π

0

g(eiθ)
1

2

(
1 + e−tei(ϕ−θ)

1− e−tei(ϕ−θ) +
1 + e−tei(θ−ϕ)

1− e−tei(θ−ϕ)

)
dθ

2π
=

∫ 2π

0

g(eiθ)Re
1 + e−tei(ϕ−θ)

1− e−tei(ϕ−θ)
dθ

2π
= Ptg(z). (A.5)

Recall that the Hilbert transform of a function on ∂D can be defined through a principal value or in Fourier
space:

Hf(eiθ) =

∫ 2π

0

f(eiϕ)− f(eiθ)

tan ϕ−θ
2

1

2π
dϕ, Hf(z) =

∑
k∈Z

i(1k>1 − 1k6−1)f̂kz
k. (A.6)

From (A.3) and (A.4), with converging series expansion, we easily obtain

1

2π

(∫
|w|>1

−
∫
|w|<1

)
∂w̄g̃(w) · z + wt

z − wt
dm(w)

w
= i H Ptf(z). (A.7)

Finally, for general z we have

1

2π

∫
C
∂w̄g̃(w) · z + w

z − w
dm(w)

w
=

1

2π
lim
ε→0

∫
D(z,ε)c

∂w̄

(
g̃(w)

z + w

z − w

)
dm(w)

w

=
i

4π
lim
ε→0

∫
C(z,ε)

g̃(w)
z + w

z − w
dw

w
=

i

2π
g̃(z) lim

ε→0

∫
C(z,ε)

dw

z − w
= g̃(z). (A.8)

Poisson summation. We denote by pt(x) the one-dimensional heat kernel on the real line, i.e., pt(x) =
e−x

2/2t
√

2πt
. The formula below is a generalization of the usual Poisson summation formula and is related with

the transformation formula of the theta function.

Lemma A.1. For every δ ∈ R, x ∈ R and t > 0,
∑
k∈Z e

2iπkδpt(x+ 2kπ) = 1
2π

∑
n∈Z e

ix(n+δ)e−
(n+δ)2t

2 .

Proof. This follows by writing, with Bt distributed as a centered Gaussian variable with variance t,

e−
(n+δ)2t

2 = E(ei(n+δ)Bt) =
∑
k∈Z

∫ 2(k+1)π

2kπ

ei(n+δ)ypt(y)dy =
∑
k∈Z

∫ 2π

0

ei(n+δ)(u+2kπ)pt(u+ 2kπ)du

multiplying it by e−iy(n+δ) and by summation, i.e.

∑
n∈Z

e−iy(n+δ)e−
(n+δ)2t

2 = lim
N→∞

∫ 2π

0

(
N∑

n=−N
ein(u−y)

)
eiδ(u−y)

∑
k∈Z

e2ikπδpt(u+ 2kπ)du.

The limit follows from basic properties of the Dirichlet kernel.
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Single-time loop equation. In this subsection we prove (6.5).
Loop equations, also called Schwinger–Dyson equations, are functional identities that have long been

a central analytic method in random matrix theory, widely used to study global and local statistics of
eigenvalues, they underpin many modern results on fluctuations, large deviations, etc. The following lines
outline the main steps in proving the equations (6.5) and (6.7), closely following [73].

In this subsection, all the functions are assumed to have domain T = [−π, π] for convenience. Given

function f : T→ R, define the centered linear statistics S(f) =
∑N
k=1 f(θk)−−

∫
T f(θ)dθ and let ν denote the

centered empirical spectral measure, i.e.,
∫
fdν = S(f). The single-time loop equation for the CUE (Lemma

2.1 in [73]) is given by

Ef (S(−Hh)) =

∫
T
h(x)f ′(x)

1

2π
dx+

1

N
Ef (S(hf ′)) +

1

2N
Ef
(∫

T

∫
T

h(x)− h(y)

tan(x−y2 )
dν(x)dν(y)

)
(A.9)

where the biased measure is given by Ef [·] = E[· e
Tr(f)

E[eTr(f)]
] and H is defined as in (A.6). By the Fourier

space representation of Hilbert transform one can directly see that for all f ∈ L2(T), −H(Hf) = f − f̂0 a.e.
Moreover, if f ∈ C 1(T), the equality holds everywhere on T.

