Markov Chain Analysis (math-ga 2932.001): Homework assignment 2

Eyal Lubetzky http://cims.nyu.edu/~eyal

DUE BY: April 9

- 1. Let P be the transition kernel of a Markov chain on a metric space (Ω, d) , and suppose that there exists $\theta < 1$ such that $d_{\mathcal{K}}(P(x, ..), P(y, .)) \leq \theta d(x, y)$ for all x, y, where $d_{\mathcal{K}}$ is the Kanotorovich metric. Show that $d_{\mathcal{K}}(\mu P, \nu P) \leq \theta d_{\mathcal{K}}(\mu, \nu)$ for any two distributions μ, ν on Ω .
- 2. Let G be a connected d-regular graph on the vertex set $V = \{1, ..., n\}$, fix $0 and let <math>(X_t)$ be the Markov chain on $\{\pm 1\}^V$ where each at step a uniformly chosen vertex updates its vote as follows: with probability p it copies the vote of a uniformly chosen neighbor, and with probability 1 p it selects new a uniform $\{\pm 1\}$ -value. Show that $t_{\min}(\frac{1}{4}) = O(n \log n)$.
- 3. Recall that τ is a strong stationary time for (X_t) if $\mathbb{P}(X_\tau = y, \tau = t) = \pi(y)\mathbb{P}(\tau = t)$ for any y and t. Prove that this is equivalent to having $\mathbb{P}(X_t = y, \tau \leq t) = \pi(y)\mathbb{P}(\tau \leq t)$ for any y, t.
- 4. Prove the following statement: If G is a connected non-bipartite graph (so random walk on G is ergodic), $(X_t), (Y_t)$ are two independent simple random walks on G and $Y_0 \sim \pi$ (with π the stationary distribution) then $\tau = \min\{t : X_t = Y_t\}$ is not a stationary time for (X_t) .
- 5*. A Markov chain P on a state space Ω is *transitive* if for any pair of states $x, y \in \Omega$ there is a bijection $\psi_{x,y} : \Omega \to \Omega$ with $\psi_{x,y}(x) = y$ and $P(\psi_{x,y}(u), \psi_{x,y}(v)) = P(u, v)$ for all u, v.
 - (i) Show that if P is transitive, its time-reversal \hat{P} satisfies $||P^t(x, \cdot) \pi||_{tv} = ||\hat{P}^t(x, \cdot) \pi||_{tv}$ for any t (in class we proved this identity for the special case of random walks on groups).
 - (ii) Show that if P is random walk on a transitive connected graph G (in particular P is transitive) then $\mathbb{E}_a \tau_b = \mathbb{E}_b \tau_a$ for any $a, b \in \Omega$, and give an example of a graph G and two vertices a, b on which this identity fails for the lazy random walk.
 - (iii) If P is transitive and, in addition, for any x, y there exists $\Psi_{x,y}$ as above which further has $\Psi_{x,y}(y) = x$, clearly $\mathbb{E}_a \tau_b = \mathbb{E}_b \tau_a$ for any a, b. Find a small transitive graph (say, on at most 25 vertices) where for some x, y there is no such $\Psi_{x,y}$ for simple random walk.
- 6*. Let (X_t) be simple random walk on \mathbb{Z}_n , and let τ be 0 with probability $\frac{1}{n}$ and the *cover-time* $(\min\{t : \{X_0, \ldots, X_t\} = \mathbb{Z}_n\})$ with probability $\frac{n-1}{n}$. Prove or disprove: τ is a stationary time.