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ABSTRACT. We study Glauber dynamics for the low temperature p2 ` 1qD Solid-On-Solid model on a box
of side-length n with a floor at height 0 (inducing entropic repulsion) and a competing bulk external field λ
pointing down (the prewetting problem). In 1996, Cesi and Martinelli showed that if the inverse-temperature β
is large enough, then along a decreasing sequence of critical points pλ

pkq
c q

Kβ

k“0 the dynamics is torpid: its inverse
spectral gap is Op1q when λ P pλ

pk`1q
c , λ

pkq
c q whereas it is exprΘpnqs at each λ

pkq
c for each k ď Kβ , due to a

coexistence of rigid phases at heights k ` 1 and k. Our focus is understanding (a) the onset of metastability as
λn Ò λ

pkq
c ; and (b) the effect of an unbounded number of layers, as we remove the restriction k ď Kβ , and even

allow for λn Ñ 0 towards the λ “ 0 case which has Oplognq layers and was studied by Caputo et al. (2014).
We show that for any k, possibly growing with n, the inverse gap is exprΘ̃p1{|λn ´ λ

pkq
c |qs as λ Ò λ

pkq
c up

to distance n´1`op1q from this critical point, due to a metastable layer at height k on the way to forming the
desired layer at height k`1. By taking λn “ n´α (corresponding to kn — logn), this also interpolates down to
the behavior of the dynamics when λ “ 0. We compliment this by extending the fast mixing to all λ uniformly
bounded away from pλ

pkq
c q

8
k“0. Together, these results provide a sharp understanding of the predicted infinite

sequence of dynamical phase transitions governed by the layering phenomenon.

1. INTRODUCTION

Consider the low-temperature Solid-On-Solid (SOS) model on Λn “ J´n
2 ,

n
2 K2, with zero boundary

conditions, a floor at height zero, and an external field λ “ λn ě 0 pointing downward: The model assigns
a height function φ : Λn Ñ J0, nK (viewed as a surface inside a cube of side length n) the probability

µn,λpφq 9 exp
´

´ β
ÿ

u„v

|φu ´ φv| ´ λ
ÿ

v

φv

¯

, (1.1)

where β ą 0 is the inverse-temperature, we let u „ v denote nearest-neighbor adjacency between the
vertices u, v, and φx is taken to be 0 for all x R Λn as per the boundary conditions. The study of this
family of models in the statistical physics literature goes back to Burton, Cabrera and Frank [4] in 1951 in
dimension p2`1q and to Temperley [46] in 1952 in dimension p1`1q as models of crystal formation/growth
and approximations to the low-temperature plus/minus interface in the Ising model.

The model at λ “ 0 and no floor (the integer height function φ can also take negative values) is associated
with a roughening phase transition exclusive to dimension 2 ` 1: for some βR ą 0 (numerical simulations
suggest βR « 0.806) the SOS surface is rough at β ď βR (e.g., the variance of φo diverges with n) whereas
it is rigid (the variance is Op1q) for β ą βR (see [20, 21] and [2] for β ! 1 and β " 1, resp., and [32]
proving they form a dichotomy). When setting the surface above a floor (a hard constraint φ ě 0) at the low
temperature regime (β large), it exhibits entropic repulsion [3]: the average height is propelled from Op1q

to Θplog nq, despite the energetic cost charged along the zero boundary conditions, in order to gain entropy
via downward-pointing spikes. When λ “ λn ą 0, the field induces an additional downwards force on the
interface, inducing a non-trivial competition with the entropic repulsion, known as the prewetting regime.

We study Glauber dynamics for the SOS model from Eq. (1.1)—a continuous-time single-site Markov
chain that, on one hand, gives a simple local recipe for sampling µn,λ, and on the other hand, serves as a
natural physical model for the evolution of a random surface towards the SOS measure at equilibrium. When
the SOS surface is concentrated at height h (e.g., h “ Θplog nq when λ “ 0), understanding the rate of
convergence of this dynamics to µn,λ is closely related to the time it takes the surface to successively create
h macroscopic layers (each grown out of local droplets) starting, e.g., from the all-zero configuration.
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More precisely, the Glauber dynamics assigns every site in Λn a rate-1 Poisson clock, and every time such
a clock rings, it updates the height φv at the corresponding site v to one of tφv ´ 1 _ 0, φv, φv ` 1 ^ nu,
weighted by the conditional probabilities induced on these by µn,λ given tφu : u ‰ vu. Said probabilities
(and by extension, the update rule at v) depend only on tφu : u “ v or u „ vu due to the nearest-neighbor
interactions in Eq. (1.1), and by construction, the chain is reversible w.r.t. its stationary distribution µn,λ. A
standard way to measure its rate of convergence to equilibrium is the spectral-gap of its generator, denoted
gapn,λ, which governs the mixing time in L2-distance, and its dependence on the system size n as n Ñ 8.

With no external field (λ “ 0), Caputo et al. [9] showed that the inverse gap of Glauber dynamics for
the p2 ` 1qD SOS model above a floor satisfies gap´1

n,λ “ exprΘpnqs, as the surface encounters a sequence
of metastable states towards equilibrium: starting from the all-zero state, it takes it time doubly-exponential
in k—approximately exprce4βks—to create a new macroscopic layer at height k, with the bottlenecks at the
final levels of height „ 1

4β log n dominating the mixing time and costing exprcns.
In the presence of a bulk external field λ ą 0 pointing downward, the competition between the field and

the entropic repulsion may lower the typical surface height. For λ ą 0 fixed, this lowers the SOS surface
to height k “ kpλq, where as we vary λ Ó 0, the preferred height kpλq of the surface will grow as 1

4β log 1
λ .

Due to the rigidity of the surface, this induces a sequence of critical points λpkq
c « e´4βk at which the two

heights k ` 1, k are both (equally) stable. (A similar infinite sequence of critical points along which the
interface height diverges occurs in the wetting problem, where in lieu of the bulk external field λ the surface
is tilted by λ

ř

v 1φv“0, rewarding only sites that are pinned to height 0. A detailed understanding of this was
developed by Lacoin [30, 31] confirming the predicted phenomena [13]. See also [1, 17] and the excellent
survey by Ioffe and Velenik [27] for more on the layering phenomena associated with wetting/pinning.)
In our prewetting framework, at sufficiently low temperatures (large enough β), an extensive study of the
statics and Glauber dynamics for this model1 by Cesi and Martinelli [11, 12] in 1996 established a finite
number of dynamical phase transitions pλ

pkq
c q

Kβ

k“0.

Theorem ([12]). Fix β ą 0 large enough, and consider Glauber dynamics w.r.t. µn,λ. There is a sequence
of critical points pλ

pkq
c q

Kβ

k“0, where Kβ “ texpp
β

20000qu, such that for every k “ 0, . . . ,Kβ:

1. If λ P pλ
pk`1q
c , λ

pkq
c q then gap´1

n,λ “ Θp1q (moreover, under any boundary condition);

2. If λ “ λ
pkq
c then gap´1

n,λ “ exprΘpnqs under free boundary conditions;
where the implicit constants depends on both β and λ.

Our aim here is to (a) understand the interpolation between the two behaviors given by [11, 12]—
exponentially slow mixing at λ “ λ

pkq
c as opposed to fast mixing at λ ‰ λ

pkq
c , as we take λ “ λn Ñ λ

pkq
c ;

and (b) obtain the complete picture of an infinite sequence of dynamical phase transitions by removing the
restriction on Kβ , and en route, show the interpolation from the λ fixed case to the λ “ 0 case studied in [9].

It ought to be noted that the analysis of the model in [11,12] is quite involved, and itself was built on (and
refined) a highly nontrivial study of the model in infinite-volume by Dinaburg and Mazel [15] (where a full
infinite sequence of critical values pλ

pkq
c q8

k“0 for limiting free energies was derived). As mentioned in [11] as
well as in the survey [27, §4.1.1], it was unclear whether extending the results of [11,12] to Kβ Ò 8 (ideally
up to k “ Θplog nq where the λ “ 0 behavior is observed) was technical or would required different ideas.
(An outline of how some of the equilibrium results in [11] may be pushed beyond the restriction k ď Kβ

was sketched by Lebowitz and Mazel [33], albeit still for for λ and k fixed independently of n.)
Our main theorem establishes the full infinite sequence of metastability windows of λ about pλ

pkq
c q8

k“0,
with the distance of λn to the nearest critical point determining the rate of the exponential slowdown.
Namely, the rate of metastability is determined by the time it takes a surface that is predominantly at height
k to generate a critical droplet at the desired height k ` 1. The size needed for the droplet to be stable

1The setup of [11, 12] technically considers φ : Λn Ñ Zě0, i.e., no upper bound on the maximal height. For λ bounded away
from 0 uniformly in n, as they were considering, results with and without a ceiling readily transfer back and forth.
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FIGURE 1. The inverse gap gap´1
n,λn

under zero boundary conditions plotted against λ,
demonstrating the diverging sequence of metastability cascades as λ Ó 0. The slowdowns
near the critical points are expected to be asymmetrical due to the boundary condition.

is in turn determined by an isoperimetric tradeoff and the difference of λ to λ
pkq
c . (A similar metastability

induced by the time to grow a critical droplet is seen in the dynamics of a low-temperature 2D Ising model
with p`q-boundary and a competing small p´q external field, as was studied in [45]: see also [43, 44]).

Theorem 1.1. Consider the SOS Glauber dynamics at β ą β0 large enough and a bulk external field λn ą 0

with zero boundary as per Eq. (1.1). There exists a sequence of critical points pλ
pkq
c q8

k“0 such that, if we let

d`pxq :“ min
k

tpλpkq
c ´ xq : λpkq

c ą xu , and dpxq :“ min
k

t|λpkq
c ´ x|u , (1.2)

then the following holds: for every ε ą 0 there exist constants cpεq, Cpβ, εq ą 0 such that for all n,

(1) If λn is such that dpλnq ą ε then C´1 ď gap´1
n,λn

ď C.

(2) If λn is such that cβ logn
n ď d`pλnq ď ε then2

1

C
_

1

n2
exp

” 1

Cd`pλnq

ı

ď gap´1
n,λn

ď exp
”Cplog nq3

dpλnq

ı

. (1.3)

The following corollary sharply characterizes the onset of metastability in the two regimes which served
as our earlier motivation: (a) as λn Ò λ

pknq
c , and (b) as λn Ó 0.

Corollary 1.2. In the setting of Theorem 1.1, for any fixed 0 ă α ă 1, in either of the following situations:

(a) λn “ λ
pkq
c ´ Θpn´αq for any 1 ď k ď oplog nq,

(b) λn “ Θpn´αq such that dpλnq Á n´α (e.g., the sequence λn “ e´β´4βkn for kn “ t α
4β log nu),

we have gap´1
n,λn

“ exprΘ̃pnαqs.

In Item (a) of Corollary 1.2, the typical interface will be localized at height k ` 1, but under k boundary
conditions, only height-k ` 1 layers of size greater than nα are desirable (smaller ones have do not have
enough room for the entropic repulsion to propel them to height k`1). As the dynamics climbs from below,
say initialized at all-zero, this generates a bottleneck, whereby there is an exponential in nα waiting time to
randomly form such an atypically large droplet. In Item (b), initialized from all-zero, there is a cascade of

2This restriction can in fact be replaced with cβk
n

ď d`
pλnq where k is the index at which d`

pλnq is attained.
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FIGURE 2. The inverse gap gap´1
n,λn

for the model under periodic boundary conditions
plotted against λ. The critical slowdowns are symmetric, as per the bounds of Theorem 1.3.

metastable transitions with times exponential in pλ
pkq
c ´ λnqkě0 to go from k to k ` 1, with the final one to

get to kn “ t α
4β log nu dominating the mixing time. See Fig. 1 for a rough depiction of the above.

As evident from the fact that Eq. (1.3) features d`pλnq in the lower bound yet dpλnq in the upper bound
(measuring the distance to the closest critical point λpkq

c in the latter yet only to the closest λpkq
c above λn

in the former), we expect the mixing time to be asymmetric in the window about each λ
pkq
c (see Fig. 1).

Indeed, when dpλnq ! d`pλnq, e.g., λn Ó λ
pkq
c , the typical interface is rigid about height k, but in a region

with boundary conditions k ` 1, only height-k layers of size greater than dpλnq´1 will be desirable. This
would induce an exponential slowdown if the boundary conditions were above height k, but the height-
0 boundary conditions enable the demolition of the height-k layer from the outside inwards (via droplet
shrinkage). This dynamical picture—in particular, if we identify heights tď ku as minus spins and heights
tą ku as plus spins—is in analogy with (and more complicated than) the dynamics of the low-temperature
Ising model with minus boundary conditions, initialized from all-plus (possibly with a small negative field
of dpλnq), which is a notoriously hard open problem in the mixing time literature: see [36] for the best
known bounds. In particular, for fixed k, exactly at λpkq

c , and with zero boundary conditions, one would
expect the mixing time to be polynomially fast, with a Θpn2q inverse gap. We discuss the delicate expected
behavior in this regime in more detail in Section 1.2.

When considering the SOS model under periodic (instead of zero) boundary conditions—that is, Λn in
Eq. (1.1) is replaced by pZ{nZq2—the above asymmetry is no longer present, as illustrated by the next
theorem. (See Fig. 2 for a depiction of the bounds of Theorem 1.3 symmetric about pλ

pkq
c q8

k“0.)

Theorem 1.3. In the setting of Theorem 1.1 but with periodic boundary conditions, so long as λn ě
logn
n ,

for every ε ą 0 there exists Cpβ, εq such that for all n,

(1) If λn is such that dpλnq ě ε, then C´1 ď gap´1
n,λn

ď C.
(2) If λn is such that dpλnq ď ε, then

1

C
_

1

n2
exp

” 1

C

´

n ^
1

dpλnq

¯ı

ď gap´1
n,λn

ď exp
”

C
´

n log n ^
plog nq3

dpλnq

¯ı

.

The case of free boundary conditions, which was the setting in which [12] showed exprΘpnqs mixing
at pλ

pkq
c q

Kβ

k“0, is similar to the torus in that the boundary conditions do not favor one of tk, k ` 1u. If
λn is uniformly bounded away from 0, the factor of log n in the upper bound of Item 2 of Theorem 1.3 can
similarly be dropped (see Remark 6.5), thus recovering for a fixed λ, bounded away from 0, the same bounds
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for the torus as obtained in [12] for free boundary conditions. Moreover, Theorem 1.3 allows λ to be taken
arbitrarily close to 0, as well as λn approaching 0 or a critical point with n. While we did not pursue this, it
should be possible to could modify the arguments of this paper to the case of free boundary conditions.

We conclude this part with a brief comment on other possible boundary conditions. In analogy to the
low-temperature 2D Ising model, the metastable windows can be quite sensitive to the choice of boundary
conditions. If the boundary conditions were high, rather than at 0, they would favor height k ` 1 over k
near λpkq

c , and Item 2 of Theorem 1.1 would apply with d` replaced by d´ “ minktpx ´ λ
pkq
c q : λ

pkq
c ă xu.

Dobrushin-type boundary conditions, say tď ku on half the boundary and tą ku on the other half, should
induce interfaces and rich static and dynamic behaviors: see the discussion of these interfaces as dpλnq Ó 0
in Section 1.2. Finally, the Op1q inverse gap bound of Item 1 in Theorem 1.1 applies for all fixed boundary
conditions, so long as n is sufficiently large as a function of ε, extending the fast mixing results of [12]
(which needed λ ą λ

pKβq
c ) to hold for λ arbitrarily close to 0 (while kept Ωp1q in n).

1.1. Proof ideas. The proofs in our paper are divided into two parts, the equilibrium portion comprising
Sections 3 to 5 and the dynamical portion comprising Sections 6 and 7.

Our analysis of the equilibrium estimates differs from the works [11,15] first and foremost via its focus on
level lines (viewing the SOS configuration as a contour ensemble, each associated to a level using appropriate
boundary conditions). The aforementioned previous works on the λ ą 0 setting studied cylinders as the
main objects—maximal stacks of contours (all having the same projection on Z2). Operations on contours
(such as Peierls-type maps that shift a single level line up or down) can in general allow a much more
refined analysis than operations on cylinders, as was demonstrated in the work [9] for the λ “ 0 case.
This different perspective does introduce additional complications, yet is essential in our extension of the
previous results to any height k (as opposed to k ď Kβ). Namely, by combining probabilistic arguments
on the set of contours (based on coarse graining, monotonicity, and Peierls maps) with the (already quite
sophisticated) cluster-expansion based techniques from [11, 15] (adapted from cylinders to our setting of
contours in Sections 3 and 4), we arrive at the following understanding of the shape of an SOS surface with
zero boundary conditions in the presence of an external field λ. Note the subtle relation between the height
k the surface reaches, the distance d` of the external field to its nearest critical point, and the domain size n.

Theorem 1.4. For every β ą β0 there exist some C ą 0 and an infinite sequence of critical points pλ
pkq
c q8

k“0

such that, if λn ě
logn
n satisfies λn P rλ

pkn`1q
c , λ

pknq
c s then with µn,λn-probability at least 1 ´ e´n{C ,

(1) if n ě Cβkn{d`pλnq, all but an εβ fraction of the sites will be at height kn ` 1.
(2) If n ď 1{pCd`pλnqq, all but an εβ fraction of the sites in Λn will be at height kn.

We in fact prove stronger equilibrium results in Section 5, showing spatial mixing estimates between SOS
models with different boundary conditions that hold on boxes of side-length n0 Á kn{dpλnq, yet fail when
n0 À 1{dpλnq. Note that the analysis of contours, beyond its effectiveness in capturing the behavior of the
surface in regimes of λ unaddressed by [11], opens the door to a host of questions addressing the refined
geometry of the individual level lines (notably the top one): e.g., understanding their macroscopic scaling
limits and the random fluctuations around those as λ approaches λpkq

c ; see Section 1.2 for concrete examples.
Turning to the dynamical arguments, our proofs of the exponential lower and upper bounds are guided by

the following mechanism for equilibration, which we describe here for the case of zero boundary condition
and λn “ λ

pknq
c ´ d`pλnq. If we let n ě n0 “ Cβkn{d`pλnq, then on a domain of size n, the equilibrium

surface is predominantly at height kn ` 1 per Theorem 1.4. On the other hand, if the dynamics is initialized
at heights tď knu it needs to grow a layer at height kn ` 1 of size at least n0 until that layer would become
thermodynamically stable and could grow to encompass the rest of Λn (if the layer has diameter smaller than
n0, the exponential cost in its boundary dominates the free energy benefit of the area it confines being at
height kn ` 1 over kn). Since the Glauber dynamics makes single-site updates, it in particular needs to first
form a layer of diameter between n0{2 and n0, an event that has probability e´n0{C . Once such a droplet
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FIGURE 3. The predicted behavior of the inverse gap with zero boundary conditions when
λn “ λ

pkq
c ˘op1q for fixed k ě 0. Theorem 1.1 establishes the curve left of the discontinuity

(up to poly-logarithmic factors); the right side of the curve should be governed by stable
layers shrinking via mean-curvature flow, leading to an Opn2q relaxation time at λpkq

c .

has been formed, without waiting much longer, it will have formed around every site in Λn, and therefore
the kn ` 1 layer will in fact encompass almost all of Λn, leading to rapid equilibration.

For the lower bounds on gap´1
n,λn

, the above intuition is used to construct a bottleneck event for Glauber
dynamics (see Section 7). For the upper bound, in Section 6, we guide the dynamics towards equilibrium,
using censoring and monotonicity to reduce the mixing time on Λn to the mixing time on graphs of cut-width
at most n0, where n0 is the smallest scale at which the model exhibits weak spatial mixing. While reductions
of mixing times to weak spatial mixing are common in the literature (e.g., the classical work [39]), boundary
conditions pose difficulties when only weak spatial mixing, but not strong spatial mixing, holds. We handle
this difficulty by also showing weak spatial mixing estimates in annuli of thickness n0, whose mixing time
will also only be exponential in n0, and which is used to couple near the boundary.

Finally, when λ is uniformly bounded away from pλ
pkq
c q8

k“0 (i.e., dpλnq ě ε ą 0) the Op1q bound
on gap´1

n,λn
follows similarly to [12] from a standard implication of weak spatial mixing to strong spatial

mixing for 2D systems [40], followed by an implication from strong spatial mixing to Op1q inverse gap.
Note that the dependence of this bound on 1{dpλnq blows up in a doubly exponential manner whereas the
upper bounds of Item 2 of Theorem 1.1 and Item 2 of Theorem 1.3 are only exponential.

1.2. Open problems.

The critical window under zero boundary conditions. Consider the dynamical phase transition about λpkq
c

for some fixed k ě 0. Our main results established the full dynamical phase transition in log gap´1
n,λn

(up to a poly-log(n) factor) in the torus (Theorem 1.3). However, as noted above, the case of zero boundary
conditions is significantly more involved, and our results in Theorem 1.1 are only sharp for λ below λ

pkq
c ; we

expect that the difference between the two settings would be apparent already when viewing λ “ λ
pkq
c , where

the inverse-gap under zero boundary conditions should no longer be exprΘpnqs, but instead have order n2

(the conjectured [25] order of the inverse-gap in Ising under all-plus boundary conditions). More precisely,
we would expect that as λn Ò λ

pkq
c , the regime where the inverse-gap is exprΘpnqs—which is reached as

λn draws within distance Op1{nq from λ
pkq
c — would terminate discontinuously at λn “ λ

pkq
c ´ c‹{n for

some c‹pk, βq, reminiscent of the critical point appearing in the work of Schonmann and Shlosman [45] on
Glauber dynamics for the 2D Ising model under an external field. At this λn, and as λn further increases up
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to λn “ λ
pkq
c ` Op1{nq, the inverse-gap should be polynomial in n, and thereafter should smoothly drop to

Op1q as λn ´ λ
pkq
c increases to a constant order (see a possible depiction of this behavior in Fig. 3). A first

step towards verifying this conjectured behavior would be to establish sub-exponential mixing at λ “ λ
pkq
c .

