EXTREMA OF 3D POTTS INTERFACES
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ABSTRACT. The interface between the plus and minus phases in the low temperature 3D Ising model has been
intensely studied since Dobrushin’s pioneering works in the early 1970’s established its rigidity. Advances
in the last decade yielded the tightness of the maximum of the interface of this Ising model on the cylinder
of side length n, around a mean that is asymptotically clogn for an explicit ¢ (temperature dependent).
In this work, we establish analogous results for the 3D Potts and random cluster (FK) models. Compared
to 3D Ising, the Potts model and its lack of monotonicity form obstacles for existing methods, calling for
new proof ideas, while its interfaces (and associated extrema) exhibit richer behavior. We show that the
maxima and minima of the interface bounding the blue component in the 3D Potts interface, and those of the
interface bounding the bottom component in the 3D FK model, are governed by 4 different large deviation
rates, whence the corresponding global extrema feature 4 distinct constants ¢ as above. Due to the above
obstacles, our methods are initially only applicable to 1 of these 4 interface extrema, and additional ideas
are needed to recover the other 3 rates given the behavior of the first one.

1. INTRODUCTION

The Potts model on a finite graph A = (V, E) is a random assignment of colors to vertices of V' that
penalizes adjacent vertices assigned with different colors. The number of possible colors is given by the
integer parameter ¢ > 2, and the aforementioned penalization is governed by the parameter 8 > 0, the
inverse-temperature of the system: the probability of a vertex coloring o : V' — {1,...,q} is given by

pa(0) oxx e P where H(o) =#{[u,v] € E : 0, #0y,}.

Consider the half integer lattice with vertices (Z + 3)®. We will mainly consider the Potts model on the

subgraph A, of this lattice with vertices [—%, & 2x(Z+ %) (Although A,, is an infinite graph, one can e.g.
consider the model on the finite truncation of A, to heights in [—m,m], then take the weak limit m — oo.)
Define A, as the vertices x = (w1, 2, x3) € A, such that z3 > 0 and z is adjacent to some vertex of A¢, and
define OA; analogously. We refer to the model with a boundary condition n as the conditional distribution
of the model on some larger graph containing A,, where we fix o, = 7, for all vertices not in A,,. Our focus
is on the Potts model on A,, with Dobrushin boundary conditions, which correspond to 1 that is red for all
vertices with height > 0 and blue for all vertices with height < 0. Denote this distribution by ¢,, for brevity.

We will consider the low temperature regime, where 8 > fy for a fixed large enough fy. It is easy to see
(via a standard Peierls argument) that ¢,-almost surely there is a unique infinite connected component of
red vertices in o — the one containing dA;7 — and a unique infinite blue component, the one containing A, .
Thus, there naturally arise two interfaces, one separating the infinite red component from everything below it,
and one separating the infinite blue component from everything above it. Formally, to every edge e = [z, 3],
consider the dual face f; , that is the closed unit square centered at ’%y and perpendicular to e. An interface

is a collection of faces such that every A,-path of vertices from dA;, to OA;} must cross the interface.

Definition 1.1 (Potts interfaces). Let V,eq denote the vertices of A,, in the (a.s. unique) infinite red cluster,
i.e., every v € A,, from which there is a A,-path of red vertices in o from v to dA;}. Let the augmented red

component, 9red, be the union of Vg with all finite components of V5. Define the red interface Z.q as the

set of faces separating ﬁed and ﬁf‘ed; that is, every face f[, ) between x € Vieq and y € 17fed. Analogously,
the blue interface Zp e is defined via the infinite blue cluster Ve, which is augmented into Vpjye.

The interfaces are illustrated in Figs. 1 and 2 in dimensions d = 3 and d = 2, resp. Note that our results
can be extended to dimensions d > 3, yet the 2D behavior is starkly different (see Section 1.2 on the famous
works of Dobrushin [5,6] on the rigidity of Ising interface — the case ¢ = 2 of the Potts model — for d > 3).

Closely related to the Potts model is the random-cluster or Fortuin—Kasteleyn (FK) model, which is a
random edge configuration on the edges E' of A with parameters 0 < p < 1 and ¢ > 0. In every configuration
w, edges are either open (present, we = 1) or closed (missing, w. = 0). The probability of w is given by

N (w) x p#{eGE : wﬁzl}(l _ p)#{eGE: we:O}qm(w) ’
where the term k(w) denotes the number of connected components of the graph (V,{e : w, =1}). We will

refer to connected components of said graph as open clusters.
1
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FIGURE 1. The blue interface Zpe in the 5-color 3D Potts model (not showing the red vertices
above Zpe nor the blue vertices below it). Right bottom: different view of the same blue interface.
Right top: the faces of Zyue and the other Potts and random-cluster interfaces Zred, Ztop, Zbot-

Let p,, denote the random-cluster measure on A, with Dobrushin boundary conditions, given by n. = 0
if e separates the upper and lower half-spaces — e = [z, y] for some z = (z1,x2, %) and y = (y1, yo, —%) —
and 7. = 1 otherwise. The relation between the Potts and random-cluster model, which we describe next,
will necessitate a further conditioning on the (exponentially unlikely) event that A" and JA,, are not part
of the same open cluster in w: denote this event by ©,,, and let

fin(:) = pn (- | Dn).
When the Potts and random-cluster models on the same graph have the same (integer) value of ¢ and
parameters p = 1 — e~ #, the two models can be coupled via the Edwards-Sokal coupling. We will assume
this relation throughout this paper, with the exception that the results for the random-cluster model will

be established for all real ¢ > 1, not just integer valued ¢. Explicitly, for any finite graph G = (V, E), the
coupled FK—Potts model is given by the following joint measure on vertex spins o and edge spins w:

¢(U, w) o p#{eEE: we=1}(1 _ p)#{eEE: we=0} H l{au:[rv} )
e=[u,v]: we=1

It is easy to verify that the marginals on the spin and edge configurations give the Potts and random-cluster
models respectively; furthermore, the conditional probabilities are such that if one samples a random-cluster
model and colors each cluster uniformly at random, then the resulting coloring has the law of a Potts model.
Consequently, (by considering the finite truncation of A, between heights —m and m and taking the weak
limit as m — o0,) if we sample a random-cluster model on A,, with Dobrushin boundary conditions and
condition on the event D,,, fix the colors of A;" and JA,, to be red and blue respectively, and then color the
remaining open clusters of vertices uniformly at random via ¢ colors, we get a Potts model with Dobrushin
boundary conditions (cf., e.g., [7, §2.2],[14, Fact 3.4 and Cor. 3.5].) As we always consider the Potts model
in this context, by a slight abuse of notation we also use ¢,, to denote the coupled FK-Potts measure on A,,.

As was the case for the Potts model, there are two natural interfaces arising in the conditional FK
distribution fi,: one separating the “top” open cluster containing A} from everything below it, and one
separating the “bottom” open cluster containing 0A; from everything above it.

Definition 1.2 (Random-cluster interfaces). Let Viop denote the vertices of A,, in the top open cluster of w,
i.e., every v connected via an w-path to OA}. Let the augmented top component, 17top, be Viop along with
all finite components of Vg,,. Define the top interface Zi, to be the set of faces separating vertices from ﬁtop
and ﬁfop. Analogously, define the bottom interface Zpor, and the augmented set ]7bot by starting with the

vertices of the bottom component, i.e., the infinite open cluster containing 0A; .

Remark. When the Potts and FK configurations o,w are coupled through the Edwards—Sokal coupling ¢,
as Viop € Vred € Viue and Voot € Vhiue, the 4 corresponding interfaces are ordered: Ziop, Zred; Zblue, Lbot-
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FIGURE 2. The red and blue 1nterfaces of a 4-color 2D Potts model. Right bottom: the mterface Thive
and augmented blue component \ Right top: Zq and the augmented red component Vied.

FI1GURE 3. The top interface Ziop, and bottom interface Zpo: of the random-cluster model coupled
via the Edwards—Sokal coupling to the Potts model from Fig. 2. Right bottom: The 1nterface Thot
and augmented bottom component Vbot Right top: Ziop and the augmented top component Vtop

1.1. Results. For the Ising model (¢ = 2), the asymptotics of the maximum of the 3D interface, and its
tightness around its mean, were recently established in [8,9]. Our main results are the analogous statements
for the 4 interfaces (3D Potts Zyjue and Zyeq; 3D FK Zpo: and Ziop) defined above. As we explain in Section 1.3,
significant work is required compared to the Ising case, mainly due to the lack of monotonicity (both in the
Potts model and in the conditional FK model fi,,), as well as the more delicate interactions in the FK model.
Notably, a large portion of the proof is dedicated to an argument that is applicable for the maximum of 1
of these 4 interfaces, Ziop, yet fails for the other 3 interfaces. We then recover the remaining maxima by
analyzing the conditional behavior of the respective interface conditional on the behavior of the top interface.

Theorem 1.3 (Potts). Fiz an integer ¢ > 2. For (8 large enough, the minimum height M, and mazimum
height M/ of the blue interface Ty are tight once centered around their means, i.e.,

M, — E[M,] = O:(1) and M) —E[M]] = 0p(1).
Furthermore, there exist v,y > 0 such that E[M,] ~ (2/v)logn, E[M]] ~ (2/7")logn and v > ~ for q # 2
(and v =" for ¢ =2). The same holds for the red interface Z,eq when swapping the roles of M, and M),

Theorem 1.4 (Random cluster). Fiz ¢ > 1. For 8 large enough, the minimum height M, and mazimum
height M/ of the bottom interface Zpor are tight once centered around their means, i.e.,

M, — E[M,] = Op(1) and M’I/L - E[Mr/p] =0p(1).

Furthermore, there exist o, > 0 such that E[M,] ~ (2/«a)logn, E[M]] ~ (2/a’')logn and o' > «. The
same holds for the top interface Lio, when swapping the roles of M,, and M),.
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FIGURE 4. Left: The four interfaces from Figs. 2 and 3, pinpointing the minima and maxima of each.
As a result of the Edwards—Sokal coupling, the interfaces are layered in the following order: top,
red, blue, bot. Right: The same picture with all the colors and edges of the joint configuration.

Remark. Unlike 3D Ising (where the interface maximum and minimum have the same law by symmetry),
the additional colors in the 3D Potts model for ¢ > 2 break the up-down symmetry at a macroscopic level
(even though at a microscopic level, such colors only appear in clusters with exponential tails on their size).
In particular, it is easier for the red component to “recede” via upward deviations (where the global extremum
has a prefactor of 1/v) than it is to “advance” via downward deviations (the global extremum has a prefactor
of 1/4), as the finite clusters with colors other than blue and red also invade its territory, resulting in the
strict inequality v < +’. For the 3D FK model, this asymmetry of minima/maxima occurs for any ¢ > 1.

The constants «,a’,7,v’ in the above theorems are given explicitly in terms of large deviation events
of the different interfaces (see Propositions 4.1 and 5.3 and Egs. (5.4) to (5.6)). The following proposition
shows that all 4 rates are distinct, and provides estimates for their differences, sharp up to a factor of 1+eg.

Proposition 1.5. [Comparison of means] The constants o,a’,v,7' governing the asymptotic means of the
maxima and minima of 3D Potts and 3D FK interfaces, as per Theorems 1.3 and 1./, satisfy

4 - C < a <48,
v-a=(1+epe”,
7 —a=(%ep)(g— e,
o —a=(1+eg)ge?,
where C' depends only on q, the notation a = (1+¢e)b denotes a € [(1 —¢e)b, (1+¢€)b], and eg — 0 as § — oo.

1.2. Related works. In what follows, and due to the extensive list of related literature, we will provide
only a brief and non-exhaustive overview of these studies, focusing on those that were instrumental to the
proofs. (The reader is referred to referred to [8,9] for a more comprehensive account of the related work.)
An important milestone in the study of low temperature 3D Ising interfaces was the breakthrough works of
Dobrushin [5,6]. There, the rigidity of the interface was proven (valid also in higher dimensions), leading to
the existence of non-translation-invariant infinite volume Gibbs measures in Z3. These results were extended
to a variety of other models (e.g., [1,3,4,11,13,15], to name a few). In our context, it is particularly important
to highlight the following works. First, the work of Gielis and Grimmett [11], establishing the rigidity of the
3D FK interface under fi,, for p sufficiently close to 1 (related results for the FK interface at p = p. and large
g were obtained in [3]). The machinery built in [11] and [12, §7] is a prerequisite for our analysis. Second,
decorrelation estimates for 3D Ising interfaces have been extended to a more general setting by Bricmont,
Lebowitz, and Pfister [2], which will allow us to control global (in terms of local) extrema. Third, and most
relevant, a series of recent papers by Gheissari and the second author [8-10] established detailed results on
local and global maxima of the 3D Ising interface. While it readily follows from Dobrushin’s work that the
maximum of the Ising interface in a cylinder of side length n should be of order logn, the authors in the
above papers prove that the maximum is in fact tight around its mean which is (¢+o0(1)) logn for an explicit
¢ = ¢(p) (governed by the large deviation rate of the interface height above the origin in infinite volume).
Furthermore, those works provide a description of the shape of the Ising interface around a location at which
a tall peak is reached, using Dobrushin’s argument as a starting point for an analysis of operations on 3D
“pillars” (as the 2D analysis within Dobrushin’s rigidity argument is too crude to recover the correct ¢(3)).
The ideas in [8-10], along with the work of [11] extending Dobrushin’s work to FK interfaces, form the
foundation of our analysis of Potts and FK models. We next describe some of the key issues arising there.
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1.3. Proof ideas. Here, we discuss the proof ideas in the context of the main obstacles we encountered.
Before detailing the additional challenges that the Potts and FK model present us with, let us recap the
approach used in [9] to analyze 3D Ising interface (the case ¢ = 2), noting that in that case there is only one
interface (Z,eq and Zpjue are identical). The proof in that case can be roughly summarized in three steps.

(i) Pillar shape: Cluster expansion is used to show that if the interface reaches a large height h above a
given location z, then with probability 1 — e, it does so in a very controlled manner: define the pillar P,
to be the local portion of the interface above x (see [9, Def. 2.16], or Definition 2.16 in our random-cluster
setting)—roughly put, this is the cluster of plus spins containing x in the positive half-space; the bulk of the
proof in [3,9] aims to show that this cluster, conditional on reaching height h, behaves as a directed random
walk (RW), visiting 1 — g of the slabs at exactly one location as it climbs to height h.

(ii) Large deviation rate: Submultiplicativity of the probability that the pillar P, reaches height h is then
argued by comparing the conditional probability of reaching height h; + ho given that the pillar already
reached height hi, to the unconditional probability it reaches height ho above z. This submultiplicativity
implies the existence of the sought large deviation rate, which can also be phrased in terms of a certain spin-
connectivity event (some care is required as |A,| needs to grow with h; see Proposition 4.1, for instance).
(iil) Mean and tightness for the mazimum: Combining the large deviation rate with decorrelation estimates
and a second moment argument gives the desired results concerning the maximum of the interface.

Step (iii) in this program can be readily adapted to the random-cluster setting via the mentioned decorrelation
estimates of [2]. To carry out Step (i) in the FK model, we employ the cluster expansion machinery of [11],
which adds technical difficulties to what had been a fairly delicate argument already for Ising—for instance,
the random-cluster pillars must now be decorated by “hairs” that can penetrate their interior and connect
them to one another (see Section 1.3.3 for more on this). Finally, as we next elaborate, the Ising argument
for the critical Step (ii) collapses in the absence of monotonicity, and we resort to establishing the large
deviation rates in two stages: first, we obtain the rate for upward deviations of the top interface Z,, in fip
(see Section 1.3.1), which is the “highest” among the four coupled interfaces; then—building on that result—
we derive the rate for upward deviations of the other three interfaces Zyjye, Zred and Zpor (see Section 1.3.2).

1.3.1. Large deviation rate for the FK top interface. The submultiplicativity argument in the Ising proof
(Step (ii) above) crucially relied on FKG—a property missing from the Potts model. Without this argument,
while one could still establish that the pillars in the Potts interface resemble directed RWs (via Step (i)), one
would not be able to derive the large deviation rate of them reaching height h. A well-known remedy to the
lack of monotonicity in the Potts model is to turn to the random-cluster model-—which does enjoy FKG—via
the Edwards—Sokal coupling (and then attempt to go back to Potts to recover the counterpart behavior).
However, the Dobrushin boundary conditions for our Potts model correspond (via this coupling) to the
conditional FK model fi, = pn(- | ®5) (where we aim to analyze the interface and prove submultiplicativity)
rather than p,,, and unfortunately fi,, does not have FKG either. Our workaround leverages the fact that the
separation event ©,, is decreasing. Instead of proving a bound of the form fi,(An,+hny) < fin(Any ) Bn(Any),
we resort to proving (after additional technical modifications, as we briefly describe below) a bound of the
form pin (Any+hs | On) < pin(Any | Dn)pin(An,), towards which monotonicity is still available, and then use
the fact that pu,(An,) < pin(An, | Dr) as long as the event Ap, is decreasing (by FKG in p,,). Consequently,
this approach, while valid for the upward deviations of Ziop, fails for its downward deviations (equivalently,
upward deviations of Z,ox — addressing the increasing event that there is an open path connecting 9A;, to
height h), let alone for understanding the two Potts interfaces. Understanding the maximum of Zyo requires
additional ingredients, and is handled together with the analysis of the Potts interfaces Zpjye and Zyeq.

An extra complication that is associated with the move to the random-cluster model is that, when studying
its interfaces, one needs to be far more careful when applying a Domain Markov argument, which was also
a crucial part of the submultiplicativity argument. More precisely, in the Ising case, revealing the interface
up to height hy exposes a boundary of minus spins, upon which one can apply the Domain Markov property
to ignore all of the information “below” these minus spins when bounding the probability that the interface
further climbs from height hy to hy+hs. In the random-cluster case however, revealing the interface exposes a
boundary of open edges, rather than vertices. Making sure that the revealed set forms a boundary condition
in the FK model (disconnecting it from the edges that lie “below”), while the event of climbing to height ho
in the yet-unrevealed subgraph can still be related to the unconditional probability of climbing to height hs
(see also Section 1.3.3 accounting for some of these difficulties) becomes a delicate part of the analysis.
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1.3.2. Large deviation rate for the Potts interfaces and FK bottom interface. Our approach to establishing
the rate of upwards deviations in the remaining three interfaces (Potts blue and red and FK bottom) modulo
the analysis of the top interface, is as follows. Consider Zpue (the other two interfaces are handled similarly).
As noted above, in the coupled FK-Potts model ¢, the top interface always lies above the blue interface.
Thus, to estimate the probability that the blue interface reaches height h above a given point z, we may
instead look at the conditional probability that it does so given the top interface reaches height h above x
(see, e.g., Proposition 5.3), which we had already studied. Heuristically, this can be thought of as computing
the probability that underneath the top interface there is a path of blue vertices connecting x to height h.
The following heuristic, albeit flawed, gives insight into this problem. As mentioned above when discussing
the shape of the pillar P,, one could show that conditional on the top interface reaching a large height h
above x, the pillar resembles a stack of i.i.d. increments—more precisely, its increments are asymptotically
stationary and a-mixing (for Ising this was shown in [9, Props. 7.1 and 7.2]). One could then expect that
the probability of having a path of blue vertices passing through all of these increments would be comparable
to the conditional probability of having a path of blue vertices passing through a single increment, raised to
the power of the number of increments (via the LLN for the i.i.d. increments). As the number of increments
is comparable to h, this would then give the desired rate explicitly in terms of this conditional probability.
Unfortunately, this approach fails since we are trying to estimate probabilities on the order of e~ ", and the
interface may likely achieve a large upward blue deviation via an atypical top pillar occurring with such a
probability—whereas the asymptotic mixing and stationarity only apply to a typical P, achieving height h...
Instead, we employ another submultiplicativity argument to show the existence of a blue upward deviation
rate (similarly for the other interfaces, postponing the problem of comparing these rates per Proposition 1.5).
The basic idea is to show that (a) sampling a “nice” top pillar with height hi + he is comparable to sampling
a top pillar with height h; and another “nice” top pillar with height ho independently, then stacking them
on top of each other; and (b) this comparison further extends when considering the Potts coloring of the
interior vertices (which is nontrivial since, e.g., information does leak through our interface faces via “hairs”
as part of the FK model cluster expansion). In [J, Section 7], the key to showing a-mixing and asymptotic
stationarity of a (typical) pillar P, was elevating the standard map modifying a single interface into a
“2-to-2” map, acting on a pair of interfaces: to evaluate the effect of having two different extensions of a
bottom part of a pillar, one compares the effect of swapping the two possible top pillar parts through the
cluster expansion. Here, we further elevate it to a “3-to-3” map, acting on a triple of interfaces as follows.
Suppose that Pg,Qp are two pillars with height h;, and that P, Q7 are two pillars with height ho. Let
Pp x PT be the result of stacking PT on top of Pg, and similarly for Qg x Q7. Our 3-to-3 map sends
(P x PT,Qp,Q7) — (Qp x QT, Pg, PT), and its analysis via the cluster-expansion allows us to show that

fin(Pp X PT)ﬂn(QB)ﬂn(QT) ~ [in (@B X QT)ﬁvb(PB)ﬂvl(PT)a

where the error is multiplicative and not additive. (Recall that all errors must be multiplicative for this
approach to stand a chance, as we are estimating events that are exponentially unlikely in the height h.) See
Lemma 5.19 for a precise statement of this result, and Fig. 8 for an illustration.

With this estimate in hand, we can sum over all possible Q5 and Q7 to prove the desired claim on the law
of pillars. To conclude the submultiplicativity with respect to the probability of having a blue path within
the pillar, we prove and employ an appropriate Domain Markov property in the coupled FK-Potts model,
saying that if we fix an increment, then regardless of the environment outside of the increment, the joint
configuration inside has the law of another coupled FK—Potts model with appropriate boundary conditions.
This strategy allows us to establish the sought limiting rates, yet without any comparison between them (e.g.,
they could potentially all coincide with the rate of the top interface). To estimate the rates of blue, red and
bottom, we need to bound from below and above the probability of coloring the interiors of the pillars—which
are comprised mostly of trivial increments (cubes stacked one on top of the other). To leverage this structure,
we must fend off the effect of the environment, since revealing pillar will include interior information (through
its hairs, or lack thereof). To this end, we introduce a notion of a pillar shell, which excludes the latter faces,
thus its analysis supports the comparison of the rates.

1.3.3. Difficulties arising from cluster expansion. We conclude this section with a discussion of some of the
difficulties surrounding cluster expansion for the random-cluster model. In [11, Lem. 9], Grimmett and Gielis
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proved the following for the law of the random-cluster interface Z:

fin(D) o (1= ™) PTlg exp | = BIT| + Y 9(£.T)]
fez

for a suitably “nice” function g (see Proposition 2.11 for details). Compared to the Ising cluster expansion,
which only contained the last exponent exp[—S5|Z|+> fer g(f, )], we see here that the number of components
k7 and the size of the boundary of Z plays a role; moreover, the interface Z appearing in that work was what
we refer to as the full interface: the 1-connected component of faces that are dual to close edges in w and are
incident to a boundary face at height 0 (see Definition 2.2). This larger collection of faces contains all of our
4 interfaces Ziop, Zreds Zbiue a0d Zpot, as well as additional connected components of faces “protruding” from
them, which are the hairs mentioned above. In the absence of cluster expansion for our top interface, for
instance, we have to apply the cluster expansion arguments on objects in the full interface instead. Namely,
the pillar now must include these additional hairs in the full interface, even though our focus is on pillars
in Zyop (it is much easier for the full interface to exhibit upward deviations via said hairs, but those will not
represent a boundary between connected components in the FK nor Potts model and hence are irrelevant for
us). What further complicates matters is that these hairs can potentially reattach the pillar to other parts
of the interface, leading to unwanted correlations. The Ising results in [3,9] did not need to face such issues,
however the follow-up work [10] did treat a situation where, conditional on the existence of level-lines, one
would like to establish that the local law of the pillar can be coupled to the standard one in infinite-volume.
That was achieved in that work via restricting the analysis to pillars that are confined to appropriate cones.
Adapting this concept to the FK model allows us to separate the pillars from affecting each other via the
long range interactions of the FK model (see Theorem 3.8). Then, when establishing the rate of upward
deviations of the top interface, extra care must be taken to ensure that despite including the extra hairs, no
information leaks “from below” when we reveal the interface up to height h; (otherwise the Domain Markov
argument mentioned in Section 1.3.1 would fail). And finally, when studying the rates of the blue, red and
bottom interfaces, we must ensure that no information leaks “inside the pillar” when conditioning on the top
interface (otherwise, e.g., we would not be able to address the Potts rates using the Edwards—Sokal coupling
as described in Section 1.3.2).

1.4. Organization. This paper is organized as follows. Section 2 summarizes the preliminary results we
will need on the low temperature FK model, and sets up the notion of pillars. Section 3 establishes the basic
results needed on typical pillars—notably, being confined to appropriate cones and consisting of mostly
trivial increments. Section 4 derives the FK model large deviation rate for upward deviations of the top
interface. Section 5 establishes the corresponding rates for the remaining 3 interfaces (Zred, Zblue; Zbot) modulo
the behavior of Ziop, and further estimates these rates. Section 6 derives the tightness of the minima and
maxima of the different interfaces from the above results and certain decorrelation estimates, whose proof is
relegated to Appendix A.

2. PRELIMINARIES

We begin by introducing various notation that will be used throughout the paper, and recalling the setup
work done in [11] for the random-cluster model. Then we will define and prove basic properties about pillars,
the geometrical objects used to study the upward deviations of the top interface.

