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Abstract. We study the line ensembles of non-crossing Brownian bridges above a

hard wall, each tilted by the area of the region below it with geometrically growing

pre-factors. This model, which mimics the level lines of the (2 + 1)d SOS model

above a hard wall, was studied in two works from 2019 by Caputo, Ioffe and Wachtel.

In those works, the tightness of the law of the top k paths, for any fixed k, was

established under either zero or free boundary conditions, which in the former setting

implied the existence of a limit via a monotonicity argument. Here we address the

open problem of a limit under free boundary conditions: we prove that as the interval

length, followed by the number of paths, go to ∞, the top k paths converge to the

same limit as in the free boundary case, as conjectured by Caputo, Ioffe and Wachtel.

1. Introduction

Entropic repulsion in low temperature (2 + 1)D crystals above a hard wall has been

the subject of extensive study in statistical physics. Whereas in the absence of a wall,

the surface of the crystal would typically be rigid at height 0, in the presence of a

wall, the surface is propelled in order to increase its entropy (i.e., to allow thermal

fluctuations going downward), and becomes rigid at some height level which diverges

with the side length L of the box.

A rigorous study of this phenomenon in the (2+1)D Solid-On-Solid (SOS) model—a

low temperature approximation of the 3D Ising model—dates back to Bricmont, El

Mellouki and Fröhlich [1] in 1986, where it was shown that, in the presence of a hard

wall at height 0, the typical height of a site in the bulk is propelled to order logL.

Thereafter, a detailed description of the shape of this random surface was obtained

by Caputo et al. [4–6], showing that it typically becomes rigid at a height which is

one of two consecutive (explicit) integers, through a sequence of nested level lines each

encompassing a (1−ε)-fraction of the sites (analogous behavior was later established [16]

for the more general family of |∇ϕ|p-random surface model, where the SOS model is the

case p = 1). The level lines near the center sides of the box behave as random walks—a

ubiquitous feature of interfaces in low temperature spin systems—albeit with cube-root

fluctuations, as their laws are tilted by the entropic repulsion effect. The lower the level

line, the higher the reward is for generating spikes going downward, and as such, the

tilting effect of the level lines increases exponentially as the height decreases.
1
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Whereas the 2D Ising model with a pinning potential is known [11] to have an

interface converging to a Ferrari–Spohn diffusion, the behavior in the SOS model—

where there are H ≍ logL interacting level lines, each constrained not to cross its

neighbors and inducing a tilt which is a function of the area it encompasses and its

height—is far from being understood (see the review [13] for more information).

In this work, we investigate the limiting law of a line ensemble that was studied

by Caputo, Ioffe and Wachtel [2, 3] to model the level lines of the SOS model in the

presence of a hard wall: each level line, X1, X2, . . ., where X1 is the top one, is tilted

by the area below it, with the coefficients of these area tilts increasing geometrically.

For more perspective on this model in the context of other models of Brownian

polymers constrained above a barrier, starting from the influential work of Ferrari and

Spohn [8] (the model there being equivalent by Girsanov’s transformation—cf. [17]—to

a Brownian excursion with an area tilt), see, e.g., [2, 12,14] and the references therein.

Define

A+
n = {x ∈ Rn : x1 > x2 > . . . > xn > 0} ,

its closure Ā+
n and, for a designated interval

I = [ℓ, r] (ℓ < r ∈ R) ,

let

ΩI
n =

{
X ∈ C(I;Rn) : X(t) ∈ A+

n for all t ∈ I
}
.

(Here, for T ⊂ R and X a topological space, we denote by C(T ;X ) the space of

continuous functions from T to X .) Further define the area tilt of Y ∈ C(I;R) to be

AI(Y ) =

∫
I
Y (t) dt ,

and, for given tilt parameters a > 0 and b > 1 and endpoints x = (x1, . . . , xn) ∈ A+
n

and y = (y1, . . . , yn) ∈ A+
n , the partition function

Z
x,y,I
n = E

x,y,I
n

[
1ΩI

n
e−a

∑n
i=1 b

i−1AI(Xi(·))
]
, (1.1)

in which E
x,y,I
n =

⊗n
i=1E

xi,yi,I
1 and the expectation Ex,y,I

1 for I = [ℓ, r] is w.r.t. the

(unnormalized) path measures of the Brownian bridge which starts at x at time ℓ and

ends at y at time r; that is, the total mass of Exi,yi,I
1 is ϕr−ℓ(yi − xi), where

