Theory of Probability - Brett Bernstein

Homework 1 Solutions

Due Tuesday, July 7th at the beginning of class

1. Fix $a_0, d \in \mathbb{R}$ and let $a_k = a_{k-1} + d$ for all $k \geq 1$. Show that $\frac{1}{n} \sum_{k=0}^{n-1} a_k$ is given by $(a_{n-1} + a_0)/2$.

 Solution. Since $a_k = a_0 + kd$ and $a_{n-1} = a_0 + (n-1)d$ we have

 \[
 \sum_{k=0}^{n-1} a_k = \sum_{k=0}^{n-1} a_0 + kd = na_0 + d \sum_{k=0}^{n-1} k = na_0 + \frac{dn(n-1)}{2}.
 \]

 Note that

 \[
 \frac{a_0 + a_{n-1}}{2} = \frac{a_0 + a_0 + (n-1)d}{2} = a_0 + \frac{(n-1)d}{2},
 \]

 so dividing our above result by n gives the answer.

2. Let $S = \{1, 2, \ldots, n\}$.

 (a) By counting the number of subsets of S in two ways, prove that

 \[
 2^n = \sum_{k=0}^{n} \binom{n}{k}.
 \]

 (b) How many ways are there to choose 2 disjoint subsets A, B from S? For example, if $n = 10$ then some distinct choices are:

 \[
 A = \{1, 3\}, \quad B = \{4\}
 \]

 \[
 A = \{4\}, \quad B = \{1, 3\}
 \]

 \[
 A = \{1, 2, 3\}, \quad B = \emptyset
 \]

 \[
 A = \emptyset, \quad B = \emptyset
 \]

 \[
 A = \emptyset, \quad B = \{1, 2, \ldots, 10\}.
 \]
Solution.

(a) Each element of S is either in our subset or not. Thus we have 2 options, and we must make this choice n times giving 2^n possible subsets. Alternatively, we can sum over the possible sizes of the subset. For a given size k, there are $\binom{n}{k}$ subsets of that size.

Another way to solve this problem is to apply the binomial theorem to $(1 + 1)^n$.

(b) Here each element is in A, B, or neither. Since we have 3 options and must make this choice n times, the solution is 3^n.

3. You have a team of 15 (distinguishable) players and must choose which 11 will play. There are two kinds of roles (A,B) for each player chosen. Seven will play role A, and four will play role B.

(a) If 8 are able to play role A and 7 are able to play role B, how many ways are there to choose who will play each role?

(b) If 8 are able to play role A, 5 are able to play role B and 2 can play either, how many ways are there to choose who will play each role?

Solution.

(a) $\binom{8}{5} \binom{7}{4}$

(b) We can sum over the ways of assigning the 2 special people to roles. Each can play either role A, role B, or not play at all. Here we count the number of ways to choose roles in each case.

i. Both play role A: $\binom{8}{5} \binom{5}{5}$.

ii. Both play role B: $\binom{8}{5} \binom{5}{5}$.

iii. First plays role A, second plays role B or vice-versa: $2 \binom{8}{5} \binom{5}{3}$.

iv. First plays role A and second doesn’t play, or vice-versa: $2 \binom{8}{5} \binom{5}{4}$.

v. First plays role B and second doesn’t play, or vice-versa: $2 \binom{8}{7} \binom{5}{3}$.

vi. Neither play: $\binom{8}{7} \binom{5}{5}$.

Thus the final answer is

$\binom{8}{5} \binom{5}{4} + \binom{8}{5} \binom{5}{2} + 2 \binom{8}{6} \binom{5}{3} + 2 \binom{8}{6} \binom{5}{4} + 2 \binom{8}{7} \binom{5}{3} + \binom{8}{7} \binom{5}{4}$.

2