Let ey, eq,e3 denote (1,0,0),(0,1,0),(0,0,1) respectively. For every configuration w, let §, (resp., §°)
denote the set of faces dual to open (resp., closed) edges:

Sw:{f(z:wezl} 5 Si}:{f(glwe:O}.

We will identify edges and faces by their midpoints when referring to their location and height, so that
horizontal faces have integer heights and vertical faces have half-integer heights. We denote by L the set
of vertices, faces, and edges with height equal to h.

Definition 2.1 (Connectivity and Boundaries). We define two faces to be 0-connected if their intersection
contains at least one point, and 1-connected if their intersection contains an edge. For any set of faces H,
we define H to be the union of H with the set of faces that are 1-connected to H. We define 0H := H \ H.
Note that this usage of  is different from when we write dA,, in the sense that A,, C A,, while OHNH = ().
That is, dA,, refers to an interior boundary of vertices, while OH refers to an exterior boundary of faces.
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FIGURE 5. Left: A 3D joint configuration of edges and vertex colors under the Edwards—Sokal
coupling, including the full interface, Z. Right: The same model, with just the full interface
displayed. Note that the full interface should not be thought of as a surface — there are many
sheets of faces sticking out and creating overhangs.

Despite this overload in notation, we will keep this convention for the sake of clarity of certain proofs, and
this distinction should be noted whenever 0 is used in front of a set of faces.

2.1. Cluster Expansion and random-cluster rigidity. To prove finer details about the random-cluster
interfaces, we recall the setup used in [12].

Definition 2.2 (Full interface). The full interface Z is the 1-connected component of faces in F¢, containing
the boundary faces at height 0 which separate A} and 9A,,. See Fig. 5 for a visualization. Note that as a
set of faces, this interface includes the previous four interfaces. Denote by xz the number of open clusters
in a configuration where the only closed edges are e such that f. € 7.

Definition 2.3 (Semi-extended interface). Let Z* be the union of Z with all horizontal faces that are
1-connected to I.

Definition 2.4 (Ceilings/Walls, Indexing, Nesting). For a face f or vertex v, let p(f) and p(v) denote
the face (if f is horizontal) or edge (if f is vertical) that f projects onto at height 0, or the point that v
projects to. For a face f € Z*, we call f a ceiling face if it is horizontal and there are no other faces of Z*
with projection equal to p(f). We call all other faces of Z* wall faces. Ceilings and walls are 0-connected
components of ceiling and wall faces respectively. For a wall W, we can decompose it as W = (A, B) where
A=WnNZand B=WnN(Z*\Z). We can index walls by assigning = a wall W if z is in p(W). By Lemma 2.5
below, each vertex is only assigned to one wall, so the notation W, is well defined (though each wall can be
assigned to multiple vertices). Let the empty set of walls be denoted &, so if there is no wall at x, we assign
it &,. For a wall W, we can consider the complement of its projection p(W)¢ to be the collection of faces
and edges at height 0 that are not in p(W). There is an infinite component of p(W)¢, and possibly some
finite ones. We say that a vertex, edge or face is interior to, or nested in a wall W if its projection is not in
the infinite component of p(W)¢. A wall W’ is interior to, or nested in a wall W if p(W’) is disjoint from
the infinite component of p(W)¢, and similarly for ceilings interior to W. For a vertex z, we can consider
the set of all walls W that nest x. The collection of all such walls is denoted 20, = (W7y,..., Wy).

Lemma 2.5 ([11, Lem. 10],[12, Lem. 7.125]). The following geometric properties of walls and ceilings hold:

(i) The projections p(Wh), p(Wa) of two different walls W1 and Wy are not 0-connected.
(ii) All faces of the semi-extended Z* which are 1-connected to a ceiling face are horizontal faces in Z.

Definition 2.6 (Standard wall). For sets of faces A, B, we call S = (A, B) a standard wall if there exists
an interface Z such that A CZ and B C Z* \ Z and A U B is the unique wall of Z. The interface Z in the
above definition is unique (see [11, Lem. 11],[12, Lem. 7.126]). A collection of standard walls is admissible if
no two walls have O-connected projections.
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Lemma 2.7 ([11, Lem. 12],[12, Lem. 7.127]). There is a 1-1 correspondence between interfaces and admissible
families of standard walls.

As a result of the above lemma, we can view interfaces as (admissible) collections of standard walls, and
we use this to define groups of walls and the excess area of walls.

Definition 2.8 (Groups of walls). Two standard walls Wy, Wy are close if there exist faces f1 € p(Wy),
and fo € p(W2) such that d(f1, f2) < /N(f1,W1) + /N(f2, W2), where N(f, W) is the number of faces
of W whose projection is a subset of f. A group of standard walls F' is a maximal connected component
of standard walls via the closeness adjacency relation. That is, if W7, Wy € F, then there exists a sequence
walls W7 = 51,...,5, = Wy € F such that S; and S;11 are close, and any wall not in F' is not close to any
wall in F.

Definition 2.9 (Excess area of interfaces and walls). For two interfaces Z and J, we will define the excess
area of Z with respect to J to be

w(Z; J) = 7] =TI,
where |Z| denotes the number of faces in the interface Z. For a standard wall W = (A, B), let N(W) = |A|,
and |W| =|AU B|. Then, we define its excess area to be

m(W) = N(W) — [p(W)].
Lemma 2.10 ([11, Lem. 13],[12, Lem. 7.128]). We have the following inequalities:
(i) N(W) > Bp(W)|, which implies m(W) > & |p(W)| and m(W) > LN(W);
(i) N(W) > ¢|W|;
(iii) m(W) > ht(W).
In order to prove that a typical interface has certain “nice” geometrical properties, our proof strategy will
be to construct a map that sends every interface to a “nice” one, and control the energy gain and entropy

loss of the map. To do this, we use the powerful tool of cluster expansion, which allows us to compare the
measure of two interfaces.

Proposition 2.11 (Cluster Expansion; [ 1, Lem. 9],[12, Lem 7.118]). There exists 5y and a function g such
that for every B > By, the induced law on interfaces is given by

fin(T) = Zi(l — e P10 FlTlgrz exp (Z 9(f, I)) : (2.1)
" fez

where the function g has the following properties: there exists universal constants ¢, K > 0 independent of 3
such that for all f,T, [, T,

l9(f, D) < K, (2.2)
9(£,T) = g(f',T')| < Ke™rIEIE, (2:3)
where r(f,Z; f/,T') = sup{r : (Z— f)NB.(0) = (Z'— f")N B-(0)}, i.e., v(f,Z; f',T') is the largest radius
around the faces f, f’ such that the interfaces T,T' agree.
The following geometrical lemma will be useful for controlling the entropy of maps.

Lemma 2.12 ([11, Lem. 14],[12, Lem. 7.131]). The number of 1-connected sets of faces of size k containing
a given face x is bounded above by s* for some universal constant s.

The above tools were used by Gielis and Grimmett to prove the following rigidity results:

Proposition 2.13 (Exponential tails on groups of walls, [11, Lem. 15],[12, Lem. 7.132]). There exists 5y and
a constant C' > 0 such that for every B > By, for any admissible collection of groups of walls {(Fy)yzz, Fz},

- <exp(—(8—-C)m(fy)).
fin(Fo = En, (Fy)yza = (Fy)yza) ( )
Proposition 2.14 (Rigidity, [I1, Thm. 2], [12, Thm. 7.142]). Let f be any horizontal face at height 0.
Denote by {f <> oo} the event that there is a 1-connected sequence of faces {f;} from f to the boundary O\,

such that all the faces f; are ceiling faces of T at height 0. Then, there exists By such that for any 8 > By,
there is a constant g such that for all n and all starting f,

fin(f ¢+ 00) > 1—¢€g.
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2.2. Pillars. The general strategy will be to use cluster expansion arguments to prove results about the full
interface, and then transfer these results to the Potts and random-cluster interfaces of interest. For technical
reasons that will become apparent later, we need to begin with the top interface. To measure the “height

of the top interface above a location z”, we will start at  and follow the upward intrusion of vertices

top
into the ﬁtop phase of the model. Although the actual top interface may reach a higher point above z via an
intrusion beginning from another vertex y, we choose to measure this more “local” height of the interface,
and this suffices since the maximum of Z;,, will still be equal to the maximum height over all such intrusions.
We begin this section by first proving some basic properties of the top interface, and then making the above
idea rigorous through the introduction of pillars. The section then concludes with some preliminary results
on the height of a pillar.

Remark 2.15 (Properties of Zyop). We begin by proving a few properties of Zyop, that will be useful through-
out the paper. Note that Zp really is an interface in the sense that every path from 9A,, to A} must at
some step go from a vertex in Vfop to a vertex in Vtop, which then must cross a face of the top interface.
Note also that for every edge e = [v, w] such that fe € Tiop, One of v or w is in the top component Vi,p, and
the other is not. Indeed, say that v € \A/top and w € Vtcop
and v is either in Vo, or in a finite component of

infinite component of Vg, and is adjacent to v.

Then, w is not in the top component by definition,

top- But, the latter case is impossible since w is in the

Finally, we claim that Z,, determines ljtop, and both ﬁtop and V¢ are simply connected. Moreover, we

top
show that if V' is the set of vertices that are not separated from OA;} by Ziop, then V' = Viop. First we show
that V, V¢ are both infinite simply connected components. Suppose for contradiction that there is a finite
component A C V¢ surrounded by vertices B C V. Then, for every edge e incident to both a vertex of A

and B, we have f. € Ziop. The vertices of A are all in Vi, so that as noted above, all the vertices in B

top and must be in ﬁop, which
contradicts the fact that the faces separating A from B are in Zi,p. Similarly, if A C V' is a finite component
surrounded by vertices of V', then A must be surrounded by faces of Zio, and thus be separated from OA}
by Ziop, contradicting the definition of V. Now we show that V = ]Zop. Since V¢ C V¢

top
On the other hand, if v € Ve N V, then there must be a A,,-path P

must be in Viep. But B surrounds A, and so A is a finite component of Vg

and is an infinite

connected component, then V¢ C Ve

top* top
from v to V¢ consisting only of vertices in Vfop by the fact that Vtcop is the infinite component of V,,. But

since v € V, there must be an edge e = [u, w] in P that crosses from u € V to w € V. The face f = f. must
then be in Ziop, but then at least one of u,w is in Viop, which contradicts the construction of the path P.
Thus, Ve AV =4.

top

Definition 2.16 (Pillar). Given an interface Z, we can read from it the corresponding top interface Ziop. As
above, this defines a set of vertices Viop and Vg,,. Let x be a vertex at height 1/2. Let V be the connected

component of vertices in Vtcop with height > 1/2 that contains x, which we call the vertices of the pillar.
Denote by F' the set of faces bounding V' with height > 1/2. Note that F' is a subset of Zip. Possibly
attached to F' are some hairs, which we define to be 1-connected components of 7\ Zy,,. We define the pillar
at x, P, as the union of F with all hairs that are 1-connected to F at an edge with height > 1/2. We

analogously define a pillar in the bot interface.

Note that a priori, it is possible that the hairs of the pillar reconnect to other walls of Zy,,. However,
this will not happen for pillars which are in an isolated cone (see Definition 3.2), and whenever this may be
problematic, we will first restrict to such a space of pillars.

By abuse of notation, we will sometimes also use P, to refer to the set of vertices in the pillar. We also
define the height of P, as the height of the face set F', so that the max height of the top interface is equal
to the maximum height over all pillars. Denote the event EY := {ht(P,) > h}.

Observation 2.17. Note that the vertices of a pillar V(Py) is a simply connected set. Indeed any finite
component A of V(P,)¢ is by definition surrounded by vertices of Vtop, and hence a part of Vi,,. All the
vertices of A also have height > 1/2, and thus by definition should actually be included as a part of V(Py).

Remark 2.18. We will distinguish between the events {ht(P,) = 0} and {ht(P,) < 0} even though both
correspond to the event that V' in Definition 2.16 is empty (and henceforth, the event Ef will not include
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the event {ht(P,) < 0}). We say that the pillar height is 0 in this case only when the face corresponding to
the edge [z — e3, 2] is in the top interface, otherwise we say that the pillar has negative height. Note that if
the pillar height is 0, the fact that the face below z is in the top interface implies that exactly one of = or
2 — ez is in the top component (i.e., has a wired path to the upper half boundary). But, it must be that =

is in the top component since the other case implies x € lzcop, which contradicts P, = 0.

When we eventually move to the Potts model, it will be helpful at times to reveal only the outer shell Py
of the pillar without revealing any edges inside the pillar. This motivates the following definition:

Definition 2.19 (Pillar shell). We define P2 as above, except when adding hairs to the face set F', we do

not include any faces dual to edges with endpoints in 9fop.

Observation 2.20. The faces of a pillar P, is a subset of the faces of the walls nesting x, 2,., together
with any walls interior W,., together with all interior ceilings of such walls.

Observation 2.21. For all faces f € P,, there exists a wall W that nests both f and x. Similarly, for any
vertex y € Py, there exists a wall that nests both y and x.

The decomposition of the full interface into walls and ceilings, though powerful in proving rigidity, is not
sufficient in studying the pillar. We instead decompose the pillar itself into increments.

Definition 2.22 (Spine, base, increments, cut-height/point). We call a half integer h a cut height of P, if
there is only one vertex v of P, with height h, and the only faces of P, at height h are the four faces bounding
the sides of v. We call v a cut-point of P,, and we enumerate the cut-points by increasing height. The spine
of P, denoted S, is the set of faces of P, with height > ht(v;). The base %, will be the remaining faces
of P,. Suppose that the spine has .7 + 1 cut-points. For i < 7, the i-th increment Z; is the set of faces of
P, in the slab Ling(v,) nt(v;41)]- LThe vertices of Z; are the vertices of P, in the same slab. Sometimes we will
write 7 (Z;) to reference specifically the face set of the increment. Note that the spine does not necessarily
end at a cut-point, and so there may also be a remainder increment which is the set of faces of P, with
height in [ht(vg11),00). We denote this by 25 7 or Z711. A trivial increment consists of just two vertices
v,v + e3, where the faces of the increment are just the 8 faces which bound the sides of the these vertices.
We denote such an increment by Xg. Finally, we can define the spine, base, and increment also with respect
to the pillar shell, and denote these by S2, %2, Z.° respectively. Note however that the cut-points of P, and
PO are the same.

Definition 2.23 (Excess area of increments). For an increment %7, we define the excess area m(%;) =
| F(Z;)| — 4(ht(vit1) — ht(v;) + 1), i.e., the number of extra faces compared to a stack of trivial increments
of the same height. This definition applies to the remainder increment if we set ht(vz42) = ht(P,) — 1/2.
Note that if 2; is not a trivial increment, then the fact that each height in between ht(v;41) and ht(v;) is
not a cut-point implies that m(2;) > (ht(v;4+1) — ht(v;) — 1) V 1, which implies that

\Z(2)] < 5m(2;) +8. (2.4)

Proposition 2.24 (Exponential tail on height of pillar). There exists Sy and a constant C > 0 such that
for every B > Bo, for all x, and for all h > 1,

fin(ht(Py) > h) < exp (—4(8 - C)h).

Proof. This is a direct consequence of the exponential tail on the size of groups of walls. We direct the
reader to the proof of [9, Theorem 2.26] to see how it follows, and just provide a sketch here. The idea is
that in order for the pillar at  of the top interface to reach height h, there needs to be a sequence of nested
walls (W) nesting « such that such that Y m(W,,) = hy, and a different sequence of nested walls (W)
interior to a ceiling of some W, such that >, m(W,,) > 4h — hy, for some h;. The crucial bound to prove
is that for §, denoting the group of walls of the nested sequence 2J,,, we still have an exponential tail:

fin(m(F,) = 1) < Cem PO (2.5)

for some C' > 0, and one can prove this using the exponential tails on groups of walls established in
Proposition 2.13. Then, the proof concludes by summing over possible values of h;. |
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Observation 2.25. We have fi,(we =0 | Wla\fe} = n[An\{e}) > 1 —p for every fixed configuration n and

q(1—p)
o al=p)tp o o
open cluster or mot. However, the latter term is increasing in q, and thus minimized at ¢ = 1 where it is

equal to 1 —p. As a consequence, if A is any event such that for every configuration w € A, closing the edge
e will not take w out of A, then we can sum over w to get

pn(A4) < (1 _p>_lﬂn(A7 we = 0).

In fact, e can even be a random edge depending on w € A. Finally, if e depends on w in such a way that
closing e always creates an additional open cluster, then the above inequality can be strengthened to

q1—p)+p e’ +q—1
n(A) < ————pp(4,we =0) = ————
fin(A) T i ( ) .

Proposition 2.26. There exist 5y and C' > 0 such that for every B > By, for all x, and for all h > 1,

any edge e. The exact probability is either 1 —p or depending on whether closing e creates a new

tn(A,we =0).

45 < 3 log in (B(P) > h) < ~4(5 — O).

Proof. The upper bound follows from Proposition 2.14 above. For the lower bound, let F be the 4h+ 1 faces
that surround the sides and top of the column of h vertices, {x,z+e3,...,2+(0,0,h—1)}. Let E be the set
of edges e such that f. € F. Finally, define A as the set of configurations w such that w|gz. = n[g. for some
N € {flz,z—es] ¢ 00} (defined as in Proposition 2.14). Note that AN {w. =0 : e € E} C {ht(P,) > h}.
With this definition of A, we can apply Observation 2.25 to close the edges of E one by one, so that

pn(ht(Py) > h) _ pn(A{we =0 : e € E}) fn(A) —B(4h+1) —B(4h+1)
> > e > (1—ep)e . |
(D) - (Do) " (D) 2 B)

3. FINER PROPERTIES OF TALL PILLARS

This section focuses on proving analogues for the results of [10, Section 4] in the random-cluster setting.
There, it was shown that (in the Ising model) a typical tall pillar has a trivial base, and is isolated from
the rest of the interface. This is crucial for us because on this isolated space of pillars, we no longer run
into the issue that the faces of P, might be 1-connected to other walls of Z. Furthermore, many times we
will want to study the effects of straightening or deleting parts of the pillar using the cluster expansion
expression established in Proposition 2.11. This is in general a complicated endeavor because the “g”-terms
will see the interactions between a shifted or deleted increment and nearby walls. Moving to this isolated
space first automatically controls such interactions, and thereby greatly simplifies all the cluster expansion
arguments which follow. Several results in this section follow verbatim from the work in [10], and we will
omit those proofs. Our primary contribution here is in showing that the new terms related to |0Z| and k7
in the cluster expansion do not pose any problems to the argument provided in the Ising model, which we
show in Lemmas 3.11 and 3.12.

Definition 3.1 (Truncated interface). We can define a truncated interface Z \ P, by removing from Z every
face that is in P,, and adding in a face below every vertex v € P, with ht(v) = 1/2. Note the abuse of
notation in that Z\ P, as a set of faces includes more than Z set-minus P, because we need to fill in the gaps
left by removing P, to ensure that Z \ P, is still an interface. We can similarly define Z \ S, by removing
every face that is in S, and adding in the face below v;.

Definition 3.2 (Isolated pillar). Let Iso, 1, be the set of interfaces Z satisfying the following:

(1) The pillar P, has an empty base (equivalently, z itself is the first cut-point), its increment sequence

satisfies
0 ift<L?

Z:) <
m{ t)_{t ift> 13’

and the number of faces in the spine S, is at most 10h.

(2) The walls (W) of Z \ P, satisfy

~ 0 if d(y,z) <L
! ”Sﬁﬁumm>ﬁL<awm<L%’

and f[w,m—eg] ¢ 1.
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Whereas the notion of an isolated pillar is the primary object of interest in our proofs, as mentioned
in Section 1.3.2, we will also need its analog for the pillar shell P9 (see Definition 2.19), so as to alleviate
information leaking to the FK—Potts model on the interior of the pillar.

Definition 3.3 (Isolated pillar shell). Analogously, we can define Iso}, ;, , as the set of interfaces such that

(1) The pillar P2 has an empty base (equivalently, x itself is the first cut-point), and increment sequence
satisfying:
0 ift<L3
m(Z;°) < - ,
( t)_{t if t > L3

and the number of faces in the spine &7 is at most 10h.
(2) The walls (W) of Z \ P, satisty
5 0 if d <L
m(Wy) S 1 (y7 l') — 3 ,
‘ log(d(y,z)) if L <d(y,z) < L*h

and f[m@,%] ¢ 7.

Note that Iso,, 5 C Isog’ .n- One nice property of these spaces is that the pillar is well separated from
the rest of the interface, in the sense of Proposition 3.4 and Lemma 3.6 below.
For any L, h, we can define the following cones:

Cone, = {f : ht(f) > L d(p(f), ) < ht(f)* A 10R},

Cone; = {f : d(p(f),x) > L,ht(f) < (logd(p(f),x))*}.
Let F be the 4L? vertical and L?+1 horizontal bounding faces of the vertex column {z,...z+(0,0,L*—1)}.
Define the cylinder Cyl, . := {f € F(Z?) : d(p(f),x) <7}

Proposition 3.4 ([10, Claim 4.4]). Fir any L large and any h. Any interface T € Isog, 1, satisfies

I C (Conel N Lcion) UF U (LoNCyl, ;) UConel U CylS ), - (3.1)
F 7 F :
v F_ Y Fex

For Fy,F|,F_,F+y,Fe defined as above, the right-hand side is a disjoint union,
(FyUF))N(F_UFy UFg) =10
and the pillar P, is a subset of the first two sets above, while T\ P, is a subset of the latter three sets.

Proof. The proof of [10, Claim 4.4] applies in this setting verbatim. See Fig. 6 for a visualization of ConeglC
and Cone?. |

Corollary 3.5. For any x, L, h, on the event Iso 1 ;, (and thus also on Iso, 1 1), the only faces of T\ Ps
which are 1-connected to P, are the four faces at height 0 which connect to the first cut-point of the pillar.

(Explicitly, these are the faces fizi(4+1,0,0),04(+1,0,—1)] 014 flat(0,41,0),04(0,41,~1)]-)

Lemma 3.6 ([10, Lemma 4.5]). There exists C > 0 such that for all L sufficiently large, and all h > 1, and

any T € 1s0p, 1 4,
Z Z e~cdh9) < Cemel | (3.2)
fEFvUFH gEFyUF

and
Z Z e~ cdh9) ek (3.3)
fEFy gEF_UFyUFe

Proof. See the proof of [10, Lemma 4.5] with the following observation: In Iso; ; 5, we only know that the

spine of the pillar shell S has less than 10h faces, so it is possible that S, has more. However, all the
additional faces must be between vertices in P,, and so the spine S, still cannot have more than say 20h
faces. |

Finally, we prove the following claim stating that in an isolated pillar, there is an w-path from = to A,
which will simplify certain proofs in Sections 4 and 5.
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FIGURE 6. A typical isolated, tall pillar. The region above the tan cone is Conel and the region
below the pink cone is Cone?2.

Claim 3.7. For any w € Iso} 1, N ET, we have x € Vpot.

Proof. By definition, on EY, we know that z € ﬁbot. Suppose for contradiction that z is actually part of
some finite component of Vg, call it A. Let F' be the set of faces separating A from A° (ie., if u € A
and v ¢ A, then fj,,] € F). Since A must be simply connected, F' is a 1-connected set of faces (for the
justification that F is 1l-connected, see [11, Prop. 5],[12, Thm. 7.3]). Moreover, F C §¢ . Since x is a
cut-point of P, F must include the four faces to the sides of x at height 1/2, and hence F' C Z. Thus the
condition fiy »—c,] ¢ Z implies that x — e3 € A. However, if F is to separate x — e3 from 9A,, there must
be some horizontal face of F' below x — e3, which is necessarily a face of Z\ P,. Yet, no such faces can be in
Z\ P, by Proposition 3.4. ]

We now prove that except on a set of probability €3, a randomly sampled pillar of height h is going to be
an isolated pillar. The idea, as done in [10, Theorem 4.2], is to use cluster expansion to show that the energy
gain in mapping an arbitrary interface to one in Iso, 1, », beats the entropy of the map. A significant portion
of that paper is spent on controlling the g-terms which appear in the cluster expansion, and controlling the
entropy of the map ®5,. We will omit those parts of the proof here as they apply exactly. One way to see
why those proofs should still hold is to note that problems can only arise in the random-cluster model due
to the more complicated geometry in including the hairs of the pillar. The entropy arguments of the cited
paper are unaffected by this because they are based on counting the number of arbitrary 1-connected sets
of size k, and are not limited to the Ising-type pillar structures to begin with.

Theorem 3.8 ([10, Theorem 4.2]). For 3 > By, there exist constants Lg, €5 (going to co and 0 respectively
as 8 — o0) such that for every sequence h = h,, > 1, and x = z, with h = o(d(zn,0\,)), we have for all
0<h<h,0<L<Lg,

fn(Isog r.n|ht(Py) > ') >1—eg,
which also implies

fin(Is0g | 0t(Pz) > B') 21 —ep.

Let @5, be defined as in Algorithm 1. We denote by |—V~Vy] the interior ceiling of the wall W,,.

Lemma 3.9 ([10, Corollary 4.11]). In Algorithm 1, the walls 20,,, Uﬁﬁyf intersect heights 1/2, ..., ht(v1) —1
in at least five faces.



EXTREMA OF 3D POTTS INTERFACES 15

Algorithm 1: The map ®5, = Pi5o(x, L, h)
If 7 € Isog, 1, 1, then set ®i55(Z) = Z. Otherwise, proceed as follows:
1 Let {W, : y € Lo} be the walls of T\ S,. Let (27);>1 be the increments of S,.

