Cutoff for Ising on the lattice

Eyal Lubetzky
Microsoft Research
Recap: product chains $L^1 \to L^2$ reduction

Proposition:

Let $X_t = (X_t^1, \ldots, X_t^n)$ be a product chain where each X_t^i is ergodic with stationary measures π_i and $\pi = \prod_i \pi_i$. Let

$$
M_t = \sum_{i=1}^n m_t \quad \text{where} \quad m_t = \left\| \mathbb{P}(X_t^i \in \cdot) - \pi_i \right\|^2_{L^2(\pi_i)}.
$$

For $\forall \delta > 0$ there $\exists \varepsilon > 0$ so that if for some $t > 0$

$$
\max_i \left\| \mathbb{P}(X_t^i \in \cdot) - \pi_i \right\|_{L^\infty(\pi_i)} < \varepsilon
$$

then

$$
\left| \left\| \mathbb{P}(X_t \in \cdot) - \pi \right\|_{TV} - (2\Phi\left(\frac{1}{2}\sqrt{M_t}\right) - 1) \right| < \delta.
$$
Corollary:

Let X_t be a product chain made of n i.i.d. copies of a finite ergodic chain Y_t with spectral-gap and log-Sobolev constant α_s resp. and stationary measure φ. If

$$\log \varphi_{\min}^{-1} \leq n^{o(\alpha_s/\text{gap})}$$

then X_t exhibits cutoff at $\frac{1}{2} \text{gap}^{-1} \log n$ with window of order $O(\alpha_s^{-1} \log_+ \log \varphi_{\min}^{-1})$.
Intuition: cutoff on the lattice

- Break up \mathbb{Z}^d_n to cubes of side-length $\log^3 n$. Dynamics on such a cube:
 - $\alpha_s^{-1} = O(1)$
 - $\log \varphi_{\min}^{-1}(\sigma) = O(\log^{3d} n) = n^{o(1)}$
- Take non-adjacent cubes Q_1, \ldots, Q_m ($m = (n/\log^3 n)^d$) and suppose as if the projection on those would predict mixing for the entire system:
 - Distance between cubes turn them \approx independent.
 - Expect cutoff at $\frac{1}{2\text{gap}} \log m = \frac{1}{2\text{gap}} \log n + O(\log \log n)$ with window $O(\log \log n)$.
Making this rigorous: sparse sets

Definition:

The set $\Lambda \subseteq V$ is **sparse** iff it can be partitioned into (not necessarily connected) components $\{A_i\}$ so that

1. $\text{diam}(A_i) = O(\log^3 n)$
2. $\text{dist}(A_i, A_j) \geq \log^2 n$

Let $\mathcal{S} = \{\Lambda \subseteq V : \Lambda \text{ is sparse}\}$.

Motivation:

- Small diameter \Rightarrow can embed each component in a small box.
- Super logarithmic distances between components \Rightarrow essentially independent.
Upper bound via sparse sets

Theorem:

Let $t > 0$ and $\frac{10d}{\hat{a}_s} \log \log n \leq s \leq \log^{4/3} n$. Then there exists a measure ν on the sparse sets S such that $\nu(\{\Delta: u \in \Delta\}) < \log^{-5d} n \ \forall u$ and

$$\left\| \mathbb{P}_{\sigma_0}(X_{t+s} \in \cdot) - \mu \right\|_{TV} \leq \int_S \left\| \mathbb{P}_{\sigma_0}(X_t(\Delta) \in \cdot) - \mu|_\Delta \right\|_{TV} \ dv(\Delta) + O(n^{-10d})$$

Assuming theorem, from here we can:

- Box each component A_i (extended a bit) inside B_i then extend to a larger box.
- Couple dynamics to a product chain agreeing on the projections on $\cup B_i$
L^1-L^2 reduction for Ising

- **Framework:**
 - \((X_t)\): Glauber dynamics for \(\mathbb{Z}^d_n\)
 - \((X_t^*)\): Glauber dynamics on \(\mathbb{Z}^d_r\) for \(r = 3 \log^3 n\).
 - \(B\): smaller cube within \(\mathbb{Z}^d_r\) of side-length \(2\log^3 n\).

