CUTOFF FOR THE ISING MODEL ON THE LATTICE

Eyal Lubetzky
Microsoft Research

Joint work w. Allan Sly

Mar 2010

MIT Probability Seminar
Ising model

- Underlying geometry: finite graph $G = (V, E)$.
- Set of possible configurations: $\Omega = \{\pm 1\}^V$
- Probability of a configuration $\sigma \in \Omega$ given by the Gibbs distribution

 $$\mu(\sigma) = \frac{1}{Z(\beta)} \exp \left(\beta \sum_{xy \in E} \sigma(x)\sigma(y) \right) \quad \text{[no external field]}$$

- Ferromagnetic \leftrightarrow inverse-temperature $\beta \geq 0$.
- Phase transition as β varies (in some geometries).
Glauber dynamics for Ising

- One of the most commonly used MC samplers for the Gibbs distribution:
 - Update sites via iid Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new one $\sim \mu$ conditioned on $V \setminus \{u\}$ (heat-bath version).

- Ergodic reversible MC with stationary measure μ.

- Introduced by Glauber in 1963. Other versions of the dynamics include e.g. Metropolis.

- How fast does it converge to equilibrium?
Example: Glauber dynamics for critical Ising on the square lattice

- 256 x 400 square lattice w. boundary conditions: (+) at bottom, (−) elsewhere.
- Frame after 2^{20} steps, i.e. ~ 10 updates per site.
Rate of convergence to equilibrium

- **Mixing time**: standard measure of convergence:
 - The L^1 (total-variation) mixing time within ε is
 \[t_{\text{mix}}(\varepsilon) = \inf \left\{ t : \max_\sigma \| H_t(\sigma, \cdot) - \mu \|_{TV} \leq \varepsilon \right\} \]
 where H is the heat-kernel.
 - “Mixing time” usually taken as $t_{\text{mix}}(1/4)$ by convention.

- **Spectral gap**: governs convergence in $L^2(\mu)$:

 \[
 \text{gap} = \text{smallest positive eigenvalue of the kernel } H.
 \]
General (believed) picture for Glauber dynamics

- Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$.
- Belief: For some critical inverse-temperature β_c:
 - Low temperature: $(\beta > \beta_c)$, gap$^{-1}$ and t_{mix} are exponential in the surface area.
 - Critical temperature: $(\beta = \beta_c)$, gap$^{-1}$ and t_{mix} are polynomial in the surface area.
 - High temperature: $(\beta < \beta_c)$
 1. Rapid mixing: gap$^{-1} = O(1)$ and $t_{mix} \approx \log n$
 2. Mixing occurs abruptly, i.e., there is cutoff.
The Cutoff Phenomenon

- Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence
it takes a while to reach distance $\frac{1}{2}$ from stationarity then a while longer to reach distance $\frac{1}{4}$, etc.

Abrupt convergence
distance from equilibrium quickly drops from 1 to 0
Gap/mixing-time evolution for Ising on the complete graph (Curie-Weiss model)

\[\text{gap}^{-1}, t_{\text{mix}} \approx \frac{1}{\beta - 1} \exp\left[\frac{3}{4} (\beta - 1)^2 n\right] \]

\[\text{gap}^{-1}, t_{\text{mix}} \approx n^{1/2} \]

\[\text{gap}^{-1} = \frac{1+o(1)}{1-\beta} \frac{1+o(1)}{2(1-\beta)} \log[(1-\beta)^2 n] \]

Above picture established in [Ding, L., Peres '09].
Mixing time for Ising on lattices: High temperature regime

- Mixing time of Ising on the lattice at high temp. was established in a series of seminal papers:
 - [Aizenman, Holley '84]
 - [Dobrushin, Shlosman '87]
 - [Holley, Stroock '87, '89]
 - [Holley '91]
 - [Stroock, Zegarlinski '92a, '92b, '92c]
 - [Zegarlinski '90, '92]
 - [Lu, Yau '93]
 - [Martinelli, Olivieri '94a, '94b]
 - [Martinelli, Olivieri, Schonmann '94]

- \(\Rightarrow \) Bounded log-Sobolev constant and \(O(\log n) \) mixing.

- In two dimensions this is known for all \(\beta < \beta_c \).
Mixing on the square lattice

- High temperature: $O(1) \log$-Sobolev constant and $O(\log n)$ mixing for all $\beta < \beta_c = \frac{1}{2} \log(1 + \sqrt{2})$.
- Dynamics conjectured to exhibit cutoff [Peres’04].

- Low temperature: for $\beta > \beta_c$, both gap$^{-1}$ and the mixing time are $\exp[(c(\beta) + o(1))n]$.
 [Schonmann ’87], [Chayes, Chayes, Schonmann’87],
 [Martinelli ’94], [Cesi, Guadagni, Martinelli, Schonmann’96].