// Base modification
2 Mark 7 :={y € Ly :y ~* 2} U{x} and p(v;) for deletion.
3 if the interface with standard wall representation O, has a cut-height then
Let At be the height of the highest such cut-height.
L Let y' be the index of a wall that intersects (P, \ 2, ) N Lyt and mark y' for deletion.

// Spine modification
4 for j=1to 7 +1do
0 if j < L?

if X)) > - th Al
if  m(2;)> i1 eI en // (A1)
| Let s < j.

if AW, U[W,],2;) <(G—1)/2 for somey  then // (A2)

| Let s < j and let y* be the minimal index y for which (A2) holds.

Let j* < s and mark y* for deletion.

5 if |.#(S;)| > 5h then // (A3)
| let s <~ .7 +1 and j* « s.

// Environment modification
6 for y € L1/, N Cylys,(x) do
. f d <L
it m(W,) > fdly.x) <
log[d(y, )] else
| Mark y for deletion

then

// Reconstructing the interface

7 foreach y marked for deletion do remove @STCIUSt(QiTy) from (GSTWy)yegl/z.

8 Add the standard wall QSTW;"” consisting of the bounding vertical faces of (z + (0,0,7)) ! where
h:= (ht(vy) — %)

9 Let K be the interface with the resulting standard wall representation.

10 Let
( Xo,o o Xg , Zjeg1,..., X7, 3@9) if (A3) is not violated,
—_——
S ht(v;*y1)—ht(v1)
(Xo,...,X5) if (A3) is violated .
h—h
e

11 Obtain @i, (Z) by appending the spine with increments S to K at « + (0,0, ht(Cw) + h).

Proof. By Algorithm 1, an interface consisting of just the walls QNBUI has no cut-heights between At + 1 and
ht(vy) — 1. That means each of those heights must be intersected by val in at least five faces.

By Observation 2.21, there exists a wall W that nests both ¢y and v;. By the algorithm, the walls Wvl
and V~Vy¢ are distinct, so let their innermost nesting ceilings within [W] be C,, and C,:. W must surround
the sides of every vertex below faces of these ceilings, and each ceiling must have at least two faces if it is
to nest a wall. Since it takes at least six faces to surround the sides of two vertices, then W must intersect
every height below ht(C,,) V ht(C,+) in at least 6 faces.

Finally, W, must surround at least one vertex at every height between ht(C,,) and ht(v;). Since WyT also
reaches height AT, together they must contribute at least five faces to each height between ht(C,, ) V ht(C,+)
and h'. |



16 JOSEPH CHEN AND EYAL LUBETZKY

Note that by definition, we have for J = @5, (),

(I@:{zﬂﬂw>+z m(2;) - [Wh | (A3) is not violated
’ > .ep MWL) + Z?J{l m(Z;) + 4(ht(vg41) — h) — |W H| (A3) is violated

In the following claim, we provide an upper bound for |W:‘H\ and j* in terms of m(Z; 7).

Claim 3.10 ([10, Claim 4.9]). For every L large, J = ®iso(Z), we have

E i
WE | < m(ml UW,1), and thus m(I;J) > —m m(J W) Z (25). (3.4)
yeD i=1
In particular,
(WP | <4m(Z; ), and m U ) < m(Z;.T), (3.5)
€D

and

J*=1<2VILm(Z;J) if (A3) is not violated
h—h<m(Z,7) if (A3) is violated '

Proof. By Lemma 3.9, we have
1 4
(W2 | = 4(ht(vy) — 5) < g( (W,, UW,1)),

which proves Egs. (3.4) and (3.5).

If (A3) is violated, then the spine replacement generates an excess area of 5h —4(h —h) > h —h. If (A3)
is not violated, if j* = 1 then the bound is trivial. If j* > 1, then j* is set for the last time either because
of (A1) or (A2) being violated. If it was due to (A1) being violated, then either j* < L3 or j* < m(Z2;) + 1.
If it was due to (A2) being violated, then d(W, U [W,], Z;) < (j — 1)/2 for y = y*. Now we note that in
general for any j,y, we have

J—1<d0W, U], 25) + m(3,).
Indeed, the lowest part of Z; has height > j — 1, whereas the highest point reached by a face of W is at
most m(ﬂﬁ ), and the remaining distance is made up by the term d(W U (W 1, ;). Applying this to j*,y*
gets
Jt=1<dWy U [Wyl, Z5) + m(Wy) < (* —1)/2 +m(W,)
so that j* — 1 < 2m(Z; J). [ |

The following two lemmas control the terms related to |0Z| and xz in the cluster expansion.

Lemma 3.11. Suppose that we have two interfaces T ¢ lsoy . p and J = Piso(Z). Then, we have |0T| —
|0Z| < Cm(Z; T) for some constant C which can depend on L.

Proof. The goal is to construct an injective map T from a subset of 07 into Z, and show that the remain-
ing set of faces that T is not defined on has size smaller than Cm(Z;J), which would prove the lemma.
Throughout this proof, let Cy be the number of faces that can be 1-connected to a particular face (namely,
Cpo =12).

Step 1: Consider first the faces of 07 which are 1-connected to the column of faces W;"H. There are at

most C0|W;‘H\ faces to account for here, but we already know that |W~"?II‘ <4mZ;J) by Eq. (3.5), so we do
not need to define 7" on these faces.

Step 2: If (A3) was not violated, then the tail of Py is a horizontally shifted copy of the increments with
index starting from j* 4+ 1 in PZ. Each face in J which is 1-connected to such an increment therefore
also has a copy in 0Z, and we associate them under the map 7. Note that a priori, it is possible that a
hair on an increment is actually 1-connected to Z \ PZ by connecting to another part of ZTiop- However, this
cannot happen for increments with index larger than j* by condition (A2) of the algorithm. We remark that
because this portion of P begins with the cut-point v;«41, the image of T in this step consists only of faces
with height > ht(vj«41) — 1 that are 1-connected to SZ.
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Step 3: The rest of PY consists of trivial increments that replace the spine S up to increment j*, so it
is a straight vertical column of vertices from ht(vq) to ht(vj«y1) — 1 (or to h if (A3) was violated). Let %
correspond to the stack of trivial increments that have the same height as the increment .2; from SZ. Let
B be an empty set of faces, and begin the following iterative process: Start with i = 1. If 2; (from SZI) is
trivial, then % is a single trivial increment. For every face g € %;\ J, there is a corresponding face h € 2;\T
in the same orientation. If g has height < ht(v;11) (where v;41 is the cut-point in SZ), is not in B, and has
not yet been assigned a face under 7', then let T'(g) = h. (It is possible that some faces may have already
been added to B or been assigned a face under T since two consecutive increments overlap at a common
cut-point.) Otherwise, if Z; is not a trivial increment, then we must have m(.2;) > ht(v;y1) — ht(v;). So,
we add to B all the faces in %; \ J that have height < ht(v;;1) and have not been assigned a face under T
Note that the number of faces added is at most 4Cy(ht(v;11) — ht(v;) + 1) < 8Com(Z;). Then, increase 4
by 1 and repeat until i = j*. Since |B| < Zle 8Com(Z;) < 8Com(I;J), we do not need to define T on the
faces of |B|. Now we show T is still injective. There are no problems within this step since the image of T
in each iteration is either empty or contains faces with height in [ht(v;) + 1/2,ht(v;+1)] (except for the case
1 = 1, whence the image can contain faces with height in [ht(v1), ht(wvy)]). This is because every assignment
T(g) = h here has ht(g) = ht(h). Thus, by the comment at the end of Step 2, we only need to worry about
the injectivity of 7" in the last iteration ¢ = j*, and only if 2} is trivial. But actually, in this iteration
no faces would have been added to the domain of 7" since any faces with height < ht(v;-) would have been
handled in when ¢ = j* — 1, and any faces with height > ht(v;+) + 1/2 would have been handled in Step 2.

Step 4: Reset B to be an empty set. We will be adding pairs of faces (g, h) to B, where g is some face in
0J that we choose not to define T' on, and h will be used to keep track of the size of B. In the previous
steps, we have already handled faces of 8.J which are 1-connected to Py . We can divide the remaining faces
of J into the following sets:

Ay = Ceiling faces of J \ P¢ that are in the projection of a ceiling face of Z;

Ag = Ceiling faces of J \ P¢ that are in the projection of a deleted wall of Z \ SZ;
Az = Ceiling faces of J \ PY that are in the projection of SZ, and not in Ay

Ay = Wall faces of J \ PY .

We fix some ordering of the faces of J (say, lexicographical), and visit them one by one. Whenever we visit
a face f € J, we consider all the faces g which are 1-connected faces to f, in 0.7, not yet in the domain of
T, and have not yet been added into B as the first face of a pair (g, h):

1. If f € Aj, then call the corresponding ceiling face in Z by f’. f’ is a vertical shift of f, so define
T(g) = h where h is the same vertical shift applied to g. Necessarily, h € 9Z. Note that h also cannot
yet have been in the image of T, since that would require the spine S to be 1-connected to f’ or above
/', both of which are impossible if f is a ceiling face of Z.

2. If f € Ag, then we can use the vertical translation method from [11, Lem. 15]. There must exist some
face f' € T\ SZ that is a vertical shift of f (i.e., that p(f’) = p(f)); pick one arbitrarily. By Lemma 2.5,
g must be a vertical face either above or below f. If it is above f, define hg to be the face above f’
such that p(ho) = p(g). If ho & T\ SZ, then set h = hg. Otherwise, shift hy up by 1 to get hq, and
repeat until we have h,, ¢ Z\ SZ. Set h = h,,. (If g was below f, we can instead shift h; down by 1 to
get hir1.) If h € OZ and h is not yet in the image of T, set T'(g) = h. Otherwise, add the pair of faces
(g,h) to B. (It is possible that h is actually a hair of SZ, so that h € T even though h ¢ T\ S7).

3. First note that in As, the choice to take ST% as opposed to just SZ is a technicality, because we defined
walls on the semi-extended interface whereas the spine was just defined as a subset of the interface. For
f € Az, note that there is a ceiling face f’ of 7\ S that has the same projection as f. (If there were
instead a wall face of Z \ ST with the same projection, then either the wall is deleted in @5, or not, in
which case f should actually be in Ay or A4 respectively). As f’ is a vertical shift of f, let h denote the
face that is the same vertical shift applied to g. Suppose that p(v1) € p(f). This is the one special case
where because of how Z \ S was defined, then f’ might not be in Z. There are however at most Cj
faces of J that are 1-connected to this f, and so henceforth we will ignore them. Otherwise, f’ € Z,
and h ¢ T\ SZ. If h € 9T and h is not yet in the image of T, set T((g) = h. Otherwise, add the pair of
faces (g, h) to B. (It is possible that h is actually a hair of SZ, so that h € Z even though h ¢ T\ SZ).
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4. Finally, for f € Ay, every wall in J \ PY has a vertically shifted copy in Z \ SZ that is part of an
undeleted wall. Let h denote the face that is the same vertical shift applied to g. If h € 0Z and h is not
yet in the image of T, set T'(g) = h. Otherwise, add the pair of faces (g, h) to B. We comment here for
what follows that if f € Ay, it cannot be that p(f) is 0-connected with the projection of a deleted wall
p(W) from 7 \ SZ, as otherwise by Lemma 2.5, the vertically shifted copy of f in 7\ SZ must actually
be part of W, and therefore cannot be part of an undeleted wall.

Note that T is still injective since in Step 4 we always checked that h was not in the image of T' before
assigning T'(g) = h (except for when f € A, but simply because it is unnecessary to check as noted there).
To control the size of B, we now show that within Step 4, every h that was added in a pair to B or added to
the image of T is unique. Indeed, every pairing of g with h was via a vertical shift. Thus, if there is overlap
it must be that the starting faces g; and g, have the same projection. Following the notation of the steps
above, suppose g; was connected to fi, and gs to fo. There are corresponding faces f1, f4 in Z such that
fi = 61f1 and fi = 0 f5 for some vertical shifts 6y, 65. Suppose f1, fo are both in Ay U A3 U Ay. By how T
was defined there, we had h; = 6;g;. So, the only way we can pair the same h to both g1, go is if 81 and 65
are different shifts, which implies that there must be a deleted wall of Z \ ST separating f] and f3. But by
definition of the sets A; U A3 U A4 (and the comment above regarding f € Ay), this is impossible.

On the other hand, if both f1, fo € As, then since they are both ceiling faces, by Lemma 2.5 (ii), it is
only possible for p(g1) = p(g2) when f; and f; are 1-connected and g, g2 are attached to the common edge
f1 N fo. But in this case, whichever face of f1, fo was visited second will not do anything with g;, g>. Since
we only used the property that fi, fo are ceiling faces, the same logic applies if f; € A; U Az and fo € As.

Finally, suppose f1 € A4, fo € As. By Lemma 2.5 (ii), g2 must be a vertical face. But this forces p(f1)
to be 1-connected to p(f2), which cannot happen by the comment above regarding f € Ay.

Thus, every pair (g, h) added to B must be such that either h was already in the image of T" after Step 2
or Step 3, or h was part of a hair in SZ. However, at each point in Step 4, h was always constructed as some
face that is 1-connected to Z \ SI. By (A2) of Algorithm 1, if there is a wall or interior ceiling of Z \ SZ
that is distance 1 away from an increment Z;, then ¢ < j*. Combined, if h was added to B as part of a pair
(g, h) in Step 4, then h is either part of or 1-connected to an increment with index ¢ < j*. Thus it suffices
to show that [ (U;<;- 23)| < Cm(Z; J) for some constant C. But by combining Eq. (2.4) with the upper
bound on j* in Claim 3.10, we have

#(U #)

1<g*

< sm(25) + 8" < Cm(T; ).
i<y

(The constant above may depend on L, but that is not a problem.) |

Lemma 3.12. Suppose that we have two interfaces I ¢ Isoy 15 and J = Piso(Z). Then, we have Kz — kg7 <
Cwm(I;J) for some constant C.

Proof. The proof of the exponential tails on groups of walls in [11, Lem. 15] already controls the difference
in the number of open clusters resulting from deleting walls, and so we have the bound

z€D

where D are the indices of all deleted walls in Algorithm 1.
Now, let £+ be the number of open clusters which are separated from 9A,, by the portion of ST consisting
of increments starting from index j* 4+ 1. Then,

K7 = Kg\PJ = K>j* -
On the other hand, if k<;~ is defined analogously, then
KT — KT\sT < Fsje +Rer +1

(where the extra plus one is because it is possible for the joining together of the two parts of the spine to
create an extra open cluster). Thus, it suffices to bound k<« in terms of the excess area of the increments.
However, the addition of a single face can add at most one cluster, and we can bound the number of faces
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in Uz;1 Z; using Eq. (2.4) by
J” i
Z' Zi)| = A" Z 2) +4<5m(I; ) +4 < 9m(I; ). -

Proposition 3.13. There exists C > 0 such that for all 8 > By, all L large, and every I, ®5,(T) = T,

(D) _ —(p-crm@T)

fin(J) ~
Proof. An appropriate bound on the first two terms in the cluster expansion follow from the above two
lemmas. See the proof of [10, Proposition 4.10] for how to control the remaining g-terms. |

Proposition 3.14. There exists C > 0 such that for all L large, M > 1,0 < K <h, and J € E;L/
T € B5(7) :m(Z:7) = M}| < O
Proof. See the proof of [10, Proposition 4.11]. [ ]
Proof of Theorem 3.8. It thus suffices to prove that for every r > 1,
i (T @uso (1)) 2 7| ') < Cexp [ = (8= CLY)r)]
and take L = Lg = /4, say. For every r > 1,

ﬂn(m<I;®Iso(I) > Ty Eh Z Z ﬂn(I)

M>r IEEQ
m(Z;P150(Z))=M

> X UM (@)

Mzr  gegh
m(I§(I>|so (I)):M

SO ) Y e

IN

MZT. je(blso(Egl) Ie@lso ( )
(I <I>|50(I)):
< 3 oF Moty
M>r

where in the last line we use that @1, (E") C (EM). Dividing through by jin(E") then yields the desired
conditional bound, and we can take » = 1 to conclude the proof. |

Next we prove that we have control over the size of increments at a given height by another map argument.
We note that following the procedure in [9, Proposition 4.1] would work, but utilizing the cone separation
properties of Iso; 1, greatly simplifies the proof.

Definition 3.15. Fix any L and integer height 0 < hg < h. Let P, be a pillar with height at least h. Suppose
that the first increment in P, to have height > hg has index jo. Then, we will say that Z € Incry 1 p, if its

pillar satisfies
0 if0<j—jo<L
J—Jo itj—jo>1L '

m(2;) < {

(Note that jo is defined so that the first increment which is guaranteed to be trivial has its two vertices
at heights ho — 1/2 and ho + 1/2.)

Theorem 3.16. For 8 > By and L sufficiently large, there exists constants Llﬁ and € (going to co and 0
respectively as 8 — 00) such that for every 0 < L' < L’ and all hg < h' < h,

,un(IelncrxL/ h0|ht( )>h |SO$Lh) >1—6,3
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Algorithm 2: The map @y = Piner(, L, ho)
If 7 € Incry 1y, then set ®iso(Z) = Z. Otherwise, proceed as follows. Let jo be the index of the first

increment of S, that reaches a height > hy.
1 Let {W, : y € Lo} be the walls of Z\ S,. Let (Z;);>1 be the increments of S,.

2 for j = jpto 7 +1do

0 F0<ij—jo<IL3
it m(2)><{. fo=j o= then
J=Jo—1 ifj—jo>1L
| Lets < j.
Let j* + s.
3 Let

S* (Xl,...,on_l, Xg,...,Xg ,%*_},.1,...,%97%;?) .
—_———
ht (v x 41)—ht(vj,)

4 Obtain @, (Z) by replacing the spine S, with S*.

Remark 3.17. We can also define the map Incr, 1 j, by specifying directly the increment we want to
trivialize, instead of specifying a height that we want to ensure a trivial increment to be at. We will still

have
(T € Incry 1 jo | Dt (Py) > K\ lso, 1n) > 1 — €5

in the same setting as above, and the proof will follow in the same way.

We can split up any interface Z € Iso, 1, as follows:

XIB szj*ﬂ F(Z;) Increments above v«

Xﬁ Ujogjgj* F(Z5) Increments between v, and v;-11
X¢o Ui<jo1 Z(Z5) Increments below v,

B T\ (S%) The remaining set of faces in 7

Define @y, as in Algorithm 2. We can split up the faces of J = ®jp,(Z) as follows:

X4 Horizontally shifted copy of X%

X Trivial increments at the same height as X%
Xc Same set of faces as in 7

B Same set of faces as in T

Claim 3.18. Let J = P (Z) for T € E;‘, Nlsoy .n. Then, there exists a constant C' > 0 such that
IXZuXx{| <OL'm(Z;T). (3.6)

Proof. Tt suffices to bound | X%| since clearly |X¥| < |XZ%|. The number of faces of X7 is
J" J"
IXZI =D F(25)] = 4G" = jo) < D 5m(25) +4(j* — jo) +8.
Jo Jo

Thus, it suffices to bound j* — jo, and by Algorithm 2, either j* — jo < L', or j* — jo < m(Zj+) +1 [ ]
Proposition 3.19. There exists C' > 0 such that for all > By, and every T € Efc‘/ Nlsog r.h, Piner(Z) = T,

n(Z) _  _(s—cLym@)
— <e e 3.7
fn(T) 3.7
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Proof. Using the cluster expansion, we have

5n((?) = (1 — e #)PT-10T1—BmED) prr—ra (S g(£,T) = 3 g(f,7))- (3.8)
" ez feg

To account for the faces in 9 and 0Z, we follow the proof of Lemma 3.11 and define an injective map T’
on a subset of 0J to 0Z and show that the number of faces we do not define T' on is bounded by Cm(Z; J)
for some C. Faces which are 1-connected to B U X¢ can be mapped to themselves, and faces 1-connected
to X g can be mapped to their shifted copy in X g. The remaining faces 1-connected to X ;47 can be handled
by following the procedure in Step 3 of Lemma 3.11, noting there that the bound on the number of faces
where T was not defined was actually a constant times the sum of the excess areas of the increments being
trivialized, which in this case is precisely Cm(Z; J), and so |0J| — |0Z| < Cm(Z; J).

A bound on k1 — k7 also follows as in Lemma 3.12. The difference in the number of open clusters between
the two interfaces is bounded by the number of open clusters in X% +2 (where the +2 comes from potentially
creating an extra open cluster when joining to B U X¢ below and/or to X% above). However, the addition
of a single face can add at most one cluster, whence Claim 3.18 gives us the bound k7 — k7 < CL'm(Z; 7).

Finally, we can decompose the sum of g-terms as

STlg(t DI+ D gt D+ D Na(BT) —g0f, D+ D> g, T) —g(f, T (3.9)

fex? rexd fexz fEBUXc

The first two sums are bounded by CL'm(Z; J) by Claim 3.18 (for a different constant than in claim, but a
constant nonetheless).

For the latter two sums, we separate the analysis into cases according to which face g € ZU J attains the
distance r(f,Z;0f,J):

(i) If g € X4 U X, then by summability of exponential tails and Claim 3.18, we have
Yoo Y I <IXTuX]| < OLm(T ),
feZ(2?) gexZTuxy

which covers both sums.

(i) Ifg € XL U Xg, we only need to check for the sum over f € BU X¢, since every face in Xg is the
same horizontal shift of a face in X%. For f € B, the sum is bounded by Eq. (3.3), since both Z
and J are in Isog 1, 5. For f € X¢, we have using summability of exponential tails, Eq. (2.4), and

Algorithm 2,
> ey y 1T @l

geXLuxy feXc i>i* feF(z®)
ht(f) <ht(v;q)
< Z |7 (%) |e~cli—d0)
i>3*
<Y Cl—jo)e U < 0.
J>j*

(iii) If g € BU X, we only need to consider the sum over f € X%, but then this is the same as case (ii)
above with the roles of f and g reversed. |

Proposition 3.20. There exists C > 0 such that for all M > 1, L' k', h as in the setting of Theorem 3.16,
and J € E;}/ Nlsog 1.1,

{Z e &1 (T):m(Z;T) = M} < CFM. (3.10)

Proof. We follow the proof of [10, Lemma 7.9], with the witness being the faces of X% together with the
height of v;,. Indeed, suppose we are given such a witness with an interface J. Then, to reconstruct Z, we
first take J and delete the portion of the pillar P/ with height > ht(vj,), and append XZ to the pillar in
such a way that the bottom four faces of X% around v;, match the four faces around the cut-point of P
that has height ht(v;,). Then, we append Xg (the portion of Py with height > ht(vj«11), which can be
read off from X7 and ht(vj,)) to the top of X%, joining again at the respective cut-points.
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Now, we already know that for any fixed M, by Claim 3.18 X7 is a 1-connected face set of size < CL'M.
So, by Lemma 2.12 the number of possible face sets for X% is bounded by sOL'M - Furthermore, we know
that ht(v;,) € [ho — M —1/2, hy — 1/2] since the excess area m(.Z},) is at least ht(vj 4+1) —ht(v,,) — 1, and
so this leaves M + 1 possible choices for what ht(vj;,) can be. Thus, the number of possible witnesses is
bounded by (M + 1)sCL'M, [

Proof of Theorem 3.16. For any Z ¢ Incry 1/ ny, ™(Z; @Piner(Z)) > 1, so it suffices to prove the stronger
statement that for some C and any r > 1,

fon (M(Z; @iner (2)) > 7| ht(P) > K\ lso, .n) < Cexp—(8—CL)r (3.11)
and then take ' = L = (3/% and r = 1. Indeed,

M_n(m(l.a q)lncr(I)) Z T, ht(Pm) Z hlv ISOm,L,h) = Z Z ﬂn(I)

M27r 7c B Alsog. 1.1,
M(Z;Poer (T))=M

=3 2. >, M)

Mz2r Fe®,o(EMNisoy,r,n) Ted L m(Z;7)=M

Incr

< Z CL/Me_(ﬂ_CL/)M,un((I)Incr(E:;L, N Isow,Lh))
M>r

< Cem(=CL=LosChr gy (B 1so, 11) -

Hence, dividing by ﬂn(Egl Nlso, 1,.5) proves the claim. The above inequalities follow from Proposition 3.19,
Proposition 3.20, and the fact that <I>|ncr(E£l Nlsoy 1.n) C EQ/ NIsog. . - [ |

Remark 3.21. Note that the proof above still works if we condition on any subset A C Iso, 5 N E;l/ that
satisfies the property @i, (A) C A. In particular, this allows us to apply the map multiple times to ensure
trivial increments at multiple locations.

4. LARGE DEVIATION RATE FOR RANDOM-CLUSTER INTERFACES

In this section, we come to the first large deviation result, which concerns the height of the top interface
Ziop at a particular location. The goal of this section is to prove the following proposition:

Proposition 4.1. For all 8 > By, every sequence of n,x dependent on h with 1 < h < n and d(xz,0A,,) > h,
and every h = hi + ho,

— T (eﬁ + q— 1)3 — T \ — T
fin(Ej) < (1 + ep)————[in(E}, ) in(E},) , (4.1)
and consequently,
1
lim ——log fin, (ht(Py) > h) = « (4.2)
h—oo h

for some constant .

We first want to introduce a proxy event Aj that is comparable to Ej. but is not defined with respect to
an interface.