ϕv(x) := (2πv)−k/2e−∥x∥22/(2v) (1.2)

denotes hereafter the density of a centered Gaussian vector of independent coordinates

of variance v, whose dimension k is implicitly given by the argument we use. (At no

point in our analysis will we need to adjust the tilt parameters (a, b), and as such we

do not include them in the notation for brevity.)
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Let Bn = Bn,I be the Borel σ-field on C(I,Rn). (We omit I from the notation when

no confusion occurs.) For Γ ∈ Bn,I define

Px,y,I
n (Γ) :=

1

Z
x,y,I
n

E
x,y,I
n

[
1Γ1ΩI

n
e−a

∑n
i=1 b

i−1AI(Xi(·))
]
. (1.3)

Consider IT = [−T, T ]. Two classes of boundary conditions that are of interest are:

(a) Zero boundary conditions: fixing both x and y to be zero:

µ0n,T = P0,0,IT
n

(more precisely, this is the limit of Pεx,εy,IT
n as ε ↓ 0, which by stochastic domination

exists and is independent of the fixed x, y in A+
n which one uses).

(b) Free boundary conditions: averaging E
x,y,IT
n [·] over x, y w.r.t. Lebesgue measure

on Rn:

µfn,T (Γ) =
1

Z f
n,T

∫
A+
n

∫
A+
n

E
x,y,IT
n

[
1Γ1Ω

IT
n
e−a

∑n
i=1 b

i−1AIT
(Xi(·))

]
dxdy ,

where

Z f
n,T :=

∫
A+
n

∫
A+
n

E
x,y,IT
n

[
1
Ω

IT
n
e−a

∑n
i=1 b

i−1AIT
(Xi(·))

]
dxdy .

With these definitions, Caputo, Ioffe and Wachtel [2,3] showed that µ0n,T converges to

a limit µ0∞ as n, T → ∞ (moreover, they proved that for any fixed n, the measures µ0n,T
converge as T → ∞ to a limit µ0n, which then converges to µ0∞ as n → ∞), and that

for any c > 0, the family of distributions {µfn,T }n≥1,T>c is tight. In this and subsequent

statements, the measure µ0∞ is defined on C(R,RN), and the convergence is in the sense

that for any compact set K ⊂ R, integer k ∈ N and fixed function f : C(K;Rk) 7→ R,
we have that

lim
n,T→∞

∫
f(X1, . . . , Xk)µ

0
n,T (dX) =

∫
f(X1, . . . , Xk)µ

0
∞(dX) . (1.4)

Caputo, Ioffe and Wachtel conjectured that µfn,T converges as well, and to the same

limit µ0∞ as n, T → ∞. Our main result confirms this when T → ∞ followed by n→ ∞.

Theorem 1.1. For any fixed tilt parameters a > 0 and b > 1 and any fixed integer n,

the measures µfn,T and µ0n,T have the same weak limit as T → ∞. In particular, if we

denote by µ0∞ the limit of µ0n,T as n, T → ∞, then

∃ lim
n→∞

lim
T→∞

µfn,T = µ0∞ .

Remark 1.2. Our proof shows that, not only does the limit as T → ∞ of µfn,T coincide

with that of µ0n,T , but (a) the same holds if one replaces the endpoints x = y = 0+ by

any fixed points x, y in A+
n ; and (b) one may also replace the average over x, y w.r.t.

Lebesgue yielding µfn,T by any measure stochastically dominated by Lebesgue.
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Our proof of Theorem 1.1 employs the Markovian structure of the problem. In a first

step we introduce a (sub-)Markovian Kernel Kt, see (2.1). The key part of the proof is

Lemma 2.1, where we prove that K1 is compact in the appropriate L2 space; the proof

of the lemma involves probabilistic arguments. With the lemma, standard contraction

arguments, detailed in Section 2.1, yield the exponential decay (in T ) of the dependence

in the boundary conditions. We note that some care is needed here due to the non-

compactness of the set of possible boundary conditions, but that non-compactness was

already handled in [2].

Many interesting open questions remain, chief among which, perhaps, is describing

the precise limit of the limiting process X∞(·) (on, say, the interval [0, 1]). We refer

to [2, 3] for a list of such problems.

2. Proof of main result

Fix the tilt parameters a > 0 and b > 1, and let n ≥ 1 be an integer. Throughout

this proof, for X ∈ ΩI
n, we use the abbreviated notation

AI(X(·)) := a

n∑
i=1

bi−1AI(Xi(·)) .

Let Γ ∈ Bn,[0,1], and define

KΓ
1 (x, y) = E

x,y,[0,1]
n

[
1Γ1Ω

[0,1]
n

e−A[0,1](X(·))
]
,

which we view as a linear operator on L2(A+
n ) = L2(A+

n ,Leb):

(KΓ
1 f)(x) =

∫
A+
n

KΓ
1 (x, y)f(y) dy .