Now, we can discuss the proof of (6.5). Since it’s a single-time problem from now on, we omit the time
indices and also write Tr f for Tr f(U). Moreover, because the problem is rotationally symmetric, we can
assume that the singularity is at 0, and so we omit the x superscript in Lx+ as well. Applying the loop
equation (A.9) for f = L+ + νp and h = Hp− Hp(0), assuming the second and the third terms in the loop
equation (A.9) are negligible we obtain,

E(eTrL++Tr p) = E(eTrL+) exp

(∫ 1

0

d

dν
logE(eTrL++ν Tr p)dν

)
= E(eTrL+) exp

(∫ 1

0

E(L++νp)(Tr p)dν

)
= E(eTrL+) exp

(∫ 1

0

C (L+ + νp, p)dν

)
(1 + O(N−δ/9)) = E(eTrL+)eC (p,L+)+ 1

2C (p,p)(1 + O(N−δ/9)).

The key difference between the multi-time loop equation asymptotics (Lemma 5.6) and the single-time loop
equation, which leads us using the latter one at the end of the proof of Theorem 1.2, is the fact that in the
single-time loop equation the freedom of choice for the constant c in h = Hp+ c eliminates the need for the
compensator. Thus, the only things left are to prove the following two estimations

EL++νp

(
S
(
(Hp−Hp(0))(L+ + νp)′

))
= O(N1−δ/9), EL++νp

(∫
T

∫
T

Hp(x)−Hp(y)

tan(x−y2 )
dν(x)dν(y)

)
= O(N1−δ/9)

(A.10)

for ν ∈ [0, 1]. For simplicity, we consider the case ν = 1, the proof is identical for the other values of ν.
Recall that the rigidity holds under this biased measure as discussed as a result of Lemma 5.4 and

the rigidity can also be expressed as follows: Given the centered eigenangle counting function on [−π, π],

g(θ) =
∑N
k=1 1θk∈[−π,θ] − N(θ+π)

2π , we have PL++p(sup |g| 6 (logN)10) > 1−N100. Thus, by integration by
parts (e.g. see Proposition 1.3 in [73])

EL++p

(∣∣S((Hp−Hp(0))(L+ + p)′
)∣∣) 6 (logN)10

∫ ∣∣∣(Hp−Hp(0))(L+ + p)′′ + (Hp)′(L+ + p)′
∣∣∣+ o(N−1).

Substituting the following estimations which can be simply obtained by Taylor expansion, the required result
follows easily

|(Hp)(k)(x)| 6

{
Nk(1−2δ/5)(logN)2, |x| 6 3N−1+δ/2

N−1+δ/2

|x|k+1 (logN)2, otherwise
, for k = 0, 1, 2, 3. (A.11)

Here, for the sake of brevity we discuss this upper bound only for (Hp)′(x) when |x| 6 3N−1+δ/2, the rest
follows by the same way. In the following, the inequalities hold up to an absolute constant factor,

|(Hp)′(x)| 6
∫
T

∣∣∣ −p′(x)

tan(y−x2 )
+

1

2

p(y)− p(x)

sin2(y−x2 )

∣∣∣dy 6
∫
T

∣∣∣−p′(x)
( 1

y − x
+O(|y−x|))

)
+(p(y)−p(x))

( 1

(y − x)2
+O(1)

)∣∣∣dy
6 O(1)+

∫
T

∣∣∣− p′(x)

y − x
+
p(y)− p(x)

(y − x)2

∣∣∣dy 6 O(1)+

∫
|y|<4N−1+δ/2

‖p′′‖∞dy+
(
‖p′‖∞ logN+‖p‖∞N1−δ/2) = O(N1−2δ/5)
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where we have used the Taylor expansion for p while evaluating the integral over the region |y| < 4N−1+δ/2.
The second inequality in (A.10) follows similarly: first, applying integration by parts with rigidity (Propo-

sition 1.3 in [73]) we obtain

EL++p

(∣∣∣ ∫
T

∫
T

Hp(x)−Hp(y)

tan(x−y2 )
dν(x)dν(y)

∣∣∣)
6 (logN)20

∫
T

∫
T

∣∣∣ (Hp)′(x) + (Hp)′(y)

(x− y)2
− 2

(Hp)(x)− (Hp)(y)

(x− y)3

∣∣∣︸ ︷︷ ︸
=:(∗)

dxdy + o(N−1).