Definition 4.2. Define A7 to be the event that a certain set of faces are in F¢,. Specifically, let C' be any
finite connected set of vertices with the following conditions:

(1) C contains z, and this is the only vertex of C with height 1/2;

(2) the vertices of C' have heights in [1/2,h — 1/2];

(3) C is simply connected.
Now, let F(C) be the set of faces that form the side and top boundary of C. That is, if u € C' and v ¢ C
such that u is adjacent to v, then we add the face f, . to F/(C), except we do not add the face fi; ,_., at
the bottom. A7 is the event that there is some such C such that F(C) C §¢.
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A crucial property of A is that it is decreasing. Also important is the geometrical fact that any such
bounding set of faces F(C') is 1-connected (see [11, Prop. 5],[12, Thm. 7.3], noting that in our case because
C is simply connected, the splitting set there is precisely the set of faces that separate C' from C€¢, and
removing the face fi, ;_.,) to get F'(C) keeps F(C) 1-connected).

Since we are including the faces bounding the top side of C' in the definition of A7, the faces F/(C) form
a shell that looks like a pillar in E} whose vertex set is capped at height h. This leads to the following
definition, which will also appear throughout the rest of the paper:

Definition 4.3. For every h > 1, let E¥ C (E¥\ EJ}; 1) be the set of pillars of height h such that there are
no faces of P, with height > h except those forming the top boundary of vertices of P,.

We state here the following fact that a 1 — eg fraction of pillars in Ej are actually in E,f, but we defer
the proof until Lemma 5.10 where we prove the stronger statement required there.

Corollary 4.4. For every 8 > By and h > 1, there exists a constant €g such that
fin(E} | E) 21 —¢ep.

The following proposition states that [, (A7) is comparable to fi,(E}) (up to multiplicative constants
depending on f3).

Proposition 4.5. In the setting of Proposition 4.1, there exists a constant g such that

q e o
g1 (D) < u(BR) < (1+ )i (A7)

Proof. Beginning with the upper bound, we have (say, for L = Lg),
ﬂn(Eiy ISOx,L,h) < ,an( fu Eﬁ) .

Indeed, if we have a pillar P, € E,f , we can take C in the definition of A7 to be the set of vertices in the
pillar. Recall that the vertices of P, is simply connected by Observation 2.17, so this satisfies Item 3, and
the definition of E,f implies the height requirement of Item 2. Then, the Isoy, j, , event implies Item 1 above.
Furthermore, each face in F(C') must be in F¢, because it separates a vertex in ﬁfop from a vertex in ﬁtop.
Thus, by Theorem 3.8 and Corollary 4.4, we have

/jn(E}fa Is0L,h,0) > fin(ER)(1 —€5).
Combining the above gives the following stronger statement which implies the upper bound
fin (A}, | Ej) =2 1—¢5. (4.3)

For the lower bound, as a technical step, we want to first close the edge [z, z — e3] (this will be needed
for an application of the Domain Markov property). By Observation 2.25, we can close this edge at a cost
of <Fa=1

q ~
will call Af the event A N {fiz.0—c, € S5}, so that we have

— T eﬁ +q— 1 — 1z
fin(AR) < ?UH(Ah)'

We can split the event Aﬁ based off whether or not the pillar at x has height > 0 or < 0. We first show

that A7 N EZ C E7. Indeed, the event EY implies that z is in \ZCOP, and A7 N {ht(P,) = 0} is empty since
the presence of the faces F(C) together with the face below x make it impossible for x to have a wired
path to the upper half boundary, which is a contradiction (see Remark 2.18). Once we have established that

T € ]ZCOP, then all of C' must also be in ]Zcop since it is part of the same connected component of Vi, as .
Thus, the vertices of the pillar P, must contain all the vertices of C, which notably includes at least one
vertex at height hy — 1/2, so that the pillar has height at least h.

Thus, it suffices to show that

, noting that closing this edge always creates a new open cluster in separating = from = — e3. We

Fin( A5, (B5)°) < epfin(EF) - (4.4)
Now, for a given top interface Iiop, consider the set of vertices v such that there exists w with fl, o] € lTiop-

Of these, let Vi be the ones in ﬁtop and V5 be the ones in ljtcop. With the notation Zop = Iiop meaning the

top interface of the configuration w is equal to the set of faces Iiop, we claim that we can write
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ﬂn(A}zu (E(J)U)C) = Z ﬂn(;‘i | Tiop = Itop).an(ztop = Itop)

ItcpE(Ez)C

= z fn( ~i | Vi(liop) € Viop(w), Va(ltop) © Vtcop( ))in(Ziop = Ttop)
ItopE(E(uf)C

= ﬂn(Ai | Vi(Ztop) € Viop(w), Lrop C TE,)fin (Zrop = Irop) - (4.5)
Itop (Eg)

To justify the second line above, we need to prove that for any configuration w, the top interface being
a specified Iop is equivalent to the event {Vi(liop) € Viep(w), Va(ltop) € Vigp(w)}. The forward implication
is true as we already showed in Remark 2.15 that for every face of ILp, one of the adjacent vertices is in
Viop(w) and the other is not. For the reverse implication, the same remark showed that we can let ﬁop(Itop)
be the augmented top component corresponding to Iiop, and it suffices to show that \Zop(w) = 17top(Itop). If
v E IA}top(Itop), then every path from v to dA; must pass through a face of I, and hence must include a
vertex of V1. Since V} is part of Viop(w), then v cannot be in the infinite component of Vg, (w), so v € ﬁtop(w).
This shows 17top(ltop) - l//\top( ). We note (for later use) that in the proof of this direction, we only used the
fact that Vi (liop) € Viop(w). For the converse, if v € Vtop(Itop), then every path from v to OA;} must pass
through a face of Itop, and thus must include a vertex of V5. Thus, v cannot be in Viop(w), and we have a
partial converse Vtcop(Itop) C Viop(w). We need to rule out the possibility of v being in a finite component of
Viop(w), say A. But such an A by definition must be surrounded by vertices of Viop(w), which by the partial
converse, are in ﬁtop(ltop). Thus, by assumption we have v € 9tcop(ltop), yet v is surrounded by vertices of
ﬁtop(Itop), which contradicts the fact that ]7top(1t0p) is simply connected (see Remark 2.15).

Furthermore, the third line holds because the event {Vi (Iiop) € Viop(w), Va(ltop) € Vi, (w)} is equal to the
event {Vi(fiop) € Viop(w), Ttop € F&}. Indeed, conditional on {Vi(Liop) C Viep(w)}, the event {Iop C FE} is
sufficient to show {Va(Iiop) € Vi, (w)} because every path from Va(liop) to OA;) must cross a face of Iip, and
it is necessary because otherwise there would be an open edge between some u € Va(Iiop) and v € Vi (Jiop),
which would imply that u € Vip(w).

Next we will argue that by the Domain Markov property, for every Lo, € (Ef)¢, we have

l‘n(AngL | Vl(Itop) - Vtop(w)v Tiop C 5.) = Mn(;lﬁ | Vl(Itop) c Vtop(w))- (4.6)

To begin, observe that for any v € ]7top(Itop), every path from v to ﬁtcop(ltop) must pass through a vertex
of Vi(Iiop), so that Vi(Iiop) U OA} forms a vertex boundary of ]Zop(ltop). Furthermore, conditioning on
Vi(Ttop) C Viop(w) guarantees that the vertices Vi U A} are all part of the same open cluster. So, if
(17t0p(ltop), E) is the induced subgraph of A,, on f/top(ltop), it remains to show that conditional on Vi (Iiep) C
Viop(w), the event flfb only depends on w, for e € E. Recall that fli is the event that there exists some
finite A,,-connected set of vertices C fulfilling the conditions of Definition 4.2, such that its bounding faces
F(C) (including Jiz,2—c5) DOW) are all in F,. We will argue that for any finite A,-connected set of vertices C

containing z such that its bounding faces F(C) C §°,, we have
{e: f.e F(C)}CE.

We first argue that C' must be a subset of ﬁtop(ltop) Indeed, if F(C (C) C §¢, then C cannot contain any
vertices of Viop(w), and in particular C'N Vi (liop) = 0. But since C' is a An connected and Vi (liop) is a
vertex boundary for Vtop(Itop) then C must lie entirely in either Vtop(Itop) or Vtop(Itop) As C contains =
(which must be in ﬁtop(ltop) since Iiop € (EF)°), then C C Vtop(ltop) Now suppose for contradiction that
there is some face f = fi, . € F(C) where u € Vtop(Itop) Then, the fact that C' C Vtop(Itop) implies that
not only v € C, but also fi, ] € lip- Combined, this implies that v € Vi(lip), and hence on the event
{V1(Liop) € \A)top(w)}, we have v € ]A)top(w). But, this is impossible when F(C) C §¢, a contradiction. This
concludes the proof of Eq. (4.6), which we can now plug into Eq. (4.5).
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Finally, since fli is a decreasing event, we can use FKG followed by the rigidity of the top interface to
conclude that

Z Hn(Ai | Va(l) € Vtop(w))ﬂn(ItOp = ItOP) < Z Nn(fiﬁ)ﬂn(zmp = ItOP)
Lop€(EF)° Ie(Ef)”
= pn (A7) in ((E)°)
< eppn(Ap) -

Thus, combining the above, we get

fin(A, (E§)°) < eppn(AF). (4.7)

Finally, a short computation using FKG gets us that

ﬂn(EgaAiagn) > Nn(EgaQn)
(D) T pn(Dn)

which together with Eq. (4.7) concludes the proof of Eq. (4.4), and hence the proposition. [ ]

,an(E}a;) > ,Un(‘zli) >(1- Eﬂ)ﬂn("ii)v

Definition 4.6. Let 7 be the 1-connected set of faces of L5 NFS, that contains the faces on the four sides
of . Let J# be the restriction of 2 to faces in Lo N L<p,.

If we are on the event A7 for any h, note that since F/(C) is 1-connected, then s must include all the
faces of F'(C). We next define an event I'; , to be thought of as a subset of the configurations where Aj
is achieved, except possibly up to the final face at height hy + 1, yet via a sufficiently “nice” pillar (with
cut-points at height % and hy £+ %) making it easier to implement a submultiplicativity argument on the
event Ay L, .

Definition 4.7. Let I'; be the subset of configurations where

(1) A has a “cut-point” at z, in that # N Ly, consists of only the four faces surrounding the sides
of x.

(2) S has “cut-points” at y and y — e3 at heights hy +1/2 and hy — 1/2, resp., in the sense of Item (1).
Furthermore, we ask that ¢’ N L, has no faces, except possibly the horizontal face fj, ,_,]-

(3) For each of the four vertices z; adjacent to y at height hy 4+ 1/2, and each of the four w; which are
adjacent to x at height 1/2, we require that z;, w; € Viop. We also require that o € Vyo.

(4) d(x, Y- hl) < d(xvaAn)/2

Remark 4.8. Suppose that our configuration w satisfies Ay NT'; ND,, for some h > h;. We claim that the
corresponding interface Z satisfies 7 C Z, and furthermore, there is no w’ ¢ A7 NT§ ND,, that could have
the same interface Z. To see this, we first argue that the requirement x € Vhor in Item (3) implies that for
any set of vertices C satisfying the definition of A}, we have C' C 17tcop7 and in particular, y € 1750',. Indeed,
any open path from v € C' to A, must pass through = because of the faces F(C) C §,, so that C C V.
Since C' is connected, all the vertices of C' are in the same infinite component of Vi, as x, and so C' C lzcop.
The property that J# C T then readily follows: indeed, the fact that z; € Vi, implies that fi, ..} € Ziop
since these faces are separating y € ]A/tcop from z; € lA/top. This together with the fact that s is a 1-connected
component of faces in §, implies that 7 C Z. To rule out the existence of w’' ¢ Af NI} ND, with the
same interface Z, argue as follows. First, ©,, is trivially satisfied by w’. Second, the event A7 was satisfied
via a subset of the faces .7, all of which are in Z, and hence is also satisfied by w’. Third, to confirm the

event I'f , we note that Items (1), (2) and (4) are satisfied via the same 7 C 7, and it remains to check
that Z determines Item (3). As shown in Remark 2.15, Z;,, determines 17top, and so Z will already guarantee
that z;,w; € lA)top and x € ﬁfop. So, it suffices to show that Z will also determine whether x, z;, w; are in
finite components or not. This is true because if z; is part of a finite component A, then the set of faces F’
which separate A from the infinite component of A,, \ A is 1-connected (see [11, Prop. 5],[12, Thm. 7.3] for
a proof). Since ﬁtop and ]Zcop are both simply connected (also shown in Remark 2.15), this set F' includes

Jly,z:» whence F' C 7. The same argument applies for x, w;.
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Remark 4.9. Let 0, A7 be the event {0, w : w € A} }, where 0, w is the configuration that results from
shifting all the edges of w up by h;. Then, by the way we defined I'; , we have that I'j; N Aj implies the

y—h1
event O, Ay .

We are now ready to begin the proof of the submultiplicativity statement in Eq. (4.1). We already showed
in Proposition 4.5 that we can move from E7 to A} by paying a cost of (1 4+ €3), and we next show how a
slight modification of the proof there allows us to further move onto the nicer space I'y, :

Lemma 4.10. In the setting of Proposition 4.1, we have
fin(Ej) < (1+ep)fin (A7, T5,) -
Proof. Because of the prior map arguments (see Theorems 3.8 and 3.16 and Corollary 4.4), it suffices to show
that £y Nlso, 1. NIncry 1 s, implies I'y N A} (for say, L = Lg). We have already proved the implication of
Aj in the first part of Proposition 4.5, so we need to check that we have all the items of '}, .
On Isoy 1, 1, the four faces surrounding « at height 1/2 are a part of P,. As J# is 1-connected, this implies
that 2 C Z. But in Corollary 3.5, we proved that on lIsog 1, 5, the pillar PP, is only connected to the rest of

the interface via faces at height 0. Since J# C L+, this implies that # C P,. Thus, we have Item (1) of
'} because of the cut-point in the pillar at z. If we are additionally on Incr; 1 p,, then we have Ttem (2)

because the pillar is just a trivial increment there. To show Item (3), note first that z;, w; € ﬁop, as if those

vertices were in VE . then they would also be part of the pillar which would violate the cut-point condition

top>
imposed by Iso;, 15 and Incry 1 p,. Then, the fact that z,y € Vg, implies that the faces f], .} and fi; ., are
in Ziop, whence we conclude that z;, w; € Viop as at least one of the vertices adjacent to a face of Zip is in
Viop by Remark 2.15. We already proved that © € Vyor in Claim 3.7. Finally, we have Item (4) by the fact

that the pillar lies in a cone (see Proposition 3.4) and the assumption that d(x,9A,,) > h. [ ]

Before we continue, we record here some definitions and geometrical statements from [12], which will be
useful in justifying the Domain Markov argument used in proving Lemma 4.15.

Definition 4.11. Let H be any 1l-connected set of faces, and G a component of the lattice with the edges
corresponding to H removed (so G is a subgraph of the lattice). Define Ay G to be the set of all vertices
v € G such that there exists another vertex w with f, ., € H. Define Ay G to be the set of edges e € G
such that f(e) € H\ H.

Definition 4.12. For a set T'in R%, let out(7") denote the union of the unbounded connected components of
R\ T. When H in the above definition is a finite 1-connected set of faces, then there is a unique component
G which lies in out(H). As a shorthand in notation, we write AyH and AyH when using this choice of G.

Proposition 4.13 ([12, Thm. 7.6, special case]). Let H be a finite 1-connected set of faces, corresponding
to an edge set D. Let G = (V,E) be the subgraph of (Z3,|E3 \ D) comprising of all vertices and edges in
out(H). Then, the graph (AvH,ApyH) is connected.

We also prove a useful lemma regarding height shifts:
Lemma 4.14. For any configuration w, we have

fin (Orw) < gpin(w)
where Opw is the configuration w with all edges shifted up by height h.

Proof. The measure p, is only dependent on the number of open/closed edges, and the number of open
clusters (of vertices). If we apply a vertical shift to any configuration w € A, the number of open and
closed edges remain the same, so the only possible difference is a change in the number of open clusters via
interactions with the boundary. Every open cluster of vertices that does not touch dA,, is preserved by the
height shift. On the other hand, every vertex that is connected via open edges to dA, will still be so after
the height shift. Hence, because of the Dobrushin boundary conditions, the only possible variable in the
number of open clusters is whether the top and bottom parts of dA,, count as one or two open clusters. So,
the number of clusters can change by at most 1, hence a factor of ¢ in the inequality. |

With Lemma 4.10 and the above results in hand, we next prove the following inequality, which is arguably
the most delicate part of this paper.



EXTREMA OF 3D POTTS INTERFACES 27

Lemma 4.15. In the setting of Proposition 4.1, we have
fin (AR T5,) < (14 ea)(€” +q = 1) (AT, ) tn (ER,) -

Remark 4.16. The goal is to analyze the increasing and decreasing information gained by climbing up to
height h; (i.e. the event A} ) with respect to climbing from height hy to hy + hyo. We recall here the proof
idea of [3, Proposition 5.1], which is the Ising analog of our claim here. The idea in that paper was that upon
revealing the plus component connecting x to Ly, , there is revealed a minus boundary all along the sides of
the plus component so that by Domain Markov, it is equivalent to revealing just the minus boundary and
the plus spins at the top and bottom. However, the I'; event ensures that there will only be one plus spin
at the top and another at the bottom, so that these spins can be disregarded at a constant cost. Then, the
conditioning on the minus spins can be removed by FKG.

We would like to follow this proof, but some difficulties stand in the way. The primary issue is that
our “minus spins” are vertices in Viop, yet whether or not a vertex is in Viop is not something that can be
determined locally, so revealing a set of vertices is not suitable for a Domain Markov proof. Instead, we
reveal the dual faces that fulfill the event A} , along with components of faces in §;, N L0 N L<p, which are
1-connected to them (namely, 547). By maximality, this reveals a side boundary of open edges. We would
like to also use Domain Markov to forget the closed edges revealed and only remember the boundary of
open edges, so that we can use FKG. However, to utilize the FKG property of the random-cluster measure,
we need to move off our conditioned space ®,. This requires us to additionally reveal not only the faces
described above, but also the entire interface. However, we can not reveal the faces fulfilling 6, Ay, which
on I'; are a part of the interface, so this step needs to be treated more delicately. Furthermore, since the
object we are revealing is not a component of vertices but of dual faces, the geometry is more complicated
and one needs to be more careful when applying the Domain Markov step.

Finally, we note that the fact that A} is a decreasing event is critical for this proof to work because of the
usage of FKG. This is the reason that we are starting with the top interface, as opposed to the analogously
defined bot interface. Roughly speaking, for the top interface to rise up requires the existence of faces forming
a shell of 91§:op vertices, while for the bot interface to rise up requires the existence of an open path of vertices
to penetrate upwards. The former as we have seen can be compared to a decreasing event, while the latter
is very much an increasing event.

Proof. We first sum over all possible sets of faces that can make up 7] on the event I'y . Let y be as in
Definition 4.7, i.e., y is the unique vertex at height h; + 1/2 that has sides bounded by faces of 5. We can
write

1
in(A7IF )= ————— (4 = Hy, A7, TS |, D,,). 4.8
fin (AR, hl) un(@n);M( 1 1 Apy Lp,y ) (4.8)

To sum over interfaces, we define
D (H1) = {I =I(w) for some w € A} ND,, NI} and J4 = H,} .
We can then write
1 v 1
qun(%zfﬁ, h> hlagn)zﬁz Z pn(Z=1), (4.9)
Pn{~n H, Fn\&n Hy Ie®L (H,)

where we really have an equality because we proved (in Remark 4.8) that no w’ ¢ A} N Iy, N, can lead
to an interface Z € DL (Hy).

For every w € DL (H;), closing the edge [y,y — e3] always creates an additional open cluster because of
the cut-point condition in Ttem (2) of I'y . Moreover, the resulting configuration is always still in D, (H),
as the only non-trivial thing to check is Item (3) of '} , and this property is unaffected by closing the edge

[y, y — e3] because we proved in Remark 4.8 that both y,y — e5 are in Ve

top for this choice of w. Thus, we can

force the face below y to be in §¢, at a cost of eﬁ%qq by Observation 2.25. So, defining

D) (Hy) = {Ie D, (H) : fyy—es) €1}
we get that
A 4qg—1

. (D5, (H)) -

/“L"L(@#(Hl)) <
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We want to reveal only the portion of the interface below the face f, ,_.,], so for every interface Z € 55}”
we define its truncation Z' as the set of faces that are in Z minus the faces of #°\ 5. The purpose of adding
the face f[, ., to the definition of @}L is threefold: It guarantees that Z’ is still an interface so that we are
still in Dy, it acts as a “top boundary” so that together with the faces 7], we are in Ay , and it brings us
into a situation where we can apply Domain Markov property. (Note the importance of Item (2) in Iy, for
the first point — it is a priori possible that the face set 52\ 7 comes down and reconnects to the interface
at several locations, so that deleting these faces creates an arbitrary number of gaps in the interface. The
event I'; makes this impossible, and ensures that the only place where the faces of "\ 7 connects to the
rest of Z is at the four faces to the sides of y — ez at height h; —1/2. Thus, adding just a single face f, e,
ensures that Z' is still an interface.)

Now define 9"’ by deleting from OI' the 4 faces that are 1-connected to the face fiy.y—es) (out of the
12 such faces) and have height > h;. We would like to have I’ capture all the faces that we know are
not present in F¢, by the maximality of I; however, the four faces adjacent to y are exceptional, in that we
truncated I” in the slab £, /2 by choice. (In fact, on Iy we know that those four faces actually are in

¢, so they definitely cannot be in dTI’.) By grouping the terms in the above sum Eq. (4.9) according to
the truncated interface I’, and recalling that A7 implies thAZ;hl, we have an upper bound of
) eP+q-1 1 y—h
fin (A7, T5) < i )Z S I S O C Fus O, AL, (4.10)
n n

q -
Hi 1.1e®1 (Hy)

(One might note that in moving from Eq. (4.9) to Eq. (4.10), we are enlarging the set of interfaces we are
summing over since it is possible for an interface J that violates I'; ~to still have truncation [ !, This is not
a problem because from now on we will only use the information from I'j ~that is measurable with respect

to the event I’ C §°,01I" C ., and the fact that I’ came from a truncation of some I € DL (H;), and we
are only claiming an upper bound.)
Writing the latter probability as

/f’/n(I/ g 35_;7 8TI/ g 80.)7 ehlAz;hl) = Hn (ahlAz}/L;hl ‘ SI’) Hn (SI’)

for
Sp={I'cg;,, 0 CF.}, (4.11)

the next claim will establish that the events Sy are disjoint:
Claim 4.17. The events {Sp : Hy , I’ € ®L(H})} are mutually disjoint.

Proof. Suppose that we have two truncations I’ and J’, (i.e., I’ and J' are the truncations of interfaces I
and J in D) respectively). We want to show that the set (I’ C §¢)N (8T’ C F.)N(J CF)N (DT CFo)
is empty. It suffices to exhibit a face in I’ N dTJ" or J' NOTI.

Let us first define H;(I') by taking the 1-connected set of faces which are in I’ and have height (0, h1]
that contains the four faces to the sides of x). By Item (2) of I'f , there can only be four faces of H; (')
which have height hy — 1/2, and they are all adjacent to a single vertex which we can call y(I') — e35. The
same applies to Hy(J'), leading to an analogously defined y(J') — es.

Case 1: y(I')—e3 = y(J') —e3. Since I’ # J', without loss of generality we may take f € I'\ J'. As we know
that I’ N J’ # 0 (because they both must contain the four faces to the sides of x), we may take g € I' N J'.
Since both I’ and J’ are 1-connected and their intersection is nonempty, then I’ U J’ is also 1-connected.
Let P=(f = f1,..., fr = g) be a 1-connected path of faces in I’ U J’. Let f;41 be the first face in P that
isin J’. Then, f; € I’ N dJ'. But, since y(I') — ¢3 = y(J') — e3 by assumption, then 0I' \ dTI' = d.J’ \ 1.’
(both are equal to the four faces surrounding y(I') = y(J)). So, I'NdJ' \ 8'J' =0, and f; € I' N T J'.

Case 2: y(I') —e3 # y(J') — e3. Here Hy(I') can only have the four faces surrounding y(I’) — e3 at height
hi — 1/2, and similarly for Hy(J'). Thus, we can let f € Hi(I') \ Hi(J"). We have Hy(I') N Hy(J') # 0
since both sets must contain the four faces to the sides of z. Let g € Hy(I')N Hy(J'). Since both Hy(I") and
H,(J') are 1-connected and their intersection is nonempty, then H;(I’) U Hy(J') is also 1-connected. Let
P=(f=fi,...,fr = g) be a l-connected path of faces in Hq(I') U H1(J'). Let f;41 be the first face in P
that is in Hq(J’). Then, f; € Hi(I') N 0H:(J'). We additionally know that f; € 0J' since if f; € J’, this
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FIGURE 7. The three possible positions that u,v can have with respect to c.

would violate the maximality of H;(J’) (because f € Hy(I') implies that ht(f;) < hy). Moreover, we have
that f; ¢ 9.J'\0"J’ because the faces of 9.J'\ 9TJ" have height hy +1/2. Thus, f; € Hy(I')NotJ C I'ndtJ’.

