Markov Chain Analysis (math-GA 2932.001): HOMEWORK ASSIGNMENT 2

Eyal Lubetzky http://cims.nyu.edu/~eyal

Due BY: April 9

1. Let P be the transition kernel of a Markov chain on a metric space (Ω, d), and suppose that there exists $\theta<1$ such that $d_{\mathcal{K}}(P(x, \cdot \cdot), P(y, \cdot)) \leq \theta d(x, y)$ for all x, y, where $d_{\mathcal{K}}$ is the Kanotorovich metric. Show that $d_{\mathcal{K}}(\mu P, \nu P) \leq \theta d_{\mathcal{K}}(\mu, \nu)$ for any two distributions μ, ν on Ω.
2. Let G be a connected d-regular graph on the vertex set $V=\{1, \ldots, n\}$, fix $0<p<1$ and let $\left(X_{t}\right)$ be the Markov chain on $\{ \pm 1\}^{V}$ where each at step a uniformly chosen vertex updates its vote as follows: with probability p it copies the vote of a uniformly chosen neighbor, and with probability $1-p$ it selects new a uniform $\{ \pm 1\}$-value. Show that $t_{\text {mix }}\left(\frac{1}{4}\right)=O(n \log n)$.
3. Recall that τ is a strong stationary time for $\left(X_{t}\right)$ if $\mathbb{P}\left(X_{\tau}=y, \tau=t\right)=\pi(y) \mathbb{P}(\tau=t)$ for any y and t. Prove that this is equivalent to having $\mathbb{P}\left(X_{t}=y, \tau \leq t\right)=\pi(y) \mathbb{P}(\tau \leq t)$ for any y, t.
4. Prove the following statement: If G is a connected non-bipartite graph (so random walk on G is ergodic), $\left(X_{t}\right),\left(Y_{t}\right)$ are two independent simple random walks on G and $Y_{0} \sim \pi$ (with π the stationary distribution) then $\tau=\min \left\{t: X_{t}=Y_{t}\right\}$ is not a stationary time for $\left(X_{t}\right)$.

5*. A Markov chain P on a state space Ω is transitive if for any pair of states $x, y \in \Omega$ there is a bijection $\psi_{x, y}: \Omega \rightarrow \Omega$ with $\psi_{x, y}(x)=y$ and $P\left(\psi_{x, y}(u), \psi_{x, y}(v)\right)=P(u, v)$ for all u, v.
(i) Show that if P is transitive, its time-reversal \hat{P} satisfies $\left\|P^{t}(x, \cdot)-\pi\right\|_{\mathrm{tv}}=\left\|\hat{P}^{t}(x, \cdot)-\pi\right\|_{\mathrm{tv}}$ for any t (in class we proved this identity for the special case of random walks on groups).
(ii) Show that if P is random walk on a transitive connected graph G (in particular P is transitive) then $\mathbb{E}_{a} \tau_{b}=\mathbb{E}_{b} \tau_{a}$ for any $a, b \in \Omega$, and give an example of a graph G and two vertices a, b on which this identity fails for the lazy random walk.
(iii) If P is transitive and, in addition, for any x, y there exists $\Psi_{x, y}$ as above which further has $\Psi_{x, y}(y)=x$, clearly $\mathbb{E}_{a} \tau_{b}=\mathbb{E}_{b} \tau_{a}$ for any a, b. Find a small transitive graph (say, on at most 25 vertices) where for some x, y there is no such $\Psi_{x, y}$ for simple random walk.
6^{*}. Let $\left(X_{t}\right)$ be simple random walk on \mathbb{Z}_{n}, and let τ be 0 with probability $\frac{1}{n}$ and the cover-time $\left(\min \left\{t:\left\{X_{0}, \ldots, X_{t}\right\}=\mathbb{Z}_{n}\right\}\right)$ with probability $\frac{n-1}{n}$. Prove or disprove: τ is a stationary time.