- **Define:**
 \[
 m_t \triangleq \max_{x_0} \left\| \mathbb{P}_{x_0} (X_t^*(B) \in \cdot) - \mu^*_B \right\|_{L^2(\mu^*_B)}^2
 \]

 (measure \(L^2\) convergence of the projection \((X_t^*) \hookrightarrow B\).)

- There are \(m = (n / \log^3 n)^d\) such disjoint cubes in \(\mathbb{Z}^d_n\), so as a lower bound take the proposition with

 \[
 M_t \triangleq (n / \log^3 n)^d m_t
 \]
$L^1 - L^2$ reduction for Ising (ctd.)

Recall:
\[
\mathfrak{m}_t \triangleq \max_{x_0} \left\| \mathbb{P}_{x_0} (X_t^*(B) \in \cdot) - \mu^* \right\|_{L^2(\mu^*_B)}^2
\]

Theorem:

Suppose
\[
\begin{align*}
10d \hat{\alpha}_s^{-1} \log \log n &\leq s < \log^{4/3} n \\
20d \hat{\alpha}_s^{-1} \log \log n &\leq t < \log^{4/3} n
\end{align*}
\]

where $\hat{\alpha}_s$ is the infimum over log-Sobolev constants. Then
\[
\begin{align*}
(n/\log^5 n)^d \mathfrak{m}_t &\to 0 \quad \Rightarrow \quad \limsup_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0} (X_{t+s} \in \cdot) - \mu \right\|_{TV} = 0 \\
(n/\log^3 n)^d \mathfrak{m}_t &\to \infty \quad \Rightarrow \quad \liminf_{n \to \infty} \max_{x_0} \left\| \mathbb{P}_{x_0} (X_t \in \cdot) - \mu \right\|_{TV} = 1
\end{align*}
\]
Existence of cutoff

- Recall: \(m_t \triangleq \max_{x_0} \left\| P_{x_0}^t (X_t^* (B) \in \cdot) - \mu^*_B \right\|^2_{L^2 (\mu^*_B)} \)

\[
\begin{aligned}
&t^* \triangleq \inf \left\{ t : m_t \leq n^{-d} \log^{3d+1} n \right\}, \\
&s \triangleq 10d \hat{x}^{-1} \log \log n.
\end{aligned}
\]

- By def.: \[
\begin{aligned}
(n/ \log^3 n)^d m_{t^*} &= \log n \rightarrow \infty \\
(n/ \log^5 n)^d m_{t^*} &= \log^{1-2d} n \rightarrow 0
\end{aligned}
\]

- Remains to check range of \(t^* \):
 - Due to log-Sobolev inequalities \(t^* \asymp \log n \)

- By Theorem: entire mixing occurs at interval \((t^*, t^* + s)\)
 \(\Rightarrow\) cutoff at time \(t^* \) with window \(\leq s \).
Sparse sets upper bound

Definition:
The set $\Lambda \subset V$ is *sparse* (\(\Lambda \in S\)) if it can be partitioned into (not necessarily connected) components \(\{A_i\}\) so that

1. \(\text{diam}(A_i) \leq \frac{1}{2}\log^3 n\)
2. \(\text{dist}(A_i, A_j) \geq \log^2 n\)

Theorem:
Let \(t > 0\) and \(\frac{10d}{\bar{\alpha}_s} \log \log n \leq s \leq \log^{4/3} n\). Then there exists a measure \(\nu\) on the sparse sets \(S\) such that \(\nu(\{\Delta: u \in \Delta\}) < \log^{-5d} n\) \(\forall u\) and

\[
\left\| \mathbb{P}_{\sigma_0} (X_{t+s} \in \cdot) - \mu \right\|_{TV} \leq \int_S \left\| \mathbb{P}_{\sigma_0} (X_t(\Delta) \in \cdot) - \mu|_{\Delta} \right\|_{TV} d\nu(\Delta) + O(n^{-10d})
\]
Barrier dynamics

- Random map $G_s: \Omega \rightarrow \Omega$ (where $\Omega = \{\pm 1\}^V$) coupled to the Glauber dynamics.