Ferrari–Spohn limit in critical prewetting. Recall that the SOS model above a floor with λ “ 0 is known to
have a typical height of order log n; it is also known [8–10] to be typically rigid about a single level, where
the corresponding level-line contour has cube-root fluctuations around its deterministic scaling limit. In
particular, as said limit coincides with the sides of the box near their centers, it is believed that in the setting
of Eq. (1.1) with λ “ 0, taking the intersection of the top level-line with an n2{3 ˆ n2{3 box Rn about the
center of the bottom boundary of Λn, and then rescaling its width by n2{3 and its height by n1{3, should give
a KPZ-type nontrivial random limit. Unfortunately, the attraction/repulsion effects between the log n level
lines, as well as against the boundary of Λn, pose a formidable challenge to the analysis of the model. So far
it is only known that, in an n2{3`ε ˆ n2{3`ε box R1

n about the center of the bottom boundary, the maximum
vertical distance of the top level line from BΛn is at least n1{3´ε1

and at most n1{3`ε1

(the aforementioned
cube-root fluctuations). Continuous p1 ` 1qD models approximating this ensemble of SOS level lines in
Rn have been studied in detail, notably the ensemble of non-crossing Brownian excursions with an area
tilt [5–7, 14], where the area Ak under the k-th curve tilts the probability by a factor of expp´bkAkq for
some b ą 1 (in the SOS model with λ “ 0, the entropic repulsion reward becomes stronger at the level k
decreases, corresponding to a factor b “ e4β). Note that a single Brownian excursion with an area tilt has
the law of a Ferarri–Spohn [18] diffusion. In the discrete setting, the longstanding prewetting problem in
the 2D Ising model (akin to the SOS problem studied here, yet involving only a single level line) was very
recently settled: the cube-root fluctuations of n1{3`op1q at the critical scale λn “ Θp1{nq were established by
Velenik [47] in 2004; Ganguly and the first author [22] established tightness of the fluctuations at scale n1{3;
and the Ferrari–Spohn limit law was finally established by Ioffe et al. [26].

In light of these results, and given the new results from this work, it would be interesting to examine the
microscopic fluctuations of the top level line of the SOS model at λn “ λ

pkq
c ´ Θp1{nq, corresponding to

critical prewetting between levels k and k`1. There, despite the existence of k`1 interacting contours, one
would expect the behavior to be effectively dictated by the top contour alone (as this value of λ is bounded
away from the critical points corresponding to lower level lines), making it more amenable to analysis.

Question 1.5. Fix β ą β0, an integer k ě 0 and some constant c ą 0, and consider the p2 ` 1qD SOS
measure µn,λn from Eq. (1.1) for λn “ λ

pkq
c ´ c{n. Let Rn be the square whose bottom edge overlaps the

bottom boundary BΛn along J´n2{3, n2{3K, take the (k ` 1)-level line of SOS restricted to Rn, and rescale
its width by n2{3 and height by n1{3. Does its law converge to a Ferrari–Spohn diffusion on r´1, 1s?

A variant of this question, which is somewhat simpler yet should still exhibit a Ferarri–Spohn limit, is
to consider µn,λn under boundary conditions at height k (as opposed to zero) for λn “ λ

pkq
c ´ c{n. That

setting should be essentially the same as the case of λp0q
c , where there is typically at most 1 macroscopic

level line. A useful first step towards these questions would be to understand the microscopic features of the
k-to-pk ` 1q contours at λpkq

c , e.g., á la the tools developed for Ising interfaces in [16] and [42].

SOS near the roughening point and 3D Ising. We conclude with two challenging fronts. First, in light of
the recently obtained [32] sharpness of the roughening transition for the SOS model, one would want to
extend the above results to all β ą βR. For β so close to the roughening point, not only do cluster expansion
techniques (used in this paper) become non-applicable, so do the Peierls maps on contours (which were the
starting point of the entropic repulsion analysis of [9] for instance). Second, given recent progress on under-
standing the entropic repulsion phenomenon for the Ising interface [23, 24], one would hope to establish a
similar metastability induced by layering for the Ising Glauber dynamics. To that end, a prerequisite would
be to pinpoint the typical height of the interface in the prewetting problem for 3D Ising.
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2. NOTATION AND PRELIMINARIES

In this section, we introduce much of the notation we will use throughout the paper. We also introduce
the basic contour representation of SOS configurations, and include a few basic but important estimates that
follow from the monotonicity of the model in the external field.

2.1. Notational disclaimers. Throughout the paper, we imagine β0 to be a large absolute constant, so that
β ą β0 indicates β sufficiently large (independent of everything else). We are only interested in λ ď 1, say,
since for β large, even the first critical point λp0q

c will be less than 1, and monotonicity arguments can easily
reduce analysis of larger λ to λ “ 1. Finally, we use C in various place to indicate an absolute constant, and
εβ a sequence going to zero as β Ñ 8, both of which may change from line to line.

2.2. Underlying geometry. The underlying geometry we work with are subsets of Z2, with edge sets given
by subsets of nearest neighbor edges EpZ2q. For a domain V Ă Z2, we use EpV q to denote the edges in
EpZ2q between two vertices in V . When these subsets are squares, we use the notation Λn “ J´n

2 ,
n
2 K2

with corresponding edge-set r´n
2 ,

n
2 s2 X EpZ2q. For a general domain V Ă Z2, let

BiV “ tx P V : x „ Z2zV u and BoV “ tx P Z2zV : x „ V u ,

where the subscripts i, o are meant to indicate inner and outer boundary. The edge boundary is

BeV “ te “ vw : v P BiV,w P BoV u ,

and we can also denote the strict interior of a set V by V̊ “ V zBiV .

2.3. The SOS measure. We define the SOS model on general domains, with generic floors (and ceilings)
and describe some important properties of the model.

Consider a finite domain V Ă Z2. A boundary condition is an assignment of heights to the vertices of
BoV . A general SOS distribution that we consider may also have floors and ceilings that vary depending on
the vertex; for that, we let pa,bq “ ppavqvPV , pbvqvPV q be such that av ă bv for all v, and we call av the
floor and bv the ceiling for a vertex.

For an inverse temperature β ą 0, external field λ ě 0, the SOS distribution on V with boundary
conditions ϕ P ZBoV and ceiling/floor collection pa,bq is the distribution

µa,b,ϕ
λ,β,V pφq “

1

Za,b,ϕ
λ,β,V

e´Hpφq
ź

vPV

1avďφvďbv , (2.1)

where Za,b,ϕ
λ,β,V is a normalizing factor to make it a probability measure, and

Hpφq “ β
ÿ

v„w

|φv ´ φw| ` λ
ÿ

v

φv . (2.2)

where in the presence of boundary conditions ϕ, the first sum includes a sum over all edges between V
and Z2zV in which case φw is taken to be ϕw. If we write µrXs for a random variable X , we mean the
expectation under the event µ.

In order to simplify notation, we will tend to drop a,b and λ, β from the subscripts and superscripts of
the measure to write µϕ,V . We retain the relevant sub/superscripts when they are varying, but typically these
will be fixed throughout a proof. The baseline floor/ceiling choices to have in mind will be av ” 0 and
bv ” 8 for all v P V , and we comment soon on other ones the reader might encounter. At the above level
of generality, the SOS model satisfies a few essential properties that we recall.
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2.3.1. Monotonicity and the FKG property. Endow the space of SOS configurations with the natural par-
tial order (induced by pointwise total orders). The above monotonicity statement in boundary conditions,
floors/ceilings, and field, is standard; we include a proof for completeness in Appendix A.

Lemma 2.1. Fix any β ą 0. Suppose that λ1 ď λ, av ď a1
v, bv ď b1

v and ϕ ď ϕ1. Then

µa,b,ϕ
λ,V ĺ µa1,b1,ϕ1

λ1,V .

where here and throughout the paper, ĺ denotes stochastic domination.

2.3.2. Domain Markov property. The next essential property satisfied by the model is the domain Markov
property, that describes the law of the SOS measure conditional on its values on some subset of V , as a new
SOS measure with some other boundary conditions. Namely, if we fix a subset W Ă V , and let ζ be a
configuration on W (consistent with the floors and ceilings a,b), then

µϕ
V pφpV zW q P ¨ | φpW q “ ζq

d
“ µ

pϕ,ζq

V zW ,

where the boundary conditions pϕ, ζq are the concatenation of η, ζ on BopV zW q.
We end with an observation that if boundary conditions are above/below the floor/ceiling they can be

treated as being exactly at the height of the floor/ceiling. Namely, the distribution µa,b,ϕ
V is identical to

µa,b,ϕ1

V where for each vertex w P BoV , the boundary condition

ϕ1
w “

$

’

&

’

%

maxv„w bv ϕw ě maxv„w

minv„w av ϕw ď minv„w av

ϕw else
. (2.3)

It thus suffices to always consider boundary conditions bounded between minvPBiV av and maxvPBiV bv.

2.4. A few basic estimates. We present here a few basic results that will be helpful at various points in
the paper. The first will be a bound on the maximum that is derived from comparison to the λ “ 0 SOS
measure, and crude bounds on the maximum therein. (Much more refined understanding of the maxima was
obtained in [9]). For all k ě 1

4 log |V |, all β large,

µa,b,ϕ
V

`

max
vPV

φv ě maxt}a}8, }ϕ}8u ` k
˘

ď e´βk . (2.4)

Proof. By monotonicity, it suffices to upper bound the probability that maxvPV φv ě k{2 under the measure
with λ “ 0, no ceiling, and with boundary conditions that are identically maxt}a}8, }ϕ}8u ` k{2. By a
union bound over the |V | vertices, the probability Ce´4βpk{2q of a downward deviation by k{2 (this follows
from a Peierls argument so long as β ě 1, say, per [9, Proposition 3.9]), this measure is coupled to the one
with no floor at 0, except with probability C|V |e´2βk. By a similar union bound, that probability that the
no-floor sample has a maximum that goes up from the boundary conditions by an additional k{2 is at most
C|V |e´4βpk{2q. Together with the fact that k ě log |V |, we obtain Eq. (2.4). ■

Various of our estimates in the first few sections of the paper will go through comparison and manipu-
lation of partition functions to obtain convergent cluster expansions corresponding to the SOS model with
boundary conditions that are at the “correct” height. The next two bounds are simple a priori bounds on
ratios of partition functions with different (constant) boundary conditions.

Lemma 2.2. For every V and every k ă m, we have

Za,b,k
V

Za1,b1,m
V

ď eλpm´kq|V | .

so long as rav ` m ´ k, bv ` m ´ ks Ă ra1
v, b

1
vs for all v.



10 REZA GHEISSARI AND EYAL LUBETZKY

Proof. Every configuration contributing to Za,b,k
V can be mapped to one in Za1,b1,m

V by shifting it by m´ k.
The change in the weights from this map is evidently exactly eλpm´kq|V |. ■

The following shows a non-quantitative monotonicity of ratios of partition functions (the top correspond-
ing to a lower measure than the bottom) as one increases the external field.

Lemma 2.3. For every V , every λ, every ϕ ď ϕ1, and any floor/ceiling pair a,b ď a1,b1,

d

dλ

Za,b,ϕ
λ,V

Za1,b1,ϕ1

λ,V

ě 0 .

Proof. Since the derivative of logpxq is positive on R`, it suffices to show the claimed non-negativity of

d

dλ
log

´ Za,b,ϕ
λ,V

Za1,b1,ϕ1

λ,V

¯

“ µa1,b1,ϕ1

λ,V

“

ÿ

v

φv

‰

´ µa,b,ϕ
λ,V

“

ÿ

v

φv

‰

.

By the stochastic domination from Lemma 2.1 and the fact that
ř

v φv is an increasing function, this differ-
ence is non-negative as claimed. ■

2.5. The common choices of boundary conditions and floors/ceilings. For much of the paper, we will
be focused on a specific class of boundary conditions and floors/ceilings. The baseline choice of floors and
ceilings in this paper is av ” 0 and bv ” 8 except when specified otherwise. The special class of boundary
conditions are those which are constant ϕ ” k for some k ě 0. The special class of floors/ceilings will
modify the baseline choice along BiV via a boundary signing η P t`,´,H, fuBiV .

Definition 2.4. If the boundary condition ϕ is constant, ϕ ” k, say, then the boundary signing indicates the
choices of floors/ceilings where for each v P BiV ,

‚ if ηv “ ` then av “ k and if ηv “ ´, then bv “ k
‚ if ηv “ H, then av “ bv “ k
‚ if ηv “ f , then av, bv are the default choices of 0 and 8 respectively.

Until Section 5, constant ϕ and floors/ceilings given by av ” 0, bv ” 8 and boundary signings will be
the exclusive family of boundary conditions and floors/ceilings we work with and therefore we give it a
shortened notation. Define µη,k,V as the SOS measure with boundary conditions that are identically k, and
boundary signing η modifying av ” 0, bv “ 8 along BiV according to Definition 2.4. Let Zη,k,V be the
corresponding partition function. In this special context, Corollary 2.5 translates to the following.

Corollary 2.5. For every V and every k ă m and every boundary signing η,
Zη,k,V

Zη,m,V
ď eλpm´kq|V | .

2.6. The contour representation. An important tool in the analysis of the SOS model is the contour rep-
resentation, essentially a bijection between configurations and a family of non-crossing loops representing
level curves of the SOS surface. The contours will be formed out of dual edges; for that, let V ˚ denote the
planar dual graph of V generated by considering pZ2q˚ “ Z2 ` p12 ,

1
2q, then taking EpV ˚q to consist of all

edges of EppZ2q˚q bisecting the edge set te “ vw : v P V u. The vertex set V ˚ is then naturally induced.
We will use the contour representation of SOS configurations, referring the reader to [9, Section 3] for

more background on the below.

Definition 2.6. A geometric contour γ is a connected set of dual-edges in EpV ˚q whose elements can be
sequenced e0, ..., e|γ| in such a way that

‚ ei ‰ ej if i ‰ j except if i “ 0 and j “ n;
‚ ei and ei`1 are incident for every i;
‚ if ei, ei`1, ej , ej`1 all share a single dual vertex, then ei, ei`1 are either the south and west pair of

dual edges, or the north and east pair.
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The last item above is a canonical splitting rule, where the pairings SW and NE are simply a convention.
With this convention, we will call sets V Ă Z2 simply-connected if there is a geometric contour, whose
edge set is exactly pBeV q˚, and we will use the notation γV to denote this contour.

Definition 2.7. A vertex is exterior to a contour γ if it lies in the infinite connected component of R2zγ.
When there is an underlying domain V Ă Z2, we use Extpγq to denote those vertices of V exterior to γ. A
vertex is interior to a contour γ if it lies in a finite connected component of R2zγ, and Intpγq denotes the
set of such vertices. We say γ nests γ1 if Intpγ1q Ă Intpγq, and two contours γ, γ1 are mutually external if
neither nests the other.

We are now able to define up and down contours corresponding to an SOS configuration φ.

Definition 2.8. In an SOS configuration φ, a geometric contour γ is an up-h-contour if φx ě h for all
h P BiIntpγq and φx ă h for all h P BoIntpγq. Analogously, a geometric contour γ is a down-h-contour if
φx ď h for all h P BiIntpγq and φx ą h for all h P BoIntpγq. In these cases, use the notation Spγq “ ˘ for
whether it is up or down, and hpγq “ h.

If we consider SOS configurations with constant boundary ϕ ” k, we can associate to each configuration
a contour representation, where the contours it consists of are all signed contours at specific heights. Namely,
for a configuration φ, with boundary conditions k, on a domain V , first include the outermost up-pk ` 1q-
contours and down-pk´1q-contours. Interior to each of the outermost up-pk`1q-contours, we can consider
the outermost up-pk ` 2q and down-k-contours, and proceed iteratively in this manner to get a family of
signed contours, each having an associated height. Per this construction, if multiple contours are the same
geometric contour, just at different heights, the one whose height is smallest if they are up-contours, or
largest if they are down-contours, is called the outermost one.

Definition 2.9. A family of contours Γ is said to be admissible if there exists a φ whose contour collection is
exactly Γ. (This effectively imposes that contours may not cross, and if they overlap on an edge, their signs
must be the same if one nests the other, while their signs must be different if they are mutually external.)

With this, we can express the SOS measure in terms of weights associated to contours.

Definition 2.10. The weight of a contour γ is

W pγq “

#

e´β|γ|´λ|Intpγq| γ is an up-contour
e´β|γ|`λ|Intpγq| γ is a down-contour

.

There is a bijection from height functions that have a constant boundary condition ϕ ” h outside a
set V Ă Z2 (and no floor/ceiling) and admissible contour collections in V ˚. In fact, the information of
the heights of the contours is not needed to reconstruct φ, only their signs are needed (the heights can be
reconstructed from the boundary inwards). In our contexts, we require contour collections to be compatible
with the floor/ceilings. In the default case we are interested in a floor at height zero, and a boundary signing
η per Definition 2.4.

Denote by Gη,h,V the set of all admissible contours collections whose corresponding configuration is in
Ωη,h,V . Notice that the boundary signing is imposing a constraint on the contours that no dual edge bisecting
BeV X Betvu is part of an up contour if ηv P t´,Hu (respectively is part of a down contour if ηv P t`,Hu).

With that, we can rewrite the corresponding partition function in terms of contour weights as:

Zη,h,V :“ e´λh|V |
ÿ

ΓPGη,h,V

ź

γPΓ

W pγq . (2.5)

The specific choices where η ” ` and η ” ´ will be especially pertinent since, e.g., Z`,hpγq,Intpγq

describes the possible contour collections found in Intpγq if γ is an up-h-contour.
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3. RENORMALIZED WEIGHTS, ELEMENTARY CONTOURS AND FREE ENERGIES

We study a family of contours which are exponentially unlikely (in their length) no matter what height
they are based at. These are small enough that neither the relative benefit of the external field (for down-
contours) nor the entropic repulsion effect (for up-contours) are enough to overcome the exponential in β
cost in the length of the contour. Following the language of [11, 15], these contours are called elementary.
We note that the overarching goal of this section, Theorem 3.6, tracks [15] but for contours instead of
the cylinders—essentially maximal stacks of identical contours—that were considered in that paper. This
simplifies some aspects of the proof, while complicating others; in particular, our proof requires stitching
together Peierls-type arguments in the standard contour representation of the SOS model, with arguments
for using the “renormalized” contour representation defined as follows.

3.1. Renormalized contour weights. The first step we take is to rewrite SOS partition functions in terms of
renormalized contour weights according to a specified boundary height h. The role of this renormalization is
to move to a model over contour collections with all the contours based at height h, rather than each having
their own associated height; the outermost contours of this model will still correspond to the outermost
contours of the original model.

Definition 3.1. For a contour γ, the h-renormalized weight is defined as

W rn
h pγq “

$

&

%

e´β|γ| Z`,h`1,Intpγq

Z`,h,Intpγq
γ is an up-contour

e´β|γ| Z´,h´1,Intpγq

Z´,h,Intpγq
γ is a down-contour

.

Given these renormalized weights, we can obtain the following equivalence between the partition function
on a simply connected domain V and without tracking the heights of the corresponding contours, allowing
arbitrary compatible families. Towards that purpose, define G rn

η,h,V as admissible collections of signed con-
tours compatible with η, but with no constraint on the height function they generate respecting a floor at
height 0 (unless h “ 0, in which case no down contours are allowed). With that, we can define

Zrn
η,h,V “ e´λh|V |

ÿ

ΓPG rn
η,k,V

ź

γPΓ

W rn
h pγq . (3.1)

In an element Γ P G rn
η,h,V , we say a contour γ P Γ is outermost if it is not strictly nested by any other contour

in Γ. Since contours may overlay fully and in the renormalized collection are all based at the same height
(i.e., multiple copies of the same contour can be in Γ), we arbitrarily call one of them the outermost one.

Lemma 3.2. The standard partition function and the renormalized one are equal, namely for any simply-
connected set V ,

Zη,h,V “ Zrn
η,h,V .

Moreover, the same equality holds if we specify some outermost contours which must belong to a configura-
tion and only sum over Γ having those as outermost contours.

Proof. If we let Γout be collections of outermost contours, then by Eq. (2.5) and Definition 3.1,

eλh|V |Zη,h,V “
ÿ

Γout

ź

γPΓout

W pγqeλh|Intpγq|ZSpγq,h˘1,Intpγq “
ÿ

Γout

ź

γPΓout

W rn
h pγqeλh|Intpγq|ZSpγq,h,Intpγq ,

where in the middle display, h ` 1 is used when Spγq “ ` and h ´ 1 when Spγq “ ´. Performing
the same expansion on eλh|Intpγq|ZSpγq,h,Intpγq and repeating, this gives the claimed equality to eλh|V |Zrn

η,h,V

concluding the proof. It is evident that the same argument could be performed restricted to sums over Γout

that contain a fixed collection of outermost contours. ■

The benefit of the above renormalized contour weight representation is that the deletion of a contour from
Γ leaves an element of the same G rn

η,h,V , whereas in Gη,h,V such a deletion could cause conflicts with the
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floor at height 0. This enables the use of simple Peierls maps on the renormalized collection so long as the
renormalized weights are exponentially small in |γ|.

3.2. Elementary contours. We next consider elementary contours, which are those we can show to have
exponentially small renormalized weight regardless of the height h with respect to which they are renormal-
ized. For a subset A in R2, we use diampAq to denote maxt}x ´ y}8 : x, y P Au.

Definition 3.3. A contour γ is called h-elementary if it has

diampγq ď λ´1 ^ e3βph`1q .

Remark 3.4. Note the following two important properties:
‚ if γ is h-elementary, then it is also ph ` 1q-elementary.
‚ if γ1 is nested in γ and γ is h-elementary, then γ1 is also h-elementary.

We now introduce the notation G el
η,h,V and the notation G rn.el

η,h,V , for compatible (renormalized) collections
of contours all of which are h-elementary. With these notations, we can define

Zel
η,h,V “ e´λh|V |

ÿ

ΓPG el
η,h,V

ź

γPΓ

W pγq , and Zrn.el
η,h,V “ e´λh|V |

ÿ

ΓPG rn.el
η,h,V

ź

γPΓ

W rn
h pγq . (3.2)

By the same reasoning as in the proof of Lemma 3.2, we obtain the following equivalence.