With a slight abuse of notation, we continue to write KΓ
1 also when Γ ∈ Bn,R, in which

case we understand that Γ was replaced by its restriction to the interval [0, 1]. With

this convention in mind, we will further be interested in the semigroup

KΓ
t (x, y) = E

x,y,[0,t]
n

[
1Γ1Ω

[0,t]
n

e−A[0,t](X(·))
]
. (2.1)

When referring to the case Γ = ΩR
n (i.e., the indicator 1Γ within the expectation in the

definition of KΓ
1 is omitted), we simply write Kt (with no superscript) in lieu of K

ΩR
n

t ,

noting that Kt(x, y) is precisely the partition function Z
x,y,[0,t]
n from (1.1).

Observe that K1 is symmetric, in that K1(x, y) = K1(y, x), as well as positivity

preserving:

(K1f)(x) =

∫
K1(x, y)f(y)dy ≥ 0 whenever f ≥ 0 .

AsK1 is symmetric, and given by a continuous Markov process with killing, it is positive

definite (this follows, e.g., by [9, Theorems 1.3.1, Lemma 1.3.2 and Theorem 6.1.1],
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all applied to Example 1.2.3 there). A key ingredient in the proof will be that it is

furthermore relatively compact:

Lemma 2.1. The symmetric positive definite operator K1 given by

(K1f)(x) =

∫
A+
n

E
x,y,[0,1]
n

[
1
Ω

[0,1]
n

e−A[0,1](X(·))
]
f(y) dy

is compact w.r.t. L2(A+
n ).

2.1. Proof of Theorem 1.1 modulo Lemma 2.1. We consider throughout the con-

vergence over the interval [0, 1], the changes needed for considering other compact sets

(as the set K in (1.4)) are minimal. Expressing the measures µ0n,T and µfn,T in terms

of the operator Kt, we wish to show that for every Γ ∈ Bn, the limit of

µfn,T (Γ) =

∫∫
KT (x, u)K

Γ
1 (u, v)KT−1(y, v) dudv dxdy∫∫
K2T (x, y) dxdy

(2.2)

as T → ∞ exists and coincides with that of

µ0n,T (Γ) = lim
ε↓0

∫∫
KT (εx, u)K

Γ
1 (u, v)KT−1(εy, v) dudv

K2T (εx, εy)
, (2.3)

where the limit exists by [3, Lemma 2.2] and is independent of the choice of x, y in A+
n .

By the spectral decomposition theorem for the compact positive definite operator K1

(see, e.g., [18, Thms. VI.15 and VI.16] and [19, Thm. XIII.43]), we can write it as

K1(x, y) =

∞∑
i=1

λiφi(x)φi(y) for a complete basis {φi}i≥1 with ⟨φi, φj⟩L2(A+
n ) = δij ,

such that

φ1 > 0 and λ1 > λ2 ≥ λ3 ≥ . . . ≥ 0 .

Define

ψ(u) =

∫
K1(u, x) dx ,

noting that ψ(u) is well-defined (albeit a-priori possibly infinite) as K1 is non-negative.

For any j ≥ 1 and x, y ∈ A+
n ,

Kj(x, y) = E
x,y,[0,j]
n

[
1
Ω

[0,j]
n

e−A[0,j](X(·))
]
≤ E

x,y,[0,j]
n

[
1
Ω

[0,j]
n

e−aA[0,j](X1(·))
]

≤ E
x1,y1,[0,j]
1

[
1
Ω

[0,j]
1

e−aA[0,j](X1(·))
]

≤ ϕj(x1 − y1)e
−aj

x1+y1
2 E

[
e−a

∫ j
0 Bs ds

]
= Cje

− (x1−y1)
2

2j e−aj
x1+y1

2 , (2.4)

where Cj are finite constants and Bs, s ∈ [0, j] denotes the standard Brownian bridge

over [0, j] starting and ending at 0 (using in the second line also that the total mass of
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E
xi,yi,[0,j]
1 , i ≥ 2, is at most one). Since Kj(x, y) vanishes if either x ̸∈ A+

n or y ̸∈ A+
n ,

it follows that∫∫
Kj(x, y) dxdy ≤ Cj

∫ ∞

0

∫ ∞

0
xn−1
1 yn−1

1 e
− (x1−y1)

2

2j e−aj
x1+y1

2 dx1dy1 <∞ , (2.5)

and ∫
Kj(x, x) dx ≤ Cj

∫ ∞

0
xn−1
1 e−ajx1 dx1 <∞ . (2.6)

In particular, we have from (2.5) that∫∫
K2(x, y) dxdy <∞ , (2.7)

implying that ψ ∈ L2(A+
n ) since, by the symmetry of K1 and the semigroup property,∫

ψ(u)2 du =

∫∫
K1(x, u)K1(u, y) dxdydu =

∫∫
K2(x, y) dxdy .