We evaluate this double integral in four separate regions as follows:∫ ∫
|x|<3N−1+δ/2

|y|<4N−1+δ/2

(∗)dxdy 6 ‖(Hp)′′′‖∞(N−1+δ/2)2 logN = O(N1−δ/5 logN)

∫ ∫
|x|<3N−1+δ/2

|y|>4N−1+δ/2

(∗)dxdy 6 logN

∫
|x|<3N−1+δ/2

‖(Hp)′‖∞N1−δ/2 + ‖Hp‖∞(N1−δ/2)2dx = O(N1−2δ/5 logN)

∫ ∫
|y|>|x|>3N−1+δ/2

|x−y|<|x|/2

(∗)dxdy 6 logN

∫ ∫
|y|>|x|>3N−1+δ/2

|x−y|<|x|/2

‖(Hp)′′′‖L∞(B|x|/2(x))dxdy = O(N1−δ/2 logN)

∫ ∫
|y|>|x|>3N−1+δ/2

|x−y|>|x|/2

(∗)dxdy 6
∫
|x|>3N−1+δ/2

‖(Hp)′‖L∞(B|x|(0)c)

|x|
+
‖Hp‖L∞(B|x|(0)c)

|x|2
dx = O(N1−δ/2 logN)

which completes the proof of (6.5). The only change for the proof of (6.7) is to obtain similar estimations
to (A.11) for HLloc

+ which can be shown similarly by Taylor expansions.

Jump Singularities. With a few minor changes, the proof of Theorem 1.2 applies to other singularities:
the discontinuities from Im log. We only treated the logarithmic singularity from Re log for the sake of
conciseness. Indeed, define Im log det(1 − e−iθUt) =

∑
k Im log(1 − ei(θk(t)−θ)), with the branch choice

Im log(1 − eiϕ) = (ϕ − π)/2 if ϕ ∈ [0, π), (ϕ + π)/2 if ϕ ∈ (−π, 0). For later convenience, define argθ =
Im log(1 − ei(·−θ)). Denoting z = t + ix and w = s + iy and assuming βz ∈ [−C,C] in addition to the
conditions of Theorem 1.2, when the jump singularities are involved the asymptotic formula in the theorem
reads as follows:

E
[
e
∑
s∈B Tr fs(Us)

∏
z=t+iθ∈A

|det(Ut − eiθ)|γzeβz Im log det(1−e−iθUt)
]

= eN
∑

B
−
∫
fs+

1
2

∑
B2 (fs,P|s−s′|fs′ )H−

∑
z∈A ,s∈B

(
γz
2 (P|t−s|−P∞)fs(e

iθ)+ βz
2 P|t−s|Hfs(e

iθ)
)

×
∏
A

N
γ2z+β

2
z

4
G(1 + γz

2 + iβz2 )G(1 + γz
2 − iβz2 )

G(γz + 1)

∏
z,w∈A ,z 6=w

(
max(|ez|, |ew|)
|ez − ew|

) 1
4γzγw+ 1

4βzβw

∏
z,w∈A ,z 6=w

eγzβwC (`xt ,argys )(1 + O(N−ε)) (A.12)

where we have substituted [69, (71)] for the asymptotics with both jump and log-type singularities and we
have calculated (here we denote `x(θ) = log |eix − eiθ|)

C (f0, argxt ) =
∑
k 6=0

|k|f̂k · (−i
eikx

2k
1k 6=0)e−|k||t| = −1

2
P|t|Hf(eix), (A.13)

C (`x0 , argyt ) =
∑
k 6=0

|k|(− 1

2|k|
e−ikx)(− i

2k
eiky)e−|k||t| =

1

2

∞∑
k=1

e−k|t|

k
sin(k(x− y)), (A.14)

C (argx0 , argyt ) =
∑
k 6=0

|k|( i

2k
e−ikx)(− i

2k
eiky)e−|k||t| =

1

2
log

max(|ez|, |ew|)
|ez − ew|

. (A.15)
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The explicit computations to obtain (A.12) require regularizing the singularities at a submicroscopic scale
and performing detailed error term estimates which will not be carried out here.