Lemma 3.5. The elementary partition function and the renormalized elementary one are equal, namely for
a simply-connected set V

Zel
η,h,V “ Zrn.el

η,h,V .

Moreover, the same equality holds if we specify some outermost contours which must belong to a configura-
tion, and only sum over Γ having those as outermost contours.

In what follows, we use the notation µel
η,h,V to denote the distribution over G el

η,h,V which assigns each Γ,
the weight

ś

γPΓW pγq. Equivalently, this is the SOS measure µη,h,V conditioned on its contour represen-
tation belonging to G el

η,h,V , i.e., conditioned on all its outermost contours being h-elementary.
The following theorem is our main result in this section, and establishes that the h-elementary contours

always have exponentially small h-renormalized weight. It also gives a first bound, that is sharp up to the
constant in the exponent, for the ratio of elementary partition functions at different heights. This is the
analogue, in the context of our contours, of [15, Lemma 2.5] and [11, Lemma 2.7].

Theorem 3.6. There exists β0 such that for every simply-connected V Ă Z2 and every β ą β0,
(1) For every 0 ď k ă m and every boundary signing η,

e´2|V |e´p4β´λqpk`1q

ď e´λpm´kq|V |
Zel
η,k,V

Zel
η,m,V

ď 2e´ 1
2

|V̊ |e´p4β´λqpk`1q

. (3.3)

(2) For every h ě 0, if γ is h-elementary,

W rn
h pγq ď e´pβ´2q|γ| .

Proof. We prove this by induction, showing that Item 1 implies Item 2 holds for that same V , and then by
showing that if Item 2 holds for V for all connected sets V having |V | ď l, then that implies Item 1 for all
sets V 1 having |V 1| ď l ` 1. This second step is the core of the argument and entails maps on elementary
contour families to estimate the entropic repulsion effect amongst elementary contours, at a given height k.

Base case for Item 1. Consider V “ txu, whence V̊ “ H. In this case, the only contours in EpV ˚q are the
loops consisting of the four dual-edges surrounding x, i.e., γtxu (notice that the these contours are always
elementary, no matter its height or sign, since diampγtxuq “ 1 is less than λ´1 ^ e3β).
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If η “ H then Zel
H,k,V “ e´λk and the middle quantity in Eq. (3.3) is exactly 1, which satisfies the two

bounds since |V̊ | “ 0. If η “ ` then

Zel
`,k,V “ e´λk

ÿ

lě0

e´4βl´λl , so that e´λpm´kq
Zel

`,k,V

Zel
`,m,V

“

ř

lě0 e
´4βl´λl

ř

lě0 e
´4βl´λl

“ 1 ,

which again satisfies the two bounds in Eq. (3.3). If η “ ´, then

Zel
´,k,V “ e´λk

ÿ

lě0

e´4βl`λl , so that e´λpm´kq
Zel

´,k,V

Zel
´,m,V

“

ř

0ďlďk e
´4βl`λl

ř

0ďlďm e´4βl`λl
.

Since λ ď 1 and β ą β0, we have e´4β`λ ă 1 and therefore the middle quantity in Eq. (3.3) is equal to

1 ´ ep´4β`λqpk`1q

1 ´ ep´4β`λqpm`1q
.

This is at most 1 since m ą k. As for the lower bound, the denominator is at most 1 (as k ă m and λ ă 4β),
and for the numerator we use 1 ´ x ě e´2x for x ă 1

2 , so it is at least e´2ep´4β`λqpk`1q

as claimed. Finally
if η “ f , then

e´λpm´kq
Zel
f,k,V

Zel
f,m,V

“

ř

lě´k e
´4β|l|´λl

ř

lě´m e´4β|l|´λl
“

ř

lą0 e
´4βl´λl `

ř

0ďlďk e
´4βl`λl

ř

lą0 e
´4βl´λl `

ř

0ďlďm e´4βl`λl
.

The last fraction evidently lies between the ratio of the first sums and the ratio of the second sums. The
first of these ratios is exactly 1 and the second of these ratios is exactly Zel

´,k,V {Zel
´,m,V ; in particular, both

satisfy the upper and lower bounds of Eq. (3.3), and thus so does the above.

Item 1 for |V | ď l implies Item 2 for γ : |Intpγq| “ l. Suppose Item 1 holds for all sets V having |V | ď l.
Fix any h and consider an up-contour γ with Intpγq “ l. Recalling Definition 3.1, we have

W rn
h pγq “ e´β|γ|

Z`,h`1,Intpγq

Z`,h,Intpγq

e´β|γ|
Zel

`,h`1,Intpγq

Zel
`,h,Intpγq

,

where we used that since γ is h-elementary (and by Remark 3.4 also h ` 1-elementary), every γ1 in Intpγq

must also be both h and h ` 1-elementary, so both partition functions are equal to their rn.el-versions, and
those in turn are equal to the elementary ones since Intpγq is simply connected per Lemma 3.5. Thus, by the
lower bound in Eq. (3.3) from Item 1 for the domain Intpγq, with k “ h and m “ h ` 1,

W rn
h pγq ď e´β|γ|´λ|Intpγq|`2|Intpγq|e´p4β´λqph`1q

.

Since γ is h-elementary, |Intpγq| ď |γ| diampγq ď |γ|e3βph`1q, and thus we get the claimed bound on
W rn

h pγq at β ą β0. For a down-contour γ, by Corollary 2.5 with k “ h ´ 1 and m “ h,

W rn
h pγq “ e´β|γ|

Z´,h´1,Intpγq

Z´,h,Intpγq

ď e´β|γ|`λ|Intpγq| .

Since |Intpγq| ď |γ|diampγq ď λ´1|γ| and |γ| ě 1, this gives the claimed bound.

Item 2 for all |V | ă l implies Item 1 for |V | ď l. In what follows, suppose Item 2 holds for all γ having
|Intpγq| ď l ´ 1. Let us begin with a few consequences of the inductive assumption of Item 2 for V : |V | ď

l ´ 1 that will be useful in both the upper and lower bound of Item 2.
The first is the easy observation that a bound on the renormalized weights implies a bound on the proba-

bility that under the renormalized contour model, a certain family of compatible k-contours is present.
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Lemma 3.7. Consider a fixed family G of compatible k-elementary contours, all of which have |Intpγq| ď

l´1. Let Zrn.el
η,k,V pGq be the analogue of Zrn.el

η,k,V with the sum only running over elements of G rn.el
η,k,V containing

all of G. Then for any V ,

Zrn.el
η,k,V pGq

Zrn.el
η,k,V

ď e´pβ´2q
ř

γPG |γ| .

If the contours in G are mutually external and we only sum over G rn.el
η,k,V in which they are outermost, the

same bound applies to Zel
η,k,V pGq{Zel

η,k,V .

Proof. Consider the map that removes G from the numerator to send it into an element of the denominator.
This is an injection, and the relative weight of each pre-image to its image is

ś

γPGW rn
k pγq. By the inductive

assumption and the fact that every γ P G has interior smaller than l ´ 1, we get the claim. ■

Since our contours may overlay, when |V | “ l, it may admit the contour γV “ pBeV q˚, which will have
|IntpγV q| “ l and to which the inductive assumption will not apply. We use a 1-site modification to show
therefore that if V has size l, then it is exponentially unlikely to have γV as a contour. For j P Z,

Ej
η,k,V “ tΓ P Gη,k,V : exactly |j| copies of γV with sign matching sgnpjq in Γu . (3.4)

Lemma 3.8. For every η, k and V such that |V | ď l, we have for every j,

µel
η,k,V pEj

η,k,V q ď expp´pβ ´ 2q|j||γV | ` 5p1 _ jqq .

Proof. In order for the probability not to be zero, it must be that γV is k-elementary, and either ηv “ t´, fu

for all v P BiV if j negative, or ηv P t`, fu for all v P BiV if j positive.
Consider first the probability that under µel

η,k,V there exists at least one contour in Γ that is all of γV . In the

language of Lemma 3.2, this is equivalent to the fraction
Zel
η,k,V ptγV uq

Zel
η,k,V

“
Zrn.el
η,k,V ptγV uq

Zrn.el
η,k,V

; however, we cannot

yet apply Lemma 3.7 because |IntpγV q| “ |V | “ l, not l ´ 1. Therefore, we first consider the modification
MxΓ of G rn.el

η,k,V pGq that performs an ‘ operation with a single copy of γtxu satisfying V ztxu is s.c. (such an
x must exist). For each Γ P G rn.el

η,k,vptγV uq, let dx (|dx| ď 2) be the change in the total number of edges in Γ

vs. the MxΓ. The resulting configuration evidently belongs to G rn.el
η,k,V . Its relative weight satisfies

ś

γPMxΓ
W rn

k pγq
ś

γPΓW
rn
k pγq

ď eβdx`λ .

Furthermore, Mx is an injection since the original configuration can be recovered by the ‘ operation with
the singleton loop around txu. Let

rZ “
ÿ

ΓPG rn.el
η,k,V ptγV uq

ź

γPMxΓ

W rn
k pγq “

ÿ

MxΓPMxG rn.el
η,k,V ptγV uq

ź

γPMxΓ

W rn
k pγq .

Each Mxγ appearing in this sum can in turn be mapped to one in which the contour γ̃ in MxΓ resulting
from the modification to γV after ‘γtxu, is deleted from the collection. That yields a further weight change
W rn

k pγ̃q. Since γ̃ necessarily has |Intpγ̃q| ď l ´ 1, this is at most e´pβ´2q|γ̃|. Summing over the possible
choices for the contour γ̃ (namely summing over possible contours γ1 adjacent to x such that γ̃ “ γV ‘

γtxu ‘ γ1, the number of such choices being at most 4r for |γ1| “ r, say), we get

Zel
η,k,V ptγV uq

Zel
η,k,V

ď
ÿ

rě0

4re´pβ´2qp|γV |`dx`rq`βdx`λ ď e´pβ´2q|γV |`λ`4 . (3.5)

where the 4 comes from the worst-case value of dx.
We now wish to reduce the event Ej

η,k,V to the event of having at least 1 such contour. If j is negative,
consider the deletion of |j|´1 such contours from the (standard) contour representation. That gives a change
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of eβpj´1q|γV |´λpj´1q|V | to the weight of the configurations, and is an injection from Ej
η,k,V to E´1

η,k,V . Since
we assumed γV to be k-elementary, λ|V | ď λdiampV q|γV | ď |γV |, and thus we have

µpEj
η,k,V q ď e´pβ´1qpj´1q|γV |µpE´1

η,k,V q ď e´pβ´1qpj´1q|γV |e´pβ´2q|γV |`λ`4 .

which easily the claimed bound using λ ď 1.
If j is positive, notice that on the event of having ě j ´1 many up-contours γV , the probability of having

at least j is at most the probability of having at least j ´ 1, times the conditional probability of having at
least one more given those j ´ 1. But the conditional measure given at least j ´ 1 up-contours γV is exactly
µ`,k`j´1,V “ µel

`,k`j´1,V because all possible contours in V are enclosed in γV , which is k-elementary
and therefore also k ` j ´ 1 elementary for j ě 1. For this conditional probability, the bound of Eq. (3.5)
applies (with k ` j ´ 1 instead of k), and iterating that down, this gives

µel
η,k,V pEj

η,k,V q ď

j
ź

i“1

e´pβ´2q|γV |`λ`4 ,

yielding the claim after λ ď 1. ■

Together, Lemmas 3.7 and 3.8 imply that if V has |V | “ l, the probability under µel
η,k,V of any fixed

collection of outermost contours is exponentially small.

Corollary 3.9. Let V have |V | ď l. The probability of having a specific contour γ as an outermost contour
under µel

η,k,V , is at most e´pβ´3q|γ|.

Proof. If γ “ γV , this is ruled out by Lemma 3.8, a sum over j, and |γV | ą 4. Otherwise, the probability of
γ being an outermost contour is at most e´pβ´2q|γ| per Lemma 3.7. ■

With the above in hand, we move to proving Item 1; we split up the proofs of the upper and lower bound.

Upper bound in Eq. (3.3). Intuitively, the proof of the upper bound goes by mapping configurations in
Zel
η,k,V to Zel

η,m,V in such a way to inject entropy via singleton spikes γtxu that go down by height m, which
would have been prohibited under Zel

η,k,V due to the floor constraint. We first construct such a map, using
the contour representation of the elementary SOS configurations. We then use its alternative representation
with renormalized weights together with the inductive hypothesis to argue that under Zel

η,k,V , most sites are
at height k, and thus there is typically p1 ´ εβq|V | many sites to insert these downward spikes.

We begin by working with G el
η,k,V , which we recall is the set of contour representations of SOS configu-

rations compatible with the floor at height zero, and all of whose outermost contours are all k-elementary.
This in fact implies that all its contours are k-elementary (though the inner contours may not be elementary
at the height they are based at). For Γ P G el

η,k,V , let

VΓ “
␣

x P V̊ : min
γPΓ

dpx, Intpγqq ą 1
(

.

Given any Γ P G el
η,k,V and a subset S Ă VΓ, define the map Ts as the one that adds to Γ, collections of k ` 1

many copies of the down-contour γtvu.

Claim 3.10. For every k ă m, every Γ P G el
η,k,V , and every S Ă VΓ, we have TSΓ P G el

η,m,V .

Proof. This resulting collection TSΓ is in Gη,m,V because the addition of these contours (1) is compatible
with the remainder of the contour collection since S Ă VΓ and VΓ ensures that any newly added contours
will not be incident to any contours in Γ; and (2) does not violate the floor constraint since m ě k ` 1,
and in Γ, the height of sites in VΓ is k. Finally, it is compatible with the signing on the boundary condition
since S Ă VΓ Ă V̊ . To see that TSΓ P G el

η,m,V , we further claim that in TSΓ, every outermost contour is
m-elementary. This is because the singleton contours are trivially m-elementary having diameter 1, and all
the outermost contours in Γ were k-elementary so they are also m-elementary per Remark 3.4. ■
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Each configuration in the set pTSΓqSĂVΓ,ΓPG el
η,k,V

has a unique pre-image in G el
η,k,V , since the preimage

can be reconstructed by taking the corresponding SOS configuration, shifting all sites at heights m´pk`1q

up to m, then shifting the whole configuration down by m ´ k. Thus, for any θ ą 0,

Zel
η,m,V ě e´λm|V |

ÿ

ΓPG el
η,k,V

|VΓ|ěθ|V̊ |

ÿ

SĂVΓ

ź

γPTSΓ

W pγq .

Also, by definition of the map TS , we have
ś

γPTSΓ
W pγq

ś

γPΓW pγq
ě e´p4β´λqpk`1q|S| .

(This is an inequality rather than equality because some sites in S could be adjacent.) Thus, for every θ ą 0,

Zel
η,m,V

Zel
η,k,V

ě e´λm|V |
ÿ

ΓPG el
η,k,V

|VΓ|ěθ|V̊ |

ÿ

SĂVΓ

ś

γPTSpΓq W pγq

Zel
η,k,V

ě e´λpm´kq|V |
ÿ

ΓPG el
η,k,V

|VΓ|ěθ|V̊ |

ÿ

SĂVΓ

e´p4β´λqpk`1q|S|µel
η,k,V pΓq

“ e´λpm´kq|V |
ÿ

ΓPG el
η,k,V

|VΓ|ěθ|V̊ |

µel
η,k,V pΓq

´

1 ` e´4β´λqpk`1q
¯|VΓ|

ě exp
´

´ λpm ´ kq|V | ` 1
2e

´p4β´λqpk`1qθ|V̊ |

¯

µel
η,k,V p|VΓ| ě θ|V̊ |q .

Taking θ “ 3{4, proving the following display would conclude the proof of the upper bound in Eq. (3.3):
there is an absolute constant C such that for β ą β0, and every η, we have

µel
η,k,V p|VΓ| ě 3|V̊ |{4q ě 1 ´ Ce´pβ´Cq|V̊ |1{3

. (3.6)

as it will in particular be greater than 0.9 for every V . The event |VΓ| ě 3|V̊ |{4 is a subset of the union of

‚ B1: there exists a contour γ confining a vertex in V̊ and having |γ| ě |V̊ |1{2

‚ B2: the subset of V̊ interior to outermost contours γ with |γ| ď |V |1{2 is at least |V̊ |{4.

We first bound the probability of B1. The number of choices for γ having |γ| “ r ě |V̊ |1{2 is at most |V̊ |4r,
first for picking a site in V̊ to root the contour at, then for picking the contour γ. The probability of any
fixed such γ being an outermost contour is at most expp´pβ ´ 3qrq per Corollary 3.9. Thus,

µel
η,k,V pB1q ď

ÿ

rě|V̊ |1{2

|V |4re´pβ´3qr ď e´pβ´Cq|V̊ |1{2
.

Next, we consider the probability of B2. For B2 to happen, there must be a collection G of outermost
elementary contours each of which have |γ| ď |V̊ |1{2, and for which

ÿ

γPG

|Intpγq X V̊ | ą
1

4
|V̊ | .

In particular, there must exist ℓ “ 1, ..., 12 log2 |V̊ | such that if Uℓ is the set of γ P G having |γ| P r2ℓ´1, 2ℓq,

ÿ

γPUℓ

|Intpγq X V̊ | ě
|V̊ |

8ℓ2
.

Consider the probability of this for fixed ℓ, and note that the above requires
ÿ

γPUℓ

|γ| ě 4
ÿ

γPUℓ

2´ℓ{2|Intpγq| ě
|V̊ |

2ℓ2
2´ℓ{2 . (3.7)
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Counting over the possible choices for such Uℓ, and applying Lemma 3.7 to bound the probability that Uℓ

are outermost contours, the probability that there exists Uℓ having Eq. (3.7) is at most

ÿ

rě
|V̊ |

2pℓ`1q{2ℓ2

2r
ˆ

|V̊ |

2p´ℓ´1q|V̊ |

˙

4re´pβ´2qr ď e|V̊ |ℓ2´pℓ´1q

e´pβ´3q 1
2ℓ2

2´ℓ{2|V̊ | .

If β is large, for every ℓ, this is at most expp´
β

3ℓ22ℓ{2 |V̊ |q. The coefficient of |V̊ | is decreasing in ℓ and

therefore, this is at most its value for ℓ “ 1
2 log2 |V̊ | which gives e´4β|V̊ |3{4{p3plog2 |V̊ |q2q. This is at least

expp´β|V̊ |1{2q as long as |V̊ | is larger than an absolute constant. The sum of the above probabilities thus
yields the bound of Eq. (3.6).

Lower bound in Eq. (3.3). In the other direction, define the identity map T that acts on the subset of
configurations in G el

η,k`1,V that have tφV ě 1u and sends them to Gη,k,V by preserving the same contour
collection, just viewing them all as being based at 1 height lower. This is equivalent to shifting the height
configuration down by 1 everywhere, and thus tφV ě 1u implies that Tφ will respect the floor constraint.
The core of the argument is to inductively estimate the fraction of G el

η,k`1,V that has tφV ě 1u (for which
this map is valid), as a way to bound the relative weight of Zel

η,k`1,V {Zel
η,k,V .

A potential problem is that the image under this map may not be in G el
η,k,V because contours can be

pk ` 1q-elementary but not k-elementary. To this end, define the good event G on a contour collection (with
a boundary height so that the contours have associated heights) as follows:

G :“
!

Γ : @γ P Γ , |γ| ď e3βhbpγq
)

. (3.8)

where hbpγq is its base height, i.e., hbpγq “ hpγq ` 1 if Spγq “ ´ and hbpγq “ hpγq ´ 1 if Spγq “ `.
Because outermost contours in G el

η,k`1,V have base height k ` 1, and diampγq ď |γ|, we have by definition
of k-elementary, that

T pG X tφV ě 1uq Ă G el
η,k,V .

Furthermore, T is an injection because the pre-image can be recovered uniquely by shifting all heights up
by 1. As a consequence of this inclusion, and the simple calculation of the weight change eλ|V | under
application of the map T , for every h,

Zel
η,h,V

Zel
η,h`1,V

ě eλ|V |µel
η,h`1,V pT´1pG el

η,h,V qq ě eλ|V |µel
η,h`1,V pG, φV ě 1q . (3.9)

Our goal is now to establish for every h,

µel
η,h`1,V pG, φV ě 1q ě exp

´

´ 3
2 |V |e´p4β´λqph`1q

¯

, (3.10)

since plugging this bound into Eq. (3.9) and iterating over h “ k, ...,m´ 1 yields the claimed lower bound.
Henceforth, fix any h. The core content of Eq. (3.10), is that the probability of Gc Y tminv φv “ 0u is

dominated by the event that at some single site v P V a singleton spike reaches down from height h ` 1 to
height 0, as that is what provides the rate e´p4β´λqph`1q. Towards this, for a simply-connected subdomain
U Ă V and point y P U , we can define the event in G el

ζ,h`1,U ,

G̃y “ tφy ě 1u X
č

γ:yPIntpγq

t|γ| ď e3βhbpγqu .

