Spectral Inclusion Regions for Bifurcation Analysis

D. Bindel

Computer Science Division
Department of EECS
University of California, Berkeley

Stanford, 01 Aug 2006
Outline

Stability of reaction-diffusion systems

Subspace projection and the field of values

Subspace projection and pseudospectral bounds

Conclusions
Outline

Stability of reaction-diffusion systems

Subspace projection and the field of values

Subspace projection and pseudospectral bounds

Conclusions
Belousov-Zhabotinski reaction

www.pojman.com/NLCD-movies/NLCD-movies.html
Reaction-diffusion models

\[\frac{\partial u}{\partial t} = D \nabla^2 u + F(u; s) \]

Describes many systems:

- Chemical reactions (like the B-Z reaction)
- Signals in nerves
- Ecological systems
- Phase transitions

See *Chemical Oscillations, Waves, and Turbulence* (Kuramoto).
Stability analysis

Linearize about an equilibrium branch \(u_0(s) \):

\[
\frac{\partial}{\partial t} \delta u = \left(D\nabla^2 + F_u(u_0(s); s) \right) \delta u = J(s) \delta u
\]

- Stable if eigenvalues of \(J(s) \) have negative real part
- When stability changes, have a bifurcation
- Complex eigs cross imaginary axis \(\Rightarrow \) oscillations, a Hopf bifurcation
The Brusselator

- Two-component model of B-Z reaction
- Reaction takes place in a narrow tube of length L
- Stable constant equilibrium for small L
- Hopf bifurcation at a critical value of L
Hopf bifurcation in the Brusselator
Outline

Stability of reaction-diffusion systems

Subspace projection and the field of values

Subspace projection and pseudospectral bounds

Conclusions
Generally: have (discretized) Jacobian $J(s)$
Want to know when $J(s)$ becomes unstable
Only a few eigenvalues matter for stability analysis
Compute those eigenvalues by continuation
How many eigenvalues do we need?
Subspace projections

\[JQ = Q \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \]

- Arnoldi’s method \(\rightarrow \) block Schur form
- \(T_{11} \) is (quasi)-triangular
- \(T_{22} \) is not known explicitly
- Want some assurance that \(T_{22} \) is stable
 - Without computing eigenvalues of \(T_{22} \)!
Spectral inclusion regions

- To show: some (sub)matrix is stable
- Show eigenvalues live in some inclusion region:
 - Field of values
 - Gershgorin disks
 - Pseudospectra
- Show that inclusion region lies in left half-plane
Field of values

\[\mathcal{F}(A) := \{ x^* Ax : x^* x = 1 \} \]

- Eigenvalues live inside \(\mathcal{F}(A) \)
- (Toeplitz-Hausdorff): \(\mathcal{F}(A) \) is convex
- For \textit{normal} matrices, \(\mathcal{F}(A) = \text{convex hull of } \Lambda(A) \)
- \(\Re(\mathcal{F}(A)) = \mathcal{F}(H(A)) = [\lambda_{\text{min}}(H(A)), \lambda_{\text{max}}(H(A))] \)

Hard to compute \(\mathcal{F}(A) \), easy to estimate the \textit{numerical abscissa}

\[\omega(A) := \lambda_{\text{max}}(H(A)). \]
Bounding $\mathcal{F}(A)$

$\Re(\lambda) = \lambda_{\text{max}}(H(A))$
Field of values and bifurcation analysis

\[JQ = Q \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \]

- Compute some eigenvalues via Arnoldi (for example)
- Estimate \(\omega(T_{22}) = \lambda_{\text{max}}(H(T_{22})) \) via Lanczos
- If estimate is insufficiently negative, compute more eigs
Bound applied to a 2D Brusselator
An Eeyore bound?

Have a growth bound:

\[
\frac{d}{dt} \bigg|_{t=0} \| \exp(tT_{22}) \| = \omega(T_{22})
\]

So if \(\delta u' = J\delta u \), then for any initial conditions,

\[
\frac{d}{dt} \| Q^*_2 \delta u(t) \| \leq 0.
\]

Forcing \(\omega(T_{22}) < 0 \) means \(T_{11} \) accounts for any transient growth as well as any long-term instability.
Outline

Stability of reaction-diffusion systems

Subspace projection and the field of values

Subspace projection and pseudospectral bounds

Conclusions
Are we there yet?

- Can we miss things between continuation steps?
- What if we don’t have an exact invariant subspace?
- What about finite perturbations to the problem?
- What about large transient growth?
Might want to analyze *pseudospectra* instead of eigenvalues

\[\Lambda_\epsilon(A) := \{ z \in \mathbb{C} : \sigma_{\min}(A - zI) \leq \epsilon \} \]
\[
= \bigcup_{\|E\| \leq \epsilon} \Lambda(A + E)
\]

- Provide a neat notation for perturbation theorems
- Provides insight into transient effects
- Even more expensive to compute than \(\Lambda(A) \)
Pseudospectra and projections

\[JQ = Q \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \]

- \(\Lambda_\epsilon(T_{11}) \subset \Lambda_\epsilon(J) \)
- *Not* generally true that \(\Lambda_\epsilon(J) = \Lambda_\epsilon(T_{11}) \cup \Lambda_\epsilon(T_{22}) \)
- But \(\Lambda_\epsilon(T_{11}) \) sometimes gives tight information...
Schur complement bounds

Partition any matrix A as

$$
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
$$

Then

$$
\Lambda(A) \subset \Lambda(A_{22}) \cup \{\lambda \in \mathbb{C} : B(\lambda) \text{ singular}\}
$$

$$
B(\lambda) = (A_{11} - \lambda I) - A_{12}(A_{22} - \lambda I)^{-1}A_{21}
$$

Idea: separately control the two terms in $B(\lambda)$.