This concludes the proof. ]

Since every Sy for I’ € D} (H,) further implies Aj and D, it follows from the above claim that

S0 bal(Sr) € pa(D, A7),

Hy 17:1€1 (Hy)
and consequently (together with Eq. (4.10)):

e’ +q-1 _
(AR TE) < SIS (A ymax max (0,47, | Sp) (4.12)
q Hy p:1€d}(Hy)
Hence, to conclude the proof it will suffice to show that for any admissible H; and I’ such that I € DL (H;),
we have pn(GhlAZ;hl | 1)) < C(B, @)iin(E},); namely, we prove this for C(38,q) = (1 + eg)q(e’ +q—1).
Our definition of H; and I’ was tailored to infer the following result.

Lemma 4.18. For every admissible Hy and I' € D (Hy) we have
pn (On, AL 1T C 8, 0T C i) = pn(On, AL | fiyyes) € 865011 C ). (4.13)

This is a subtle point in the argument — while Domain Markov applications are often straightforward in
Ising and Potts models, here we are conditioning on a certain set of open edges in Z? (the ones dual to 91I),
and wish to infer that they form a cut that separates every vertex lying “above” I’ from those “below” it.
More precisely, we would like to construct a set of edges separating a subdomain G from G¢, so that the
number of connected components in G is unaffected by the edge configuration within G¢. The delicate
definition of I’ was designed to have the edges dual to I’ serve that purpose, along with Proposition 4.13.
In what follows, we now condition on the event {971’ C §,,, Jiy.y—es] € 8BS} for some I which was a truncation

of an interface I € @}l, and we build such a set of separating edges.

We know by Proposition 4.13 that the subgraph K = (AyI’, AgI’) is connected. (Note that this subgraph
includes some vertices and edges that are not in A,,.) Now let By be the vertices of AyI’'NA,, with a A,-path
to A} that do not cross a face of I’, and let By be the edges of the induced subgraph of K on By,.

Claim 4.19. Let I’ € D,, be any interface (not necessarily the truncation of I € ’L:)EL), and let By as defined
above. Then the induced subgraph of K = (AyI', Agl’) on By is connected.

Proof. Let a,b be any two vertices in By, and let P be a path connecting them in K. If the path uses
only vertices of By, then there is nothing to prove. Otherwise, let ¢, d be the first and last vertices of P,
respectively, that are in AyI’ \ By. Let ¢~ be the vertex that comes right before ¢ in the path P, and d*
the vertex that comes right after d, so that ¢~ and d* are both in B,. Consider the edge e = [¢™, ¢]; since
¢~ € By, there is a A,-path P~ from it to OA;} that does not cross any face of I’. We argue that this
implies that ¢ ¢ A,: indeed, if ¢ € A,,, then the fact that ¢ ¢ By, would imply that f. € I’ (otherwise the
path e U P~ would qualify ¢ to be included in By), and yet e € P C A’ by construction, so in particular
fe € OI' (by definition of AgI"), which is disjoint to I’. By the same argument, d ¢ A,,. Thus, ¢=,d" € dA,,.
But I” separates OA;, from OA, so the fact that ¢=,d" € By implies that ¢=,dt € OA;.

Now we furthermore prove that ht(c~) = ht(d™) = 1. Since ¢ € A I, ¢ is incident to some edge e such
that f. € I’. f. must be 1-connected to some face f.r € I’, say that ¢/ = [u,v]. In general, there are three
possible ways that ¢ can be positioned with respect to u, v, pictured in Fig. 7.
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Regardless of which case we are in, the (Euclidean) distance between u,v and c¢ is at most V2, and ¢ is
Z3-adjacent to at least one of u or v. However, the distance between ¢ and any vertex of A, \ OA,, is at least
2, which means that both u,v € dA,,. The important observation is that the Dobrushin boundary conditions
imply that the faces of I’ dual to an edge between two vertices of dA,, are precisely the set of horizontal
faces separating some w € OA} from w — e3 € OA;,, where ht(w) = 1/2. In our case, [u,v] = [w,w — e3],
and as there is only one vertex adjacent to such a w (or to w — e3) that is also in A¢, and it has the same
height as w (or as w — e3), we can conclude that ht(c) = 1/2 or —1/2. But conversely, there is only vertex
adjacent to c that is also in A, and it has the same height as ¢, so that ht(¢™) = ht(c). But ¢ € OA}, so it
must be that ht(c™) = 1/2, and the same argument implies that ht(d™) = 1/2.

In fact, we claim that we can moreover infer that every vertex at height 1/2 in A} is in By, and that
the edge between every two such adjacent vertices is in Bg. Indeed, all of A, is in out(I’), so that for
any u € A} with ht(u) = 1/2, the fact that fi, ,_.,) € I’ implies that u € B,. Moreover, if u is adjacent
to another vertex w € 9A} with ht(w) = 1/2, then the face f, ) is 1-connected to the face fi, ,—c,. So,
Jluw) € I’, but as observed above, the Dobrushin boundary conditions imply that Jrww) € 1’5 50 fluw) € 0T
and [u, w] € Bg. Now, the vertices of OA;} with height 1/2 are just the four sides of a square and are notably
connected, so that ¢~ and d* can be connected by a path @ that only uses edges of B, by travelling along
the sides of this height 1/2 square. Thus, we can replace the portion of the path P from ¢~ to d* by the
path @, and we have thus exhibited a path from a to b using only edges of By, which proves that the induced
subgraph of K on By is connected. |

We will now address the subgraph G of A,, induced on the set of vertices V' that are not disconnected from
IOA) by I' (to be thought of as the vertices that lie “above” I’). Note that out(I’) does not (necessarily)
contain all of Z3 because I’ is not a truncation of the top interface Iiop, but a truncation of the decorated
interface I, and can thus enclose some vertices. In fact, the property in I'; ~that the side neighbors of y
are in Viop is needed to guarantee that the subgraph G C out(I”) is the right graph to be looking at for the
event thAZ;hl, since otherwise it is possible that I’ encapsulates y in a big bubble, and the next claim will
establish that we are not in this case. For ease of reference, denote the four adjacent vertices to y that have
height hy + 1/2 as z1, 29, 23, 24.

Claim 4.20. Let I’ be the truncation of some interface I € DL. Let G = (V, E) be the induced subgraph of
A,, on the vertices that are connected to OA} in (A, \ {¢' : for € I'}. Then conditional on OTI' C §.,, the

event F)hlAZ;hl is measurable w.r.t. {w, : e € E'}.

Proof. Recall from Definition 4.2 the event thAZ;hl concerns the existence of a certain 1-connected set of
faces F C F& N Ly, that includes {fi, .., }i=;. We will argue that, for any 1-connected subset F' of &N Lxp,
that includes {f[%zi]}?:l, the edges {e : f. € F'} must all belong to E. First, we show that

{[y’ Zi]}?:l CE, (414)
or equivalently that y and each z; are in V. For any I € ®L(H,), Item (3) of ', ensures that I does not
separate any of the z; from OA), and I’ C I. Thus, {z}{_; € V. Furthermore, since {fj, ..;}i=1 N 1" =0,

then y is also in V. (In fact, since fi, ¢, € I, we additionally have that y, z; € By.) Second, we show that
{f : ht(f) > hy and f is 1-connected to Ule f[y,zi]} NnI'=9. (4.15)

Indeed, we know that for any I € @}L, by Ttem (2) of I'} , we have f|, . € I'\I' for each i = 1,...,4. Thus,
any faces whose height exceeds hy and are 1-connected to one of the f], .,; would have been cut out in the
truncation of I, and therefore cannot be in I’. (The faces at height exactly hy are also not in I’ because
Item (2) of I}~ directly excludes them, but we will not use this fact.) Now, consider the faces F'. Since

F C 5§, on the event 9TI' C F., we have

FNoI Cor'\ o'l ={fy. }1- (4.16)
We claim that by definition of F' and Egs. (4.15) and (4.16) we can infer that
FNI' =90; (4.17)

to see this, suppose there exists some f € F NI, and (recalling F is 1-connected) let P = (f;)* be a
I-connected of faces in F' connecting fo = f to fm, = fi, 2, Let j be the minimal index such that f; ¢ I’
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(well-defined since f,, ¢ I'). Then f; € FNOI', hence f; = fi, ., for some i by Eq. (4.16), whence f;_;
cannot exist by Eq. (4.15), contradiction.

We are now ready to show that every edge e with f. € F must be in E. For any f € F, there is a
l-connected path P of faces in F' from f to one of the fi, .. If f = f. for some e ¢ E, then let g = g, 4]
be the last face in the path P such that [u,v] ¢ E, so that g is 1-connected to g’ = g{,, ., where [u',7'] € E.
W.lo.g., let u ¢ V. No matter how g and ¢’ are connected to each other, u is always A,-adjacent to u’
(or v'), with the face ¢" = gﬁw,] (or = gfjw,]) being either equal to or 1-connected to g. However, since g”
separates u ¢ V from u/ € V, then ¢g” € I'. Hence, as g and g are equal or 1-connected, we have g € I'.
But then the assumption that g = g, ] for [u,v] ¢ E contradicts the combination of Eqs. (4.14), (4.16)
and (4.17). This concludes the proof. |

The next claim will establish that By U OA;" forms a vertex boundary for G, as well as identify its open
clusters given the configuration in (w \ E) U By.

Claim 4.21. Let I’ be the truncation of some interface I € ®L. Define (By, By) and G = (V, E) as above.
The following hold:

(i) The vertices By UAAY form a vertex boundary for V (in that every A, -path from v € V to V¢ must
cross one of those vertices).

(i1) The graph obtained from (By, Bg) by deleting the vertex y (and edges incident to it) is connected.

Consequently, on the event OTI' C F.,, the vertices By \ {y} are all part of a single open cluster in w.

(i) On the event fiy ., € S5, there cannot be a path of open edges in E° connecting y to OAFUBy\{y}.

Proof. To prove Item (i), recall that if u € V, then necessarily u € out(I’) (as it is connected to A via a
path not crossing a face of I'), whence we have that

By = {u eV i Just. flu € 7} .

We first claim that if uw € V' is A,-adjacent to v € A, \ V, then necessarily u € By. Indeed, we must have
S € I' by definition of V; in particular, fj,.) € I’, and by the last display, « € By. Second, note that
IA} CV and 9A;, NV = . Combined, we find that By U A, forms a complete vertex boundary for V.
Having established that By UOA;! forms a vertex boundary for G = (V, E), we proceed to Item (ii). Recall
that (By, Bg) is connected, as per Claim 4.19, hence for this item we need only account for the effect of
deleting 3. A-priori, we only know that f. € 91’ for all e € By, but would like to instead say that f. € 0TI’ so
that on the event {0TI' C F,}, every such e would be open. To this end, let By, be the outcome of removing
from By, the four edges [y, z;] (the faces fi, ., are precisely the four faces removed from I’ to obtain 071").
First, we claim that there are no other edges of By incident to y, via the following two items:

(2) [y,y — es] & By since fiy,—c;) € I;

(b) [y,y + e3] ¢ By, as otherwise, having f], ,4.,] € I, there must be a face g € I’ that is 1-connected
to fly,y+es) With ht(g) > hi. By the truncation, this face g cannot be some f, ., (it can only be
part of I’ via another pillar P,/ for 2’ # x) yet it must be 1-connected to ff, ., for some i. But, by
Eq. (4.15), this is impossible.

Thus we have shown that the only adjacent vertices of y in (By, Bg) are its four side neighbors z;, and as
a consequence, the graph (By \ {y}, Bs) is equal to the subgraph of (By, By) induced on By \ {y}. So, to
show that (By \ {y}, BE) is connected, it suffices to exhibit a path in By, between 2, = y—+e and zo0 =y +eo
(whence by symmetry there will be such paths between any two of the z;’s). These are connected in A,, by
the path

P= (y+el,y+elfe37y+e1+ezfe37y+ezfes,y+e2>.

Now, Item (2) of the definition of T'}, (and the fact that I was a truncation of some I € DL (H,)) readily
implies that for any edge e € P, the face f. is in OI'. Since 21 € By, this implies every vertex in the path P
is also in By. Thus, P uses only edges in By, as required, and altogether (By \ {y}, BE) is connected.

It remains to prove Item (iii). By Eq. (4.15), we have fi, , ¢, ¢ I’, hence (recall y € V) also y +e3 € V.
Since the edge [y,y — e3] is the only edge of the form [y,%] with y' ¢ V, on the event f, ,_.,] € §, we see
y can never have an open path to V'\ {y} (and in particular to A} U By \ {y}) using only edges of E¢. W

We are now in a position to prove the Domain Markov-type identity in Lemma 4.18.
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Proof of Lemma 4.18. By Claim 4.21, if I’ is the truncation of some I € D! (H;), and 7 is any config-
uration of E¢ satisfying that fi,, .,) € §;, and O'I' C F, then the law of wlp for w ~ py (- | flyy—cs) €
3, 0" C F,, wlpe = n) is that of the random-cluster model on G = (V, E) with the vertex boundary
ByUOA;" and boundary conditions that are wired on A} U By \ {y} and free on y (using Domain Markov to
disregard the configuration n). Note the boundary condition is fully prescribed by the closed edge [y, y — e3]
and open edges dual to dTI’. Recalling Claim 4.20, the event thAZ;hl is measurable w.r.t. the configuration
w]g. Combined, we arrive at Eq. (4.13). ]

Next we look at the right-hand of Eq. (4.13) and compute the cost of conditioning on the face fi, ,_¢,] € T
Let € = [y,y — e3]. For every configuration w € GhlAzz_hl N{o'I' C F.} (likewise for w € {dTI' C F.}), both
w0 and w®? are still in the event (as e ¢ 971’ nor is it in E), where w® (resp., w®!) denotes the version
of w with the edge e closed (resp., e open). Now, i, (w®?)/pa(w®?) is either -7P— or t¥;. Summing over
w, we get
pn(On, A 0TI C §) 1+ 125

Nn(aJrI/ ggw) 1+ ﬁ

< qun(On, A" 10T C F) (4.18)

:un(ehlAz}!Lz_hl ‘ f[y,yfeg] S SZ 78TI/ g gw) S

At this point when may apply FKG to get
(O, A" | O C ) < (O, AL

1

since the event thAz;h is decreasing, while the event 971’ C §,, is increasing. By Lemma 4.14, we can pay

a factor of ¢ to move to the non-shifted event A’;’l;hlz
—h —h
pn(Ony A7) < quan (A ™)
By FKG again (now using that ©,, is decreasing), we have
—h _ —h
b (A1) < (A1)

Finally, to move from AZ;hl to Aj_, we utilize (a special case of) Corollary A.5, a decorrelation result on
pillars, that implies that for some constant C' and all z,y such that d(z, dA,) A d(y,OA,) > r, we have

in(EY) < in (B + Ce7/°.

(We defer the proof of said estimate to the appendix, along with the analogous results for the Potts model.)
By putting together the assumptions d(x,y — h1) < d(x,0A,)/2 and d(x,0A,) > h with the bounds on
fin(EJ,) from Proposition 2.26, we get that

_ _h _ -
fin (B}, ™) < (14 0(1)fin(Ey,)
(where the o(1) is as h — o0). We can then apply Proposition 4.5 to get

e +q—1_

ﬂn(Az;hl) <(1+ 5ﬁ) ,un(EZ;hl)

e’ +q—1

< (1+ep) (1+0(1))fin (Ef, ) (4.19)

Combining Lemma 4.18 with the inequalities between Eq. (4.18) to Eq. (4.19), we have that for some eg,
max —max [ (thAffhl | Sp) < (L+ep)g(e’ + ¢ — Dn(E},) (4.20)

Hi p:7ed1 (Hy) 2
which together with Eq. (4.12) concludes the proof of Lemma 4.15. |

Proof of Proposition 4.1. Combining Proposition 4.5 and Lemmas 4.10 and 4.15 immediately implies the
submultiplicativity statement of Eq. (4.1). By using the decorrelation estimates in Corollary A.5, we can
generalize to the case where z,n on the right hand side can depend on h; and heo, as long as we still have
1 < hy < np, and d(xp,, OAn, ) > h;:

(ef +q—1)°_

fin(E};) < (1425 + on, (1) + o, (1)) g Firn, (Epyy )iy (Bpy?) -
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Fekete’s Lemma now gives the existence of the limit o in Eq. (4.2), and the bounds of Proposition 2.26
immediately gives the corresponding bound 4(8 — C) < a < 40. |

5. LARGE DEVIATION RATE FOR POTTS INTERFACES

The pillar P, was used to locally measure the height of the top interface at a location x. There, we
needed a more complicated definition of the pillar including the hairs attached to it so that we could apply
various map arguments to prove properties of a typical pillar. For the blue and red Potts interfaces and bot
random-cluster interface, rather than consider an analogous pillar on its own, we will study the event that
a path of a particular component of vertices reaches height h, conditional on P, reaching height at least h.

Definition 5.1. Let A;f%d be the event that there is a 17fed—path from x to h using only vertices that are part
of P,. We also analogously define Ag,',‘;f and Agf’,tl as paths of vertices in ﬁbme and ﬁwt respectively. More

generally, we use the notation A to mean that there is a %

v < 4-path of vertices from v; to v; 41 (endpoints

blue Abot

included) that uses only vertices of P, in the slab Lint(v:),ht( Vi1 Aosvigs -

vi+1)]» and analogously for A

Remark 5.2. We note that one may attempt to define a pillar in Z,,q analogously to how it was defined
w.I.t. Ztop. That is, for a vertex x at height 1/2, the non-red pillar at « would be the connected set of vertices
in ]7fed which have height > 1/2. However, by the ordering of the interfaces (i.e., the fact that 9fed C 17{30,3),
the non-red pillar always lies entirely within P,. Hence, the event that the height of the non-red pillar at x

reaches height h is exactly the same as the event Agtid. However, we will not refer to such a non-red pillar

and instead refer to events of the form Ag’j{’ because the latter is more easily broken up into parts — one

can view the event A" as an intersection of events of the form A?jzeng, and this reflects the proof ideas of
this section.

The goal of this section is to prove the large deviation rates for the pillars of the blue and red Potts
interfaces and the bot interface of the random-cluster model.

Proposition 5.3. For every 8 > By and integer ¢ > 2 there exist 0,0’ > 0 such that, for every sequence of
n,z dependent on h with 1 < h < n and d(x,0A,) > h,

1
lim —= log ¢, (AY | ht(P,) > h) =4, (5.1)
n—oo h ’
1
Jim —<-log 6, (AL [ 0t(Py) > h) = 4. (5.2)
Moreover, for every 8 > By and real ¢ > 1 there exists 8" > 0 such that, for every sequence n,x as above,
1
Jim = log fin (AT, | ht(Pr) > h) = 6" (5.3)
Combining this with Proposition 4.1, we derive the following rates:
: 1 nre
vi= nlgrréo—ﬁlog¢n(Ax7f) =a+9, (5.4)
/ : 1 blue !
7= m o log ¢n(Agf) = a+ 9 (5.5)
1
a = Jim. % log fin (A2}) = o+ 6" (5.6)

Once we establish the above rates, we will also provide bounds on their differences. In particular, we show
that all the rates are different from each other, whence using the symmetry that the upward deviations of
Ziop are the same as the downward deviations of Zpo, we conclude that each interface has an asymmetry
between its maximum and its minimum.

Proposition 5.4. There exists a sequence eg going to 0 as B — oo such that, for every fized 5 > By, the
rates 0,0',8" from Proposition 5.3 satisfy

§=(1+epe?, (5.7)
&' =(1+ep)(g—1)e?,
8" =(1+eg)ge” (5.9)
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where a = (1 £ &)b is notation for a € [(1 —€)b, (1 + £)b].

Proving the above propositions would conclude the proof of Proposition 1.5, as we already showed the
bound on « at the end of Section 4.

Remark 5.5. To prove the existence of the rates in Proposition 5.3, the sub-additivity claim we are after
is essentially that a non-red path climbing to height hy 4+ ho is comparable to climbing to height h;, and
then independently climbing up to height ho. Since inside a given pillar the coloring of different clusters is
independent to begin with, this is seemingly obvious. However, we are aiming for sub-additivity conditional
on the event Ej and not on a fixed pillar, so to make this rigorous we need to show that the joint law of
the part of a pillar in £} below height h; and the part above it is comparable to the law of a pillar in Ej
and an independently sampled pillar in Ej . This is true only if we add some restrictions to control the
interactions between the two halves of the pillar, and the interactions between the pillar and the rest of the
interface. So, in Lemma 5.17 we prove that we can move onto this space of nicer pillars, and in Lemma 5.19
we prove the claim on the law of the pillars by utilizing a 3 to 3 swapping map similar to the swapping maps
in [9]. Along the way, we also need to be cautious that we are actually asking for a path of vertices in ye
not just non-red vertices, and we also need to work on the joint space of configurations (w, o).

red’

5.1. Establishing the Potts rates. The bulk of this section is devoted to proving the following submul-
tiplicativity statement:

Proposition 5.6. For every 8 > By, there exists a constant g such that for every h = hy + ha, and every
sequence x,n dependent on h such that d(x,0A,) > h,

On (AT s | Biryiny) < (14 25)0n(AYS | ER)bn(AVS | BR,) - (5.10)
The same statement holds if we replace nred by blue.

As mentioned in the remark above, we will use the following nicer spaces of pillars, which are subsets of
spaces of isolated pillars with some additional restrictions. Suppose that we fix hi, he, and choose 0 < L < Lg,
where Lg 1 0o is as in Theorem 3.8.

Definition 5.7 (The subset €, of isolated pillar interfaces). Let x € L;/5, and define Q2 to be the set of
interfaces in Iso, 1, satisfying the following properties (Items (1), (3) and (5) are precisely the criteria for
Iso, 1n; we repeat the statement of these conditions here for an easy comparison with the next definition.)
0 ift<L3
I ICARE MR
t ift>L
(2) There is a stretch of trivial increments from height h —1/2 — L3 to h — 1/2
(3) [-#(Sz)| < 10k
(4) P, € EF
(5) For the walls of Z \ P,, we have

(1

2

m(Wy) <

0 if d(y,z) <L
z) < L3h

log(d(y,x)) if L < d(y,
and f[ac,z—eg] ¢ 7.
Definition 5.8 (The subset 2y, 1, of isolated pillar interfaces). Let x € Ly, and define Qp, 5, to be the
set of interfaces Qp, +n, from Definition 5.7 such that the following additional properties are satisfied:
(6) Let jo be the index of the increment with bottom cut-point at height hy + 1/2. Then,
0 if t —jo < L?
t—jo ift—jo> L3
(7) There is a stretch of trivial increments from height 0V h; — 1/2 — L3 to hy + 1/2
( ) |f( )ﬂ£<h1|<10h1,and| ( )m£>h1|<10h2

m(2;) <

Remark 5.9. For simplicity, we can also say that a pillar P, € Q if it satisfies the pillar properties of the
space, i.e., there exists Z € € with pillar P,. These two spaces of pillars are defined such that we can write
Qn,y by = Qpy X Qp, in the following sense: Suppose at the vertex z, we take a pillar PT € Qy,, and attach
it to the top increment of a pillar Pg € Qp,. This location of attachment is well-defined because of the
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cut-point conditions imposed in Items (1) and (2) of €. By Item (4), there is an extra face separating the
top vertex of PT and the bottom vertex of Pg; remove it. Then, the resulting combined pillar satisfies the
pillar properties of Qp, »,. We denote this combined pillar by Pz x PT. Conversely, we can decompose any
P € Qp, p, into P = Pg x PT by cutting the pillar at height h; and then adding the face where we cut to
be the ‘top cap’ of Pp (this face is never in P because of Item (7) of Qp, n,), and we will have Pg € Qp,,
PT ¢ QhQ.
Lemma 5.10. For any 8 > By, and any x such that d(z,0A,) > hi + hg, there exists a constant €z such
that for any hy, hs,

ﬂn(thJm | E}f1+h2) >21l—ep. (5'11)
As Qpy by C Qpyynys then we consequently also have fin, (Qp, | Ef ) A fin(Qn, | E5)) > 1—¢€p.

Proof. To lower bound fi,(Q4, n, | Ef ,},), note that if we begin with any interface in E} ,, , we can
guarantee all the properties except Items (4) and (8) of Qp, p, by applying @i, and @jne. Call the image
of the composition of these maps th,h? We are allowed to apply P, a constant number of times by
Remark 3.21, and each will cost a factor of 1 —eg. (We need to apply the increment map ®jn, three times,
at heights hy — L3, hy +1, and hy + hy — L? with L' = L3, to get Items (2), (6) and (7)). Thus, Theorems 3.8
and 3.16 proves that ~

ﬂn(thhz | E}€1+h2)' (512)
Now for any 7 € th,hm we claim we can use another map argument to additionally ensure we have Items (4)
and (8). Let P, = PZ be the pillar at x in Z. Let 27 be the trivial increment with height hy + hy (so that
its two vertices have heights hy 4+ ho — 1/2 and hy + ho — 1 — 1/2). We consider three cases:

Case A. If |.#(S;) N L<p,| > 10hy, then let Z; be the first increment that intersects height hq, and define
Py =(Xo,..., Xo, X1, 27) .
—_——
ht(vj41)+1/2
Case B. Otherwise, if | % (S;)NL>n,| > 10hs, then let £ be the index of the highest increment that intersects
with hq, and define
Pg:(%'l,...7%.‘j,1, Xg,...,Xg )
—_———
hi4+he—ht(v;)—1/2
Note that case A and B cannot occur simultaneously since |.# (Sy)| < 10k by Pjs.
Case C. If neither of the above cases hold, then define
Py = (21,....27).