Claim 3.11. Let U Ĺ V be simply connected. For any ℓ ě 1, ζ and every y P U , we have

µel
ζ,ℓ,U pG̃c

yq ď p1 ` e´βqe´p4β´λqℓ .
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Proof. Let us prove the claim inductively over U . The case |U | “ 1 is governed entirely by the event of
tφy “ 0u via singleton contours, which has probability at most e´p4β´λqℓ. Generally, let us decompose

µel
ζ,ℓ,U pG̃c

yq ď µel
ζ,ℓ,U pG̃c

y, E0
ζ,ℓ,U q `

ÿ

j‰0

µel
ζ,ℓ,U pG̃c

y, E
j
ζ,ℓ,U q . (3.11)

where we recall the events Ej
ζ,ℓ,U from Eq. (3.4) and use the shorthand Ej . We begin with comparing the

second term in Eq. (3.11) back to the first, so that the dominant contribution comes on the event E0. This
will be helpful again in the future, so we isolate this reduction with a general event A in place of G̃c

y.
Let j0 be the largest number such that |γU | ď e3βpℓ´j0`1q (this is the largest number of down γU contours

we can reveal while still having that conditional on those contours, the interior measure is the elementary
one). For j ą ´j0, the probability of A X Ej is bounded by the probability that there exist |j| contours that
are all γU , times the probability that under µel

sgnpjq,ℓ`j,U pA, E0q. For the j ď ´j0 contributions, their total
probability is at most the probability of first having j0 ´ 1 down contours, times the probability of having a
contour of size |γU | ě e3βpℓ´j0`1q (as well as |γU | ě 6 since |U | ě 2), whose probability by Corollary 3.9
is at most e´pβ´2qe3βpℓ´j0`1q

. Together, these imply the bound
ÿ

j‰0

µel
ζ,ℓ,U pA, Ejq ď

ÿ

j‰0

e´pβ´2q|j||γU |µel
sgnpjq,ℓ`j,U pA, E0q ` max

j‰0
e´pβ´2qpp|j|´1q|γU |`maxt6,e3βpℓ´j`1quq .

For the first term, we can use the bound |γU | ě 6. For the second term, we notice that 6p|j| ´ 1q `

maxt6, e3βpℓ´j`1qu is at least 6ℓ for all j. Together, these imply for a general event A and U : |U | ě 2,
ÿ

j‰0

µel
ζ,ℓ,U pA, Ejq ď

ÿ

j‰0

e´6pβ´2q|j|µel
sgnpjq,ℓ`j,U pA, E0q ` e´6pβ´2qℓ . (3.12)

The last term being at most 1
4e

´βe´p4β´λqℓ, we have reduced Eq. (3.11) to bounding µel
η,ℓ`j,U pA, E0q.

In what follows, let γouty be the outermost contour having y P Intpγouty q. We have for general ℓ,

µel
ζ,ℓ,U pG̃c

y, E0q ď µel
ζ,ℓ,U pφy “ 0, |γouty | “ 4q `

ÿ

6ďrďe3βℓ

µel
ζ,ℓ,U pG̃c

y, |γouty | “ r, E0q ` µel
ζ,ℓ,U p|γouty | ě e3βℓq .

(3.13)

For the first term in Eq. (3.13), observe that if |γouty | “ 4 and φy “ 0, the only contours surrounding y are
exactly ℓ down contours that are each the singleton contour γtyu. By explicit calculation, the probability of
such configurations is at most e´p4β´λqℓ. For the third term in Eq. (3.13), we can sum over all possible γouty

having size r ě e3βℓ, the probability of the contour γouty being that one using Corollary 3.9, to find that
ÿ

rěe3βℓ

µel
ζ,ℓ,U p|γouty | “ rq ď

ÿ

rěe3βℓ

4re´pβ´3qr ď e´pβ´5qmaxt6,e3βℓu ď e´6pβ´5qℓ .

For the second term in Eq. (3.13), bounding the probability of |γouty | “ r similarly, and then conditioning
on that outermost contour surrounding y, (using that for r ď e3βℓ its interior will necessarily only consist of
hpγouty q-elementary contours),

ÿ

rě6

µel
ζ,ℓ,U pG̃c

y, |γouty | “ r, E0
ζ,ℓ,U q ď

ÿ

rě6

4re´pβ´3qr max
|γout

y |ě6 ; Intpγout
y q‰U

max
ζ

µel
ζ,ℓ˘1,Intpγout

y qpG̃
c
yq .

Since Intpγouty q is strictly contained in U , we can use the inductive hypothesis on this last quantity, to get
ÿ

rě6

µel
ζ,ℓ,U pG̃c

y, |γouty | “ r, E0
ζ,ℓ,U q ď e´6pβ´5qp1 ` e´βqe´p4β´λqpℓ´1q ď

1

4
e´βe´p4β´λqℓ .

Combining these three bounds, we get for general ℓ ě 1, and ζ,

µel
ζ,ℓ,U pG̃c

y, E0q ď p1 `
1

2
e´βqe´p4β´λqℓ . (3.14)
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Plugging this into Eq. (3.12) with ℓ replaced by ℓ ` j and A replaced by G̃c
y gives

ÿ

j‰0

µel
ζ,ℓ,U pG̃c

y, Ejq ď
ÿ

j‰0

e´6pβ´2q|j|p1 ` e´βqe´p4β´λqpℓ`jq `
1

4
e´βe´p4β´λqℓ

ď p1 ` e´βqe´p4β´λqℓ
ÿ

j‰0

e´2pβ´2q|j| `
1

4
e´βe´p4β´λqℓ ,

which is at most 1
2e

´βe´p4β´λqℓ. Combined with Eq. (3.14) and plugged into Eq. (3.11) we conclude. ■

In order to go from the one-point estimate to the probability that G̃y holds at all y P V , we argue as
follows. For a configuration in G el

η,h`1,V , let

Gx “ tφ : φpIntpγoutx qq P Gu X tφ : φpIntpγoutx qq ě 1u .

The role of this event is that

G X tφV ě 1u “
č

xPV

Gx and Gc
x Ă

ď

yPIntpγout
x q

G̃c
y .

Our goal is to establish that if we order the vertices of V in such a manner that V z
Ť

ty : y ă xu is always
simply connected (e.g., repeatedly assign x to be an arbitrary boundary vertex of V z

Ť

ty : y ă xu), then

µel
η,h`1,V pGx | pGyqyăxq ě 1 ´ p1 ` εβqe´p4β´λqph`1q . (3.15)

from which the claim would follow since

µel
η,h`1,V

´

č

xPV

Gx

¯

“
ź

xPV

µel
η,h`1,V

`

Gx | pGyqyăx

˘

ě

´

1 ´ p1 ` εβqe´p4β´λqph`1q
¯|V |

,

where ηi are the induced boundary signings by the exposure of the outermost contours confining y ă x.
This gives the claimed bound of Eq. (3.10) since 1 ´ x ě e´x for 0 ă x ă 1{2.

In order to establish Eq. (3.15), for ease of notation, let

νh`1 “ µel
ηx,h`1,V p ¨ | pGyqyăx, pFyqyăxq ,

where, by Fy we mean the σ-algebra generated by the configuration interior to γouty . Notice that νh`1 is
exactly the measure µel

ζ,h`1,U where U “ V z
Ť

yăx Intpγ
out
y q (which is pFyqyăx-measurable and is simply-

connected by the ordering we imposed over V ) and ζ agrees with η on BiV zBoU and takes the opposite sign
of γouty on every vertex in BoU . If U is a singleton, the bound of Eq. (3.15) is immediate as the probability
of Gc

x would be e´p4β´λqph`1q if a single-column spike down to height zero is permissible and 0 otherwise.
Suppose now that |U | ě 2. Then we can naturally decompose

νh`1pGc
xq ď νh`1pGc

x, E0q `
ÿ

j‰0

νh`1pGc
x, Ejq , (3.16)

and apply Eq. (3.12) to get the bound

νh`1pGc
xq ď

ÿ

j

e´pβ´2q|j|νh`1`jpG
c
x, E0q ` e´6pβ´2qph`1q , (3.17)

(where we use the shorthand νh`1`j for µsgnpjq,h`1`j,U when j ‰ 0). We now examine νh`1`jpG
c
x, E0q.

For general ℓ, just as in Eq. (3.13), we can split

νℓpG
c
x, E0q ď νℓpφx “ 0, |γoutx | “ 4q `

ÿ

6ďrďe3βℓ

νℓpG
c
x, |γoutx | “ r, E0q ` νℓp|γoutx | ě e3βℓq .
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As argued following Eq. (3.13), the first term will contain the dominant contribution of at most e´p4β´λqℓ,
and the last term will be at most e´6pβ´5qℓ ď 1

4e
´βe´p4β´λqℓ. The middle sum is similarly at most

ÿ

rě6

4re´pβ´3qr max
|γout

x |ě6 ; Intpγout
x q‰U

max
ζ

µel
ζ,ℓ˘1,Intpγout

x qpG
c
xq .

Recalling that Gc
x is a subset of

Ť

yPIntpγout
x q G̃

c
y, by a union bound and Claim 3.11,

ÿ

6ďrďe3βℓ

νℓpG
c
x, |γoutx | “ r, E0q ď

ÿ

rě6

e´pβ´4qrr2p1 ` e´βqe´p4β´λqpℓ´1q .

This sum is evidently at most 1
4e

´βe´p4β´λqℓ. Altogether, we get

νℓpG
c
x, E0q ď p1 ` 1

2e
´βqe´p4β´λqℓ .

Plugging this bound into Eq. (3.17) with ℓ “ h ` 1 ` j, we get

νh`1pGc
xq ď

ÿ

j

e´pβ´2q|j|p1 ` 1
2e

´βqe´p4β´λqph`1`jq ` e´6pβ´2qph`1q ď p1 ` e´βqe´p4β´λqph`1q ,

yielding the claimed Eq. (3.15) and concluding the proof. ■

3.3. The elementary cluster expansion. We can use Theorem 3.6 to deduce that the elementary partition
functions admit convergent cluster expansions. For a thorough background on cluster expansion, see [19,
Chapter 5], though we will only use fairly elementary consequences. We will work with the renormalized
elementary partition function Zrn.el

η,k,V , though we recall that for simply-connected domains, this is the same
as Zel

η,k,V per Lemma 3.5. For non-simply connected domains, we define Zrn.el
η,k,U as in Eq. (3.2) (contours

encircling holes of U being admissible).

Lemma 3.12. For each i, the limit

f el
i “ lim

nÑ8

1

|Λn|
logZel

η,i,Λn
,

exists. Furthermore, for all (not necessarily simply connected) U , all i and all η,
ˇ

ˇ logZrn.el
η,i,U ´ |U |f el

i

ˇ

ˇ ď e´β{2|BeU | .

Proof. The partition function Zrn.el fits into the standard cluster expansion framework with hardcore interac-
tions between contours (which serve as the polymers). Furthermore, per Item 2 of Theorem 3.6, they satisfy
the requisite exponential decay property on their weights for the Kotecky–Preiss condition [29] to hold at
large β. The lemma is then a direct corollary of convergence of the cluster expansion. We have used the
bound e´β{2 on the sum of weights of all possible elementary contours confining a vertex v in their interior,
which holds for β larger than some absolute constant. ■

Using the bounds we obtained in Item 1 from Theorem 3.6, we can provide uniform lower bounds on
f el
i ´ f el

j in certain windows of the parameter λ. Namely, we get an infinite sequence of disjoint intervals Ii
in which the boundary condition i elementary partition function dominates. Define

Ii “ rλ
piq
´ , λ

piq
` s for λ

piq
´ :“ e´4βi´2β , and λ

piq
` :“ e´4βi´β . (3.18)

Lemma 3.13. If λ P Ii, then for every j ‰ i we have

f el
i ´ f el

j ě e´4βpi^pj`1qq´3β .

Proof. Applying Item 1 of Theorem 3.6 with λ P Ii, we find that for every k ă m,

λpm ´ kq ´ 2e´p4β´λqpk`1q ď
1

|V |
log

Zel
η,k,V

Zel
η,m,V

ď λpm ´ kq ´
1

2

|V̊ |

|V |
e´p4β´λqpk`1q `

log 2

|V |
. (3.19)
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Taking k “ i and m “ j ą i, we see that

1

|V |
log

Zel
η,i,V

Zel
η,j,V

ě λpj ´ iqp1 ´ 2e´p4β´λqpi`1q`4βi`2βq ě λpj ´ iqp1 ´ 2e´4β`e´4βipi`1q`2βq .

Since e´4βipi ` 1q ď 1, we see that for β large, this satisfies

1

|V |
log

Zel
η,i,V

Zel
η,j,V

ě λpj ´ iqp1 ´ εβq ,

and εβ can be taken to be e´β . Since this bound is uniform over V , we can take V to be sequences of boxes
going to Z2 to get the lower bound in the limit.

If j ă i, the upper bound of Eq. (3.19) with k “ j and m “ i implies

1

|V |
log

Zel
η,j,V

Zel
η,i,V

ď e´4βi´βpi ´ jq ´ 1
2e

´4βpj`1q ` Op
|BV |

|V |
q .

Since j ă i, we can write e´4βi´β “ e´4βpj`1qe´4βpi´j´1q´β and use the fact that e´4βpi´j´1q´βpi´jq´ 1
2

is at most ´1
2 ` e´β ď ´e´β uniformly over i ´ j ě 1, yielding

1

|V |
log

Zel
η,j,V

Zel
η,i,V

ď ´e´4βpj`1q´β ` Op
|BV |

|V |
q .

Taking V to be sequences of boxes going to Z2, and negating the above, we get the claimed bound. ■

4. AN INFINITE SEQUENCE OF CRITICAL EXTERNAL FIELD VALES

The aim in this section is to establish an infinite sequence of discontinuous phase transitions as one varies
the external field λ, with critical points pλ

pkq
c qkě0 ordered λ

p0q
c ą λ

p1q
c ą . . . and accumulating at zero, such

that for all λ P rλ
pkq
c , λ

pk´1q
c s the SOS measure with boundary conditions k is thermodynamically stable. In

particular, if one starts with boundary conditions k in any domain, then the interface will remain rigid about
height k interior to that interface whenever λ P rλ

pkq
c , λ

pk´1q
c s.

Moreover, and crucially for the purposes of this paper, we probe the precise behavior as λ approaches the
critical points, demonstrating that each of heights k and k´1 will be stable so long as the domain is smaller
than |λ´λ

pk´1q
c |´1. It is in this and the following section that the true benefits of the contour representation

and our more geometric arguments arise, allowing us to use much shorter arguments to get sharp results
analogous to [11] for all λ ě 0 rather than only for λ ě cβ ą 0 fixed and bounded away from zero.

4.1. Rigidity of height h when λ P Ih. For each h, the full window rλ
phq
c , λ

ph´1q
c s will contain the interval

Ih from Eq. (3.18), so we begin by establishing the rigidity in the smaller interval away from the critical
points. A general contour collection in G rn

η,h,V consists both of h-elementary contours, and ones that are
not h-elementary. The above estimates give us the ability to prove that even the contours that are not h-
elementary have exponentially small h-renormalized weight when λ P Ih.

Lemma 4.1. If λ P Ih, then for every (not necessarily elementary) γ, we have

W rn
h pγq ď e´pβ´4q|γ| .

The proof of Lemma 4.1 goes by treating nested collections of non h-elementary contours together, so
that the partition functions on their complements are exactly the elementary ones, for which we know that
being at height h is the most preferred when λ P Ih, per Lemma 3.12. The key step in the argument is to
bound the total weight contribution over all choices of non-elementaries that can be nested in γ, noticing that
their being non-elementary is enough to beat out the entropy over the possible locations they can be placed
(also using that if they are far from the boundary of their nesting contour, there is a cost due to the height-h
elementary free energy being the dominant one). This argument was performed in [15, Lemmas 2.13–2.14]
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for their cylinders rather than our contours, using an encoding of clusters of non-elementary cylinders into
weighted trees. With only minor modifications, this argument can be imported into our setting of contours,
and we therefore defer the details to Appendix B.

Given Lemma 4.1, we can deduce convergence of the cluster expansion for Zh,V (see the next subsection)
as well as the following rigidity of the (full) SOS measure with h-boundary conditions when λ P Ih.

Lemma 4.2. Suppose λ P Ih. For every V , every η, and every x P V ,

µη,h,V p|φx ´ h| ě rq ď e´4pβ´5qr .

Proof. It suffices to bound the probability that there is a set of all contours nesting x have total size at
least 4r. The bound on this goes via a standard Peierls estimate, with the set of all such configurations being
mapped, via deletion of their outermost contour, to the set of configurations whose set of all contours nesting
x has total size at least 4pr ´ 1q (since |φx ´ h| would change by 1 under this operation). If in the contour
representation of φ, γoutx is the outermost contour confining x, we can enumerate over all such choices of
the contour having size r ě 4, there being at most 4r many such choices, and recall from Lemma 3.2 that
the probability of a specific contour γ being γoutx is exactly W rn

h pγq. Together with Lemma 4.1, we get

µη,h,V

´

ÿ

γ:xPIntpγq

|γ| ě 4r
¯

ď
ÿ

rě4

4re´pβ´4qrµη,h,V

´

ÿ

γ:xPIntpγq

|γ| ě 4pr ´ 1q

¯

,

which, when iterated implies the claimed bound for large β. ■

Truncated free energies and cluster expansion. Having established exponential tails not only on elemen-
tary γ, but also when λ P Ih, non-elementary γ based at height h, we can deduce that the full partition
function Zη,h,V admits a convergent cluster expansion when λ P Ih. In order to compare this with other
partition functions (which may not admit convergent cluster expansions), we introduce “truncated” partition
functions which modify the renormalized weights so that they admit convergent cluster expansions at all ref-
erence heights and all λ. These will coincide with the usual partition function whenever the usual partition
function has exponential tails on its renormalized weights.

Definition 4.3. For an contour γ, define its h-truncated weight

W tr
h pγq “ min

␣

W rn
h pγq, e´pβ´5q|γ|

(

. (4.1)

As a consequence of Item 2 of Theorem 3.6, we have for every elementary γ, W tr
h pγq “ W rn

h pγq. Also,
by Lemma 4.1, if λ P Ih, then every non-elementary contour γ also has W tr

h pγq “ W rn
h pγq. We can now

use the truncated weights to construct truncated partition functions.

Definition 4.4. For general η, h, V , define the truncated partition function

Ztr
η,h,V “ e´λh|V |

ÿ

ΓPG rn
η,h,V

ź

γPΓ

W tr
h pγq .

By definition of W tr
h and Ztr

η,h,V , we always have

Ztr
η,h,V ď Zrn

η,h,V , (4.2)

By the earlier observation that W tr
h pγq “ W rn

h pγq for all γ when λ P Ih, we have

Ztr
η,h,V “ Zrn

η,h,V for all λ P Ih . (4.3)

By Lemma 3.2, if V is simply connected both the right-hand sides above can be replaced by Zη,h,V .
Below, we collect some standard consequences of convergent cluster expansions that we get for the

truncated partition functions. Towards this, define the following finite-volume free energies:

f tr
η,h,V “

1

|V |
logZtr

η,h,V , and fη,h,V “
1

|V |
logZη,h,V . (4.4)
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As argued in Lemma 3.12, the uniform e´pβ´5q|γ| bound on truncated contour weights implies that the
truncated partition functions admit convergent cluster expansions, yielding the following.

Lemma 4.5. For each h, the following infinite-volume free energy

f tr
h :“ lim

nÑ8
f tr
η,h,Λn

,

exists. Furthermore, for all (not necessarily simply connected) U , all h, and all η,

| logZtr
η,h,U ´ |U |f tr

h | ď e´β{2|BeU | .

At the same time, due to Eq. (4.3) and Lemma 3.2, when λ P Ih,

fh :“ lim
nÑ8

1

|Λn|
logZη,h,Λn ,

exists and is equal to f tr
h because the partition functions are equal. Since

ˇ

ˇ

ˇ

1

|V |
log

Zη,j,V

Zζ,h,V

ˇ

ˇ

ˇ
ď pβ ` λq ¨ |h ´ j| ¨

|BeV |

|V |
,

(by crudely forcing the heights along the boundary to be at h), we find that when λ P Ih,

fj “ lim
nÑ8

fη,j,Λn exists, and fj “ fh “ f tr
h for all j ‰ h . (4.5)

We now show using the truncated free energies, that there exist an infinite sequence of critical values of
λ dictating transitions between which height maximizes the infinite-volume truncated free energy.

Proposition 4.6. There exists pλ
piq
c q8

i“0 ą 0 such that for every i, it has Ii Ă rλ
piq
c , λ

pi´1q
c s and

(1) If λpiq
c ă λ ă λ

pi´1q
c , then f tr

i ą f tr
j for all j ‰ i .

(2) If λ “ λ
piq
c , then f tr

i`1 “ f tr
i ą f tr

j for j R ti, i ` 1u.

Proof. We first use Eq. (4.5), then Eq. (4.2) to deduce that for every λ P Ii, we have for all j,

f tr
i “ fi “ fj ě f tr

j . (4.6)

We now lower bound the λ-derivative of f tr
i ´ f tr

j to deduce that there is a single λ at which the former
becomes strictly larger than the latter. We start by considering the derivative for finite volumes. (The
boundary signing can be arbitrary here, so let us take it as free and drop it from the notation.) Explicit
differentiation gives

ˇ

ˇ

ˇ

d

dλ
f tr
i,V ` i

ˇ

ˇ

ˇ
ď

1

|V |
µtr
i,V

“

ÿ

γPΓ

|Intpγq|
‰

,

(where when the derivative does not exist due to the min in W trpγq, this bound holds for both the right
and left derivatives). By standard cluster expansion reasoning, the total volume confined by γ P Γ has
an exponential tail beyond e´β|V |, and therefore the expectation on the right above is at most e´β{2|V |,
uniformly over λ. This implies that for any simply connected V , for all k, l

ˇ

ˇ

ˇ

d

dλ
pf tr

k,V ´ f tr
l,V q ´ pl ´ kq

ˇ

ˇ

ˇ
ď e´β{2 . (4.7)

Taking V “ Λn and n Ñ 8, this implies that f tr
k , f

tr
l are (Lipschitz-)continuous in λ, and for all λ ą 0, we

have for all l, k
d

dλ
pf tr

k ´ f tr
l q ě p1 ´ εβqpl ´ kq .

(Again, when there are issues of non-differentiability, this lower bound holds both for the right and left
derivatives.) When this lower bound is combined with Eq. (4.6), the desired sequence of critical values λpiq

c

and the claimed strict inequalities on truncated free energies follows by continuity in λ. ■
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Eq. (4.7) also gives the following relation between f tr
k ´ f tr

k˘1 and d˘pλq from Eq. (1.2).