- Critical temperature: No known sub-exponential upper bounds at $\beta = \beta_c$ for mixing or gap$^{-1}$...
Cutoff: formal definition

- A family of chains \((X^n_t)\) is said to have cutoff if:
 \[
 \lim_{n \to \infty} \frac{t_{\text{mix}}(\varepsilon)}{t_{\text{mix}}(1 - \varepsilon)} = 1 \quad \forall \ 0 < \varepsilon < 1.
 \]
 i.e., \(t_{\text{mix}}(\alpha) = (1 + o(1))t_{\text{mix}}(\beta)\) for any \(0 < \alpha, \beta < 1\).

- A sequence \((w_n)\) is called a cutoff window if
 \[
 w_n = o\left(t_{\text{mix}}(\frac{1}{4})\right),
 t_{\text{mix}}(\varepsilon) - t_{\text{mix}}(1 - \varepsilon) = O_{\varepsilon}(w_n) \quad \forall \ 0 < \varepsilon < 1.
 \]
Basic examples

Lazy discrete-time simple random walk

On the hypercube $\{0,1\}^n$:
- Exhibits cutoff at $\frac{1}{2} \log n + O(n)$
 [Aldous '83]

On the n-cycle:
- No cutoff.
The importance of cutoff

- Suppose we run Glauber dynamics for the Ising Model satisfying $t_{\text{mix}} \asymp f(n)$ for some $f(n)$.
- Cutoff $\Leftrightarrow \exists$ some $c_0 > 0$ so that:
 - Must run the chain for at least $\sim c_0 \cdot f(n)$ steps to even reach distance $(1 - \varepsilon)$ from μ.
 - Running it any longer than that is essentially redundant.
- Proofs usually require (and thus provide) a deep understanding of the chain (its reasons for mixing).
- Many natural chains are believed to have cutoff, yet proving cutoff can be extremely challenging.
Cutoff History

- Random walks on graphs and groups:
 - Discovered:
 - Random transpositions on S_n [Diaconis, Shahshahani ’81]
 - RW on the hypercube, Riffle-shuffle [Aldous ‘83]
 - Named “Cutoff Phenomenon” in the top-in-at-random shuffle analysis [Diaconis, Aldous ‘86]
 - RWs on finite groups [Saloff-Coste ‘04]
 - RWs on random regular graphs [L., Sly ’10+]

- One-dimensional Markov chains:
 - Birth-and-Death chains
 [Diaconis, Saloff-Coste ’06], [Ding, L., Peres ’09]

- No proofs of cutoff except when stationary distribution is completely understood and has many symmetries.
Cutoff for the Glauber dynamics

- So far only spin-systems where cutoff was verified are Ising and Potts models on the complete graph [Levin, Luczak, Peres ’10], [Ding, L., Peres ’09], [Cuff, Ding, L., Louidor, Peres, Sly]

- Conjectured to believe at high temperatures for:
 - Ising on the lattice, e.g. with periodic or free boundary.
 - Potts model on the lattice.
 - Gas Hard-core model on lattices.
 - Colorings of lattices.
 - Arbitrary boundary conditions / external field.
 - Anti-ferromagnetic Ising/Potts models, Spin-glass, Other lattices / amenable transitive graphs,...
Theorem [L., Sly]:

Let $\beta_c = \frac{1}{2} \log(1 + \sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2. Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \leq \beta < \beta_c$ has cutoff at $(1/\lambda_\infty) \log n$, where λ_∞ is the spectral gap of the dynamics on the infinite volume lattice.

Analogous result holds for any dimension $d \geq 1$:

- Cutoff at $(d/2\lambda_\infty) \log n$
- E.g., cutoff at $\left[2(1 - \tanh(2\beta))\right]^{-1} \log n$ for $d = 1$.
Cutoff for Ising on the lattice

- Main result hinges on an L^1-L^2 reduction, enabling the application of log-Sobolev inequalities.
-Generic method gives further results on many other models conjectured to have cutoff:
 - Ising on the lattice, e.g. with periodic or free boundary.
 - Potts model on the lattice.
 - Gas Hard-core model on lattices.
 - Colorings of lattices.
 - Arbitrary boundary conditions / external field.
 - Anti-ferromagnetic Ising/Potts models, Spin-glass, Other lattices / amenable transitive graphs,...
Theorem [L., Sly]: Critical slowdown verified in \mathbb{Z}^2:

Consider the critical Ising model on a finite box $\Lambda \subset \mathbb{Z}^2$ of side-length n, i.e. at inverse-temperature $\beta_c = \frac{1}{2} \log (1 + \sqrt{2})$. Let $\text{gap}_{\Lambda}^{\tau}$ denote the spectral-gap in the generator of the corresponding Glauber dynamics under an arbitrary fixed boundary condition τ. Then there exists an absolute $C > 0$ (independent of Λ, τ) such that $(\text{gap}_{\Lambda}^{\tau})^{-1} \leq n^C$.