Let @ be a map that takes 7 and gives the interface J which replaces PZ with P7. We will prove the
required energy and entropy bounds assuming we are in Case A, as the proof for Cases B and C are essentially
the same. In Case B we just have X% and X% defined below switch roles (in fact it is even simpler because
there is no shift of increments), and in Case C we just note that the all the computations below would still
hold if we did not change any of the increments in X%. We begin by proving the energy bound:

fin(M(Z; ©(T)) = 7| Qny p,) < Ce™ P

We can split up any interface 7 € Iso, 1,5 as follows:

R Se N L>h,+h, “Remainder” increments above height hy + ho
X5 Ujsici<r Z(25) Increments between v;41 and vriq

X4 Se N Lang(uyin)-1/2 Increments below ht(v;11) — 1/2 to be trivialized
B T\ (8%) The remaining set of faces in 7

Similarly, we can divide the interface [J:

Xg Horizontally shifted copy of X%
X Trivial increments between heights 0 to ht(v;41) —1/2

B Same set of faces as in 7
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The trivial increments in X+ have 4(ht(v; 1) — 1/2) faces. The number of faces in X% is at least 10h; +
5(ht(vj+1) — 1/2 — hq), since every height between hy and ht(v;4+1) — 1/2 is not a cut-height. So the excess
area of the map is

m(Z;.7) = [R| + [XF| - [XF] > (IRI+*IX v (IRIJ&IXXI) (5.13)

Using the cluster expansion, we have

gn((?) = (1 — e #)OT=10Tle=BmTD) grr=r7 (3 g(£,7) = 3 g(£,.7))
n = =~

As in the proof of Lemma 3.11, we can define an injective map 7" on a subset of 9.7 to dZ and show that the
number of faces we do not define T' on is bounded by Cm(Z; J) for some C. Faces which are 1-connected to
B can be mapped to themselves, and faces 1-connected to X g can be mapped to their shifted copy in X jIB
(the cone separation property ensures there is no problem here). The remaining faces which are 1-connected
X Aj can be handled by following the procedure in Step 3 of Lemma 3.11, or more simply in this case we can
just bound the number of such faces by Cy|XY | < 4Com(Z; J), where Cp is the number of faces that can be
1-connected to a particular face, and so we do not need to define T on these faces.
We also have

Kz — kg < |R|+[X3] < 6m(Z; T)

since adding a face can only create at most one more open cluster.
Finally, we bound the influence of the g-terms. We can write the absolute value of their sum as

fERUXE fexy feB fexg

where 6 is the horizontal shift that moves X% to Xg .

We can bound the first and second terms by KCm(Z; J) by the bound in Eq. (5.13).

For the third term, we note that since both pillars have the same stretch of L? trivial increments at the
bottom, we have by Eq. (3.3),

YD —g(f <Y > Kemedtha) < KCemek

feB feB ge(XZUXINL, 13

Finally, for the fourth term, when the r-distance in the cluster expansion is attained by a face in RUX% UXZ ,
we can use Eq. (5.13), and when it is attained by a face in B, we can use Eq. (3.3). That is, we have

S D g0, N< Y Y Ke 094 3N Kkeedo)

fexg fEXE geRUXZUXY feXZ geB

Z Z Kec4h9) 4 KCe b

feF(2%) geRUXZUXY
< KCw(T;J) + KCe™°k

Thus, we have proved the energy bound

1) _ -~ p-om@)

For the entropy bound, we simply note that given any J € (I)(th,h2>7 we can recover Z if we are given the
1-connected set R which has size < m(Z; J), and the 1-connected set Xﬁ which has size < 5m(Z; J). Indeed,
we can take J \ PJ, attach X% at z, then append the portion of P with height larger than ht(XZ%), and
finally attach R at the top cut-point. Thus, by Lemma 2.12, we have

HZ cd 1(T):m(T;T) = M} < M
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Thus, we have for any r > 1,

In(M(TR(T) >,y n) = D> Y (D)
M2r €@y, n,,
m(Z;®(T))=M

> > S Oy ()

Mzr 7e®(Qp, n,) TER(T),
m(Z;J)=M

< Z SGMei(Bic)Mﬂn(cb<Qh1,h2))
M>r
< Ce—(,ﬁ—C—ﬁlogs)rﬂn(thJw)

IA

Then, dividing by fin(Qn,.n,) yields
fin(M(Z; ©(T)) = 7 | Qny py) < Ce™ P

Taking r = 1 above and combining with Eq. (5.12) concludes the proof of the lower bound for fi,(Qp, n, |
Ey. +h2)' ]

Now, we have shown that a typical pillar in £y ., will also be in 2y, »,. However, we need to show that
in the joint space of configurations (w, o), the event A”' also occurs primarily on pillars in Qp,, p,. For this,
it will be useful to show that the event A;“}l can naturally be broken up increment by increment. However,
in general we can only determine if a vertex is in ﬂed or ﬁced by looking at the entire configuration o. Hence,
we need to establish a Domain Markov type result in the joint space showing that once we reach a cut-point
v; € P,, the influence of the coloring outside of P, on a vertex inside P, is only through v;. We begin with
the following lemma:

Lemma 5.11. Fizx an increment shell X rooted at a vertexr vy, € Ay, and let G, = (V*,E ) be the induced
subgraph of A,, on the vertices of X¢{. Conditional on the events Z,° = X and v, € Vred (resp., vy € mee),
the random set V, N ye

red

(resp., V, N ]A/bh,e) depends only on oy, .

Proof. Let V' denote the vertices inside the pillar shell which have height > ht(v;). We will prove the case
where X? ends in a cut-point (the case where X? is the remainder increment is simpler as then V, = V’).
Let W (resp., W’) be the set of vertices in Z3 \ V'’ which are A,-adjacent to V (resp., V'). We know that
W' C Viop, and hence W C W’ C Vyeq. Let U C V; be the subset of vertices w such that there is a A,-path
(u =wuq,...,u) of vertices such that ux € W, and wu; are red vertices in V for | < k. Then, U C V,eq. Let U
be the union of U with the vertices in V, which are in a finite component of Z3 \ (U UW’). Then, U - ﬁed.

We now argue that V'\ U - )7fed. Observe that every vertex of v € Vg NV, must have a A, -path of
red vertices in V, connecting to W’. Because of the cut-point at v;;1, there must actually be a A,-path
of red vertices in V, connecting v to W, whence V,eq NV, C U. Furthermore, by definition of U , we know
that for every w € V, \fj there is a A,-path connecting w to v; that does not include any vertices of U.
Combined, w is in the same component of V., as v;, whence w € Vred In other words, we have shown that
Ven Vred = U. The set U clearly only depends on o[y, . Although the definition of U further involves the
set W', the specific shape of W'\ W does not affect which vertices of V, are in U , and the set W is fixed by
X?. Hence, the set U only depends on o[y, .

The blue case is similar. First observe that if v; € 17b|ue, we must actually have v; € Vye since being a
cut-point, the side neighbors of v; are in 17§,ue. Let U C V, be the subset of vertices u such that there is
a Ap-path (u = uy,...,ur = v;) of vertices in Vj such that w; are blue for I < k. Since as defined above,
W C W' C Vied, then we have Vyjue n Vi.=U. Let U be the union of U w1th the vertices in V, which are 1n
a finite component of Z3 \ U. Since Vbh,e is simply connected, then U - mee Finally, for every w € V, \ U
there is a A,-path of vertices in V; connecting w to W’ that does not include any vertices of U. Because
of the cut-point at v;41, there must actually be a A,-path of vertices in V, connecting w to W (still not
including vertices of U). Since mee NV, = U, this then implies that w is in the same component of V. as
W, whence w € mee Thus, V, N mee =U. [ |
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Lemma 5.12. Fiz an increment shell X2 rooted at a vertex v, € A, and let G, = (Vi, Ey) be the induced
subgraph of A,, on the vertices of X2. Condition on the event {Z;° = X0} in the pillar P, fori > 1, and let
W,, be the set of vertices in A, excluding all vertices in P2 with height > ht(v.), noting that on the event
{Z° = X2}, the set W,, is measurable w.r.t. w[Ef. Let F be the o-field generated by (,LJ[Ef along with ol
Then the law ¢, ((w,o) lq, €| Z° =X} ,}') is that of the coupled FK—Potts model on G, with boundary
conditions that are free except at vy, whose color is specified by F.

Proof. As above, we will assume that X? is not the remainder increment, as that case is the same except
there is no v;4; to worry about. Note first that the event Z;° = X does not impose any conditions
on wlg . Indeed, it follows by the definition of the pillar shell that for every w € {Z;° = X7} and
Nl ge = wlge, we still have n € {Z7° = XP}. Now, fix any boundary condition (w,5) € {Z;° = X?}. Let
aV, C V, be the subset of vertices which are Ap-adjacent to V¢, Observe that for any vertex v € 9V,
every edge e € ES\ {[vi,v; — e3], [Vit1,Vit1 + e3]} incident to v is such that f. € X2, and hence w. = 0.
Thus, by the Domain Markov property of the coupled FK—Potts model, the law of (w o), under ¢, (- |
wl Be = wl Bes U[Vf = 6[Vf) is an FK-Potts model on G, with free boundary conditions except o, = 7, if
Oogv—e3) = L and ou,,, = Gp, .y i O, 1 0,41 4¢5) = 1. Now, any path from v;1; to Wy using edges of EX
must cross a face of P, and hence include a closed edge, so v;41 is not in the same component of @| Be 88
any vertices of Wg. Hence, if we condition on {w| Be = wl B> olw, = Gly,}, we are in the above situation
except we always fix o,,, = 7,, as v; € Wy, and the boundary condition on o,, , integrates out via symmetry
to being a uniform distribution over colors, which is the same as having no boundary condition. ]

Corollary 5.13. In the notation of Lemma 5.12, let X, be any event that is measurable w.r.t. (w,0)[g, ,
and let Y be any event which, conditionally on {Z;° = X}, is F-measurable. Then, letting v, be the coupled
FK-Potts model on G, with free boundary conditions, we have the following for any event A:

(1) If A is measurable w.r.t. the random set V, N Vred and { Z° = X, v, € Vred, X, Y} # 0 then
On(A| 2 = X2, v, € Vo, Xy V) = v (A| X*,O'U* # red).

(2) If A is measurable w.r.t. the random set V, N 17b|ue and { Z° = X, v, € ljbh,e, X, Y} # 0 then
On(A| 20 = X2, vs € Voue, Xey V) = vu(A| X, 0, = blue).

Proof. Consider the Vr 4 case (the mee case follows similarly). By Lemma 5.11, the event A can be expressed
as an event on oy, , so the expression v,(A) is well defined. Note that conditionally on {2;° = X7}, the
event {vl eV ed} is also F-measurable (the vertices surrounding the pillar shell are always in Viop C Vyed, SO
v; € V -4 iff there is a path of Vcd vertices in W, from vz to OA; ). Thus, it follows from Lemma 5.12 that
the law of (w,0)[5, under the measure ¢, (- | Z;° = X¢, v, € Vred, Y) is the coupled FK-Potts model on G
with free boundary conditions except at v,, whose color is as specified by Y N {v, € Vred} Since v, =v; is a
cut-point, then v, € Vred implies that o,, # red, so the boundary condition on o,, is some distribution over
the non-red colors (arising from Y N {v, € V<, }). However, it is clear via the proof of Lemma 5.11 that the
actual non-red color of o,, does not affect the set Vi N V5, so for the conditional probability of A, we can
equivalently condition on v, = nred. In the blue case, v, € ]A/bh,e implies that o,, = blue. [ |

Remark 5.14. While Corollary 5.13 asks for ) to be measurable w.r.t. the edges w/ Ee and vertex colors
alyy,,» our application of this corollary will be for J that is measurable w.r.t. a smaller subset of edges: those
in the interface ESN{e: f. € I} along with those in E(U)¢ for U = {u € P, : ht(u) > ht(v.)}.

Example 5.15. Oftentimes, we will want to establish an equality of the form
G (AT | T =1, A7) = ¢, (AT | 25 = X, v € Vo) (5.14)

Vi Vit z,v; ViyVit1

Observe that fixing 7 = I can be split up as fixing the increment shell Z}°, fixing the hairs inside 2;°, and
then fixing the rest of Z. Then, in the notation of the above corollary, we can take X, to be the event that
fixes the hairs inside 2;°, and Y to be the event that fixes 7\ 2, intersected with the event AY!. The
above corollary then implies that the left hand side of Eq. (5.14) is equal to v, (A | X4, 0,, # red) for some
event A defined in terms of oy,. A similar argument shows the same for the right hand side, where we
additionally note that X; does not have to be a rooted increment because the measure v, (- | Xy, 0., # red)
no longer depends on the location of the graph G, = (V4, E,) inside A,, (nor the index ¢ of the increment).
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With this Domain Markov type result in hand, we can establish a ®-monotonicity property for our events
of interest.

Lemma 5.16. Let ® be any map on interfaces sending E} into 1soy 15 such that the action of ® on P,
is to shift increments or replace them by a stack of trivial increments, and to replace the base by a stack of
trivial increments with equal height. (In particular, we can take ® to be the composition of the sequence of
maps used in Lemma 5.10 to move from E} to Qp, p,.) Then, for any I,J such that J = ®(I), we have

S (AT | 1) < dn(AYS | ).
Moreover, the statement above holds if we replace A“’Ed by .Ab'“e
Proof. Let T be the index of the increment in P} that first reaches height h. Let X; be the i-th increment

of the pillar PZ. By definition, we can always write

Sn (A5 1 1) = bu(AYS) | Db (AVES, | 1, ATS) H On (AN, [T ATS) -

Then, by Corollary 5.13, we can write

T-1
S (A1 T) = G (AYSH | Db (AN, | X, or € Vig) [] on(AYSSL, | Xivs € Vi) - (5.15)
=1

To write an analogous equation for gi)n(.A”'Ed | J), let Y; correspond to either the shifted copy of X; in P/,
or the stack of trivial increments in P;/ from ht(v;) to ht(v;41). Let Yy be the stack of trivial increments
from height 1/2 to ht(v;). Finally, let w; correspond to the cut-point in P; at height ht(v;), with wo = .
Then, applying Corollary 5.13 for J, we can write

T-1
Sn(AYS | J) = bl € Vg | N)bn( AL, | Yo, wr € Vig) [] on(ATS,,L, | Yiowi € Vig) (5.16)
=0

Now comparing the above two equations, we see that if Y; is a shifted copy of X;, then their corresponding
terms are equal (see Example 5.15 regarding the shift invariance). Otherwise, we can upper bound the
remaining terms in Eq. (5.15) by 1. To see that the remaining terms in Eq. (5.16) are all equal to 1, observe
that in a stack of trivial increments, all the vertices inside are guaranteed to be in the same open cluster
(and hence have the same color under the coupling) Moreover, we argued in Claim 3.7 that on Isog r, 4,
we determlmstlcally have € Vyor (and hence x € Vred) Since J € ®(E¥) C lsog 1 pn, then in the above

equation, ¢, (z € Vred | J)=1. ]

The next lemma shows how the previous monotonicity result can be used to establish the comparison of
our events under the two measures ¢, (- | Ef) and ¢, (- | Q4 1,). The lemma may be of independent interest,
and is stated in a more general setting.

Lemma 5.17. Let ® be any map on interfaces sending EY into itself such that for any J € ®(EY), we have
fn(®71(T)) < (1 +ep)iin(J). Let A be any event (possibly in the joint space of configurations (w,o)) such
that
(1) ACE}
(2) For any I,J such that J = ®(I), we have ¢, (A |I) < ¢dp(A| J)
Then, for any space 2 such that ®(E}) C Q C EF, there exists a constant eg such that
Pn(A]Q)
on(A| EY)
Proof. The conditions on ® easily imply that f,(®(E}) | EF) > 1 —eg, and hence @, (Q | Ef) > 1 — eg.
Together with the condition that A C E¥, we compute that

-1 <€/@

(5.17)

6u(A1 ) = 2 < (142 I < (12)00 (A 7).

By a similar computation, we see that in order to prove

Pn(A[ ER) < (1+ep)on(AQ),
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it suffices to show that
On (| A)>1—e5.

Since A C EY, we can first write

Pn(A)

Y dalAl Diin(1)

IeE:

S bulAl D).

JED(EE) Ted—1(J)

Using Item 2 followed by the bound fi,(®~1(J)) < (1 +eg)fin(J), we have
SN A DaD) < (L+ep) Y dulA]T)fn(])

JED(ET) Ie®—1(J) Jed(E?)

<(+ep) > dnlA|T)in(J)

JeQ
= (1 +e8)on(AQ). u

Remark 5.18. Note that if ® is the composition of the sequence of maps used in Lemma 5.10 to move from
Ej to Qp, h,, then @ satisfies the conditions of the above lemma. Indeed, each map ¥ in the composition
satisfies the energy bound that if m(I; (1)) = k, then fi,,(I) < e~ =k, (U(I)) for some constant C, as
well as the entropy bound that the number of preimages I € W~1(J) such that m(I;J) = k is bounded by
s* for some constant s. Together, this implies that fi, (W' (J)) < (1 +&g)fin(J) for 5 = Ce?, and clearly
the same bound holds when taking a composition of such maps for a different eg.

Lemma 5.19. In the setting of Proposition 5.5, there exists €5 such that for any pillar P = Pgx PT € Qu, p,,
ﬂn(Px = Pp x pT ‘ thah2) < (1 +55)ﬂn(Pw = Pp | Qh1)ﬂn(73w = PT | th) (5~18)

Proof. For any interface Z, we can denote it in terms of the pillar at x and the rest of the interface,
Z = (Py,Z\ Pz). Note that in general, by the definition of the truncated interface Z\ P, (in Definition 3.1),
there are possibly some extra faces added to fill in the gaps created by removing the pillar P,., and it is a priori
ambiguous from the pair (P, Z\ P,) which of these faces were originally in Z and which needed to be added
in. However, for interfaces in Iso, 1, (and hence for all the interfaces considered here), there is no ambiguity
as the cut-point criteria at x implies that the only face that might need to be added in is fi; ;_.,), yet this
face is also required to be missing from 7 as part of the definition of Iso, 5. Now, recalling the notation
in Remark 5.9, suppose we have three interfaces, (Pg x PT | A) € Qp, 1oy (@B, A') € Qp,, (QT,A") € Qp,.
For more concise notation, we write fi,(P) = jin(P, = P) and ji,(I) = i, (Z = I). We have the following
inequality

fin(Pg X P | Qn, ny) = fin(Pp | Qn)iin(PT | Q)

= > (P x PT,A) | Qny )i (@, A) | Q) in ((QT, A”) | Q)
A,A,,A”
QB,Q"

—in (@B x QT A) | Qny ) iin (P, A') | )i (PT, A”) | Qpy)

Here, the sum is over all possible truncated interfaces A, A’, A” that satisfy the respective wall requirements,
and over all possible pillars Qp, Q" that satisfy the pillar requirements of Qj,, €, respectively. We can
factor out the term being subtracted and cancel out the conditional events so that the above is bounded by

> Qs x QT A) | Qny o) (Pe, A) | Q)i (PT, A”) | Q)
AN A7
Q5,Q"

. ﬂn((PB X PT’ A))ﬂn((QBa A,))in((QTvA”) _
(@B x QT, A))in((Pp, A")) fin ((PT, A”))
If we are able to bound the absolute value term in Eq. (5.19) by €g, then we would be done since the rest of
the sum is equal to ji,, (Pg | Qn,)iin(PT | Qp,).

(5.19)
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FIGURE 8. The 3-to-3 map sends the top three interfaces to the bottom three. The figure is color-
coded according to which faces are paired together in the cluster expansion computation. (See how
the terms in Eq. (5.20) are separated into the terms in Egs. (5.21) to (5.23).)

To bound Eq. (5.19), we plug in the cluster expansion expressions from Eq. (2.1) for each term in the
fraction above. There are 6 interfaces that we need to refer to; in numerator from left to right, let them be
denoted 15, Iy, I"?, and in the denominator let them be denoted Ig, I, I"F | as drawn in Fig. 8.

Note that the two sets of interfaces have the same number of total faces, open clusters, and contributions
to the term |0Z] in the cluster expansion. Indeed, the relationship between the interfaces is a cut and paste
operation on the pillars, and furthermore Proposition 3.4 applies for all of these interfaces, ensuring that
there is no interaction between the pillars and the surrounding walls that could potentially affect one of the
terms above in the cluster expansions. Thus, it remains to control the g-terms,

exp [ DG IE)+ Y g(f 1)+ D g, ") =Y g(f18)= Y a(f. Ip)— Y alf, I”P)}. (5.20)

feig fely, ferre rerg felp fere

As in Fig. 8, let the top L3/2 increments of Py, Qp be referred to as Z, and the bottom L?/2 increments of
PT QT be referred to as Z,. Note that the top L? increments of Pg and Qg are trivial, so there is a L?/2
buffer distance between Z; and the first non-trivial increment of Pg,Qp, and likewise for Z, with PT, Q7.
We split up the terms of the sum that involve the interface I 11; as follows:

Moo IE) =g I+ D g IE) = g0f, ") + Y la(f.1F) — 9(f,18)

fePB\Z1 feEPT\Z, feAa
fe€zx feZy

=E1+E2+E83+24+E5. (5.21)
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Here, the sums are all over faces of the interface I5, and 0f is the shifted copy of f in the corresponding
interface. Although each 6 is a different shift depending on the target interface, none of the computations
that follow depend on the particular shift so we will not distinguish between them and call them all 6.
Begin with =;. Using the bounds in Eq. (2.3) and Eq. (3.2), the part of the sum where 7(f, IE; f, I}) is
attained by a face in A or A’ is bounded by Ce~®L. Otherwise, if r is attained by a face in PT, suppose that
the first increment of PT has index jo. Then, using condition (3) of 2 to control the size of the increments,

Y ke <Y Y ke el

fe€Pp\Z1 gePT 720 g€Xjo+j feZ(z%),
ht(f)<ht(Pp\Z1)

< Y NF (Koo /24
j=0
< Zf(je—c(ﬁ/%j) < Ke °E'/?
j=0
The second sum Z5 is bounded similarly. Again, the terms where 7 is attained by a face in A or A” is

bounded by Ce~L/2 using Eq. (3.3). Otherwise, when r is attained by a face in Ppg, we have a similar
computation as above:

S Y Kedtto < N % S Keedto)

f€Pp gePT\Z, J>L3/2 g€Xjot;  fEF(ZP),
ht(#)<ht(Pg)

< Y T Xjgrg) [ Ke™
J>1%/2
< Y Kje¥ < Kemeb'/?
J=L3/2
The third sum Z3 is immediately bounded by Ce~ using Eq. (3.3).

Finally, the fourth and fifth sums Z4, Z5 are both bounded by 2L3K e=L*/2 gince there are 2L3 faces,
and the buffer of L3/2 increments above and below ensures that the distance r to a face where the interfaces
differ is at least L3/2.

Now for the remaining terms in Eq. (5.20), the remaining faces in Ig are captured in the sums

Yo 19 I8) = 9(fIp) + Y lg(f.Ig) — g(6f.1"?)]. (5.22)
1€Qe\% 1€QT\Z2

3 . —_ —_
These sums can be bounded above by Ke~¢L"/2 for some constants ¢, K in the same way as Z; and Z5 above.
Furthermore, the sums

D lolf 1) —a(F.1p) 1+ Y lg(f.1"%) = g(£,1"7)] (5.23)
fEA/ fEA”
are bounded by Ce~°* using Eq. (3.3). It remains to take care of the copies of Z;,Z, in the interfaces
Ié,]}D,I”Q,I”P. We have
S 1g(f. Ih) — 9(0f, Ip)| < Ce™° N2L3Ke L' /2
f€Zy
since interactions with walls of A’ are handled by Eq. (3.3) and interactions with Pg and @Qp are handled
similarly to Z4 and Z5 above. We also have
> 19(f.179) = g(0,1"7)] < Ce™®F N 2L Keek/2
feZs

by the same reasoning, except we need to use Eq. (3.2) this time instead.
Thus, putting everything together and recalling that we could take L = Lg 1 0o as 5 1 oo, we get that

[in((Pp x P, A))fin (@B, A") i ((QT, A”)
ﬂn((QB X QTa A))ﬂn((PBa Al))ﬂn((PT7 AH))

c [efCe_r‘Lﬂ 7 ece—cLﬁ]
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for some different constants C,c > 0. ]
We are now ready to prove the submultiplicativity statment of Proposition 5.6:

Proof of Proposition 5.6. We will write the proof in the notation of the nred case, noting that the previous
lemmas (and hence this proof) apply to the blue case as well. Let ® be defined as the composition of the
sequence of maps used in Lemma 5.10 to move from E} to €, »,. By applying Lemma 5.17 for this choice
of ®, Q= Qp, p,, and A= Agt%d, we have

d d
On(ALT ho | Eiriinn) < (L4 €8)0n (AT ny | Qans) -

We can always decompose the space {1, p, according to the pillar P, to write

S (A5 sy | Qniia) = Y Sl AT sy | Pe = P Qny oy )fin(Po = P) (5.24)
Peﬂhl,h,g

As argued in Claim 3.7, we know that on the event Qp, p, C Iso; 1, We have £ € Vpor and hence z € 17fed
Since z is a cut-point of P, we can apply Corollary 5.13 (with the convention that vy = v1 = z) to get that

T-1
S AT sy | Po = P Qi) = [ (AT, 1 D25 = X5}, Qnynay ATSD

Vi, Vit1

=1 ¢n(ATS,., 1 {2 = X}, v € Vi) (5.25)

where X is the last increment of P. (Recall that in Qp, p,, the pillar is capped at height hy + he and the
last increment is trivial). Now recall by Remark 5.9 that we can always write P = Pg x PT and change the
sum over P € Qp, p, into a double sum over Pg € {2}, and PT ¢ Qp,. Let y be the cut-point of Pg x prT
with height h; 4+ 1/2, and let i* be index of the trivial increment with vertices y,y — ez (so that y = v;x11).
First, note that since X;~ is a trivial increment, then y and y — e3 are in the same open cluster, and hence

¢ (Aande*+1 | {%* = X } Vix € Vred)

Next, observe that the event P, = Pg is equal to the event that P, has increments (Xq, ..., X;«_1), while
P, = PT is equal to the event that P, has increments (X;«11, ..., X7). Thus, by applying Corollary 5.13
again (and noting Example 5.15 following it with regards to the shift from being rooted at y to being rooted
at ), we have that the product in Eq. (5.25) above is equal to

On(ATS | Pa = Pp, Q0 )O(ATT, | Pe = PT, ). (5.26)

Combining the above three equations with Lemma 5.19, we have
G (TS sy | Qnina) < (Lhep) D D dulATS | Py Quy)d(ALSS | PT, Q) in(Pe)iin(PT)
PpeQn, PTeQp,

= (L4 £4)0n (AT | ) (ATSE | ). (5.27)

Finally, we can conclude by applying Lemma 5.17 again for Q = Q, and Q = Q. ]

Thus, we have proved the submultiplicativity statement Proposition 5.6. By using the decorrelation
estimates of Corollary A.7, we can generalize to the case where z,n on the right hand side can depend on
hy and hg, as long as we still have 1 < h; < nyp, and d(xhi,aAnhi) > h;:

Bu( A | EE) < (14 25+ 0y (1) + 01, (1) (AT, | Bt o, (AT, | Bp?)