Definition

For $s > 0$ define $G_s(X_0)$ as follows:

- Surround $\forall u \in V$ by $B_u(\log^{3/2} n)$, a ball of radius $\log^{3/2} n$ by graph metric.
- Impose periodic boundary ("barrier") on each ball.
- Run standard dynamics (X_t) till time s and use same site-choices and unit-variables for updates.
- Output: the spins at centers of $\{B_u(\log^{3/2} n) : u \in V\}$
The barrier dynamics map \(G_s \) can be coupled to the original Glauber dynamics \(X_t \) such that
\[
P\left(X_s = G_s(X_0) \quad \forall s \in [0, \log^{4/3} n] \right) \geq 1 - n^{-10d}.
\]

Proof:
- Use implicit coupling defining the barrier dynamics.
- Disagreement at \(u \Rightarrow \) sequence of updates at times \(t_1 < \cdots < t_\ell < \log^{4/3} n \) connects \(u \leftrightarrow \partial B_u(\log^{3/2} n) \):
 \[
P\left(\bigcup_{u,t} \left\{ X_t(u) \neq \tilde{X}_t(u) \right\} \right) \leq n^d \sum_{\ell \geq \log^{3/2} n} (2d)^\ell P(\text{Poisson}(\log^{4/3} n) \geq \ell)
 \leq C n^d e^{-c \log^{3/2} n} < n^{-10d}.
\]
Update support

- Update sequence for the barrier dynamics map G_s in interval $[0, s]$:
 - Seq. of triplets (t_i, x_i, u_i)
 - Given this: $G_s = g_{W_s}$ det. monotone.

Definition:

Let $W_s = \text{update seq. for barrier dynamics map } G_s$. The **support** of W_s is the minimum subset $\Delta_{W_s} \subseteq V$ s.t. $g_{W_s}(\sigma_0)$ is determined by $\sigma_0(\Delta_{W_s})$ for $\forall \sigma_0$.

- Equiv.: $x \in \Delta_{W_s}$ if $\exists \sigma_0$ such that $g_{W_s}(\sigma_0) \neq g_{W_s}(\sigma_0^x)$.

Eyal Lubetzky, Microsoft Research
Upper bound via update support

Lemma:
Let W_s = random update seq. of the barrier dynamics map in the interval $(0, s)$ for some $s \leq \log^{4/3} n$. Then $\forall \sigma_0 \forall t > 0$

$$\left\| \mathbb{P}_{\sigma_0} (X_{t+s} \in \cdot) - \mu \right\|_{TV} \leq \int \left\| \mathbb{P}_{\sigma_0} (X_t (\Delta W_s) \in \cdot) - \mu|_{\Delta W_s} \right\|_{TV} d\mathbb{P}(W_s) + O(n^{-10d})$$

Proof:
- Couple dynamics to two instances of the barrier dynamics run for time s.
- Reduce to an integral over L^1 distances between the deterministic barrier-dynamics functions.
- Projection can only decrease L^1 distance.
Update support is sparse

- Most supports are sparse:
 - Volume decays exponentially
 - Components separated and small
- As time traverses, the effect of more and more sites becomes 0 (information flow stops at barriers of barrier dynamics).
Random support of update seq.
Lemma:

Let W_s be the random update sequence of the barrier dynamics in the interval $(0, s)$ for some $s \geq \frac{10d}{\alpha_s} \log \log n$.

Then

\[\mathbb{P}(\Delta_{W_s} \in S) \geq 1 - O(n^{-10d}) \]

and

\[\mathbb{P}(u \in \Delta_{W_s}) \leq \log^{-5d} n \quad \forall u. \]

Proof:

- Estimate the probability that a full copy $B_u(\log^{3/2} n)$ of the barrier-dynamics is "trivial" (coupling).
- No long $(\varepsilon \log n)$ path of nontrivial balls by a first moment argument.
Upper bound via sparse sets

We showed:

\(\forall s \geq \frac{10d}{\alpha_s} \log \log n \ \forall W_s : \)

\[
P(\Delta_{W_s} \in S) \geq 1 - O(n^{-10d})
\]

\[
P(u \in \Delta_{W_s}) \leq \log^{-5d} n \ \forall u
\]