This allows us to decompose

ψ =

∞∑
i=1

αiφi where αi := ⟨ψ,φi⟩L2(A+
n ) , (2.8)

so that ∥ψ∥22 =
∑

i α
2
i <∞.

For t ≥ 2, by the definition of ψ, the symmetry of Kt−1 and the semigroup property,∫
Kt−1(x, u) dx = (Kt−2ψ)(u) =

∫
Kt−2(u, y)ψ(y) dy =

∞∑
i=1

λt−2
i αiφi(u) ,

where the last step used the decomposition (2.8). Similarly, for t ≥ 3,∫∫
Kt(x, y) dxdy =

∫∫
Kt−1(x, u)ψ(u) dxdu

=

∫∫
Kt−2(u, v)ψ(u)ψ(v) dudv =

∞∑
i=1

λt−2
i α2

i := ct .

Hence, (2.2) translates into

µfn,T (Γ) =
1

c2T

∫∫ ∞∑
i=1

∞∑
j=1

αiαjλ
T−1
i λT−2

j φi(u)K
Γ
1 (u, v)φj(v) dudv . (2.9)

Looking at KΓ
1 and arguing as we did for K1, we see that for any u ∈ Rn,∫

KΓ
1 (u, v)

2 dv ≤
∫
K1(u, v)

2 dv = K2(u, u) <∞ ,

where the equality holds by the symmetry of K1 and the definition of Kt and the last

inequality by (2.4). In other words, KΓ
1 (u, ·) ∈ L2(A+

n ) for every u ∈ Rn. Moreover, by

(2.6) we have that∫∫
KΓ

1 (u, v)
2 dudv ≤

∫∫
K1(u, v)

2 dudv =

∫
K2(u, u)du <∞
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and it follows that

KΓ
1 ∈ L2(A+

n )
⊗2 .

A complete orthonormal system {φi} w.r.t. L2(A+
n ) induces a complete orthonormal

system {φi ⊗ φj}i,j≥1 w.r.t. L2(A+
n )

⊗2; hence, we may decompose KΓ
1 into

KΓ
1 (u, v) =

∑
i,j

γi,jφi(u)φj(v)

where

γi,j :=

∫∫
KΓ

1 (u, v)φi(u)φj(v) dudv ,
∑
i,j≥1

γ2i,j = ∥KΓ
1 ∥2L2(A+

n )⊗2 <∞ .

This reduces (2.9) into µfn,T (Γ) = Ξ
(1)
n,T /Ξ

(2)
n,T where

Ξ
(1)
n,T :=

∑
i,j≥1

γi,jαiαj λ̂
T−1
i λ̂T−2

j , Ξ
(2)
n,T := λ1

∞∑
i=1

λ̂2T−2
i α2

i , (2.10)

and the rescaled eigenvalues λ̂i := λi/λ1 ∈ [0, 1] (i = 1, 2, . . .) satisfy

λ̂i = 1 and sup
i>1

λ̂i ≤ 1− δ for δ = (λ1 − λ2)/λ1 > 0 .

We immediately see that Ξ
(2)
n,T of (2.10) satisfies

λ1α
2
1 ≤ Ξ

(2)
n,T ≤ λ1α

2
1 + λ1(1− δ)2T−2∥ψ∥22 , (2.11)

whence

lim
T→∞

Ξ
(2)
n,T = λ1α

2
1 .

To treat Ξ
(1)
n,T of (2.10), note that by Cauchy–Schwarz and having supi≥2 |λ̂i| ≤ 1− δ,∣∣∣∣ ∑

i,j≥1
i+j>2

γi,jαiαj λ̂
T−1
i λ̂T−2

j

∣∣∣∣ ≤ (1− δ)T−2
∑
i,j

|γi,jαiαj |

≤ (1− δ)T−2

√∑
i,j

γ2i,j

√∑
i,j

α2
iα

2
j

= (1− δ)T−2∥KΓ
1 ∥L2(A+

n )⊗2 ∥ψ∥22 . (2.12)

Taking T → ∞, we see that

lim
T→∞

Ξ
(1)
n,T = γ1,1α

2
1 .