Corollary 4.7. We have for every k that for λ ă λ
pk´1q
c ,

p1 ´ εβqpλpk´1q
c ´ λq ď f tr

k ´ f tr
k´1 ď p1 ` εβqpλpk´1q

c ´ λq ,

and similarly, for λ ą λ
pkq
c , we have p1 ´ εβqpλ ´ λ

pkq
c q ď f tr

k ´ f tr
k`1 ď p1 ` εβqpλ ´ λ

pkq
c q.

In what follows, to simultaneously consider the i “ 0 case, by convention set λp´1q
c “ 8.

4.2. Extending control of non-elementary contours to λ P rλ
phq
c , λ

ph´1q
c s. Our aim is now to prove that

the rigidity at height h (e.g., exponential tails on W tr
h pγq even for non-elementary γ) holds throughout the

full window rλ
phq
c , λ

ph´1q
c s where Proposition 4.6 showed the h-free energy dominates.

From this point forth, our arguments deviate much more significantly, even at the high level, from the
strategy of [11] as their arguments became more constrained by the usage of cylinders instead of contours,
and begin to necessitate λ bounded away from zero by a β-dependent constant, or equivalently necessitate
the boundary level bounded by a β-dependent constant. By contrast, our arguments are significantly shorter
than those in [11] and allow us to interpolate all the way down to λ “ 0.

Proposition 4.8. Let λ P rλ
pkq
c , λ

pk´1q
c s. For every (including non-elementary) contour γ,

W tr
k pγq “ W rn

k pγq . (4.8)

In particular, if λ P rλ
pkq
c , λ

pk´1q
c s, then

Zrn
η,k,V “ Ztr

η,k,V . (4.9)

and if V is simply connected, Zη,k,V “ Ztr
η,k,V .

Proof. We prove the proposition by induction. Eq. (4.8) is already proved for elementary contours in The-
orem 3.6 so it suffices to show it for γ that is not k-elementary. Suppose Eq. (4.8) has been shown for
every contour γ1 having |Intpγ1q| ď m and show it for γ such that |Intpγq| “ m ` 1. For ease of notation,
let V Y txu “ Intpγq where x is a prescribed point on the boundary BipV Y txuq such that V is simply
connected. Recalling the definition Eq. (4.1), if γ is an up-contour, we wish to show

Z`,k`1,V Yx

Z`,k,V Yx
ď e|γ| . (4.10)

If we let ˜̀ be the boundary signing on BiV that is ` on all vertices in BipV Yxq, and free on BiV zBipV Yxq,
the first bound we make in this direction is

Z`,k`1,V Yx

Z`,k,V Yx
ď eλk

Z`,k`1,V Yx

Z ˜̀ ,k,V

“ eλk
Z ˜̀ ,k`1,V

Z ˜̀ ,k,V

Z`,k`1,V Yx

Z ˜̀ ,k`1,V

,

using in the first inequality the fact that Z`,k,V Yx ě e´λkZ ˜̀ ,k,V . The second ratio on the right is exactly
`

µ`,k`1,V Yxpφx “ k ` 1q
˘´1

“
`

µ`,k`1,V Yxpφx ď k ` 1q
˘´1

.

By monotonicity, the probability of tφ ď k ` 1u is only increasing as we increase λ, and so the right-hand
side above increases as we decrease λ. Therefore, we upper bound the right-hand side by decreasing λ to
λ1 P Ik`1. At that point, the rigidity Lemma 4.2 implies the above display is at most 1 ` εβ .

Plugging this bound in, we are left with

Z`,k`1,V Yx

Z`,k,V Yx
ď p1 ` εβqeλk

Z ˜̀ ,k`1,V

Z ˜̀ ,k,V

. (4.11)

For the ratio on the smaller domain V , we first use Lemma 2.3 (saying that the ratio is decreasing in λ) to
increase the ratio by decreasing λ to λ

pkq
c , at which, by the inductive hypothesis, both partition functions
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are exactly their truncated versions. By definition of λpkq
c and Proposition 4.6, we have f tr

k`1 “ f tr
k at λpkq

c ,
whence by Lemma 4.5,

Ztr

λ
pkq
c , ˜̀ ,k`1,V

Ztr

λ
pkq
c , ˜̀ ,k,V

ď

Ztr

λ
pkq
c , ˜̀ ,k`1,V

Ztr

λ
pkq
c , ˜̀ ,k,V

ď e2e
´β{2|BeV | .

Plugging this bound into Eq. (4.11), we are left with

Z`,k`1,V

Z ˜̀ ,k,V

ď p1 ` εβqeλke2e
´β{2|BeV | .

Since λ ď e´4βk`2β ^ 1, we have p1 ` εβqeλk ď e2 say. Since we are assuming the confining contour γ
bounding the region V Y x is not k-elementary, it has |γ| ě e3β , so for β large,

2e´β{2|BeV | ` 2 ď |BepV Y xq| ,

which together with the above implies the claimed bound of Eq. (4.10) since |BepV Y xq| “ |γ|.
If γ is instead a negative contour, the argument proceeds analogously. Here,

pµ´,k´1,V Yxpφx ě k ´ 1qq´1 ,

will be increasing as we increase λ, and taking λ to λ1 P Ik´1 is an increase of λ. Similarly, the ratio
Z ˜́ ,k´1,V {Z ˜́ ,k,V will be increasing in λ, so we can increase λ to λ

pk´1q
c as needed. ■

We can also deduce the following, showing exponential tails on all contours based at heights k˘1 if they
are small as compared to dpλnq from Eq. (1.2) so the free energy difference does not overcome the cost in
the boundary. Later, this will be crucial to understanding bottlenecks and the formation of critical droplets
when λ is microscopically close to a critical value.

Corollary 4.9. Suppose λ P rλ
pkq
c , λ

pk´1q
c s. If γ is a down contour and diampγq ď pf tr

k ´ f tr
k`1q´1, then

W rn
k`1pγq “ W tr

k`1pγq, and if γ is an up contour with diampγq ď pf tr
k ´f tr

k´1q´1 then W rn
k´1pγq “ W tr

k´1pγq.

Proof. Consider γ a down contour having diampγq ď pf tr
k ´ f tr

k`1q´1. For these, we have

Z´,k,Intpγq

Z´,k`1,Intpγq

ď
Ztr

´,k,Intpγq

Ztr
´,k`1,Intpγq

,

where we used Eq. (4.9) on the numerator, and Eq. (4.2). By Lemma 4.5 applied to both terms on the right,

W rn
k`1pγq ď exp

`

´ β|γ| ` pf tr
k ´ f tr

k`1q´1|Intpγq| ` 2e´β{2|γ|
˘

.

Using the assumption that diampγq ď pf tr
k ´ f tr

k`1q´1, and |Intpγq| ď diampγq ¨ |γ|, we get that this is at
most expp´pβ ´ 2q|γ|q as claimed. The reasoning for a up contour from k ´ 1 is analogous. ■

We will also use the following more technical corollary deducing for the full, as opposed to truncated,
partition functions that up to an error of εβ|BeU |, the full partition function on U with boundary k is dominant
when λ P rλ

pkq
c , λ

pk´1q
c s (cf. the crude error size β|BeU | one gets by forcing).

Corollary 4.10. Consider an arbitrary domain U (possibly not simply connected) and any boundary sign-
ings η and ζ. If λ P rλ

pkq
c , λ

pk´1q
c s, then for all j,

Zη,j,U

Zζ,k,U
ď ee

´β{3|BeU | |j´k| .
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Proof. Suppose first that j “ k ` 1. By Lemma 2.3, we can decrease λ to λ
pkq
c , only increasing the ratio

between the partition functions. Since Lemma 3.2 only applied to simply connected domains, we cannot
move to Ztr immediately. Instead, if we call Hi the holes of U on the one hand, at λpkq

c ,

Zη,k`1,U ď
Zη,k`1,UY

Ť

i Hi
ś

i Zη,k`1,Hi

“
Ztr
η,k`1,UY

Ť

i Hi
ś

i Z
tr
η,k`1,Hi

,

where the inequality is by inclusion, and the equality uses Proposition 4.8 and simply-connectedness of
U Y

Ť

iHi, and of Hi. By Lemma 4.5, therefore,

Zη,k`1,U ď exp
´

f tr
k`1|U | ` e´β{2p|BepU Y

ď

i

Hiq| `
ÿ

i

|BeHi|q

¯

. (4.12)

On the other hand, if we define Z̄ζ,k,U as the restricted partition function where no contours confining
any hole Hi in their interior are allowed, then

Zζ,k,U ě Z̄ζ,k,U “ Z̄rn
ζ,k,U “ Z̄tr

ζ,k,U .

From the convergence of the cluster expansion for Ztr
ζ,k,U , it is not hard to deduce that

Z̄tr
ζ,k,U

Ztr
ζ,k,U

ě exp
`

´ e´β{2
ÿ

i

|BeHi|
˘

.

Combining the above two, and applying Lemma 4.5 to Ztr
ζ,k,U , we get

Zζ,k,U ě exp
´

f tr
k |U | ´ e´β{2p|BeU | `

ÿ

i

|BeHi|q

¯

.

Combined with Eq. (4.12) and the fact from Proposition 4.6 that the limiting truncated free energies f tr
k`1

and f tr
k are equal at λpkq

c , we get

Zη,k`1,U

Zζ,k,U
ď exp

´

e´β{2
`

|BeU | ` 2
ÿ

i

|BeHi| ` |BepU Y
ď

i

Hiq|
˘

¯

.

That sum of the various boundary terms counts each edge in BeU at most three times, leaving that the above
is at most e3e

´β{2|BeU | ď ee
´β{3|BeU | at large β. If j “ k ` ℓ more generally, we first express

Zη,j,U

Zζ,k,U
“

Zη,k`ℓ,U

Zη,k`ℓ´1,U
¨ ¨ ¨

Zη,k`1,U

Zζ,k,U
.

We can then evaluate the last term at λpk`1q
c , the second-to-last one at λpk`2q

c , etc, each of these only increas-
ing the ratio of partition functions per Lemma 2.3, and then being calculated as above. The other direction,
where j ă k is analogous, with the increase of λ to λ

pk´1q
c increasing the partition function ratio. ■

4.3. A geometric rigidity statement about height k when λ P rλ
pkq
c , λ

pk´1q
c s. As a consequence of Propo-

sition 4.8, we can deduce rigidity of the SOS distribution with height k boundary conditions just like
Lemma 4.2 throughout the entire regime λ P rλ

pkq
c , λ

pk´1q
c s: for all η and all x P V

µη,k,V p|φx ´ h| ě rq ď e´4pβ´6qr , for all λ P rλpkq
c , λpk´1q

c s . (4.13)

We go beyond that, showing a more geometric rigidity statement. Namely, if λ P rλ
pkq
c , λ

pk´1q
c s, we show

that the set of height k sites qualitatively behave like a highly supercritical percolation.
For this, we will need a few geometric definitions.

Definition 4.11. We say a set of sites L Ă Z2 forms a loop if the vertices of L can be ordered v0, ..., v|L|

such that v0 “ v|L|, for every other i ‰ j, vi ‰ vj , and vi „ vi`1 for all i. They form a loop surrounding a
set A if A is in a finite connected component of R2zL.
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Given a configuration φ on a domain U we say L Ă U is a height-k loop if it is a loop and φx “ k for all
x P L. For a fixed set A, the outermost height-k loop in U surrounding A is measurable with respect to the
sites exterior to it. In particular, this outermost loop can be revealed by starting from BiU and revealing its ˚-
connected components (connected components with respect to ˚-adjacency, meaning adjacent or diagonally
adjacent to) of non-height-k sites.

Lemma 4.12. Consider a domain V containing Λm`r, with boundary conditions k and suppose λ P

rλ
pkq
c , λ

pk´1q
c s. The outermost loop L of height-k sites in Λm`r surrounding the origin satisfies

|L| ď 4p1 ` δqpm ` rq , and Λm Ă IntpLq ,

except with µη,k,V -probability me´pβ´Cqr ` e´δpβ´Cqpm`rq.

Proof. Consider the outermost contours under µη,k,V whose interiors intersect BiΛm`r, as well as any mu-
tually external contours which are incident to those, and so forth. This leaves a collection of contours, call
it G the union of whose interiors confines the ˚-connected components of non-height-k sites of BiU .

The probability that |L| ą 4p1 ` δqpm ` rq is bounded by the probability that
ř

γPG |γ| ą δpm ` rq.
This is governed by a Peierls map, since all contours in G are mutually external, each contribute a weight
of W rn

k pγq per Lemma 3.2, which is at most e´pβ´5q|γ| using Proposition 4.8. The number of choices for G
having

ř

γPG |γ| “ l is at most 2BiΛm`rC l, while the probability of any fixed G is at most
ś

γPΓW
rn
k pγq ď

e´pβ´5ql, so the sum over l ě δpm ` rq comes out to at most e´δpβ´Cqpm`rq for some universal C.
The probability that Λm Ć IntpLq is bounded by the probability that some incident sequence of contours

of G intersect both BiΛm`r and BoΛm, which is seen to be at most me´pβ´Cqr by a union bound over the
4pm ` rq sites where the sequence of incident contours could start, and then a Peierls map like the above to
bound the probability of such a sequence of incident contours having size at least r. ■

5. SPATIAL MIXING PROPERTIES IN FINITE VOLUMES

In the previous section, we derived a sequence of critical external field values pλ
pkq
c qk dictating transitions

in which truncated free energy is largest, and showed that when λ P rλ
pkq
c , λ

pk´1q
c s, we have rigidity for

the height k boundary SOS model. Our aim is now to deduce spatial mixing properties when the boundary
conditions start from a different height. Namely, we show that if we start with some arbitrary boundary
condition, the distance between the boundary and the nearest loop of height-k sites has an exponential tail.
Inside of the outermost such k-loop the surface will be rigid, and this will in particular be used to couple
SOS measures with different boundary conditions away from their boundary.

This section is sensitive to the isoperimetry properties of the underlying domain and we henceforth restrict
attention to boxes Λm. Also, we now need to allow consideration of non-constant boundary conditions, so
we let ϕ P ZBoV

` denote general boundary conditions on V , unless otherwise specified the floors and ceilings
will be at 0 and 8 respectively everywhere, and we will use the shorthand notation µϕ,Λm for this measure
on Λm. The main theorem in this section is the following.

Theorem 5.1. Let β ą β0, λm P rλ
pkmq
c , λ

pkm´1q
c s and km ă am ď m

logm . Consider the concentric boxes
Λm{2 Ă Λm. There is an absolute constant C ą 0 such that for all m ě Cβam{dpλq (where dpλq is defined
as in Eq. (1.2)) and all boundary conditions ϕ, ϕ1 having }ϕ}8 _ }ϕ1}8 ă am, we have

›

›µϕ,Λm

`

φpΛm{2q P ¨
˘

´ µϕ1,Λm

`

φpΛm{2q P ¨
˘›

›

TV
ď e´βm{C .

When λ is kept fixed independent of the domain size, we desire a stronger spatial mixing estimate, and
towards that purpose need to allow for unbounded boundary conditions.

Corollary 5.2. If for some ε ą 0, λ ą ε, then the maximum in Theorem 5.1 can be replaced by a supremum
over all possible boundary conditions ϕ, ϕ1, so long as m ě Cpβ, εq for Cpβ, εq ą 0 that is finite for all
λ ą 0 (it blows up as ε Ó 0).
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We will also prove a similar weak spatial mixing statement to Theorem 5.1 for annuli of side-length n
and thickness m, with boundary conditions differing on the inner boundary: see Theorem 5.11.

In this section, we mix arguments based on the height function representation of the SOS model, and loops
of height k, tě ku and tď ku, with those based on the contour representation. This enables us to combine
more percolation-theoretic arguments based on coarse-graining, together with the cluster expansion-based
estimates of the previous sections, and is key to our results holding arbitrarily close to λ “ 0.

5.1. k-contours in boxes with height k ˘ 1. We first aim to establish that started from height k ˘ 1, there
will be a k-contour surrounding the concentric box of half the side-length in any box of side-length larger
than d¯pλq, which we recall are defined as

d`pλq “ min
k

tpλpkq
c ´ λq : λpkq

c ą λu and d´pλq “ min
k

tpλ ´ λpkq
c q : λpkq

c ă λu .

(Recall also that dpλq “ mintd`pλq, d´pλqu.) Notice that if the boundary conditions on Λm are k ` 1 and
there is a down k-contour γ surrounding Λm1 , then necessarily BiIntpγq forms a loop (per Definition 4.11)
of height-tď ku sites. Similarly for k ´ 1 boundary conditions, an up k-contour, and height-tě ku loops.

The following lemma will be essential to our spatial mixing arguments, and will get boosted into expo-
nential tails to get to height k from any height, rather than just k˘1 using monotonicity and coarse-graining.

Lemma 5.3. For any ε ą 0, there is β0pεq, δ0pεq, and absolute constant C0, such that the following holds.
Suppose V is a simply-connected subset of Λm having |BeV | ď 4p1 ` δ0qm, and λ P rλ

pkq
c , λ

pk´1q
c s, with

m ě C0β{d´pλq ;

Then, for η P t´, fu,

µη,k`1,V

`

Dγ P Γ : hpγq “ k ; Intpγq Ą Λp1´εqm

˘

ě 1 ´ e´βm{C .

The same holds under µη,k´1,V for η P t`, fu if m ě C0β{d`pλq instead.

Proof. We prove the lemma with k ` 1-boundary conditions, the k ´ 1 case being symmetrical. For read-
ability, we drop the boundary signing subscript η from the notation.

We consider the geometric properties of the family of large (at least plogmq2 length) k-contours, to show
that with high probability one of them must confine the box Λp1´εqm. Throughout this proof, we call a
contour γ macroscopic if it is outermost and has |γ| ě plogmq2. For a (standard) contour collection Γ, let
Γmac
k be the collection of outermost macroscopic k-contours, and let Γmic

k be the set of outermost k-contours
that are not macroscopic. We use the following basic isoperimetric bound from [10, Lemma 2.6].

Fact 5.4. For every ε ą 0, there exists δpεq ą 0 such that if pγiqi are any collection of mutually external
geometric contours in Λm satisfying

ÿ

i

|γi| ď 4p1 ` δqm, and
ÿ

i

|Intpγiq| ě p1 ´ δqm2 . (5.1)

Then, if γ1 is the one with the largest interior, Intpγ1q contains Λp1´εqm.

Given Fact 5.4, it suffices to show that in a typical sample from µη,k`1,V , the collection Γmac
k satisfies the

two conditions of Eq. (5.1) for δ “ δpεq. Towards this, we will prove Lemma 5.3 with δ0 “ 1
2δpεq and cover

the complement of the event in Eq. (5.1) by the following bad events:

B1 :“
!

ÿ

γPΓmac
k

|γ| ą 4p1 ` δqm
)

, (5.2)

B2 :“
ď

1ďiď2 log2 logm

B2,i , where B2,i “

!

|tγ P Γmic
k : |γ| P r2i, 2i`1su| ě 1?

β
e´p1.1qim2

)

, (5.3)

B3 :“ Bc
1 X Bc

2 X

!

ÿ

γPΓmac
k

|Intpγq| ď p1 ´ δqm2
)

. (5.4)
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Observe that on the intersection of pBc
2,iq1ďiď2 log2 logm, we have

ÿ

γPΓmic
k

|Intpγq| ď
ÿ

i

22pi`1q 1
?
β
e´p1.1qim2 ď

C
?
β
m2 ,

which for β large, is at most δm2{2 area confined by contours in Γmic
k . We show that each of B1,B2,B3

have small probability in Eqs. (5.2) to (5.4), which when summed yield Lemma 5.3.

Bound on B1: too much length in macroscopic loops. We first show that for β large enough, δ0 ď δ{2,

µk`1,V pB1q ď e´pβ´Cqδm . (5.5)

Consider a fixed collection of mutually external macroscopic k-contours Γmac
k in B1. The weight of config-

urations with this specific realization of Γmac
k can be written as

Zk`1,V pΓmac
k q :“ Zk`1,ExtpΓmac

k q

ź

γPΓmac
k

e´β|γ|Z´,k,Intpγq ,

where Z indicates here that the sum is restricted to having no outermost macroscopic k-contours, and no
contours confining any of the γ P Γmac

k (ensuring compatibility with Γmac
k indeed being the collection of

outermost macroscopic k contours), and the boundary signing is that induced by ´ on BiV and ` on B0Intpγq

for γ P Γmac
k . By inclusion, the first term is at most Zk`1,ExtpΓmac

k q. At the same time, the denominator in
µk`1,V pΓmac

k q “ Zk`1,V pΓmac
k q{Zk`1,V evidently satisfies

Zk`1,V ě e´β|BeV |Z´,k,V ě e´β|BeV |Zk,ExtpΓmac
k q

ź

γPΓmac
k

Z´,k,Intpγq . (5.6)

Dividing through, and using |BeV | ď 4p1 ` δ0qm we get

µk`1,V pΓmac
k q ď e

βp4p1`δ0qm´
ř

γPΓmac
k

|γ|qZk`1,ExtpΓmac
k q

Zk,ExtpΓmac
k q

.

By Corollary 4.10 applied to U “ ExtpΓmac
k q, whence |BeExtpΓ

mac
k q| ď 4p1 ` δ0qm `

ř

γPΓmac
k

|γ|,

µk`1,V pΓmac
k q ď e

βp4p1`δ0qm´
ř

γ |γ|q`e´β{3p4p1`δ0qm`
ř

γPΓmac
k

|γ|q
.

At this point, we can bound µk`1,V pB1q by summing over the possible choices of Γmac
k P B1. Let K denote

the total number of contours in Γmac
k , let M denote

ř

γPΓmac
k

|γ|, and note that K ď M{plogmq2 since these

are all macroscopic contours. Then bounding
`

m2

K

˘

ď e2K logm, we have

µk`1,V pB1q ď
ÿ

Mě4p1`δqm

ÿ

KďM{plogmq2

e2K logm4Me´pβ´1qpM´4p1`δ0qmq .

Since K ď M{plogmq2, we have e2K logm ď eM , (for m ě 10 say) and this is at most
ÿ

Mě4p1`δqm

eMe´pβ´1qpM´4p1`δ0qmq ď e4p1`δ0qm
ÿ

Lě4δ0m

e´pβ´CqL ,

where we used that δ ě 2δ0. This implies the desired Eq. (5.5).