\(\forall s \leq \log^{43} n \ \forall t \ \forall \sigma_0 : \)

\[
\left\| P_{\sigma_0}(X_{t+s} \in \cdot) - \mu_{TV} \right\| \leq \int \left\| P_{\sigma_0}(X_t(\Delta_{W_s}) \in \cdot) - \mu_{\Delta_{W_s}} \right\|_{TV} \ dP(W_s) + O(n^{-10d})
\]

Corollary:

Let \(t > 0 \) and \(\frac{10d}{\tilde{\alpha}_s} \log \log n \leq s \leq \log^{4/3} n \). Then \(\exists \) measure \(\nu \) on the sparse sets \(S \) s.t. \(\nu(\{\Delta: u \in \Delta\}) < \log^{-5d} n \ \forall u \) and

\[
\left\| P_{\sigma_0}(X_{t+s} \in \cdot) - \mu \right\|_{TV} \leq \int \left\| P_{\sigma_0}(X_t(\Delta) \in \cdot) - \mu_{\Delta} \right\|_{TV} \ d\nu(\Delta) + O(n^{-10d})
\]
The projection onto a sparse set

Lemma:

Let \(\Delta \in S \) be a sparse set and \(A_1, \ldots, A_{N_\Delta} \) be its component partition. Then for \(\forall \sigma_0 \) and \(t \leq t_0 \),

\[
\left\| \mathbb{P}_{\sigma_0} (X_t(\Delta) \in \cdot) - \mu_{|\Delta} \right\|_{TV} \leq \left\| \mathbb{P}_{\sigma_0} (\bar{X}_t^* (\cup B_i) \in \cdot) - \mu^*_{|\cup B_i} \right\|_{TV} + O(n^{-10d})
\]

where \((\bar{X}_t^*)\) is the product chain on \(N_\Delta \) i.i.d. cubes \(B_i^+ \)

Proof:

- Couple \(X_t(\Delta) \) to \(\bar{X}_t^*(\Delta) \) via \(A_i^+ = B_{A_i}(\log^{3/2} n) \) to agree throughout \(t \in [0, \log^{4/3} n] \).
- Inspect \(\bar{X}_t^* (\Delta) \) started from equilibrium at time \(t_0 = \log^{4/3} n \) to couple stationary measures.
- Decrease projection from \(\Delta \) to \(UB_i \) to conclude proof.
Concluding the upper bound

- So far we showed:

Let \(t \leq \log^{4/3} n \) and \(\frac{10d}{\tilde{\alpha}_s} \log \log n \leq s \leq \log^{4/3} n \). Then there exists a measure \(\nu \) on \(S \) such that \(\nu(\{\Delta: u \in \Delta\}) < \log^{-5d} n \) \(\forall u \) and

\[
\nu \left(\{ \frac{P_{\sigma_0}(X_{t+s} \in \cdot) - \mu}{\left\| P_{\sigma_0}(X_{t+s} \in \cdot) - \mu\right\|_{TV}} \leq \int \nu(\Delta) \in \cdot \right) - \mu^*_{UB_i} \right\|_{TV} d\nu(\Delta) + O(n^{-10d})
\]

- For \(\Delta \in S \) with \(N_\Delta \) compact, apply Product Proposition:

\[
\max_{\sigma_0} \left\| P_{\sigma_0}(\bar{X}_t^{\ast}(UB_i) \in \cdot) - \mu^*_{UB_i} \right\|_{TV} \leq \sqrt{M_t}
\]

where \(M_t = N_\Delta m_t \) and \(m_t = \left\| P_{\sigma_0}(X_t^*(B) \in \cdot) - \mu^*_B \right\|_{L^2(\mu^*_B)}^2 \)

- Integrate to get:

\[
\max_{\sigma_0} \left\| P_{\sigma_0}(X_t \in \cdot) - \mu \right\|_{TV} \leq \left(\frac{n}{\log^5 n} d m_t \right)^{1/2} + O(n^{-10d})
\]