Given γ2 + β2 < 8, (A.12) allows us to state the following 2d analogue of Theorem 2.5 of [99],

lim
N→∞

|det(Ut − eiθ)|γeβ= log det(1−e−iθUt)

E(|det(Ut − eiθ)|γeβ= log det(1−e−iθUt))
dtdθ = e

√
γ2+β2h(z)dz (A.16)

and in particular for γ = 0 this gives (1.4). In the above equation the GMC e
√
γ2+β2h(z)dz is as defined

in Theorem 1.1, i.e. associated with the Gaussian free field h on the cylinder R × R/2πZ, E(h(z)h(w)) =
π(−∆C)

−1(z, w).
When establishing the analogue of Theorem 1.1 as a result of the asymptotics (A.12), the key thing to

notice is that given γz = γ and βz = β for all z ∈ A , the terms involving C (`x0 , argyt ) will vanish due to:

C (`x0 , argyt ) + C (`yt , argx0) = 0

which can be seen by (A.14).
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[36] J. Dubédat and H. Falconet, Metric growth dynamics in Liouville quantum gravity, Communications in Mathematical
Physics 400 (2023), 1317–1383.

[37] J. Dubédat and H. Shen, Stochastic Ricci Flow on Compact Surfaces, Int. Math. Res. Not. 2022 (2022), 12253–12301.

[38] M. Duits and K. Johansson, On mesoscopic equilibrium for linear statistics in Dyson’s Brownian motion, Mem. Amer.
Math. Soc. 255 (2018), no. 1222, v+118.

[39] B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), no. 2, 333–393.

[40] B. Duplantier, J. Miller, and S. Sheffield, Liouville quantum gravity as a mating of trees, Astérisque, to appear (2014).
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[52] V. Gorin and J. Huang, Dynamical Loop Equation, Annals of Probability 52 (2024), 1758–1863.

[53] C. Guillarmou, A. Kupiainen, R. Rhodes, and V. Vargas, Conformal bootstrap in Liouville Theory, Acta Math., to appear.
(2020).

44



[54] A. Guionnet, Asymptotics of random matrices and related models, CBMS Regional Conference Series in Mathematics,
vol. 130, American Mathematical Society, Providence, RI, 2019. The uses of Dyson-Schwinger equations; Published for
the Conference Board of the Mathematical Sciences.

[55] E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for γ ∈ (0, 2), Invent. Math.
223 (2021), no. 1, 213–333.

[56] D.G. Hobson and W. Werner, Non-colliding Brownian motions on the circle, Bull. London Math. Soc. 28 (1996), no. 6,
643–650.

[57] N. Holden and X. Sun, Convergence of uniform triangulations under the Cardy embedding, Acta Math., to appear. (2019).

[58] J. Huang and B. Landon, Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general β and
potentials, Probab. Theory Relat. Fields 175 (2019).

[59] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998), no. 1, 151–204.

[60] , On random matrices from the compact classical groups, Ann. of Math. (2) 145 (1997), no. 3, 519–545, DOI
10.2307/2951843. MR1454702

[61] , Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math.
Phys. 215 (2001), no. 3, 683–705.

[62] , Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), no. 1-2, 277–329.

[63] , Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, Ann. Inst. Fourier (Grenoble)
55 (2005), no. 6, 2129–2145.

[64] , Random matrices and determinantal processes, Mathematical statistical physics, 2006, pp. 1–55.

[65] K. Johansson and E. Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50, 1342–1371.

[66] J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (1985), no. 2, 105–150 (French).

[67] S. Karlin and J. McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141–1164.

[68] T. Kato, Variation of discrete spectra, Comm. Math. Phys. 111 (1987), no. 3, 501–504.

[69] J. P. Keating and N. C. Snaith, Random matrix theory and ζ(1/2 + it), Comm. Math. Phys. 214 (2000), no. 1, 57–89.

[70] I. V. Krasovsky, Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel
determinant, Duke Math. J. 139 (2007), no. 3, 581–619.

[71] A. Kupiainen, R. Rhodes, and V. Vargas, Integrability of Liouville theory: proof of the DOZZ formula, Ann. of Math. (2)
191 (2020), no. 1, 81–166.

[72] G. Lambert, D. Ostrovsky, and N. Simm, Subcritical multiplicative chaos for regularized counting statistics from random
matrix theory, Comm. Math. Phys. 360 (2018), no. 1, 1–54.

[73] G. Lambert, Mesoscopic central limit theorem for the circular β-ensembles and applications, Electronic Journal of Prob-
ability 26 (2021), no. none, 1 – 33.

[74] J.-O Lee and K. Schnelli, Edge universality for deformed Wigner matrices, Rev. Math. Phys 27 (2015).

[75] J.-F. Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab. 41 (2013), no. 4, 2880–2960.
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