Bound on B2: too much area in microscopic loops. Our next aim is to show that for every i ď 2 log2 logm,

µk`1,V pB2,iq ď e´pβ´Cqm3{2
. (5.7)

which when summed over i ď 2 log2 logm bounds the probability of B2 by e´pβ´Cqm4{3
, say.
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For ease of notation, let Γmic
k,i “ tγ P Γmic

k : |γ| P r2i, 2i`1su so that B2,i “ t|Γmic
k,i | ě β´1{2e´p1.1qim2u.

Consider a fixed collection of outermost non-elementary k-contours Γk “ pΓmic
k ,Γmac

k q belonging to B2,i.
The total weight of configurations with a specific realization of Γmic

k,i , denoted Zk`1,V pΓk,iq is

Zk`1,V pΓmic
k,i q “ Zk`1,ExtpΓmic

k,iq

ź

γPΓmic
k,i

e´β|γ|Z´,k,Intpγq .

where Z indicates that it has no non-elementary outermost down contours of size between r2i, 2i`1s and
also no non-elementary contours nesting any γ P Γmic

k,i . By inclusion, the Z term is at most Zk`1,ExtpΓmic
k,iq

.
Dividing out by Zk`1,V for which we have the lower bound analogous to Eq. (5.6),

Zk`1,V pΓmic
k,i q

Zk`1,V
ď e

4βp1`δ0qm´β
ř

γPΓmic
k,i

|γ|Zk`1,ExtpΓmic
k,iq

Zk,ExtpΓmic
k,iq

.

By Corollary 4.10, this is at most

e
βp4p1`δ0qm´

ř

γPΓk,i
|γ|q`e´β{3|BeExtpΓk,iq|

.

Now observe that on the event B2,i,
ÿ

γPΓmic
k,i

|γ| ě 2iβ´1{2e´p1.1qim2 “ β´1{2ei log 2´p1.1qim2 .

For all i ď 2 log2 logm, this is at least m3{2, say, so long as m ě Cβ1{4. Now to sum over the possible
choices of Γmic

k,i , let
ř

γPΓmic
k,i

|γ| “ M , let K count the number of contours in Γmic
k,i , and note the bound

|BeExtpΓk,iq| ď 4p1 ` δ0qm ` M . We then obtain

µk`1,V pB2,iq ď
ÿ

Měβ´1{2ei log 2´p1.1qim2

ÿ

Kď2´iM

ˆ

m2

K

˙

CMe´pβ´1qpM´4p1`δ0qmq .

Letting 2´iM “ ρm2, and using the fact that M ě m3{2, this is at most
ÿ

β´1{2e´p1.1qiďρď1

pρm2qe
ρm2p1`log 2

ρ
q
e´pβ´CqM .

Since ρ ě β´1{2e´p1.1qi we can upper bound logp2{ρq and use 2iβρm2 ě 4ρm2p1.1qi log β to see that the
second exponential dominates the first, whence for all m ě Cβ1{4, we get

µk`1,V pB2,iq ď e´pβ´Cqe´p1.1qim2
.

Using that e´p1.1qim2 ě m3{2 for all i ď 2 log2 logm then yields the claimed Eq. (5.7).

Bound on B3: too little area in macroscopic loops. For the last bound, let

∆tr “ f tr
k ´ f tr

k`1 . (5.8)

which is positive and at least p1 ´ εβqd´pλq per Corollary 4.7 for λ P pλ
pkq
c , λ

pk´1q
c s. The goal of this last

part is to establish the following bound:

µk`1,V pB3q ď e´βm{C . (5.9)

On Bc
2, the total boundary length confined by outer contours of size at least ∆´1

tr is at most
ÿ

iě´ log2 ∆tr

2i`1β´1{2e´p1.1qim2 .
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We can absorb the 2i`1 prefactor by changing this to β´1{2e´p1.05qi , and summing that out, we get that
ř

iě´ log2 ∆tr

ř

γPΓmic
k,i

|γ| ď β´1{2m2e´∆´α
tr , for some universal constant α ą 0.

Now consider any realization of Gk “ ppΓmic
k,i qiě´ log2 ∆tr ,Γ

mac
k q belonging to B3. The partition function

associated to these contour families is

Zk`1,V pGkq “ Zk`1,ExtpGkq

ź

γPGk

e´β|γ|Z´,k,Intpγq ,

where Z here indicates that there are no outermost k-contours of size larger than ∆´1
tr , and none of the ones

in Gk are surrounded by another contour. As such, for every contour γ appearing in the sum corresponding
to Z, it has diampγq ď |γ|{2 ď ∆´1

tr . By Corollary 4.9, this implies that for all contours appearing in Z,
they have W rn

k`1pγq “ W tr
k`1pγq. By inclusion, then,

Zk`1,V pGkq ď Ztr
k`1,ExtpGkq

ź

γPGk

e´β|γ|Z´,k,Intpγq .

Dividing by Zk`1,V , on which we have the lower bound analogous to Eq. (5.6), we get

µk`1,V pGkq ď e
4βp1`δ0qm´β

ř

γPGk
|γ|

Ztr
k`1,ExtpGkq

Zk,ExtpGkq

.

By Proposition 4.8, Zk,ExtpGkq “ Ztr
k,ExtpGkq

since λ P rλ
pkq
c , λ

pk´1q
c s, so by Lemma 4.5,

µk`1,V pGkq ď e
βp4p1`δ0qm´

ř

γPGk
|γ|q

e´∆tr|ExtpGkq|`2e´β{2|BeExtpGkq| .

On the event B3, we must have |ExtpGkq| ě δm2{2 as under Bc
2 at most δm2{2 area is confined by

Ť

i IntpΓ
mic
k,i q and on B3 at most p1 ´ δqm2 is confined in Γmac

k . Thus,

µk`1,V pGkq ď e
4pβ`1qp1`δ0qm´pβ´1q

ř

γPGk
|γ|
e´∆trδm2{2 ď ep4β`Cqm´∆trδm2{2 .

Now consider the entropy over the choices of Gk that belong to B3. Since B3 Ă Bc
1, for the macroscopic

contours, the total number of choices of Γmac
k in Bc

1 is evidently at most
ˆ

m2

4p1 ` δ0qm{plogmq2

˙

44p1`δ0qm ď expp10mq .

For the microscopic contours, since B3 Ă Bc
2, for each i, there are at most β´1{2e´p1.1qim2 many contours

in Γmic
k,i , each of size at most 2i`1; thus, the number of choices is at most

2 log2 logn
ź

i“´ log∆tr

eβ
´1{2e´p1.1qim2p1`p1.1qi`log βq4β

´1{22i`1e´p1.1qim2
“ exp

´

β´1{3m2
2 log2 logn

ÿ

i“´ log∆tr

2ie´p1.1qi
¯

Since the sum is dominated by the smallest i “ ´ log∆tr, the count above is at most exppβ´1{3e´∆´α
tr m2q

for some universal constant α ą 0. Therefore, summing up over the choices of Gk P B3, we get

µk`1,V pB3q ď exp
`

´ p12∆trδ ´ β´1{3e´∆´α
tr qm2 ` p4β ` Cqm

˘

.

We have the naive upper bounds of ∆tr ď maxtλ, p1 ` εβqe´4βu on ∆tr, we are really only interested in
the behavior when ∆tr ď 1, say. Since α is universal (independent of β, λ), it is easy to check that for large
β (depending only on α) we have β´1{3e´∆´α

tr ď ∆tr{4. As such, we deduce that

µk`1,V pB3q ď expp´1
4∆trδm

2 ` p4β ` Cqmq .

This gives Eq. (5.9) so long as m ě 20βδ´1{d´pλq. ■
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5.2. The outermost k-loop in general domains with k˘1 boundary conditions. We next use Lemma 5.3
to show that in general domains (not necessarily boxes) with k ˘ 1 boundary conditions, the distance of the
outermost loop of height-k sites to the boundary will have an exponential tail. For any domain V , define the
shrinkage of V by r as

SrpV q “ tv P V : dpv, BiV q ě ru .

For V : SrpV q Ą Λm{2, let Lďk be the outermost loop of tď ku sites surrounding the origin.

Lemma 5.5. Let V be any simply connected set having BΛm{2 Ă V Ă BΛm. For every λ P rλ
pkq
c , λ

pk´1q
c s,

if r ě C0β{d´pλq and m ě 2r, then for η P t´, fu

µη,k`1,V pLďk Ă V zSrpV qq ě 1 ´ |BiSrpV q|e´βr{C .

The same holds under µη,k´1,V for η P t`, fu if r ě C0β{d`pλq.

Proof. We prove one direction, the other direction being symmetrical. For every x at distance r from BV ,
let Bx “ Brpxq be the ball of radius r about x, and let Ax “ BrpxqzBr{2pxq be the annulus between Bx

and its concentric box of half the radius. By construction, Bx, Ax are interior to V . Let Ex be the event that
there is a loop of tď ku-sites in the annulus Ax. If Ex occurs for all x P BiSrpV q, then Lďk Ă V zSrpV q.

Therefore, the complement of that is a subset of the event
Ť

xPBiSrpV q E
c
x, and it suffices to upper bound

the probability of this union. We use a union bound for this and consider any fixed x. For fixed x P BiSrpV q,
of which there are at most m2, consider the probability of Ec

x. Let A1
x be the annulus BrpxqzB3r{4pxq and

first consider the event Ex,0 that there is an outermost loop of tď k ` 1u-height sites Cx in A1
x having total

length |Cx| ď 4p1 ` δ0qr. We use the bound

µk`1,V pEc
xq ď µk`1,V pEc

x,0q ` µk`1,V pEx | Ex,0q . (5.10)

For the first probability in Eq. (5.10), note that the event Ec
x,0 is an increasing event, so its probability is only

larger by decreasing λ to λ
pkq
c . Upon doing so, the probability of Ec

x,0 is upper bounded by Lemma 4.12
whereby it is at most e´δ0βr{4 for r larger than an absolute constant.

For the second probability in Eq. (5.10), we can condition on the outermost loop of tď k ` 1u sites, Cx,
and note that it being measurable with respect to its exterior, we get

µk`1,V pEc
x | Ex,0q ď max

Cx
max
ϕďk`1

µϕ,IntpCxqpE
c
xq ,

where the maximum over Cx runs over those confining B3r{4 in their interior and having length at most
4p1` δ0qr. Since Ec

x is an increasing event, we can take the maximal boundary conditions k`1 on IntpCxq,
at which point Lemma 5.3 with ε “ 1{2 (so that δ0 above is δ0pε “ 1{2q) provides an upper bound of e´βr{C

so long as r ě C0β{d´pλq and β large. Combining the above two estimates and taking a union bound over
the |BiSrpV q| many possible choices of x gives the claimed bound with a different absolute C. ■

5.3. The case of general boundary heights. Our aim is now to show that if the boundary conditions are
at any height between 0 and m{ logm, the interface will, with high probability, contain a loop of height-k
sites surrounding the origin when λ P rλ

pkq
c , λ

pk´1q
c s. The argument essentially goes by repeatedly using

monotonicity to apply Lemma 5.5 to each level from the boundary condition height to k one at a time.

Lemma 5.6. Suppose λ P rλ
pkq
c , λ

pk´1q
c s, k ` 1 ď j ď m

logm , and m ě 2C0jβ{d´pλq. For η P t´, fu,

µη,j,Λm

`

Lďk Ă ΛmzΛ3m{4

˘

ě 1 ´ e´βm{C .

The analogue holds for η P t`, fu, 0 ď j ď k ´ 1, and Lěk replacing Lďk if m ě 2C0kβ{d`pλq.

Proof. We show the bound supposing that j ě k ` 1, the other direction being analogous. Let Ci denote
IntpLďiq for all i. Let ri be the minimal r such that Lďi´1 is a subset of CizSrpCiq, in other words the
maximal distance from Lďi that Lďi´1 gets. In order for Lďk to not be a subset of ΛmzΛ3m{4, it must be
the case that

řj´1
i“k ri is at least m{4. We fix any possible sequence priqi with ri ě 0 for all i and such that
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řj´1
i“k ri “ m{4. Since j ď m, there are at most 22m many such choices. Since m ě 2C0jβ{d´pλq, there

must be some subsequence of these priq, call them prilql, such that they are each larger than C0β{d´pλq and
whose sum exceeds m{8.

We now upper bound the probability that for all l, we have Lďil intersects Sril
pCil`1q. We do so iteratively

from the boundary inwards. Namely, for fixed such prilql, the probability of interest is at most
ź

l

µη,j,ΛmpLďil X Sril
pCil`1q ‰ H | φpΛmzCil`1qq .

(Here we used the fact that Cil`1 is measurable with respect to the height values on its exterior.) The con-
ditional measure is then exactly µ´,il`1,Cil`1 . By monotonicity, since the event in question is an increasing
event, the probability is only larger if we lift the floor up to il ´ k whence the measure will be an additive
translation of µ´k`1,Cil`1

with λ P rλ
pkq
c , λ

pk´1q
c s. At that point, the probability we are interested in is ex-

actly that bounded by Lemma 5.5, whence it is at most |BiSrpCil`1q|e´ril{C . Performing the sum over all
possible choices of ril , and plugging this in, we get

µj,ΛmpCk X Λ3m{4 ‰ Hq ď 4mpm2qje´βm{C .

So long as j ď m{plogmq, this will be at most e´βm{C for a different C. ■

Remark 5.7. At this point, one can see Theorem 1.4 by applying (the second part of) Lemma 5.6 with
j “ 0, revealing the outermost loop Lěk, then using the rigidity at height k interior to Lěk per the estimates
of Section 4.3 to see that interior to Lěk, most sites are exactly at height k when λ P rλ

pkq
c , λ

pk´1q
c s.

In the case where λ ą 0 is kept independent of the box size, the external field is strong enough to allow us
to consider all possible boundary conditions (unbounded) and still obtain spatial mixing. For this purpose,
the following lemma shows that the surface drops to some finite height quickly even started arbitrarily high.

Lemma 5.8. For every λ ą 0, if m ě Cλ´1, the outermost loop of height tď Cλ´2u in Λm confines
Λp1´εqm in its interior except with probability e´cm.

Proof. It is fairly straightforward to check that as long as a box has side-length L at least L0 :“ r8{λs

the values of φ will have finite moments uniformly over all (unbounded) boundary conditions: see [11,
Proposition 3.2, item (i)] for a short self-contained argument. In particular, in a domain V , for any x at
distance at least L0 away from BV , for every s there exists a constant Cpβ, sq ą 0 such that for all λ ą 0,

sup
ϕ

µϕ,V rφs
xs ď λ´sCpβ, sq .

Now for simplicity, consider the domain Λm, and tile it by overlapping boxes of side-length 2L0 ˆ 2L0 that
overlap on half of their area (i.e., centered at the vertices of Λm X L0Z2.

Consider any such box Bx. Uniformly over the boundary conditions on that box, by Markov’s inequality,
and a union bound, the probability that there is no tď L0λ

´1u loop around the concentric L0 ˆL0 box is at
most Cpβ, sqL´s`1

0 . Call such a box bad, and call a box good if there is such a loop. The set of bad blocks
form a 1-dependent percolation in the graph induced by the boxes, with two boxes called adjacent if they
intersect. By classical reasoning (see e.g., [35]), this will be stochastically dominated by an independent
percolation with a parameter that can be made arbitrarily small by taking L0 large, from which we deduce
that the probability of a path of bad blocks from BΛm to BΛp1´εqm is exponentially unlikely in εm. ■

5.4. From tě ku and tď ku loops to spatial mixing. We now wish to use Lemma 5.6 to deduce weak
spatial mixing amongst the set of boundary conditions ranging from 0 to some upper bound am (and in
the case where λ is bounded away from zero, any arbitrary boundary conditions). The following lemma
boosts the probability of two configurations individually having k-loops to the joint probability of having a
common k-loop (a loop of sites whose height is k in both configurations).
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Lemma 5.9. Suppose λ P rλ
pkq
c , λ

pk´1q
c s. For any two boundary conditions ϕ, ϕ1 and any coupling of

φ „ µϕ,Λm and φ1 „ µϕ1,Λm , the probability that pφ,φ1q don’t have a common k-loop surrounding Λp1´2εqm

is at most the sum of the marginal probabilities of not having a k-loop surrounding Λp1´εqm, plus e´βεm{C .

Proof. Let Ek and E 1
k be the events that there is a loop of height-k sites surrounding Λp1´εqm in φ and φ1

respectively. Let Sk be the event that there is a common k-loop in the annulus Λp1´εqmzΛp1´2εqm. The
desired probability is at most

µϕ,ΛmpEc
kq ` µϕ1,ΛmppE 1

kqcq ` PpEk, E 1
k,Sc

kq .

It suffices to bound the third probability. The event Sc
k implies the existence of a path P from BiΛp1´εqm

to BoΛp1´2εqm such that for all x P P either x is interior to a contour inside the outermost k-loop of φ,
or interior to a contour inside the outermost k-loop of φ1. In particular, if we consider the collection of all
outermost contours inside the outermost k-loop of φ, and color them RED and do the same for φ1 and color
them BLUE, there must be a collection of RED and BLUE contours whose union is a connected subset P of
Λ˚
m connecting BiΛp1´εqm to BoΛp1´2εqm. Let M ě εm denote the total number of edges in P , there being

at most 4m3M many choices for it, and another 3M many choices of for choosing whether each edge in P
was colored RED, BLUE, or both. There must then be a subset of P , call it P̃ which has at least M{2 many
edges, and all of whose edges were colored RED, or all of whose edges were colored BLUE. This gives us
the following bound:

PpEk, E 1
k,Sc

kq ď
ÿ

Měεm

4m32M max
P:|P|“M

2M max
P̃ĂP:|P̃|ěM{2

`

µϕ,ΛmpEk, EP̃q ` µϕ1,ΛmpE 1
k, E

1

P̃q
˘

.

where we are using EP̃ , E
1

P̃ to denote the event that the contours in P̃ are all outermost contours interior to
Lk in φ or φ1 respectively.

Fix M , a colored collection of contours P , a subset P̃ forming mutually external contours, and w.l.o.g.
consider the first of the two probabilities on the right-hand side above. We can condition on the outermost
k-loop in µϕ,Λm , call its interior Ck, this being measurable with respect to its exterior and inducing boundary
conditions k on its interior. The bound on the probability of EP then becomes a standard consequence of
the rigidity at height k in Ck. Namely, by the Peierls map that deletes the contours making up P̃ from the
renormalized contour collection for φpCkq, and using Proposition 4.8 to bound the weight change, uniformly
over Ck, we have

µH,k,CkpEP̃q ď e´pβ´5q|P̃| ď e´pβ´5qM{2 .

Plugging this bound in to the earlier sum, together with its equivalent for φ1, implies PpEk, E 1
k,Sc

kq is at most
expp´βεm{Cq as claimed. ■

Corollary 5.10. If λ P rλ
pkq
c , λ

pk´1q
c s and k _ }ϕ}8 ă am ď m

logm , as long as m ě 2C0amβ{dpλq,

µϕ,ΛmpLk Ă ΛmzΛ2m{3q ě 1 ´ e´βm{C ,

If λ ą ε for some ε ą 0 fixed, then we can drop the upper bound on }ϕ}8, at the expense of also assuming
m is at least some constant Cpεq ą 0.

Proof. Consider φ,φ1 being drawn from the SOS measures with minimal and maximal boundary conditions
ϕ ” am and ϕ1 ” 0, and couple them using the grand monotone coupling. For each of φ,φ1, the individual
probability of not having a tď ku or tě ku-loop surrounding Λ3m{4 is bounded by e´βm{C per Lemma 5.6
(applicable to both since dpλq “ d´pλq ^ d`pλq). Interior to the outermost such loop, the rigidity at height
k as argued in Lemma 4.12 implies that Lk will in fact contain Λ2m{3 in its interior, except with probability
e´βm{C . Applying Lemma 5.9, they will therefore have a common k-loop except with probability e´βm{C

for some other C. Since we are using the grand monotone coupling, if φ,φ1 share a common k-loop, then
so do the coupled draws from µρ,Λm for all boundary conditions ρ : }ρ}8 ď am, as desired.
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When λ ą 0 independently of m, we use the grand coupling of all possible boundary conditions, noting
that if a constant boundary condition at ϕ` is coupled to the one with boundary conditions at 0, then all
boundary conditions in between also share a k-loop. For those two, first use Lemma 5.8 to get a tď Cλ´2u-
height loop surrounding Λ4m{5 uniformly over ϕ`, then apply the above reasoning interior to that. ■

With the above, we are able to deduce the claimed spatial mixing bound on boxes.

Proof of Theorem 5.1. For any two boundary conditions ϕ, ϕ1 having }ϕ}8 _ }ϕ1}8 ă am inducing con-
figurations φ,φ1, we construct a coupling such that they agree on Λm{2 except with exponentially small
probability. First, expose (under an arbitrary coupling) from the outside in, their outermost common k-loop
surrounding Λm{2 if it exists. By Corollary 5.10 together with Lemma 5.9, such a shared k-loop exists
except with probability e´βm{C . On the event of existence of such a shared k-loop, this being measurable
with respect to the randomness exterior to it, we can use the identity coupling of the two configurations on
their interior so that they agree with probability 1 on Λm{2. ■

Proof of Corollary 5.2. The proof is the same as the above proof of Theorem 5.1 except with the application
of Corollary 5.10 using its second part where we allow arbitrary, unbounded, boundary conditions. ■

5.5. Spatial mixing in an annulus. We conclude the section by using the above to also show a type of
weak spatial mixing result in annuli, showing that if two boundary conditions differ on the inner boundary
of an annulus, they can be coupled with high probability in an annulus of half the thickness close to the outer
boundary. For ease of notation, let Am̄,m be the annulus Λm̄zΛm̄´m.