Altogether, we have established that

lim
T→∞

µfn,T (Γ) =
γ1,1α

2
1

λ1α2
1

=
γ1,1
λ1

, (2.13)
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with the last equality using that α1 ̸= 0 since φ1 > 0 and so

α1 = ⟨ψ,φ1⟩L2(A+
n ) =

∫∫
K1(x, u)φ1(u) dudx > 0 .

We now repeat the same analysis for µ0n,T , where for simplicity we opt to take y = x

and let ψ(ε)(u) := K1(εx, u). Inferring that ψ(ε) ∈ L2(A+
n ) (because K2(εx, εx) < ∞),

we can write

ψ(ε) =

∞∑
i=1

α
(ε)
i φi

where

α
(ε)
i :=

〈
ψ(ε), φi

〉
L2(A+

n )
, ∥ψ(ε)∥2

L2(A+
n )

= K2(εx, εx) =

∞∑
i=1

(α
(ε)
i )2 <∞ .

The exact same argument then shows that µ0n,T (Γ) is the limit at ε→ 0 of Ξ
(1,ε)
n,T /Ξ

(2,ε)
n,T

where

Ξ
(1,ε)
n,T :=

∑
i,j≥1

γi,jα
(ε)
i α

(ε)
j λ̂T−1

i λ̂T−2
j , Ξ

(2,ε)
n,T := λ1

∞∑
i=1

λ̂2T−2
i (α

(ε)
i )2 . (2.14)

With ψ(ε) > 0 and φ1 > 0, we have as before that α
(ε)
1 > 0. Moreover, setting

κε :=
∥ψ(ε)∥2

L2(A+
n )

(α
(ε)
1 )2

,

we have analogously to (2.11) and (2.12) that

0 ≤
Ξ
(2,ε)
n,T

(α
(ε)
1 )2

− λ1 ≤ λ1(1− δ)2T−2κε ,

∣∣∣ Ξ(1,ε)
n,T

(α
(ε)
1 )2

− γ1,1

∣∣∣ ≤ (1− δ)T−2∥KΓ
1 ∥L2(A+

n )⊗2 κε .

We shall employ the following asymptotic as ε → 0, the proof of which we defer to

Section 2.3.

Lemma 2.2. Setting n := (2n− 1, 2n− 3, . . . , 1), we have that

lim sup
ε→0

K2(εn, εn)( ∫
u1≤1K1(εn, u)φ1(u)du

)2 <∞ . (2.15)

In view of Lemma 2.2, the fact that K1 and φ1 are both positive, and our freedom

to choose x = n, we have that κε is uniformly bounded (as ε→ 0). Hence,

lim
T→∞

µ0n,T (Γ) =
γ1,1
λ1

, (2.16)

which in light of (2.13) concludes our proof. ■
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2.2. Proof of Lemma 2.1. Letting

B0 =
{
f : ∥f∥L2(A+

n ) ≤ 1
}

and

B1 =
{
(K1f) : f ∈ B0

}
,

we will establish compactness by verifying the Fréchet–Kolmogorov criteria (see [21,

p. 275], as well as [20]).

First, with P denoting the law of Brownian motion {W (t)}t∈[0,1] in Rn started at the

origin and E its corresponding expectation, note that

(K1f)(x) = E
[
1
Ω

[0,1]
n

(x+W (·)) e−A[0,1](x+W (·))f(x+W (1))
]
. (2.17)

Now, setting for f supported on A+
n ,

M(f) := sup
x∈A+

n

E[|f(x+W (1))|] , (2.18)

note that by Cauchy–Schwarz,

M(f)2 ≤ sup
x∈A+

n

E[f(x+W (1))2] ≤ ∥f∥2
L2(A+

n )
sup

x,y∈A+
n

{ϕ1(y − x)} ≤ 1 , (2.19)

where ϕv(·) denotes the density in (1.2) and the last inequality holds for all f ∈ B0.

This readily implies the following uniform bound on g = K1f ∈ B1, where by a

computation similar to the third line of (2.4), for any x ∈ A+
n ,

|g(x)| ≤
∫
A+
n

E
x,y,[0,1]
n

[
e−a

∫ 1
0 X1(s)ds

]
|f(y)|dy ≤ ce−

a
2
x1M(f) ≤ ce−

a
2
x1 , (2.20)

for some finite c = c(a), independent of x and f ∈ B0. We deduce in particular that

lim sup
R→∞

sup
g∈B1

∫
x∈A+

n
x1>R

|g(x)|2 dx = 0 , (2.21)

establishing equitightness (and, due to (2.20), also uniform boundedness, although it

is not needed in view of [20]).