For any $\epsilon > 0$, define

$$
\Omega_\epsilon := \{ \lambda \in \mathbb{C} : \| A_{12} (A_{22} - \lambda I)^{-1} A_{21} \| > \epsilon \}
$$

$$
\subset \{ \lambda \in \mathbb{C} : \| (A_{22} - \lambda I)^{-1} \|^{-1} > \epsilon^{-1} \| A_{12} \| \| A_{21} \| \}
$$

$$
= \Lambda_{\epsilon^{-1} \| A_{12} \| \| A_{21} \|} (A_{22})
$$

Outside Ω_ϵ, the Schur complement $B(\lambda)$ is within ϵ of $A - \lambda I$.
Schur complement bounds

Use norm bounds to localize singularities of $B(\lambda)$

$$\Lambda(A) \subset \Lambda_\epsilon(A_{11}) \cup \Omega_\epsilon \cup \Lambda(A_{22}),$$

and whenever $\gamma_1 \gamma_2 \geq \|A_{12}\| \|A_{21}\|$,

$$\Lambda(A) \subset \Lambda_{\gamma_1}(A_{11}) \cup \Lambda_{\gamma_2}(A_{22}).$$

Extends naturally to pseudospectra:

$$\Lambda_\epsilon(A) \subset \Lambda_{\tilde{\gamma}_1 + \epsilon}(A_{11}) \cup \Lambda_{\tilde{\gamma}_2 + \epsilon}(A_{22})$$

$$\tilde{\gamma}_1 \tilde{\gamma}_2 \geq (\|A_{12}\| + \epsilon)(\|A_{21}\| + \epsilon)$$
Define the *pseudospectral abscissa*

\[
\alpha_\epsilon(A) := \max \Re(\Lambda_\epsilon(A)).
\]

The *distance to instability* is the smallest \(\delta > 0 \) such that

\[
\alpha_\delta(A) \geq 0.
\]

Can use our Schur complement bounds to bound the distance to instability.
Bounds on distance to instability

For \(\tilde{\gamma}_1 \tilde{\gamma}_2 \geq (\|A_{12}\| + \epsilon)(\|A_{21}\| + \epsilon) \), have

\[
\alpha_\epsilon(A) \leq \max (\alpha_{\tilde{\gamma}_1 + \epsilon}(A_{11}), \alpha_{\tilde{\gamma}_2 + \epsilon}(A_{22})) \\
\leq \max (\alpha_{\tilde{\gamma}_1 + \epsilon}(A_{11}), \omega(A_{22}) + \tilde{\gamma}_2 + \epsilon).
\]
Bounds on distance to instability

Let

\[\delta = \text{distance from } A \text{ to instability} \]
\[\delta_1 = \text{distance from } A_{11} \text{ to instability} \]

Then the Schur complement bounds give us

\[
\left(1 - \frac{\|A_{12}\| + \delta_1}{\omega(A_{22})} \right)^{-1} \delta_1 \leq \delta \leq \delta_1.
\]
Distance to instability: 1D Brusselator example
Brusselator: Bounds on distance to instability

<table>
<thead>
<tr>
<th>Subspace dimension</th>
<th>Distance to instability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower bound</td>
</tr>
<tr>
<td></td>
<td>Upper bound</td>
</tr>
</tbody>
</table>

[Graph showing the relationship between subspace dimension and distance to instability with lower and upper bounds.]
Brusselator: Bounds on distance to instability

![Graph showing the relative difference in bounds vs. subspace dimension. The graph indicates a decreasing trend as the subspace dimension increases.]
Outline

Stability of reaction-diffusion systems

Subspace projection and the field of values

Subspace projection and pseudospectral bounds

Conclusions
Recap

- Goal was to analyze stability by subspace projections
- Want to ensure the subspace contains everything relevant
- Basic recipe: Schur complement + rough bounds on complementary space
- Same recipe gives bounds on pseudospectra, distance to instability
Conclusion

Some preliminary results:

- Have tried the bounds for small pseudospectral discretizations of Brusselator, some other problems
- Seems to work well for these problems
- Have some idea when the bounds ought to give good information (self-adjoint + relatively compact, not too close to singular perturbation)

Lots of remaining questions:

- Can I do better than Lanczos for estimating $\omega(A_{22})$ (and would it make a difference)?
- Are these bounds useable for step-size control in a bifucation code?
- How useful will these bounds be for large problems?