Zhys Lho s

The analogous statement for blue also holds in the same way. Now we can apply Fekete’s Lemma to prove
the existence of the first two limits in Proposition 5.3.
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5.2. Establishing the rate for the bottom interface. We will now prove the large deviation rate for
the event Agf’ﬁ as in Eq. (5.6). This case is substantially easier because we do not need to work on the joint

space of configurations (w, o). Moreover, defining 2 <% h to be the event that there is a path of open edges
connecting = to height h via vertices of P,,, we have the following observation:

Observation 5.20. On the event lso; 1 1, the events Ag‘f}l and © <> h are equal. Indeed, on lso, 1 1 we
know that & € Vpor, whence it immediately follows that x <> h C Atz’?,tl. For the other direction, note that
the vertices (with height > 0) surrounding those of Py are all in Viop. Together with the assumption that x

is a cut-point and in Vpor, this implies that every vertex in P, which is in l//\bot \ Voot must be part of a finite
component which is surrounded by vertices of Py in Voor- But all the vertices of P, which are in Vpor have
an open path of edges connecting to = inside P,, and so AEC?;L C{z & n}.

With this in mind, we prove the following analog of Lemmas 5.16 and 5.17.

Lemma 5.21. Let ® be any map on interfaces sending E into 1so, 1,5 such that the action of ® on Py is to
shift increments or replace them by a stack of trivial increments, and to replace the base by a stack of trivial
increments with equal height. Suppose moreover that i, (®~(J)) < (1+&3)jin(J) holds for any J € ®(EY}).
Then, for any space 2 such that ®(EY) C Q C EY, there exists a constant eg such that

fin (A2, | €2)
fin (A2 | E)

- 1| <ep. (5.28)

Proof. By the same computation as in the proof of Lemma 5.17, the facts Ab°t CEf and i, (Q | EY) > 1—¢p
reduce the proof to showing that

fin (] A) > 1—e5.
Using the bound i, (®7(J)) < (1 + €5)jin(J), we can write
An(A%) = D (D)

Te ARt

x,h

> Zun

JEQ(AYY) T€D™

> ()1 +ep).

TED(A)

z,h

IN

IN

We conclude by arguing that the conditions on ® ensure that <I>(Ab°t) can Abot Indeed, if I € AZ‘,’Z and

J = ®(I), then J has a path of open edges in P; connecting = up to ht(v;), where vp is the first cut-point
of P! (since J is just a stack of trivial increments there). More generally, any stack of trivial increments in
P; also has an open path connecting the bottom and top cut-points of the stack. Furthermore, for every
increment X; € P!, Observation 5.20 shows that there must be a path of open edges connecting v; to v; 1,
and hence the same must be true regarding the shifted copy of X; in P;/. Hence, there must be an open
path in J connecting x to height h inside P;, which implies Ab°t by Obbervatlon 5.20 and the assumption
that @(Ag?,tl) C 1504, 1,4 [ ]

Equipped with the 3-to-3 map of Lemma 5.19, we can prove the submultiplicativity result for .Ab°t directly.

Proposition 5.22. For every 8 > [y, there exists a constant g such that for every h = hy + ha, and every
sequence x,n dependent on h such that d(x,0A,) > h,

O (AL o | By gny) < (L 8)0n (A%, | By )bn (AT, | E3,) - (5.29)

Proof. By Lemma 5.21 above, it suffices to prove instead

¢n(A;bC?;Ll+h2 | thhz) S (1 + 8/3)(]5”(./42?;“ | Qh1)¢71( T, h2 ‘ th) .
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But, Observation 5.20 readily implies that if P = Pp x PT for a pillar P € Qp, p, N Ag‘f}bl+h27 then
Pp € Q, N A2 and PT € Q, N A2 . Thus, we compute using Lemma 5.19 that

DA% 1 hy | Qo) = > fin(P x PT | Qp, 1,)

T bot
PpxPT€Qn ny ﬁvahlJth

(1+e5) > fin(Pp | ) iin(PT | Q)

Pp ><T‘)T€Qh17h2 mAl;(),th,1+h2

<(l+4ep) Y Yo (P | Q)i (PT | Qny)
PBGthm‘A‘;D,thl PTEQ;,Q mAI;QVth2
= (L+ep)in (AR, | Q) fin (A%, | Dna) - u
As done before, by using the decorrelation estimates of Corollary A.5, we can generalize to the case

where x,n on the right hand side can depend on h; and ho, as long as we still have 1 < h; < np, and
d(l‘hi R (Q)Anhl) > h;:

Sn(AZoin | Bi) < (1 €5+ 00y (1) + 01y (1) by, (AR 4y | By )b, (AR 1, | Ba?) -

Thy,

IN

Fekete’s Lemma then implies the existence of the last rate in Proposition 5.3.

5.3. Estimating the rates. To conclude this section, we want to prove that the above rates are distinct,
and provide some better bounds on their differences. Call an increment 2;° a simple block if it consists of
just two vertices v;,v;y1 where v;11 = v; + ¢3. For some constant C* sufficiently large (to be determined

below), let ¢4 be the good event that the pillar shell P2 has less than 4h + 1 + %h faces.

Lemma 5.23. There ezists constants C*,C,c > 0 such that for B, L sufficiently large, for all h > 1,
in(¥ | Efi 102 ) > 1—Ce " (5.30)
Furthermore, any any pillar in Ef NY has at least h(1 — %) simple blocks below height h.

Proof. Suppose we have an interface Z from EJ N lsog ; ;. We first prove that if there are fewer than
h(1 — %) simple blocks used to reach height h, then | (P2)| > 4h + 1+ %h. Indeed, suppose we expose
the increments one by one. When we expose an increment 2.° which is not a simple block, the height
increases by ht(v;4+1) — ht(v;), and the number of faces added to PS must be at least 4(ht(v;+1) — ht(v;)) +
(ht(v;41) — ht(v;) — 1) since each height in between the vertices is not a cut-height. That is, the number of
faces added in addition to four times the height increase is at least half the height increase (for increments
which are not simple blocks, the height increase is at least two). When we expose an increment that is a
simple block, we increase the height by one, and we add at least four faces to PJ. But, the latter can only

happen at most h(1 — %) times, and so the remaining height of %*h is made up by increments which are

not simple blocks. Thus, the number of faces in the pillar shell is at least 4h + 1 + %h (where the plus one

is just because there must be at least horizontal face that forms a “cap” of the pillar at the top).
Now, we can define the map ® as follows: If Z € ¥ N ISO;LJL NEY, then @ is the identity map. Otherwise,

let ®(Z) = J be the interface that replaces PZ with a stack of trivial increments of height h. Let T €
9°Nlsog 5, N EY, so that m(Z; J) > %h. For any such Z, using the cluster expansion we have

B = (1 e PO BT (3 6(£,7) = Y (£, ).
n fez feJg

To control the term (1 — e=#)I9ZI=1871 note that |07 | < 4Coh < Sg?) m(Z; J), where Cy is the number of
faces that can be 1-connected to a particular face. Thus, we have

(1 — e B)OTI=0T|  o=e PIOTI=10TN) < pe™ "EOMTT) < o Gom(T:T)

for sufficiently large 5. (The = can be seen to be an equality up to a factor of (1 —eg) in the exponent,
which has no affect on the final inequality. See for instance the computation in Eq. (5.31).)

To control the difference in open clusters, we will be slightly more careful than before. In Z, we can first
expose the vertical faces that bound the sides of the vertices of the pillar PZ. Since we are only exposing
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vertical faces which notably are not 1-connected to any faces of Z\ PZ except at height 0 (by Corollary 3.5),
there are not yet any new open clusters created. Since the pillar has height > h, we must have already
exposed at least 4h faces. Now, there are at most m(Z; 7) + 1 faces left to expose in the pillar (since we are
on the event ¢), and each one can create at most one open cluster, so that

IQI—KJSm(I;j)—I—l.

Finally, we bound the g-terms. We can write the absolute value of the sum of the terms as

S 9B D —gE D+ S e D+ S 19lf, T

FET\P, fert fery
We can bound the first term using Eq. (3.3):

S gD =g, NN D> 3 Ke o9 < el

FET\P, FEI\Ps g€(PZUPI)NLy 13

The second and third terms can be bounded by the number of faces:

ST Igtf DI+ D 1o, T < K@Bh+2+m(ZT;.7)) < K(

ferz ferd

168
C*

+ )m(Z; J) + 2K

Thus, we have the energy bound:
f_L" () < Ce (A= FEe8 — K~ 58 —log q)m(T:.7)
Mn('j )

For the entropy bound, we can recover Z from J if we are given the faces of PZ, since both Z and J are in

Isog 1z p. There are 4h +1+m(Z; J) < (gB +1)m(Z; J) + 1 faces in P,.. Thus, by Lemma 2.12, we have for
some s > 0,

HT € @7 1(J) 1 m(Z; T) = M}| < sl DM,
Thus, we have

ﬂn(gca E}f’ lsog,L,h) S Z Z :L_"n(I)

M> g‘; h IEY°NELNIso; 1 4,

m(Z;®(Z))=M
_(B_K168 g 8Cq LTy
< Z Z Z Ce (B—~g"—K——F&+% logq)m(I,J)Mn(j)
Mzggh jEE‘zﬂlsogyL’h IE@’I(J),
m(Z;J)=M
_ _ K168 _ _SC’ _ _ (88 X _
C B Cur R e D g (5 1)
M>$2h

~_— c—*—8K—410gs h+c—* log g+log s)h -~ T (¢
< Ce (3 Mt 35 M i (E7, 1509 1 1) -

The lemma follows by dividing by fi,(E7, Isog 1 5,) and taking C*/2 strictly larger than 8K + 4logs and
then taking £ sufficiently large. |

Remark 5.24. The above lemma says that a typical pillar reaching height h will have h(1 — eg) simple
blocks, which for our purposes is all the precision that is needed. We note one can get a sharper bound of
having at least h(1 — Ce~“?) simple blocks via the following proof strategy: We can reveal the increments
Z° one by one, and each increment will increase the number of faces revealed in the pillar shell by at least
4. By Eq. (3.11) (and noting by Remark 3.21 that we can really apply this bound one increment at a time),
the number of additional faces revealed for each increment is stochastically dominated by Geom(p*) — 1
with p* =1 — e~ (¥~ for some constant C. There are at most h increments needed for the pillar to reach
height h, so the total number of faces in the pillar shell with height < h is stochastically dominated by
NegBin(h, p*) + 3h. We can then use known large deviation results concerning the Binomial distribution to
bound the probability that the number of faces in the pillar shell exceeds 4h+e~?h for some constant ¢, and
argue as in Lemma 5.23 to show how this implies the lower bound on the number of simple blocks. Although
the map argument presented above gives a weaker result, it allows us to use the machinery of Lemma 5.17
in what follows.
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We are now in a position to obtain lower and upper bounds on the rates ¢,¢’,” that are sharp up to a
factor of 1 4 €3.

Proof of Proposition 5.4. It will turn out that the probabilities in question are on the scale of e_o(efﬂh),

so we can throw the event ¢¥¢ as an additive error and it will not affect the large deviation rates. Now, on
the event & Nlsoy ; , N EF, suppose we reveal the pillar shell Py = Pp. Let B be the indices of the first

(1- %)h increments intersecting with L« which are simple blocks. Now, suppose we have a simple block
increment consisting of vertices v and v + ¢3, where we know that v € V,. Then, since v + ¢3 is a cut-point
and is thus surrounded by vertices of Ve, the event v + e3 € V <4 is the same as v + e3 just being non-red.

Thus, v+e3 € V "4 can occur either if the edge [v, v+ e3] is open, or if [v, v+ e3] is closed and v+ e3 is colored
non-red. By Corollary .13, this conditional probability can be computed as if on a coupled FK-Potts model
on two vertices with boundary condition o, = nred. This probability is

p (1-p)g q—1

—1—eB(l—gg)=ec "A=2p) +0(e 28
p+(1—-pq p+1-pqg q (1=e5) ™)

— ¢ "(1—ep)+log(1+0(e™ " 78))

— e "(-%) (5.31)

On the event IsogyL,h, we know z is a cut-point and z € Vyor. So, via a computation similar to Eq. (5.25),
we can use Corollary 5.13 to write

bn( Anred | P°.9, |SOI L hth H bn AZ:‘?dL+1 , V5 € ﬁed) H (Azfeg +1‘ , Ui € ﬁrced>

i€B i¢B
X9ﬂ£<h7f®
_eB(1—¢ _C*\p 3
—e® (1-&p)(1—%55) H ¢n("42fdl+1| ,Ui c Vrced)
i¢®
X?ﬁﬁg;ﬁé@
< em¢ P1=E)1-5)h (5.32)

We can also get a lower bound by considering the probability that for each increment X?,i ¢ B that
intersects L<p, we have a path of open edges connecting v; to v;41. Let Q; be a minimal A,-path from v;
to v;41 using vertices of X?. We argue that we can control the length |Q;| by the number of faces in X¢.
Let V be the set of vertices in X? (including v; and v;41). Let H be the set of faces of X? plus the faces
Jwiwi—es) A0 flo, 1 0, +e5)- Then, V' is precisely the set of vertices in the component of R3\ H containing
v;. Note that by definition, none of the faces of X? (and hence of H) separate two vertices of V. Then,
defining Ay gV as the subset

Ay gV = {u eV Just flu. € F} ,

we know that Ay gV is A,-connected (see [11, Prop. 6],[12, Thm. 7.5]) and contains v;, v;11, so that the
length of @Q; is at at most |Ay gV]|. We have a crude upper bound |A, gV| < 10|H|. Now, to avoid
overcounting faces of Py, let us attribute to each increment X all of its faces except the four faces adjacent
to v; at height ht(v;). Then, at least 4h(1 — —) faces are attributed to increments with indices i € 9B. Since

Pp has at most 4h + 1 + g—ﬁh faces (recall we are on ¢), this leaves at most 926;3 faces to be attributed to

increments with indices i ¢ 9. The number of faces in H is six more than the number of faces attributed to
X?, and each X? gets attributed at least four faces. Hence, for another constant C* (namely, C* = 10- gC’*)7

we have ~
9C*
Z Qi < 55
i¢B
In other words, we can guarantee that v; is in the same open cluster as v;y; for each i ¢ B if we force

a specific set of 92é - = [u,v] being open is at least the
conditional probability that e is open given that u,v are not in the same open cluster in w[y \(3. We

compute this to be

b

_B ~
= 1—qge Pl —ep) = (%), 5.33
p+(1—-p)g (1 ~¢e) (5.33)
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where the second equality is computed similarly to Eq. (5.31). Thus, combined we have

¢n(«4med | P79 1505 1, By) = | I on AZ:?dLH » Vi € Vred) I | (AZCE?;M\ s Vi € Vi)
i€B i¢B
Xfﬂﬁs;z#@

> e P(1-Ep) (1= )h y—ae™ P (1-85) %5 h

= e P(1-E0)(1- S +a 2 (5.34)

Now, the bounds in Egs. (5.32) and (5.34) are uniform over P2, so the same bounds apply for (bn(A"rEd
B}, 9,150 1 1,), which has the same large deviation rate as gbn(A”'Ed | E¥) by Lemmas 5.16 and 5.17 applied
to the composition of ®is, with the map used in Lemma 5.23. Thus, we have established Eq. (5.7).

Slmllar to before, we work out the followmg probability that the top vertex of a simple block increment
is in mee given that the bottom one is in mee

P (1-pg 1 B N (g-DeP(1-25)
p+0-pq p+d-paq (a= D71 —ep) = e ’
whence the same argument as above implies Eq. (5.8).

Finally, we would like to use an analog of Corollary 5.13 to once again break up the event Ab increment
by increment so that we have analogs of Egs. (5.32) and (5.34). Then, the proof of Eq. (5.9) Would conclude
as above via the computation of the probability of having an open edge between two vertices of a simple
block (which was already computed in Eq. (5.33)). The statement in Corollary 5.13 is a Domain Markov
statement in the joint space of configurations, which is stronger than the statement we need for just the
random-cluster model and could easily be adapted to handle the case of A = Ab°t The one minor issue is
that the joint measure ¢,, used there is only defined for integer valued ¢, and we want the result for all real
q > 1. So, we adapt the proof of Lemma 5.12 to apply in the context of the random-cluster model for the
more general set of g.

Lemma 5.25. Fiz a rooted increment shell X2 and let G, = (V4, Ey) be the induced subgraph of A,, on the
vertices of X. Then, conditional on the event Z;° = X7, the law of w|g, is that of a random-cluster model
on G, with free boundary conditions.

Proof. As shown in the proof of Lemma 5.12, the event 27° = X7 does not impose any conditions on w/ g, .
Now, let 9V, C V, be the subset of vertices Wthh are A, adjacent to V2. By the Domain Markov property,
it suffices to show that on the event %£;° = X2, there is no path of open edges in E¢ that connects two
vertices of OV,. For any vertex v € 9V, \ {v;,vi41}, every edge e € E incident to v is such that f, € X¢,
and hence w, = 0. Moreover, regardless of what P is, any path () connecting v; to v;11 using only edges of
E¢ must include an edge e such that f. € P, whence ) must include a closed edge. |

Together with Observation 5.20, this enables us to write
¢n(~/42 ‘PO g ISOthth):an(x(i)h‘Po g ISOthth)
= H P (Vi < vig1|X7) H On(vi € vi1]X7),

i€B igB
X?ﬂﬁghf(a
and the proof of Eq. (5.9) follows via a similar computation as done in Egs. (5.32) and (5.34). [ ]

6. MAXIMUM OF THE RANDOM-CLUSTER AND POTTS INTERFACES

This section uses a modified second moment argument to establish the tightness of the minima/maxima
of the Potts and random-cluster interfaces from the large deviation rates established in Sections 4 and 5, as
was done for the Ising interface in the proof of [3, Proposition 6.1]. We prove that the maximum of the four
interfaces we have defined are tight around a specific constant which we also identify. Since the proofs for
the different interfaces are largely the same, we will focus on proving the result for the top interface of the
random-cluster model and note along the way what modifications are needed for the other interfaces.

Even though we proved the large deviation rates for the events .A"¢9, Ag':}f, AZ?Z in the previous section,

x,h >
we still want estimates on the probability of these events for small h as the goal is to establish tightness.
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Thus, we begin by noting that the upper bound in Proposition 2.24 has an immediate corollary resulting
from the fact that the top interface lies above all the other interfaces.

Corollary 6.1. For the same By and constant C > 0 as in Proposition 2.24, for every B > By, for all x,
and for all h > 1,

Sn(ALS) < exp[—4(8 — C)h],
and similarly for A2, A% .

Similar to before, we can also prove a rough lower bound on these exponential tails:

Proposition 6.2. For the same [y and constant C > 0 as above, for every B > (g, for all x, and for all
h>1,
p 1 d
—4f +log —————— < —log ¢ (A7) < —48+C,
B %% T g = < 5 10g dn(AZ) B
and similarly for Ag"}f, Ab°t

Proof. The same proof as Proposition 2.26 holds here with the following minor adjustment. Recall that in the
proof for the lower bound there, we showed that the probability of having an interface Z with a ceiling face
at flz,z—es], and then appending the faces surrounding a column of h vertices above x is > (1 — 65)6_’8(4h+1).
On this event, we can force open h edges to connect all the vertices in the column to each other and to = —es,
which was in the same open cluster as A, to begin with (as we started with fi, ,_.,] being a ceiling face).
This guarantees the event .Ab°t (which implies A;iid, Ab'“e) and the cost of forcing these h edges to be open

is ( b (we have a Welght of (1 — p)q for closed edges because each closed edge in the column always

p+(1—p)q)
creates a new open cluster). [ |

Towards defining our desired tightness results, first note that Corollary A.5 shows the existence of the
following limit for any h > 1:
an = lim —log in(E),
n— oo

where 0 = (1/2,1/2,1/2). Taking the limit n — co in Eq. (4.1), we have
Qhy+hsy > Qpy + Qpy — 36 —é&B- (61)

By Fekete’s Lemma, we know that the limit %ah exists, and it is moreover equal to « since Proposition 4.1
holds for any n = ny, such that d(x,dA,) > h.
Analogously, by Corollary A.7 we can define

nred _ hm _10g¢n(Anred)

and similarly for blue and bot. Combining Eq. (4.1) with the submultiplicativity propositions we proved for
the other interfaces (Propositions 5.6 and 5.22) proves Eq. (6.1) for afred, ablue qbot,

Now we want to compare ay and ap11. Because of the increment map and Theorem 3.16, it suffices to
consider (at a (1 + ) multiplicative cost) just the subset of pillars in Ey with a cut-height at h — 1/2. Let
w be the vertex in P, with height h — 1/2 , and let y = w + ¢5. Every configuration with the edge [y, w]
open is already in £}, . For the remaining configurations with [y, w] closed, we can first force the five edges
[y,y £ e1], [y, y £ ea], [y, y + e3] to be closed at a cost of €># /¢ (see the computation done in Observation 2.25,
noting that closing these edges creates a new open cluster {y}). For any resulting configuration w, the edge
e = [y,y — e3] is closed, but we can recover a factor of ge=#/(1 — e™#) by considering versions of w with e
open. That is, w®! € B¢, and pi, (w) /gy (w®!) = ge=? /(1 — e7#). Combined, we have

apy1 < ap +48 +¢€g, (6.2)

and by induction we have for any [ > 1,
apti < ap + (48 4+ ep)l. (6.3)
Note that the above computation ended with configurations in Ej ,, with the edge [w,y] open. Hence,

bot nred blue
: Qp

the same computation proves the analog for a;°". Similarly, the analogs for o} can be shown by
bounding the cost of changing the color of a slngle spin in the Potts model by e*? (H‘Eﬁ) (see for instance the

computation in [9, Proposition 2.29]).
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By Proposition 2.26, there exists a constant C' > 0 such that for all h,
4(8 — C)h < ap < 4pBh. (6.4)

Finally, Fekete’s Lemma additionally tells us that o = sup %ﬁ*% as long as we have Eq. (6.1). (For
the Potts interfaces blue and red and the FK bottom interface, the upper bound needs to be adjusted to
(45 — log p+(1p7—p)q)h using Proposition 6.2, but this will never matter in the computations below as we will

only use this bound to show that aj, = O(h).)
Now, define

m, =inf{h : aj > 2logn — (/2}, (6.5)
and analogously for the other interfaces. We can now state the main proposition of this section.
Proposition 6.3. Consider the mazimum My, of Liop, for ¢ > 1 fized. Setting m}, as in Eq. (6.5), there exist
Bo and Cy such that for all B > By and sufficiently large n,

fin(My, & {m;, —1,m3}) < Coe /2. (6.6)
Moreover, for every 2 <1 < y/logn,
ﬁn(Mn > mz + l) < Cp exp ( —ap—1 + %) ,
fn (M, <m) —1) < Cy exp ( — a1 + %) )
In fact, the right tail can be extended to all 1 <1 < %log n. Furthermore, forl > %log n, we have the tail

fin(M, > m} +1) < e~ F=Coll

The same statements for the maxima of the red, blue, and bot interfaces also hold for m} and oy defined by
their respective interfaces, where q > 2 in the Potts setting.

We will get the right tail using a union bound, and the left tail by using a second moment computation.
For this, we need a few preliminary results. Let £, /5 ,, denote the set of vertices with height 1/2 in A,,. Let

Df/zn be the subset of L;/5 , with distance larger than log? n from 9A,,.

Definition 6.4. Define the event G7 to be the event E} with the following additional requirements:
(1) The vertex x is a cut-point of P,
(2) P € E,f in the context of the maximum of Z,p; for the other interfaces, further require:
° .A;tild in the context of the maximum of Zeq;
° .Ag'y“f in the context of the maximum of Zye;
e AP% in the context of the maximum of Ziet.

(3) The faces of Z which are 1-connected to P, (and not in P,) are the four faces 1-connected to the
face fiz,o—e,) With height 0, and possibly the face fi; ,_.,) itself.