It remains to establish equicontinuity for B1, where in view of (2.21) and the com-

pactness of Ā+
n ∩ {x1 ≤ R} it suffices to bound, in terms of ∥h∥, the value of

sup
g∈B1,x∈A+

n

{|g(x+ h)− g(x)|} .

Using the representation (2.17) for g = K1f , we start by reducing to g̃(·) in which we

extracted out the explicit dependence of the area tilt on x. Specifically, let

g̃(x) := E
[
1
Ω

[0,1]
n

(x+W (·)) e−A[0,1](W (·))f(x+W (1))
]
.

By a slight abuse of notation, letting A[0,1](x) denote A[0,1](X(·)) for X ≡ x, which is

nothing but a ⟨b, x⟩ for b := (1, b, . . . , bn−1), we see that

g(x) = e−A[0,1](x) g̃(x) ,
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and therefore,

|g(x)− g(x+ h)| = |e−A[0,1](x)
(
g̃(x)− e−A[0,1](h)g̃(x+ h)

)
|

≤
∣∣e−A[0,1](h) − 1

∣∣ |g(x+ h)|+ e−A[0,1](x)|g̃(x)− g̃(x+ h)| .

For the first term note that |A[0,1](h)| = |a ⟨b, h⟩ | ≤ a∥b∥2∥h∥2 and though h may be

outside A+
n , we have x+ h ∈ A+

n , yielding by Taylor expansion and (2.20) that

sup
g∈B1,x∈A+

n

∣∣e−A[0,1](h) − 1
∣∣ |g(x+ h)| ≤ C(a, b, n)∥h∥2 .

Further, with A[0,1](x) ≥ 0 for all x ∈ A+
n , it remains only to bound |g̃(x) − g̃(y)|

uniformly over g ∈ B1, x ∈ A+
n and y ∈ A+

n such that ∥y − x∥ ≤ δ. To this end, let

τx := inf
{
t ≥ 0 : x+W (t) /∈ A+

n

}
, so that 1

Ω
[0,1]
n

(x+W (·)) = 1{τx>1} .

We then have in terms of

∆(x, y) := 1{τy>1}f(W (1) + y)− 1{τx>1}f(W (1) + x)

and η ∈ (0, 1), that

|g̃(y)− g̃(x)| = |E
[
e−A[0,1](W (·))∆(x, y)

]
| ≤ E [|Ψ1|] + |E [Ψ2] | ,

where

Ψ1 := e
−A∗

[0,1−η]
(W (·))

(
e−A[1−η,1](W (·)−W (1−η)) − 1

)
∆(x, y) ,

Ψ2 := e
−A∗

[0,1−η]
(W (·))

∆(x, y) ,

and

A∗
[0,1−η](W (·)) = A[0,1−η](W (·)) +A[1−η,1](W (1− η))

To bound E|Ψ1|, use the fact that |∆(x, y)| ≤ |f(W (1) + y)|+ |f(W (1) + x)| together
with Hölder’s inequality to infer that E|Ψ1| is at most

E
[
e
−4A∗

[0,1−η]
(W (·))

] 1
4

E
[ ∣∣∣e−A[1−η,1](W (·)−W (1−η)) − 1

∣∣∣4 ] 1
4
(
2 sup
x∈A+

n

E
[
f(W (1) + x)2

]) 1
2

.

Noting that the variance of the centered Gaussian A∗
[0,1−η](W (·)) is at most some v =

v(a, b, n) finite, the first expectation above is uniformly bounded (namely, by e8v).

Similarly, by (2.19), the third term is at most
√
2, uniformly over f ∈ B0. Finally, with

A[1−η,1](W (·) −W (1 − η)) a centered Gaussian of variance c(a, b, n)η2 for some finite

c(a, b, n), the expectation in the second term is at most ε0(η) → 0 as η → 0. Overall,

we conclude that

E|Ψ1| ≤ ε1(η) ↓ 0 as η ↓ 0 , uniformly over g ∈ B1, x ∈ A+
n . (2.22)

Turning to Ψ2 = e
−A∗

[0,1−η]
(W (·))

∆(x, y), the identity

1{τy>1} = 1−1{τy≤1−η , τx≤1−η}−1{1−η<τy≤1}−1{τy≤1−η , 1−η<τx≤1}−1{τy≤1−η , τx>1} ,
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yields the decomposition

∆(x, y) = Υ1 −Υ2(y)−Υ3(y, x)−Υ4(y, x) + Υ2(x) + Υ3(x, y) + Υ4(x, y) ,

where

Υ1 := [f(W (1) + y)− f(W (1) + x)](1− 1{τx≤1−η , τy≤1−η}) ,

Υ2(y) := f(W (1) + y)1{1−η<τy≤1} ,

Υ3(y, x) := f(W (1) + y)1{τy≤1−η , 1−η<τx≤1} ,

Υ4(y, x) := f(W (1) + y)1{τy≤1−η , τx>1} .