More on this in the next Harvard probability seminar Thursday (Mar 11) 3:10pm, Science Center 232.
Proving Cutoff for Ising: Toy example: cutoff at $\beta = 0$

- No interactions:
 - Stationary distribution is uniform.
 - Spins evolve via independent cont.-time MCs.
- Equivalent to the lazy RW on the hypercube $\{0,1\}^n$.
- [Aldous ’83]: Cutoff at $\frac{1}{2} \log n + O(1)$
 - Constant window
 - Twice faster than trivial upper bound.
Magnetization is a birth-and-death chain:
- By symmetry start at the all-plus state.
- \# of +’s at time t is $\sim \text{Bin}(n, \frac{1}{2}(1+e^{-t}))$.
- \# of +’s under stationary measure $\sim \text{Bin}(n, \frac{1}{2})$ which has Gaussian fluctuations of $O(\sqrt{n})$.
- Mixing occurs when $\frac{1}{2} e^{-t} \approx \sqrt{n}$.
L^1-L^2 reduction for product chains

- Setup: general family of ergodic product chains:
 \[(X_{t(n)}^i) = \{X_{t(n)}^i : i = 1, \ldots, m(n) \} \]
 \[\lim_{n \to \infty} \left\| \mathbb{P}(X_t^i \in \cdot) - \pi^i \right\|_{L^2(\pi^i)} = 0 \]

- Define:
 \[M \triangleq \sum_{i=1}^{m} \left\| \mathbb{P}(X_t^i \in \cdot) - \pi^i \right\|_{L^2(\pi^i)}^2 \]

- The following then holds:
 \[M \to 0 \implies \left\| \mathbb{P}(X_t \in \cdot) - \pi \right\|_{TV} \to 0 \]
 \[M \to \infty \implies \left\| \mathbb{P}(X_t \in \cdot) - \pi \right\|_{TV} \to 1 \]

- For the hypercube $m = n$ and we want to drop the individual L^2 distances ($\asymp e^{-t}$) below $1/\sqrt{n}$.
L^1-L^2 reduction for Ising

- **Framework:**
 - (X_t): continuous-time Glauber dynamics for \mathbb{Z}_n^d
 - (X'^*_t): continuous-time Glauber dynamics on a smaller lattice: \mathbb{Z}_r^d for $r = 3 \log^3 n$.
 - B: smaller box within \mathbb{Z}_r^d of side-length $2 \log^3 n$.

- **Define:**

 \[m_t \triangleq \max_{x_0} \left\| \mathbb{P}_{x_0} (X'^*_t(B) \in \cdot) - \mu_B^* \right\|_{L^2(\mu_B^*)} \]

 measuring the L^2 convergence of the projection of (X'^*_t) onto the box B.
L^1-L^2 reduction for Ising (ctd.)

- **Recall:**
 \[m_t \triangleq \max_{x_0} \left\| \mathbb{P}_{x_0} (X^*_t(B) \in \cdot) - \mu^*_B \right\|_{L^2(\mu^*_B)} \]

- **Theorem:**
 Let \(s = s(n) \) and \(t = t(n) \) satisfy
 \[
 (10d / \alpha_s^*) \log \log n \leq s < \log^{4/3} n,
 \]
 \[
 (20d / \alpha_s^*) \log \log n \leq t < \log^{4/3} n,
 \]
 where \(\alpha_s^* \) is the infimum over log-Sobolev constants.
 \[
 \frac{n}{\log^5 n} d m_t^2 \to 0 \Rightarrow \limsup_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0} (X_{t+s} \in \cdot) - \mu \right\|_{TV} = 0
 \]
 \[
 \frac{n}{\log^3 n} d m_t^2 \to \infty \Rightarrow \liminf_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0} (X_t \in \cdot) - \mu \right\|_{TV} = 1
 \]

- Translates L^1 mixing to L^2 mixing (to within a finer scale) on projections in smaller boxes.
Existence of cutoff

- Recall that

\[m_t \triangleq \max_{x_0} \left\| \mathbb{P}_{x_0} (X_t^*(B) \in \cdot) - \mu_B^* \right\|_{L^2(\mu_B^*)} \]

and choose:

\[t^* \triangleq \inf \left\{ t : m_t^2 \leq \frac{\log^{3d+1} n}{n^d} \right\}. \]

- Log-Sobolev inequalities ensure that \(t^* = O(\log n) \).

- Take \(s = (10d / \alpha_s^*) \log \log n \).
 - \implies (n / \log^5 n)^d m_{t^*}^2 = \log^{1-2d} n = o(1)
 - Theorem implies \(L^1 \)-distance of \(o(1) \) by time \(t^* + s \).

- Since \(t^* \asymp \log n \implies t^* \geq (20d / \alpha_s^*) \log \log n \).
 - \implies (n / \log^3 n)^d m_{t^*}^2 = \log n \to \infty
 - Theorem implies \(L^1 \)-distance of \(1-o(1) \) at time \(t^* \).
Ideas from the proof: $L^1 - L^2$ reduction & cutoff location

- Additional effort needed to establish cutoff location in terms of λ_∞:
 - Express cutoff location in terms of the spectral-gaps on the smaller \mathbb{Z}^d_r and show these converge to λ_∞.

- Reduction is enabled by the following:
 - Information spreads at rate 1 while mixing is $O(\log n)$: No time for information to spread...
 - Consider the (random) “update support”: the smallest set of spins whose value at time t is needed in order to determine the state at time $t+s$.
 - Geometric properties of support \Rightarrow product chain.
Support is sparse
Volume decays exponentially
Components separated & small
THANK YOU.