Zy = Z 1{02} .

J;EL(I)/Zn

Define also the random variable Z, by

Note that in the case of Ziop, G7 is implied by Isox7L7hﬂE,f, and thus for x € ﬁcl’/Q o h < log?n < d(x,0A,),
we have

ﬁn(G?cL) > (1 - 5ﬂ>/jn(E}f) . (6'7)
For the cases of the other interfaces, we have
fin(Gr) 2 (1 —eg)fin (A7 1) (6.8)

by additionally applying Lemmas 5.17 and 5.21 with 2 = G7, where x can be any of nred, blue, bot.
To get a lower bound for E[Z}], we begin by noting that by Corollary A.5 and taking m — oo, we have
that for 1 < h < log2 n,r € E‘l’/z -,

fin(EE) = e~ + O(e 18" /Oy = (1 4 o(1))e " (6.9)
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since ap, = O(h). For the other interfaces, we can similarly apply the appropriate decorrelation result to the
( , y apply pprop

events AY5H, APl AP to get that for x being nred, blue, bot,

in (A% ) = €7 + O(e™ 198 /) = (1 4 o(1))e (6.10)
Note also that by using Eq. (6.2), we have
210gn—§<am;§210gn+¥+55. (6.11)

Now in preparation for the proof of the left tail, take h = m} — [ for any | < y/logn. One can check (via
Eq. (6.11) and the fact that lim,—.o ap/h = @) that m}, = (2 + o(1))logn, and so we have h < log? n as
needed for the results above. For [ = 1, we simply have by definition of m} that

B

Qmx—1 < 2logn — 5.

For [ > 2, by Egs. (6.1) and (6.11), we have

Qmx 1 < Q1 — g1 + 38+ e < 2logn — g1 + % +eg.

2

Plugging this estimate into Eq. (6.9) and also noting that [£7 , | = (1 —o(1))n*, we have for sufficiently

large n and [ > 2,

ElZp:t] = Y. An(Gh. ) > (1—eple”Pet (6.12)
zeﬁ‘;/z)n
and for [ =1,
ElZpsoa)= Y. in(Gh. 1) > (1—ep)e” (6.13)
xeﬁ‘fmyn

We also have the following estimate concerning pillars in G7, Gj, for x,y close to each other.

Claim 6.5. For all § > By, there exists a constant €z such that for all h < log® n, (z,y) € E‘l’/zn with
d(z,y) <log®n and n sufficiently large,

(e® +q—1)2

[in (G, Gy) < (1 +€5) fin (B i ()

where the definition of G5, can be taken with respect to any of the four interfaces.

Proof. First note that by set inclusion, it suffices to prove the case of Zip. The proof is similar to that of
Lemma 4.15. The idea is to reveal the interface Z \ P, and use the Domain Markov property to show that
the information revealed is essentially all increasing information (with the exception of a single closed edge).
Then, using Aj as a proxy for Gj, we can use FKG to remove the conditional information generated by
revealing 7 \ P,. Since the justification of the Domain Markov step is quite lengthy, yet almost the exact
same as the one provided in the proof of Lemma 4.15, we defer the proof of this claim to Claim A.9. |

For z,y far away from each other, we still have the decorrelation statement that for some C' > 0,
|in (G, G) = fin(GF)fin(GY)| < Ce™ @0/ (6.14)

For justification, see Appendix A, noting that because the conditions of Gj have been chosen so they
are determined entirely by the pillar P, and the walls it is a part of, this decorrelation statement follows
immediately from Propositions A.1 and A.4 and Claim A.2.

Proof of Proposition 6.3. Set h = m} + [. For the right tail, take any 1 <[ < %log n. We have

(M, >mi+D < > BN+ D Aa(ER)

weLl/ln\E?/z,n TELY )5

< L2 \ L2 2 le™ PO 4 1L9 5,1 (1 4 0(1))e ™o,

using Proposition 2.24 (or Corollary 6.1 for other interfaces) for the first sum and Eq. (6.9) for the second.
For the maximum with respect to Z,eq, Ej needs to be replaced by .A;',id, and similarly for Zye and Zpot.

Recalling that o < 45 and a = sup,, W, we have

ap—4(B—C)h<ah+3B+es—4(8—C)h < Ch+3B+¢es.
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(For the other interfaces, the upper bound on the large deviation rate is 48 + €g, but the above statement
still holds with a different C'.) Thus, we have

o —4(B—-C)h
|‘Cl/2,n\‘cl/2,n|6 < 4nlog2n e3ﬁ+5ﬁec(%+o(1)+%)log" :0(1)
1£3 /0 nle™e — (14o(1))n?

as long as (8 is large enough so that C(% +o(1)+ %) < 1. Plugging back into the first inequality and using
Eq. (6.1) followed by Eq. (6.11) to estimate e~*", we have
fin(My, = miy 1) < (14 0(1))IL5 )5 ,le™ " < (14 0(1)[£3 5, |6~ Oma—0r+30 e
< (14 o(1))n2e2logntibtes—ar < (1 4 gg)esfr (6.15)
which proves the right tail. (Note that because oy > oy—1 + a1 — 38 —ep > ;1 + 8 — C, the right tail can

be rewritten as Cle ~®-1 as in the statement of the proposition.)
To extend the right tail for all [ at a sub-optimal rate, we can use (for all four interfaces) the bound of
An(EY) < e~ 4F=Oh and the observation that for [ > %log n, we have n2e=2%! < 1. Thus, for [ > %log n,

(Mo 2mi +1) < " n(Bey) <Y n(BF) < ne 07O < em200-O0,
€L /2 m T€LY /2 m
To prove the left tail, let h = m} — [ for [ < y/logn. We compute:

x7y€‘cc1)/2,n xeﬁ?/%n

+ ) 3 fin (G, GY)

w,eﬁ‘f/zm yELi’/2wnﬂB(z,log2 n):y#x

+ 0y > [in(G3) i (G}) + | (GR) i (G}) = fin (G, G})
T€LY )5, YELS ) \B(x,log n)
= El + 52 + 53 .
By definition, =1 = E[Z},].
By Claim 6.5, we have
B —1)2
Zy < 4n?log! n(l+ 55)w sup  fin(ER)in(E}) < n?t°M  gup fin(EE)2. (6.16)
q T.YeLs,, €LY )

By Eq. (6.9), we have i,,(E}) = (14 o(1))e~*». But by Egs. (6.3) and (6.11) and the fact that [ < v/logn,
we get that e~ = n=2t°(1), Combined with Eq. (6.16), we have that

Ty < p 2o — o(1).

Finally, for Z3 we have by expanding the square that

> 3 i (G (GY) < E[Z3)%,
T€LY)y . YELS ,  \B(w,log?n)
and by Eq. (6.14) we have
_ T\ — — xT o — lo, 2n
> > fin (G5)iin (GY) — in (G, GY)| < CILS jg P78 /€ = 0(1).
€€LY)y , YELS ,  \B(w,log?n)

Thus, by Paley-Zygmund, we have
E[Z1)? S E[Z1)?
E[Z7] ~ E[Zn]* + E[Z4] +0(1)

or equivalently,
14+ 0(1)

,L_Ln(Mn < h) < ﬂn(Zh = 0) < m .
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For h = m} — 1, the lower bound on the expectation computed in Eq. (6.13) gives us

fin(M, —m? < 1)< (1+eg)e™ | (6.17)

whereas for h = m} — [ for [ > 2, we have by Eq. (6.12) that
fin(M,, —m? < 1) < (1+eg)e® -1 (6.18)
This concludes the proof of the right and left tails, and combining Egs. (6.15) and (6.17) immediately proves
the claim in Eq. (6.6) that M, is, with probability (1 — C’Oe_g), either m) — 1 or m}. |

Corollary 6.6. There exists By such that for all § > By, for sufficiently large n,
my, —1—eg <E[M,] <m} +¢g,
and this holds for M,,m? defined with respect to any of the four interfaces in random-cluster/Potts.

Proof. By the right tails of Proposition 6.3, we can write

00 logn 58
E[(My —mp) ] <O fin(My —mjy > 1) < Coe P2+ 3" Coe™ 12 + Y~ 72071,
=1 =2 I>logn

By the estimate of e~ < =48~ in Eq. (6.4), we have that
E[(Myn —my) 4] < ep.
Similarly using the left tail, we have

El(my, — 1= M,)4] = E[(m; =1 = Mp)41ar, <mps—viogny) T El(my — 1= M) 1iag s — iogm)

Viogn 58
< O(logn)eOWoem) 4 Cpe=h/2 4 Z Coe~ 172 <gp.
1=2
Now define p,, = fin (M, < m}), so that

E[MnY (0, >ms3] = my (1 = pn) + E[(Myn —mg,) 4]
E[Mpn1iar, <mz —13] = (my, — D)pn — E[(my, — 1= M) ].
Adding these together and applying the bounds computed above, we have
my, —pn — € SE[My] <myp, —pn +ée5,
whence the proof concludes by using the trivial bound 0 < p,, < 1. |

Thus, the results of this section show that the maxima of the four interfaces in random-cluster/Potts are
tight around their means, and their means are equal to (2 + o(1))logn where a should be replaced with
the appropriate large deviation rate for the respective interface. By observing that the minimum of the top
interface has the same law as the maximum of the bot interface, and the minimum of the blue interface has
the same law as the maximum of the red interface, we conclude the proofs of Theorems 1.3 and 1.4.

APPENDIX A. DECORRELATION ESTIMATES

Proposition A.1. Let 20, be the collection of walls nesting x. With probability 1 — Ce= P~ for some
constant C' > 0, the walls in W, are indexed by vertices distanced at most r from x.

Proof. If there is a wall W nesting x such that W is not indexed by any vertices within distance r from =z,
then the excess area of W must be at least r. The proposition then follows immediately from the bound on
the excess area of a group of nested walls in Eq. (2.5). [ |
Claim A.2. The entire pillar P, (and hence the event EJ), as well the event Ag?}tl, 1s determined by 2,
the collection of walls nesting x. The collection 20, moreover determines the conditional probabilities of the

nred blue
events AY5, A2
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Proof. Let F be a finite (maximal) 1-connected component of faces in F¢, that is moreover disjoint from Z.
Let V denote the set of vertices separated by F' from 0A,. By maximality of F', all the edges of A, F are
open, and by Proposition 4.13, the graph (AyF, AgF) is connected. Hence, all the vertices of A F are part
of the same open cluster. By the definition of ﬁop, the vertices of V are in ﬁop if and only if the vertices of
Ay F are, and similarly for Vbot Thus the face set F' plays no role in determining whether or not the vertices
of V are in Vtom and similarly for Vbot In particular, both the pillar P, and the event Ab are unaffected
by such components as F', and are thus determined entirely by the collection of walls 20,.. Now recall that
by the Edwards—Sokal coupling, we can sample the Potts model by first revealing the edge configuration,
and then coloring open clusters independently at random. Again, for F' and V as above, the random color(s)
assigned to V' do not affect whether or not the vertices of V' are in Vred, and similarly for Vbh,e Hence, fixing
the collection of walls 20, also determines the conditional probabilities of the events Agf‘;d, .Ab'”e [ |

The proofs of the next two propositions (Propositions A.3 and A.4) follow from what is already known
in the literature. Indeed, in [2, Propositions 2.1, 2.3], it is shown how the decorrelation statements in Ising
follow from the machinery developed by Dobrushin in [5, Lemmas 1, 2] once certain bounds have been proved
relating to groups of walls in the interface (see [2, Egs. (2.2)—(2.7)]). However, Dobrushin’s machinery is
general and not restricted to the Ising model, and hence the proof in [2] holds in the Random cluster setting
as long as we can prove the analogous bounds. In fact, the only remaining bound not already proved in [11]
is the following: Take any admissible group of walls (F})zer, ,»- Recall that & denotes an empty wall. Let
Z(Fy | (Fy)ysa) denote
n L ﬂn(Fra (Fy)y;ﬁr)

Then, for some constants C,c > 0 and all 8 > fy, all z, z,

’1 AT

< CecPle—=l (A1)

if
|z — z| > 10(m(F,) + m(F,)).
Furthermore, denoting W,, = A, N Ly /5, we have for any m > n,

‘log gpwm(Fac | (Fy)yEWn\acv (gZ)ZEWm\Wn) < C’e*CB(minyEWm\Wn |lz—yl|) (A2)
Q;n(Fw | (Fy)yEWn\x)
if
i —y| > 10m(Fy).
Jonmin, [z —y| = 10m(Fy)
The proof of these two bounds uses cluster expansion, and is done in the Ising case in [(]. The same proof

applies here verbatim as long as we can additionally control the terms (1 —e~#)I9Z1=1871g52 =57 in the cluster
expansion when comparing interfaces. However, it is clear that looking at the ratios in Egs. (A.1) and (A.2),
these terms will all cancel out to be equal to 1. Hence, we have

Proposition A.3. For every 8 > fg, there is a constant C > 0 such that for every n < m, r > 0, and
sequence x = Xp,

”ﬂn((ﬂS)IS—xKT €)— /?Lm((yS)\s—xKv‘ € )llrv < Cexp(—(d(z,0A,) —1)/C).

Proposition A.4. For every B > [y, there is a constant C > 0 such that for every n, r > 0, and sequences
T = Tn andy:yn;

i ((Fs)js—zi<r € -+ (F)ji—yi<r € ) = Fin((Fa)jo-sl<r € Vin((Fy)jt—yi<r € llry < Ce(F7I20/C

We now apply these decorrelation estimates to our events of interest, which we phrase as the following
corollaries:

Corollary A.5. For every B > By, there is a constant C > 0 such that for every n < m, and sequences
T =T, Y= yn such that d(x,0A,) A d(y,OAy) > r,

|iin(ER) — im(E})| < Cexpl—r/C].

Moreover, the same statement holds with the events Agf’,tl, Azf’,tl instead.
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Proof. We follow the proof of [9, Corollary 6.4]. For N large, we can write

| (ER) — im (E})| < | (ER) — AN (ER)| + AN (ER) — An (ER)| + |Em (E}) — v (ER)] -
By Proposition A.1 and Claim A.2, we have after paying an additive error of Ce~(#~=)" that the first and
third terms are bounded by Cexp[—r/C] by Proposition A.3. For j large, this additive error is of smaller

order than our bound. The second term vanishes as N — oo by translation invariance in the xy-directions
of the infinite volume measure. n

Corollary A.6. For every B > By, there is a constant C > 0 such that for every n, and sequences x = x,
and y = yn, such that d(x,y) > r, we have

|fin (B, B) — fin(ER)in(E})| < Cexp[—r/C].
Moreover, the same statement holds with the events Ag‘,’,tl, AZ‘)’Z instead.
Proof. This is immediate by combining Proposition A.1 and Claim A.2 with Proposition A.4. ]
For the Potts model, the results only make sense for ¢ > 2, but otherwise the proofs are exactly the same.

Corollary A.7. For every > Bo, q > 2, there is a constant C > 0 such that for every n < m, and
sequences * = Ty, Yy = Yy, such that d(x,0A,) A d(y,0An) >,
|6 (AYS) = dm (A5 < Cexp[—r/C].

Moreover, the same statement holds with the events Az':’}f, .Ag'y‘;f instead.

Corollary A.8. For every B > By, there is a constant C > 0 such that for every n, and sequences x = x,
and y = yn such that d(z,y) > r, we have

|on (A5 AYS) — 0n(AT5)0n (A5)] < Cexpl—r/C].

Moreover, the same statement holds with the events Ag',‘;f, AZ')‘;f instead.

Finally, we provide the missing proof of Claim 6.5, which is restated here for convenience. Recall the
definition of G} in Definition 6.4.
Claim A.9. For all B > By, there exists a constant eg such that for all h < log®n, (z,y) € 5‘1)/2” with
d(z,y) <log®n and n sufficiently large,

(e +q—1)2

.an( fw GZ) < (1 +5ﬂ) ﬁn(E}f)ﬂn(EZ)a

where the definition of G, can be taken with respect to any of the four interfaces.

Proof. As noted before, we can assume that we are working with G7 defined with respect to Zip. Begin by
defining the sets

D, = {I = I(w) for some w € GE NG},
and

:‘5; = {I S @}L : f[y,y,%] € [} .

We can force the face below y to be in §¢, at a cost of etMTq*l by Observation 2.25, noting that closing
this edge always creates an additional open cluster because the event G}, ensures that y is a cut-point and
thus cannot have a path of open edges to y — es without using the edge [y, y — es]. Furthermore, the event
G7 only concerns properties of the interface. Thus, we have

DL P g —1p(DY) Prg-1 1
in (G 1) fin(Dn) ¢ pn(Dn) a  pn(Dn) 2 hnl )

Ied!
Now, we want to group the interfaces according to the truncation 7\ P,. Recall that this truncated interface

is obtained by removing from Z the faces of P, and adding in the faces which are directly below vertices of
P, which have height 1/2 (see Definition 3.1). As this is not equal to the face set “Z set-minus P,”, we will
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write Z' = Z \ P, to avoid confusion and also highlight the parallel to the proof of Lemma 4.15. With this
notation, the above sum is equal to
el +q—1 1
a  n(Dn)

S T =T1,G).

I 1ed}

Now recall that we showed in the beginning of the proof of Proposition 4.5 that E,”f Nlsog ., € AY. The
only property of Iso, 1, used in that proof was that x is a cut-point, and hence G} C Aj as well, so the
above is easily upper bounded by
rqg-1 1
q Hn (Qn)

> (T =T, 47).

I':1e®1

It is important that we move from the event G to Aj because the latter is defined independently from
the interface, and is also a decreasing event. Now, define 971’ by deleting from OI’ the 4 faces that are
1-connected to the face f}, ,_., (out of the 12 such faces) and have height > 0. On the event 7' = I, we
know that 971’ C ., by maximality of Z. Ordinarily, we would not know that I’ C §¢ because I’ can include

faces that are not in I. However, the event G}, ensures that the only possible extra face in I" is Jly,y—es]» and
ﬁ)}l was defined so that this face is always in I. Hence, combining the above gets us
Ftrg—1 1
fin(G, GY) < &1 S I CF, O C Fuy AL). (A.3)
¢ pn(Dn) .
I:Iedl
Writing the latter probability as
fin(I' €35, 011 C By AY) = pin (AL | S1) pin (Sp7)

for

Sp={I'Cg,0I' C3.}, (A.4)

we note that the events S;- are disjoint by applying verbatim Case 1 from the proof of Claim 4.17. Since
every Sy for I' € ®), further implies G¥ and D, it follows from the above claim that

Z ,Ufn(SI/) Sﬂln( ﬁa Qn)a

I:1ed1
and consequently (together with Eq. (A.3) and the fact that G} C E}):

o rqg—-1_
fin(Gh, Gf)) < ————[in(E}) max p, (A} | Sr) . (A.5)
q IIe®!

n

Hence, to conclude the proof it will suffice to show that for I’ such that I € @}L,
C(B, q)fin(E}); namely, we prove this for C(8,q) = (1 +¢eg)(e® + ¢ —1).
As before, most of the labor is showing that

pn (A} | I CFE, 0T C F) = pin( AL | flyy—ea) €F0, O CFu) (A.6)

By Proposition 4.13, the subgraph K = (AyI’, Agl’) is connected. Let By be the vertices of AyI’ N A,, with
a A,-path to A} that do not cross a face of I, and let By be the edges of the induced subgraph of K on
By. Then, Claim 4.19 implies that the graph (By, By) is connected, as I’ is an interface.

Now let G be the subgraph of A, induced on the set of vertices V that are not disconnected from AA;}
by I'. Let E be the edge set of G. The next claim says that G is the right graph to be looking at, and is
the analog of Claim 4.20. The proof is nearly identical, except we need to use properties of Gj instead of
properties of the event I'; = defined there. We include the full proof for completion. For ease of reference,
denote the four adjacent vertices to y that have height 1/2 as 21, 29, 23, 24.

we have i, (A}, | Spr)) <

Claim A.10. For any interface I € L, let G = (V, E) be defined as above (w.r.t. I'). Then, conditional
on 9" C F,, the event A} is measurable w.r.t. {we : e € E}.
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Proof. As in the proof of Claim 4.20, by the definition of A} it suffices to show that for any 1-connected
subset F of §& N L>g that includes {f}, .,)}i_;, the edges {e : f. € F} must all belong to E. First, we show

{[y,z]}io, C E, (A.7)

or equivalently that y and each z; are in V. For any I € @}L, the requirement that P, has a cut-point at y
ensures that I does not separate any of the z; from A}, and I’ C I. Thus, {z;}}_; C V. Furthermore, since
{f[y,zi]};‘:1 NI" =0, then y is also in V. (In fact, since fi, ,_e,) € I’, we additionally have that y, z; € By.)
Second, we show that

{f : ht(f) > 0 and f is 1-connected to Ule f[y,zi]} NnI'=9. (A.8)

Indeed, we know that for any I € @}L, by the fact that y is a cut-point of P, we have f}, . € P, for each
i =1,...,4. Thus, any faces whose height exceeds 0 and are 1-connected to one of the f|, .,; would have
been included in P, as on the event Gj, the only faces of I that are in P, are at height 0.

Now, consider the faces F. Since F' C ¢, on the event 971" C F,, we have

FRor cor\oir = {fi. 1. (A.9)
We claim that by definition of F' and Eqs. (A.8) and (A.9) we can infer that
FnI'=0; (A.10)

to see this, suppose there exists some f € FNI’', and let P = (f;)7* be a 1-connected of faces in F' connecting
fo=f 1o fmu = fly,z,)- Let j be the minimal index such that f; ¢ I’ (well-defined since f,, ¢ I'). Then
f; € FNOI', hence f; = fy, ., for some i by Eq. (A.9), whence f;_; cannot exist by Eq. (A.8) and the fact
that F' C L+, contradiction.

We are now ready to show that every edge e with f. € F must be in E. For any f € F, there is a
l-connected path P of faces in F' from f to one of the fi, .. If f = f. for some e ¢ E, then let g = g, 4
be the last face in the path P such that [u, v] ¢ E, so that g is 1-connected to ¢’ = gfu,yv,] where [u/,v'] € E.
W.lo.g., let u ¢ V. No matter how g and ¢’ are connected to each other, u is always A,-adjacent to u
(or v'), with the face ¢” = gf;ﬁu,] (or = gfu v,]) being either equal to or 1-connected to g. However, since g”’

separates u ¢ V from v’ € V, then ¢” € I’. Hence, as g and g are equal or 1-connected, we have g € I'.
But then the assumption that g = g, for [u,v] ¢ E contradicts the combination of Eqs. (A.7), (A.9)
and (A.10). This concludes the proof. [ |

Claim A.11. For any interface I € Gf NG}, let (By,Bg) and G = (V, E) be defined as above (w.r.t. I').
The following hold:
(i) The vertices By UOA} form a vertex boundary for V (in that every A, -path from v € V to V¢ must
cross one of those vertices).
(i) The graph obtained from (By, Bg) by deleting the vertex y (and edges incident to it) is connected.
Consequently, on the event OTI' C F.,, the vertices By \ {y} are all part of a single open cluster in w.
(iii) On the event fi, ., € S, there cannot be a path of open edges in E¢ connecting y to ONFUBy\{y}.

Proof. The proof of Ttems (i) and (iii) follows verbatim from the proof in Claim 4.21.
For Item (ii), let By be the outcome of removing from By the four edges [y, z;]. First, we claim that there
are no other edges of By incident to y, via the following two items:
(a) [yvy - 23] ¢ Bg, since f[y,y—eg] € II;
(b) [y,y + e3] ¢ Bg, as otherwise, having fi, ¢, € 91, there must be a face g € I’ that is 1-connected
t0 fly,y+es] With ht(g) > 0. The face g must be 1-connected to fj, .,) for some i, but by Eq. (A.8),
this is impossible.
Thus, the graph (By \ {y}, By) is equal to the subgraph of (By, Bg) induced on By \ {y}. So, to show that
(By \ {y}, BE) is connected, it suffices to exhibit a path in By between z; = y + ¢; and 2o = y + 5 (whence
by symmetry there will be such paths between any two of the z;’s). These are connected in A,, by the path

P = (y+el,y+el+ez,y+e2).

Now, by Item 3 of the definition of G¢ (and the fact that I € ®L), we know that I’ contains the faces
directly below z; for each i = 1,..., 4. Furthermore, we know by Eq. (A.8) that the faces fi, e, yte,+e) and
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Jly+e1+es,y+es] are not in I’. Combined, the two aforementioned faces are in dI'. Since z; € By, this implies

every vertex in the path P is also in By. Thus, the path P uses only edges in By, as required, and altogether
(By \ {y}, Be) is connected. [ |

Combining Claims A.10 and A.11 with the Domain Markov property, we have Eq. (A.6). Next, the same
computation as in Eq. (4.18) shows that we can remove the conditioning on the event fi, ,_.,; € § by
paying a factor of q. We can thereafter remove the conditioning on 971’ C §,, by FKG, getting that

tn (AL | fiyy—es) € S o' CFu) < apn (A7) -

Since AJ is a decreasing event, we have by FKG again that pu,(A}) < fi,(A}). Using Proposition 4.5 (which,
we recall, compares AY to E}), we have

_ e +q—1_
ﬂn(Az) < (1 +5B)#ﬂn(E}g) .

Thus, combining the above with Eq. (A.6), we have

max_ o (A | Sp) < (1+e5)(e” +q — Ditn(ED),
I:1e®!

n

which together with Eq. (A.5) concludes the proof. |
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