For the contribution to |E[Ψ2]| due to Υ1, condition on F1−η = σ({W (s)}s≤1−η), on

which the indicator in Υ1 is measurable, to get∣∣∣E[Υ1e
−A∗

[0,1−η]
(W (·))]∣∣∣ ≤ E

[
e
−A∗

[0,1−η]
W (·))

]
· sup

z

∣∣∣E[f(W (1) + y)− f(W (1) + x)
∣∣W (1− η) = z

]∣∣∣ .
While treating E|Ψ1|, we saw that the first term on the right-hand is some finite

C(a, b, n), independently of x, h. For the second term, extending f ∈ B0 from A+
n

to Rn via f(x) = 0 for x /∈ A+
n , yields that ∥f∥2 = ∥f∥L2(A+

n ) ≤ 1. Thus, performing a

change of variable v :=W (1) + y in E[f(W (1) + y) |W (1− η) = z] and v :=W (1) + x

in E[f(W (1) + x) | W (1 − η) = z], we get that the absolute difference between these

expectations is∣∣∣ ∫ [
ϕη(v − y − z)− ϕη(v − x− z)

]
f(v) dv

∣∣∣
≤ ∥f∥L2(A+

n )η
−n/4

∥∥ϕ1(w − η−1/2(y − x))− ϕ1(w)
∥∥
2
≤ C(n) η−n/4−1/2δ ,

where the first inequality is obtained by Cauchy–Schwarz and an additional change

of variable w = η−1/2(v − z − x), and the second inequality by an easy computation

(utilizing that 1− e−r ≤ r). Thus, choosing

δ ≤ ηn/4+1, (2.23)

makes the contribution of Υ1 negligible.

To deal with the contribution of Υ2(y) to |E[Ψ2]|, observe that by Hölder’s inequality,

E
[
e
−A∗

[0,1−η]
(W (·))

1{1−η<τy≤1}|f(W (1) + y)|
]

≤ E
[
e
−4A∗

[0,1−η]
(W (·))

] 1
4P

(
1− η < τy ≤ 1

) 1
4
(

sup
y∈A+

n

E
[
f(W (1) + y)2

] ) 1
2
. (2.24)

While bounding E|Ψ1| we have seen that the first and third terms are at most some

c(a, b, n) finite, uniformly over B0, so it suffices to show that

ε2(η) := sup
y∈A+

n

{P(1− η < τy ≤ 1)} → 0 as η → 0 . (2.25)



12 AMIR DEMBO, EYAL LUBETZKY, AND OFER ZEITOUNI

Indeed, taking a union bound over the n different boundaries of A+
n that are considered

in τy, reduces, up to the factor n, to the bound in case n = 1, namely for the first

hitting time of level −b < 0 by a standard Brownian motion Bt. The density of the

latter hitting time is bounded, uniformly over b and t ≥ 1/2, thereby yielding (2.25).

The same analysis applies to the contributions from Υ2(x) and from the Υ3 terms.

Analogously to (2.24) the contribution of Υ4(y, x) to |E[Ψ2]| is bounded above by

E
[
e
−A∗

[0,1−η]
(W (·))

1{τy≤1−η , τx>1}|f(W (1) + y)|
]

≤ C ∥f∥L2(A+
n )P(τy ≤ 1− η , τx > 1)1/4 ≤ C ε3(δ, η)

1/4 ,

for some C = C(a, b, n), any f ∈ B0 and

ε3(δ, η) := sup
x,y∈A+

n ,∥x−y∥≤δ

P(τy ≤ 1− η , τx > 1) .