Theorem 5.11. Suppose that m̄
2 ě m ě 4C0βam{dpλq, and log m̄ ď am ď m

logm . Then for any pair of
boundary conditions ϕ, ϕ1 on BiΛm̄´m, having }ϕ}8, }ϕ1}8 ă am, we have

}µp0,ϕq,Am̄,m
pφpAm̄,m{2q P ¨q ´ µp0,ϕ1q,Am̄,m

pφpAm̄,m{2q P ¨q}TV ď 4m̄pe´βm{C ` e´βam{Cq .

where p0, ϕq boundary conditions are 0 on BoΛn and ϕ on BiΛm̄´m.

Proof. Let φ,φ1 be independent draws from the two relevant distributions. We wish to show that with high
probability, there will be a common loop of height k sites in the annulus Am̄,3m{4zAm̄,m. If we expose
the innermost shared k-loop in the annulus, it being measurable with respect to its interior, we can use the
identity coupling exterior to the common k-loop to bound the total variation distance by the probability of
non-existence of such a common k-loop in Am̄,3m{4zAm̄,m.

The existence of such a common height-k loop will follow if around every vertex in Λm̄´3m{4, there is a
common k-loop in the ball Bv,m{4 surrounding that vertex. For any v P BiΛm̄´3m{4, consider the probability
of non-existence of a common k-loop in Bv,m{4 surrounding v.

First, expose the two configurations φ and φ1 on the complement of Bv,m{4. Except with probability
e´βam{C , the maximal height of the configurations revealed on BoBv,m{4 will be 2am. In order to see this,
observe that the configuration is stochastically below the one that has all its boundary conditions at height
am on the annulus at λ “ 0, for which the tail bound on the maximum height from Eq. (2.4) applies since
am ě log m̄. Given those boundary conditions, we can apply Corollary 5.10 and Lemma 5.9 to deduce that
the two configurations will share a k-loop surrounding v in Bv,m{4 except with probability e´βm{C . A union
bound over the at most 4m̄ vertices in BΛm̄´3m{4 concludes the proof. ■

6. MIXING TIME UPPER BOUNDS

We now turn to the dynamical part of the paper, starting with the proofs of our mixing time upper bounds.
Our focus is on the mixing time of the Glauber dynamics on the nˆn box Λn. In order to have a finite state
space, so that the mixing time is finite, we introduce a ceiling, and as is convention for such models, we will
take the ceiling height to also be n. The floor will always be fixed to 0, but the ceiling will be variable in
this section, and therefore it will be useful to use the notation Λℓ

n for the domain Λn with ceiling at height ℓ.
The main content of this section is establishing the upper bound on the mixing time when dpλq is going

to zero with n. The proof goes in two stages:
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(1) Reducing the mixing time on Λn with ceiling n to the mixing time on Λn with log n ceiling.
(2) Reducing the mixing time on Λn with log n ceiling to the maximum of boxes of size n0 and an

annulus of width n0, with arbitrary boundary conditions, and with n0 “ Θ̃pdpλqq.

Finally, we apply a standard bound on the mixing time on boxes/annuli with cut-width n0, by an exponential
in n0 (possibly times a log n factor). Together, these arguments take up Sections 6.2 to 6.4.

In Section 6.5, we justify the Op1q inverse gap bound when d is fixed independent of n; given the weak
spatial mixing with arbitrary boundary conditions for fixed λ in Corollary 5.2 this is essentially reproducing
the argument of [12]. In Section 6.6, we explain the minor modifications needed for these upper bounds to
apply to the torus, instead of zero boundary conditions.

6.1. Mixing time preliminaries. Let us recall some basics from the study of mixing times for Markov
chains with finite state spaces; we refer the reader to [34] for more on the topic.

Consider a state space Ω, with a transition kernel P px, yq describing the rate at which a continuous-time
Markov chain jumps from x to y, reversible with respect to a stationary distribution µ. Let pXx0

t qtě0 be the
corresponding Markov chain initialized from state x0, and let L “ pI ´ P q be its infinitesimal generator.

Let gap denote the gap in the spectrum of ´L, i.e., the size of its smallest non-zero eigenvalue, and let
tMIX be its mixing time, i.e.,

tMIXpεq “ inftt ą 0 : max
x0PΩ

}PpXx0
t P ¨q ´ µ}TV ă εu .

By convention, tMIX “ tMIXp1{4q. The ε-mixing time satisfies a useful sub-multiplicativity property that
tMIXpεq ď tMIX log2

2
ε . The inverse of the spectral gap, sometimes called the relaxation time, is closely tied

to the mixing time. Namely,

pgap´1 ´ 1q log
`

1
2ε

˘

ď tMIXpεq ď gap´1 log
`

1
εµmin

˘

. (6.1)

The SOS Glauber dynamics for an SOS distribution µ of the form of Eq. (2.1) has transition kernel P pφ,φ1q

which is non-zero only if φ,φ1 differ at exactly one vertex, say v, where φ1
v P tφv ´1, φv, φv `1u in which

case it is 1{|V | times the conditional µ-probability of φ1
v given pφ1

wqw‰v, or equivalently given pφ1
wqw„v.

This is easily checked to be reversible with respect to µ.
The monotonicity of Lemma 2.1 implies monotonicity for the SOS Glauber dynamics, whereby if x0 ě

y0, then Xx0
t ľ Xy0

t for all t ě 0. In particular, there is a grand coupling of all the SOS dynamics chains
from all the possible initializations, such that with probability 1, Xx0

t ě Xy0
t for all t ě 0 and all x0 ě y0.

6.2. Reducing the mixing time to log n ceiling. Let us introduce the notation

TΛℓ
n
:“ tMIXpΛℓ

nq

for the mixing time of SOS dynamics at parameters β, λ on Λn with floor at height 0, ceiling at height ℓ,
and height 0 boundary conditions. Our reduction of the ceiling from n to log n uses the general censoring
inequality of [41]. A similar argument at λ “ 0 can be found in [9, Section 6.3]. The censoring inequality
says that if started from a maximal initial state in a monotone dynamics, the configuration, and its total-
variation distance is only increased if pre-specified updates are ignored at pre-specified times. While this
usually refers to ignoring updates at certain sites for the Glauber dynamics, we apply it to censor moves that
would take the SOS dynamics below or above certain heights, effectively imposing different floors/ceilings
on the Glauber dynamics. This application of censoring was also used in [9, Theorem 2.2].

Definition 6.1. A censoring scheme for an SOS Glauber dynamics chain Xt prescribes a sequence of times
t0 ă t1 ă ..., subsets Vi of Λn, and heights ai ă bi such that between times rti´1, tis, the only updates that
are permitted are those that move heights of vertices in Vi and only if they move them between ai and bi.

We therefore have in our context that if Xℓ
t (resp. X0

t ) is the SOS Glauber dynamics on Λℓ
n initialized

from the maximal (resp., minimal) height of ℓ (resp., 0) everywhere, and X̄ℓ
t (resp., X̄0

t ) is a censoring of it
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per Definition 6.1, then for all t ě 0,

X̄ℓ
t ľ Xℓ

t , and X̄0
t ĺ X0

t . (6.2)

Our goal in this subsection is to use censoring to show the following reduction.

Lemma 6.2. There is an absolute constant C such that for all β ą β0, for any λ ě 0, we have

TΛn
n

ď CnT
Λlogn
n

.

Proof. For a general initial state x0, use the shorthand Xx0
t to denote the Glauber dynamics chain Xt ini-

tialized from x0, and use Xµ
t to denote the one initialized from the stationary distribution µ0,Λn

n
. Under the

grand coupling, by a union bound and monotonicity,

max
x0

}PpXx0
t P ¨q ´ µ0,Λn

n
}TV ď

ÿ

vPΛn

PpXx0
t pvq ‰ Xµ

t pvqq ď
ÿ

vPΛn

PpXn
t pvq ‰ X0

t pvqq . (6.3)

Writing PpXn
t pvq ‰ X0

t pvqq “ PpXn
t pvq ´ X0

t pvq ě 1q and using Markov’s inequality, and then Eq. (6.2),

max
x0

}PpXx0
t P ¨q ´ µ0,Λn

n
}TV ď

ÿ

v

ErXn
t pvqs ´ ErX0

t pvqs ď
ÿ

v

ErX̄n
t pvqs ´ ErX̄0

t pvqs . (6.4)

for any censoring scheme of the form of Definition 6.1. The censoring scheme we use is defined as follows.
Define a sequence of epochs, each of length ∆t :“ C1TΛlogn

n
log n for a large absolute constant C1, via

t0 “ 0 , and ti “ ti´1 ` ∆t .

for 1 ď i ď N :“ 2n
logn (note that tN ď CnT

Λlogn
n

). Define corresponding floor and ceiling pairs

ai “ n ´ i
2 log n , and bi “ ai ` log n .

Let X̄n
t be Glauber dynamics initialized from all-n, with the following censoring:
‚ For each i, for times in rti´1, tis, updates are only allowed in Λn ˆ rai, bis.

Let X̄0
t be the Markov chain initialized from all-0, with the following censoring scheme:
‚ For all t ě 0, updates are only allowed in Λn ˆ raN , bN s “ Λn ˆ r0, log ns.

By the definition of TΛn
n

“ tMIXpΛn
nq it suffices to show that at t “ tN , each difference in expected values

on the right-hand side of Eq. (6.4) is within n´4 of the stationary expected value µ0,Λn
n

rφvs. We start with
the minimal chain since that is easier; since all heights are bounded above by n, it suffices to show that
the TV-distance between PpX̄0

t pvq P ¨q and µ0,Λn
n

pφv P ¨q are within n´5, and the bound on the difference
of expectations will follow. Towards that, notice that since X̄0

0 ď log n everywhere, X̄0
t is exactly an

(uncensored) SOS Glauber dynamics on Λlogn
n initialized from all-0. As such, after time t ě ∆t, by sub-

multiplicativity of TV-distance to equilibrium, we have that

}PpX̄0
t pvq P ¨q ´ µ

0,Λlogn
n

}TV ď n´6 .

At the same time, since the µ0,Λn
n

-probability that tmaxv φv ď log nu is 1 ´ n´6 per Eq. (2.4), we get that

}PpX̄0
t pvq P ¨q ´ µ0,Λn

n
}TV ď }PpX̄0

t pvq P ¨q ´ µ
0,Λlogn

n
}TV ` }µ

0,Λlogn
n

´ µ0,Λn
n

}TV ď Opn´6q . (6.5)

We now turn to controlling the chain X̄n
t . We will show that for every i ă N , the following event holds

with high probability.

Ei :“
č

vPΛn

tX̄n
tipvq ď bi`1u .

If this event holds for all i, then between times rti, ti`1s, the chain X̄n
t is exactly an SOS chain with floor

ai`1 and ceiling bi`1 (and boundary condition 0 which is equivalent to boundary condition ai`1 as noted
in Eq. (2.3)) run for a time ∆t. Namely if Y i

s is a standard Glauber dynamics with floor and boundary
condition ai, ceiling bi, initialized from X̄n

ti´1
, then on the event Ei´1, we have X̄n

ti´1`s
d
“ Y

piq
s for s ď ∆t.



METASTABILITY CASCADES AND PREWETTING IN THE SOS MODEL 39

Note that each Y
piq
s is a vertical translate of Glauber dynamics on Λlogn

n with 0 boundary conditions, and
thus has mixing time T

Λlogn
n

. With this, we can write

}PpX̄n
t P ¨q ´ µ0,Λn

n
}TV ď

ÿ

iďN

PpEi´1, E
c
i q ` max

η:}η}8ďlogn
}PpY

pNq

∆t P ¨ | Y
pNq

0 “ ηq ´ µ0,Λn
n

}TV . (6.6)

The total variation distance is bounded just like the bound for X̄0
t . For the probabilities in the sum, since

on Ei´1, we have X̄n
ti´1`s

d
“ Y

piq
s for all s ď ∆t, it suffices to bound the probability (maximized over its

possible initializations) that Y piq
∆t has maximum height bi`1 “ ai ` 1

2 log n.

By definition of ∆t and the sub-multiplicativity of TV-distance to stationarity, Y piq
∆t will be within distance

n´6 of its equilibrium distribution, which we said is a vertical shift of ai above a sample from µ
0,Λlogn

n
. A

sample from that stationary distribution, will have maximum height at most 1
2 log n except with probability

n´6 per Eq. (2.4). Together this implies an Opn´6q bound on the probability that Y i
∆t will have maximum

height larger than bi`1, and thus on PpEi´1, E
c
i q. Plugging in to Eq. (6.6), using N “ opnq, and combining

with Eq. (6.5) gives an n´5 bound on ErX̄n
tN

pvqs ´ ErX̄0
tN

pvqs implying that TΛn
n

ď tN by Eq. (6.4). ■

6.3. Reducing the mixing time to domains of cut-width n0. Now that we have reduced the ceiling down
to log n, we wish to bound the mixing time on Λlogn

n with zero boundary conditions, by the mixing time on
smaller domains of side-length n0, the minimal scale at which spatial mixing kicks in (depending on dpλq).

Recall the definition of the annulus An,m “ ΛnzΛn´m, and let Aℓ
n,m denote the annulus An,m with

ceiling at height ℓ. Let

TAℓ
n,m

:“ tMIXpAℓ
n,mq ,

i.e., the mixing time on Aℓ
n,m with 0 boundary conditions. We also need to consider mixing times over more

general boundary conditions, so we use a superscript ϕ to indicate a boundary condition different from 0.

Lemma 6.3. There exists a universal C0 such that for all n ě m ě maxtC0β log n{dpλq, log n log lognu,

T
Λlogn
n

ď C log n ¨ maxtmax
ϕ

T ϕ

Λlogn
m

,max
ϕ

T ϕ

Alogn
n,m

u .

where the maxima are over boundary conditions having }ϕ}8 ď log n.

Proof. Similar to Eq. (6.3), under the grand coupling,

max
x0

PpXx0
t ‰ Xµ

t q ď
ÿ

vPΛn

PpX logn
t pvq ‰ X0

t pvqq ,

where the maximal initialization is now identically log n since that is the ceiling height. We aim to localize
the dynamics by introducing Markov chains that only make updates in local neighborhoods around v. For
every v P Λn´m, let Bv,m be the ball of radius m around v, and let X logn

t,v and X0
t,v be the Glauber dynamics

chains that only make updates inside Bv,m (still with the same floors and ceilings). In particular, these will
be SOS chains on Bv,m with boundary conditions log n, and 0 respectively. For v P An,m, use the annulus
An,2m as its corresponding block, and (overloading notation slightly), let X logn

t,v , X0
t,v be the SOS Glauber

dynamics chains that only make updates inside An,2m; these will be SOS chains on An,2m with boundary
conditions that are 0 on the outer boundary, and log n or 0 respectively on the inner boundary.

Fix any v P Λn, and notice that by monotonicity, under the grand coupling,

PpX logn
t pvq ‰ X0

t pvqq ď PpX logn
t,v pvq ‰ X0

t,vpvqq .

This latter probability is bounded by

}PpX logn
t,v pvq P ¨q ´ µlogn,Bv}TV ` }PpX0

t,vpvq P ¨q ´ µ0,Bv}TV ` }µlogn,Bvpφv P ¨q ´ µ0,Bvpφv P ¨q}TV ,
(6.7)
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where we used Bv as a generic stand-in for the block of v, be it the ball Bv,m or the annulus An,2m. If
v P Λn´m so that Bv “ Bv,m, as long as t is at least C1 log n (for a large absolute constant C1) times T ϕ

Λlogn
m

with boundary conditions ϕ ” log n, the first of these is at most n´10, and as long as it is at least C1 log n

times the mixing time on T ϕ

Λlogn
m

with ϕ ” 0 the second of these is at most n´10. Similarly when v P An,m

as long as t is at least C1 log n times T p0,ϕq

Alogn
n,m

with ϕ ” log n or with ϕ ” 0.

Finally, the third term in Eq. (6.7) is governed by the spatial mixing estimates we established in the
previous section. Namely, if v P Λn´m so that Bv “ Bv,m, then by Theorem 5.1 with am “ log n, it is
at most e´βm{C which is at most n´10, for large β. Similarly, if v P An,m so that Bv “ An,2m, then by
Theorem 5.11 with the choices m̄ “ n and am “ log n, this is at most n´10 as well.

Altogether, we get that so long as t is at least C1 times log n times maxtmaxϕ T
ϕ

Λlogn
m

,maxϕ T
ϕ

Alogn
n,m

u for

some absolute constant C1, we have for all v P Λn,

max
vPΛn

PpX logn
t pvq ‰ X0

t pvqq ď Opn´10q ,

which when summed over v P Λn, yields the claimed bound on the mixing time. ■

6.4. Concluding the upper bound. We are now in position to conclude the upper bounds on the inverse
spectral gap in Theorem 1.1 when λ approaches a critical λpkq

c and/or 0.

Proof of Item 2 of Theorem 1.1: upper bound. By Lemma 6.2 and Lemma 6.3, with

m “ maxtC0β log n{dpλq, log n log log nu ,

(which is less than n as required so long as dpλq ě
C0β logn

n as assumed in Item 2 of Theorem 1.1) we obtain
for some absolute constant C, the bound

TΛn
n

ď Cn log n ¨
`

max
ϕ

T ϕ

Λlogn
m

_ max
ϕ

T ϕ

Alogn
n,m

˘

. (6.8)

The following is an upper bound on the mixing times on the right-hand side of the above that are exponential
in m log n, and essentially conclude the proof.

Lemma 6.4. There is an absolute constant C, such that for all β ą 0, all λ ě 0,

max
ϕ:}ϕ}8ďℓ

T ϕ
Λℓ
m

ď eCβmℓ`λ , and max
ϕ:}ϕ}8ďℓ

T ϕ
Aℓ

n,m
ď neCβmℓ`λ .

Lemma 6.4 is a by-now standard estimate using the canonical path method ([34, Corollary 13.21]) to
bound the mixing time by the cut-width of the underlying graph, a technique first developed in [28] and
applied in the context of the Ising model [37]. We could not find a statement at the requisite level of
generality for the SOS dynamics with general field, floors, and ceilings, (without a field, a similar bound is
in [9, Proposition 2.3]) so we have included a proof for completeness in Appendix C. Plugging the bounds
of Lemma 6.4 into Eq. (6.8),

TΛn
n

ď exp
´

Cβplog nq2max
! 1

dpλq
, log log n

)¯

,

and the analogous bound on the inverse spectral gap per Eq. (6.1). Notice that if we simply assume λ ě 0,
by Lemma 6.2 and Lemma 6.4, we also always have an upper bound of exppCβn log nq. ■

Remark 6.5. The upper bound of Lemma 6.4 can be improved to a bound of eCβm (without the dependence
on ℓ in the exponent when λ is kept away from zero, say λ ą ε uniformly, since the cost to force a set of
sites to all take value 1 is only exponential in the number of sites: see the argument in [12, Theorem 4.1].
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6.5. Sharp upper bounds using strong spatial mixing. When dpλq is fixed positive, independent of n, the
above reasoning gives an upper bound of exppnop1qq. In this section, we give a better upper bound using the
exponential-rate spatial mixing properties of the model, using strong spatial mixing which controls decay of
correlations in the presence of nearby boundary conditions.

Proof of Item 1 of Theorem 1.1. Let us first define the notion of strong spatial mixing we will use.

Definition 6.6. The SOS model has SSM with constant C above scale n0 if for all n ě n0, for all y P BΛn,
and any subset A Ă Λn

max
ϕ,ϕ1:ϕx“ϕ1

x@x‰y
}µϕ,ΛnpφpAq P ¨q ´ µϕ1,ΛnpφpAq P ¨q}TV ď e´dpA,yq{C .

It is a classical result of [40] that weak spatial mixing implies strong spatial mixing (above a certain
scale) for finite-range 2D spin systems with finite state space per spin. As noted in [12, Section 2.1], in our
context with infinitely-many possible heights available to each site, the strong spatial mixing still follows
from weak spatial mixing so long as λ ą 0 uniformly in n. This is because as long as n0 ą r8β{λs, there is
a constant probability that a n0 ˆn0 box entirely takes height 1, say, uniformly over its boundary conditions
([12, Eq. (2.1)]), whence the rest of the boosting of weak spatial mixing to strong spatial mixing can be
carried out, resulting in the following consequence of Corollary 5.2.

Lemma 6.7. For every ε ą 0, there exists a C0pε, βq ą 0 such that for all λ having dpλq ą ε, the SOS
model has SSM with constant C0 above scale C0.

To go from Lemma 6.7 to an Op1q inverse spectral gap is quite standard. We sketch the steps below with
relevant references to demonstrate that so long as λ ą 0 uniformly in n, there is no issue with this step: we
refer to [12, Section 2.2] for further details. Let L0 “ C1C0 where C0 is given by Lemma 6.7 and C1 is a
constant depending on C0 to be chosen.

(1) Cover the box by overlapping ℓ8 balls (called blocks) of side-length L0;
(2) The corresponding block dynamics that assigns blocks independent Poisson clocks and performs a

heat-bath update on a block when its clock rings is contractive as long as L0 is sufficiently large as
a function of C0 (this follows from path coupling with the Hamming distance, and the amenability
of Z2); in particular, the block dynamics has an Op1q inverse spectral gap [12, Eq. (2.3)];

(3) When λ ą 0, each individual block has an Op1q inverse spectral gap (though blowing up as λ Ó 0),
since its base side-lengths are L0 “ Op1q: see [12, Proposition 2.2].

The Op1q inverse spectral gap for the SOS Glauber dynamics follows from these by the classical block
dynamics bound on the inverse spectral gap [38, Proposition 3.4]. ■

Remark 6.8. The dependence of n0 for which Definition 6.6 holds depends exponentially on the m0 at
which the weak spatial mixing Theorem 5.1 kicks in, so using the above approach when the weak spatial
mixing only holds above a diverging scale, e.g., above 1{dpλq, would give very sub-optimal mixing time
upper bounds, namely double exponential in 1{dpλq, rather than simply exponential in 1{dpλq.

