Homework 1

Due Tuesday, July 7th at the beginning of class

1. Fix $a_0, d \in \mathbb{R}$ and let $a_k = a_{k-1} + d$ for all $k \geq 1$. Show that $\frac{1}{n} \sum_{i=0}^{n-1} a_k$ is given by $(a_{n-1} + a_0)/2$.

2. Let $S = \{1, 2, \ldots, n\}$.
 (a) By counting the number of subsets of S in two ways, prove that

 \[2^n = \sum_{k=0}^{n} \binom{n}{k}. \]
 (b) How many ways are there to choose 2 disjoint subsets A, B from S? For example, if $n = 10$ then some distinct choices are:

 $A = \{1, 3\}$, $B = \{4\}$
 $A = \{4\}$, $B = \{1, 3\}$
 $A = \{1, 2, 3\}$, $B = \emptyset$
 $A = \emptyset$, $B = \emptyset$
 $A = \emptyset$, $B = \{1, 2, \ldots, 10\}$.

3. You have a team of 15 (distinguishable) players and must choose which 11 will play. There are two kinds of roles (A, B) for each player chosen. Seven will play role A, and four will play role B.
 (a) If 8 are able to play role A and 7 are able to play role B, how many ways are there to choose who will play each role?
 (b) If 8 are able to play role A, 5 are able to play role B and 2 can play either, how many ways are there to choose who will play each role?