With the same bound applying for Υ4(x, y), it remains only to show that ε3(δ, η) → 0

as δ → 0 (for any fixed η > 0). To this end, by a union bound over the n different

boundaries of A+
n , as done for proving (2.25), the probability in question is at most n

times the probability that standard Brownian motionB(t) := 1√
2
(Wi(t)−Wi+1(t)) reach

level −b by time 1−η (here b = (yi−yi+1)/
√
2), while remaining above −(b+ δ) up till

time 1. With Brownian motion a strong Markov process of independent increments,

we thus deduce by the reflection principle that

n−1ε3(δ, η) ≤ P(inf
s≤η

{B(s)} > −δ) = 1− 2P(B(η) ≥ δ) = P(|B(η)| < δ) ,

which goes to zero as δ → 0 (for any fixed η > 0). ■

2.3. Proof of Lemma 2.2. Setting K̂t for the operator Kt in the case a = 0 (no area

tilt), we first establish (2.15) for K̂t. Namely, we show that,

lim sup
ε→0

K̂2(εn, εn)( ∫
u1≤1 K̂1(εn, u)φ1(u)du

)2 <∞ . (2.26)

Our starting point for (2.26) is the following explicit formula, valid for any y ∈ A+
n and

any t, ε > 0,

K̂t(εn, y) = 2n
2
ϕt(y)e

−ε2∥n∥2/(2t)
∏
i

sinh
(εyi
t

)∏
j<k

[
sinh2

(εyj
t

)
−sinh2

(εyk
t

)]
. (2.27)

Indeed, for ε = 1 this is the explicit evaluation in [10, Display below (24)] of the

Karlin–McGregor determinantal formula [15] for the transition kernel,

qt(x, y) = ϕt(y − x)− ϕt(y + x) = 2ϕt(y)e
−x2/(2t) sinh(xy/t) ,

of a scalar Brownian motion absorbed at level zero, when starting at the distinguished

point n. We thus get (2.27) by noting that the non-trivial factors sinh(xiyj/t) are

invariant to changing from (εn, y) to (n, εy).
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In particular, with g(x) := sinh(x/2) being zero at x = 0 and globally Lipschitz(L)

on [0, 2n], we get from (2.27) that for some cn, Cn finite and any ε ∈ [0, 1],

K̂2(εn, εn) ≤ cn
∏
i

g(ε2ni)
∏
j<k

[g2(ε2nj)− g2(ε2nk)]

≤ cnL
n2

∏
i

(ε2ni)
∏
j<k

[
(ε2nj)

2 − (ε2nk)
2
]
= Cnε

2n2
. (2.28)

Next, noting that on R+ both sinh(x) ≥ x and sinh2(x) − x2 are non-decreasing, we

deduce from (2.27) that for any u ∈ A+
n and ε ∈ [0, 1],

K̂1(εn, u) ≥ 2n
2
e−∥n∥2/2εn

2
ϕ̂(u) , where ϕ̂(u) := ϕ1(u)

∏
i

ui
∏
j<k

(u2j − u2k) .

With ϕ̂(·) and φ1(·) positive on A+
n , we get from the latter bound that

inf
ε∈[0,1]

ε−n2

∫
u1≤1

K̂1(εn, u)φ1(u)du > 0 ,

which in combination with (2.28) establishes (2.26).

Next, recall that Kt(x, y) is point-wise decreasing in a and in particular bounded

from above by K̂t(x, y); thus, the sought bound (2.15) for Kt follows from (2.26) once

we show that for some finite C = C(a, b, n) and any u ∈ A+
n with u1 ≤ 1,

sup
ε∈(0,1]

{K̂1(εn, u)

K1(εn, u)

}
≤ C . (2.29)

Turning to the latter bound, we define for finite M the event

ΓM :=

{
max
t∈[0,1]

{X1(t)} ≤M

}
,

noting that for c := a⟨b, 1⟩, any u1 ≤ 1 and ε ≤ 1,

K1(εn, u) ≥ e−cMEεn,u,[0,1]
n

[
1ΓM

1
Ω

[0,1]
n

]
= e−cMK̂1(εn, u)P̂εn,u,[0,1]

n (ΓM )

≥ e−cMK̂1(εn, u)P̂n,n,[0,1]
n (ΓM ) ,

where P̂x,y,[0,1]
n is the measure Px,y,[0,1]

n from (1.3) corresponding to a = 0, and with the

second inequality due to [7, Lemma 2.7] (taking there A = [0, 1], f ≡ 0, noting that

n > u and n > εn whenever u1 ≤ 1 and ε ≤ 1 and that the event ΓM is decreasing).

Finally, moving to the unconditional space of n independent bridges rooted at n, n

via a multiplicative cost of at most 1/K̂1(n, n), we see that P̂n,n,[0,1]
n (Γc

M ) is at most

P(sups∈[0,1]{B(s)} > M − 2n)/K̂1(n, n) for a one dimensional Brownian bridge from

(0, 1) to (1, 1). By the tightness of the maximum of the latter bridge (and recalling

that K̂1(n, n) > 0), one thus has for M large, depending only on n, that

P̂n,n,[0,1]
n (ΓM ) ≥ 1

2 .

Combining the last two displays yields (2.29), thereby completing the proof. ■
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