6.6. The case of the torus. We describe the modifications to get the upper bounds for the torus.

Proof of Item 2 of Theorem 1.3: upper bound. In the bounds of Section 6.2, the key role played by the
boundary conditions was in enabling the a priori bound ensuring that the maximum height of the interface
at equilibrium is at most 1

2 log n except with probability n´5, say. Such a bound evidently does not hold at
λ “ 0 as there will be no force keeping the interface pinned close to height 0, but as long as we assume
λ ě n´1`op1q say, the following lemma replaces that estimate.

Lemma 6.9. Suppose λ ě
e8β logn

n . For β ą β0, the SOS model on Λlogn
n with periodic boundary condi-

tions, which we denote using the shorthand ϕ “ p, has

µ
p,Λlogn

n
pmax

v
φv ě 1

2 log nq ď n´5 .
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Proof. Fix a vertex v, the transitivity of the torus implying we can simply fix the origin vertex o, and consider
µ
p,Λlogn

n
pφo ě 1

2 log nq. Due to the ceiling at height log n, we have µ
p,Λlogn

n
is stochastically dominated by

µ
logn,Λlogn

n
, i.e, with maximal boundary conditions, so it suffices to bound µ

logn,Λlogn
n

pφo ě 1
2 log nq.

Let k be the k for which λ P rλ
pkq
c , λ

pk´1q
c s and using monotonicity, lower λ down to Ik`1, whence

dpλq ě
e4β logn

n . Moreover, by Eq. (3.18) and the fact that λ ď n
logn we know k ` 1 to be at most

pC{βq log n. By Corollary 5.10 with am “ log n (applicable since dpλq ě n
e4β logn

), there will be a height
k loop surrounding Λn{2 except with probability e´n. Interior to that height k-loop, the rigidity results at
height k from Eq. (4.13) imply that the probability that φ0 exceeds k ` r is at most e´4pβ´Cqr. Thus, for β
large, for every vertex v in the torus,

µ
p,Λlogn

n
pφv ě 1

2 log nq ď n´7 ,

whence a union bound over the n2 many such vertices implies the bound on their maximum. ■

With this upper bound in hand, the remainder of the proof of Eq. (6.6) goes through unchanged when
dpλq ě

cβ logn
n . The second reduction of Lemma 6.3 works as stated on the torus, though it makes more

sense in the torus to only use blocks of the form Bv “ Bv,m (ℓ8-balls of radius m about each vertex v since
the graph is vertex transitive and our use of the annulus was to deal with behavior near the boundary). On
the other hand, when dpλq ď

cβ logn
n , the reduction of Lemma 6.2 together with the canonical paths bound

of Lemma 6.4 gives an upper bound of exppCβn log nq on the torus. ■

Proof of Item 1 of Theorem 1.3. Regarding the Op1q inverse gap estimates when dpλq ą ε uniformly in
n, the proof sketched in Section 6.5 is easily checked to go through without any modifications. ■

7. MIXING TIME LOWER BOUNDS

Our aim in this section is to establish the complimentary lower bounds on the mixing times on Λn
n with

zero and periodic boundary conditions. Our lower bounds are based on bottlenecks in the state space. Let
us recall the basic Cheeger inequality lower bound for Markov chains. The Cheeger constant of a Markov
chain with state space Ω and stationary distribution µ is

Φ‹ “ min
AĂΩ

QpA,Acq

µpAqµpAcq
, where QpA,Acq “

ÿ

ωPA

µpωq
ÿ

ω1PAc

P pω, ω1q . (7.1)

Cheeger’s inequality then states that the inverse spectral gap has

gap´1 ě
1

2
Φ´1

‹ . (7.2)

One can easily see that QpA,Acq ď µpBAq where BA indicates all configurations in A having posi-
tive transition rates to Ac. It therefore suffices to construct a set A having small conditional probability
µpBAq{µpAq “ µpBA | Aq to lower bound the inverse spectral gap.

7.1. Height-zero boundary conditions. We show a bottleneck between configurations that are predomi-
nantly at height k ´ 1 vs. predominantly at height k, when λ is close to λ

pk´1q
c , but in rλ

pkq
c , λ

pk´1q
c s. This

forms a bottleneck because any contour collection whose diameter is too small (depending on d`pλq) would
prefer to remain at height k ´ 1 than rise up to k, even if the equilibrium measure prefers height k.

Proof of Item 2 of Theorem 1.1: lower bound. For a configuration φ, let Věk Ă Λn denote its collection
of all tě ku sites. Let

Ar “ tall connected components of Věk have size at most ru .

Letting o “ p0, 0q denote the origin, our choice of bottleneck set will be

A “ Ar , for r “ mintn
8 ,

1
8d`pλq

u .
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We firstly claim that for an absolute constant C0, as long as n ě C0βk{d`pλq,

µ0,Λn
n

pAcq ě 1{2 . (7.3)

Indeed, using Lemma 5.6, we get a loop of height-k sites surrounding Λn{2, say, except with probability
e´βn{C , and by definition such a loop must have size at least n

2 ě r.
In order for a configuration to belong to BA, there must be a site v P Λn, such that if its height is changed

the configuration leaves A; this requires that v be adjacent to some connected component of Věk having size
at least r{2. In particular,

BA Ă
ď

v

A X Ac
r{2,v ,

where Ac
r{2,v is the event that there is a connected component of Věk of size at least r{2 incident to v. By a

union bound and Eq. (7.3),

Φ‹ ď 2n2max
v

µ0,Λn
n

pAc
r{2,v | Aq .

On the event A, there must be a loop (possibly using boundary sites which all have height 0) of height-
tď k ´ 1u sites interior to Bv, the ℓ8 ball of radius r about v in Λn (otherwise there would be a tě ku path
from v to BoBvzBoΛn, which would necessarily have length at least r, violating A). Exposing the outermost
such loop, calling its strict interior Ck´1 Ă Bv, this bounds the desired probability by

µ0,Λn
n

pAc
r{2,v | Aq ď max

Ck´1ĂBv

max
ϕ:}ϕ}8ďk´1

µϕ,Ck´1
pAc

r{2,v | Aq .

The events A,Ar{2,v are both decreasing on this state space, and so by the FKG inequality, the probability
in question is at most µϕ,Ck´1

pAc
r{2,vq (without the conditioning on A). By monotonicity, this probability is

maximized by the maximal boundary conditions ϕ which would be k ´ 1, so we get

Φ‹ ď 2n2max
v

max
Ck´1ĂBv

µk´1,Ck´1
pAc

r{2,vq .

We control this last probability via a Peierls map. The event Ac
r{2,v requires there to be an outermost

contour of diameter at least r{2 (but at most 2r since Ck´1 Ă Bv) confining v in its interior. Considering
the renormalized contour representation and performing the Peierls operation that deletes the outermost
contour γv confining v in its interior, the weight change under application of this map is W rn

k´1pγvq which
by Corollary 4.9 is at most e´pβ´5q|γv | because diampγvq ď 2r ď 1{p4d`pλqq, which in turn is at most
pf tr

k ´ f tr
k´1q´1 per Corollary 4.7. Summing over the possible choices of ℓ, we arrive at

Φ‹ ď 2n2
ÿ

ℓěr

4ℓe´pβ´5qℓ ď n2e´pβ´Cqr .

This then implies the claimed bound on the inverse gap per Eq. (7.2). ■

7.2. The case of the torus. We describe how to get the analogous lower bound on the torus.

Proof of Item 2 of Theorem 1.3: lower bound. Let k be such that dpλq is attained by λ
pk´1q
c , whether by

dpλq “ d`pλq, in which case λ “ λ
pk´1q
c ´ dpλq, or if dpλq “ d´pλq in which case λ “ λ

pk´1q
c ` dpλq.

Consider the following two events:

Ar “ tall connected components of Věk have size at most ru ,

A1
r “ tall connected components of Vďk´1 have size at most ru .

Similar to the proof with zero boundary conditions, fix r “ mintn
8 ,

1
dpλq

u. Notice that Ar and A1
r are

disjoint events because on Ar, the boundary in Λ2r of the tě ku components intersecting BiΛ2r, say, forms
a tď k ´ 1u path of diameter at least r. As such, for every λ, one of these two events must have probability
less than 1{2. Thus, the bound of Eq. (7.3) is ensured by the choice of A “ Ar vs. A1

r.
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From that point on, the argument is essentially identical to the argument in the previous subsection if
A “ Ar with the balls Bv now all being identical translates of one another. We had used that diampγvq ď

2r ď 1{p4dpλqq in order to reason that W rn
k´1pγvq had an exponentially small weight. This holds still if

dpλq “ d`pλq, while if dpλq “ d´pλq then λ P rλ
pk´1q
c , λ

pkq
c s whence the bound on the diameter isn’t even

needed for the exponentially small weight per Proposition 4.8. The reasoning if A “ A1
r is symmetrical. ■

APPENDIX A. MONOTONICITY WITH GENERIC FIELDS AND FLOORS/CEILINGS

Recall the general form of the SOS measure with arbitrary floors a “ pavqv and ceilings b “ pbvqv,
boundary conditions ϕ, and external field λ from Eq. (2.1).

Proof of Lemma 2.1. It in fact suffices to check this for V being a single vertex, say the origin, because
given that, one can run a column Glauber dynamics (fully resampling the height at a vertex), whose t Ñ 8

limit serves as the coupling attaining the stochastic domination expressed above. At a single vertex, we
check the stochastic domination between the two distributions. The distribution can be expressed as

ppφq :“ e´λφv
`

ź

w„v

e´β|φv´ϕw|
˘

1φvěav1φvďbv ,

and p1pφq is defined analagously with the primed parameters. The ratio p1pφq{ppφq can be broken up into
the individual ratios in the above product. We claim that each of these are individually increasing in φv.
Since the product of increasing functions will also be increasing, that gives us that the ratio of the mass
functions is increasing, from which the stochastic domination follows.

The ratio e´pλ1´λqφv is increasing in φv because λ1 ´ λ ď 0. The ratios of the indicator functions are
clearly increasing in φv since

1φvěa1
v

1φvěav

“

#

0 φv P rav, a
1
vs

1 φv P ra1
v,8q

, and
1φvďb1

v

1φvďbv

“

#

1 φv P p´8, bvs

8 φv P rbv, b
1
vq

,

(both measures are supported on rav, b
1
vs so we don’t care about the cases where it is 0 divided by 0). Finally,

e´|φv´ϕ1
w|

e´|φv´ϕw|
“ e|φv´ϕw|´|φv´ϕ1

w| “ exp

¨

˚

˝

$

’

&

’

%

ϕw ´ ϕ1
w φv ď ϕw

pφv ´ ϕwq ´ pϕ1
w ´ φvq φv P pϕw, ϕ

1
wq

ϕ1
w ´ ϕw φv ě ϕ1

w

˛

‹

‚

.

The middle term can be re-expressed as 2pφv ´ 1
2pϕw ` ϕ1

wqq. It is easy to see with this writing that for
φv P pϕw, ϕ

1
wq, this is in absolute value less than ϕ1

w ´ ϕw, so it is also increasing in φv. ■

APPENDIX B. EXPONENTIAL TAILS ON NON-ELEMENTARY RENORMALIZED WEIGHTS

In this section we follow the strategy of [15] adapted to contours to provide the proof of Lemma 4.1.

B.1. Clusters of non-elementary contours. We begin by canonically splitting any contour collection in
Gη,h,V up into clusters of contours γ that are non-elementary at hpγq, and in between regions where the
contributions are given by corresponding renormalized elementary partition functions. This follows the
exposition leading up to Proposition 2.6 in [11] (also [15, Eq. (2.33)]).

Definition B.1. [Cluster of non-elementary contours] A set of contours C is called a non-elementary cluster
if one contour in C nests all the others, along each nesting path (γ1 Ă γ2 Ă ...) only the heights exterior to
the outermost contour and interior to the innermost contour are h, and every γ P C is hpγq-non-elementary.

Any collection of contours pγiq each of which are hpγiq-non-elementary can be uniquely decomposed
into a set of clusters of non-elementary contours.
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In words, given a set of γ each of which is hpγq-non-elementary, a cluster of non-elementary contours is
an excursion away from height h. For a cluster of non-elementary contours C, and each γ P C, let

Annpγ; Cq “ Intpγqz
ď

γ1PC:γ1Ĺγ

Intpγ1q ,

if Dγ1 P C : γ1 Ĺ γ, and let Annpγ; Cq “ H otherwise. We can then define

AnnpCq “
ď

γ

Annpγ; Cq .

Definition B.2. If C is a cluster of non-elementary contours, its h-renormalized weight is given by

W rn
h pCq “ e´β

ř

γPC |γ|

ś

γPC Z
el
Spγq,hpγq,Annpγ;Cq

Zrn.el
h,AnnpCq

, (B.1)

where we recall Spγq “ ` if γ is an up contour and Spγq “ ´ if γ is a down contour.

Remark B.3. Notice that on the numerator of Eq. (B.1), it does not matter that we are writing Zel rather
than Zrn.el for the not-necessarily simply connected domain Annpγ; Cq since all its holes are necessarily
hpγq-non elementary and therefore cannot be confined by hpγq-elementary contours.

The following shows that these renormalized weights together with the renormalized weights of the ele-
mentary contours give a different way of writing the renormalized partition function (c.f., Lemma 3.2). Let
Cη,h,V be the set of all admissible collections of clusters of h-non-elementary contours. When we write the
pair pC,Γq P pCη,h,V ,G

rn.el
η,h,V q, we further impose that in each C, the contours of Γ are compatible with the

outermost and innermost contours of C (i.e., the boundary of AnnpCq).

Lemma B.4. For every simply-connected V , every h, and every boundary signing η,

Zrn
η,h,V “ e´λh|V |

ÿ

pC,ΓqPpCη,h,V ,G el
η,h,V q

ź

CPC

W rn
h pCq

ź

γPΓ

W rn
h pγq .

Proof. We can express the full SOS partition function as

Zη,h,V “
ÿ

CPCη,h,V

Zrn.el
h,ExtpCq

ź

CPC

e´β
ř

γPC |γ|
ź

γPC
Zel
Spγq,hpγq,Annpγ;Cq

“
ÿ

CPCη,h,V

Zrn.el
h,ExtpCq

ź

CPC

W rn
h pCqZrn.el

h,AnnpCq .

Expanding out each Zrn.el term per Eq. (3.2) yields the claim. ■

Using our understanding of the elementary partition functions in the windows Ih from Eq. (3.18), we get
the following upper bound on the renormalized weights of clusters of non-elementary contours.

Lemma B.5. If λ P Ih, for every cluster C of non-elementary contours,

W rn
h pCq ď exp

´

´ pβ ´ 1q
ÿ

γPC
|γ| ´

ÿ

γPC
e´4βph^phpγq`1qq´3β|Annpγ; Cq|

¯

.

Proof. Notice first that

Zrn.el
h,AnnpCq ě

ź

γPC
Zrn.el
Spγq,h,Annpγ;Cq .

since the latter is only more restrictive in terms of which contours are permitted in AnnpCq. Therefore,

W rn
h pCq ď e´β

ř

γPC |γ|
ź

γPC

Zrn.el
Spγq,hpγq,Annpγ;Cq

Zrn.el
Spγq,h,Annpγ;Cq

.
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Using Lemma 3.12 and the lower bounds on the elementary free energies from Lemma 3.13 when λ P Ih
on each of the terms in the product, we conclude (noting that

ř

γPC |BeAnnpγ; Cq| ď 2
ř

γPC |γ|). ■

B.2. Weights of non-elementary contours. For a cluster of non-elementary contours C, let γout be its
outermost contour (there being only one by the definition of such clusters). We begin with the following
bound on the total contribution from all clusters of non-elementary contours nesting a point x P V , and
having |γout| ě r.

Lemma B.6. If λ P Ih, then for every r,
ÿ

C:xPIntpγoutq

|γout|ěr

W rn
h pCq ď expp´pβ ´ 4qrq .

Proof. We follow the general approach of [15, Lemmas 2.13–2.14] to perform the sum by associating to
each cluster of non-elementary contours a corresponding tree-like object. We associate to C a witness as
follows:

‚ Take the set of (dual) edges associated to the collection of contours rooted at their respective heights,
and color all such edges RED.

‚ For each contour γ, and each contour γ1 nested in γ, add a straight line in the e1 direction of BLUE
faces at hpγq connecting γ to γ1. Then for each γ1 nested in γ, erase all BLUE faces in their interiors,
and continue the procedure for those γ1.

This gives a treelike structure on contours, where a contour γ is the parent of γ1 if they are connected by
BLUE faces, and either γ nests γ1 or γ is closer (in this ordering) to their common nesting contour. For each
γ, let FBpγq be the set of BLUE faces between γ and its children (these being distinct). We can upper bound
the renormalized weight W rn

h pCq associated to such a C by the following:

W rn
h pCq ď

ź

γ

e´pβ´1q|γ|´|FBpγq|e´4βph^hpγqq´3β
.

In order to see this, recall Lemma B.5 and notice that for each γ that is not a leaf in the tree construction,
either the BLUE faces constituting FBpγq are part of Annpγ; Cq, or they are part of Annpγ1; Cq where γ1 is the
innermost nesting contour of γ. that is to say that they are either at height hpγq or at height maxt0, hpγq˘1u.

At the same time, any child of γ must be either hpγq-non elementary or hpγ1q-non-elementary where γ1

is innermost nesting contour. so in particular, it must have size at least L0 :“ e3βmaxt1,hpγoutqu.
We now perform the count one generation of the tree corresponding to C, by enumerating over γout of

size at least r, then for each point along γout, deciding whether to start a blue path or not, enumerating over
the length of the blue path k, then picking up a weight corresponding to all the possible choices of subtree to
place there. Assuming (inductively) that the total weight of all subtrees whose outermost contour has length
at least L0 has a bound of expp´pβ ´ 4qL0q, we get

ÿ

C:xPIntpγoutq

|γout|ěr

W rn
h pCq ď

ÿ

ℓěr

4ℓe´pβ´1qℓ
`

1 ` e´pβ´4qL0

8
ÿ

k“1

e´ke´4βph^hpγoutqq´3β˘ℓ
.

The series in k sums up to at most e4βhpγoutq`3β so this is at most
ÿ

ℓěr

e´pβ´3qℓ exp
`

ℓe´pβ´4qe3β maxt1,hpγoutqu

e4βhpγoutq`3β
˘

.

For β large, the second exponential is easily seen to be at most exppεβℓq, whence the sum is easily seen to
be at most expp´pβ ´ 4qrq as claimed. ■
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Proof of Lemma 4.1. If γ is elementary, the bound follows from Theorem 3.6. Suppose now that γ is an
up non-elementary contour. Then,

W rn
h pγq “ e´β|γ|

Zη,h`1,Intpγq

Zη,h,Intpγq

“ µ`,h,Intpγq

´

č

xPBiIntpγq

tφpxq ě h ` 1u

¯

.

In order for φx ě h ` 1 for all x P BiIntpγq, then there must be a positive contour γ1 in Γpφq that lines up
exactly with γ; If γ is not h-elementary, then by Lemma B.4, this probability is bounded by the Peierls map
that deletes its entire cluster C (whose weight is W rn

h pCq), whence Lemma B.6 performs the summation over
the choice of the cluster and concludes the proof. The case where γ is a down non-elementary contour is
analogous. ■

APPENDIX C. CANONICAL PATHS BOUNDS FOR SOS MODELS

We show that the inverse gap on domains of cut-width m and ceiling ℓ is at most exponential in mℓ.

Proof of Lemma 6.4. Recall (e.g., [34, Corollary 13.21]) that for a reversible Markov chain with a finite
state space Ω, transition matrix P , and stationary distribution µ, its spectral gap is lower bounded by the
congestion

min
Γ“pγabqa,bPΩ

max
x,yPΩ:P px,yqą0

1

µpxqP px, yq

ÿ

w,z:px,yqPγw,z

µpwqµpzq|γw,z| , (C.1)

where each γab is a sequence of positive rate transitions starting at a and ending at b. We first do the argument
for Λm, then describe what changes for the annulus An,m.

Enumerate the vertices of Λm in lexicographic order, denoted v1, v2, .... For two configurations a, b, the
path γab is described by the updates where each of these vertices is sequentially processed, and by processed
we mean that if av ‰ bv, then there is a minimal sequence of transitions to take av to bv. Evidently,
|γa,b| ď m2ℓ for all a, b. Further, for fixed px, yq, there is an injection between pairs of configurations pw, zq

such that px, yq P γw,z and Ω, defined as follows. If px, yq entails a transition at site vi, let w̃ agree with w
on pvjqjąi and let w̃ agree with z on pvjqjăi; finally let it take the value of x on vi. Similarly, let z̃ agree
with z on pvjqjąi, agree with w on pvjqjăi, and take the value of y at vi. Given i, we can evidently recover
pw, zq from pw̃, z̃q. Moreover, the configuration x is exactly w̃, so given x and i which we can read off from
px, yq, this gives an injection from pw, zq : px, yq P γwz to z̃, and the congestion can be rewritten as

m2ℓ

P px, yq

ÿ

z̃PΩ

µpwqµpzq

µpw̃qµpz̃q
µpz̃q .

For any valid transition, P px, yq is clearly lower bounded by e´4βℓ´λ. In the ratio of weights between
w, z and w̃, z̃ the external field quantities cancel out exactly, as do all gradients except those along the cut
between pvjqjăi and pvjqjąi. In the lexicographic ordering on Λm, this cut is at most m for every i, so the
largest that ratio can be is eβmℓ. The sum over z̃ then gives a 1 since µ is a probability measure, altogether
yielding the desired.

We can absorb the m2 and ℓ, and the polynomial in m2ℓ factor that comes from translating spectral gap
into mixing time, by adjusting the constant in the exponent, getting the desired.

In order to get the claimed bound for the annulus, follow the same reasoning, but instead of using the
lexicographic ordering, we use one that attains a cut-width of at most 2m. This ordering will be by starting
from the m ˆ m block in one corner, performing the lexicographic order there, then processing around the
annulus one row/column (whichever is thinner, depending on the orientation) one at a time. The extra factor
of n in the bound here comes from the translation of spectral gap to mixing time. ■
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