Summer school in Probability

Markov Chain Minicourse

lecture 3

Eyal Lubetzky
Microsoft Research
Lower bounds via conductance

- Recall from last lecture:
 - For a chain with transition kernel P and stationary distribution π define:
 \[Q(x, y) \triangleq \pi(x)P(x, y) \quad ; \quad Q(A, B) \triangleq \sum_{x \in A, y \in B} Q(x, y). \]
 - The conductance (or bottleneck ratio) of a set S is
 \[\Phi(S) \triangleq \frac{Q(S, S^c)}{\pi(S)} \]
 and the conductance (Cheeger constant) of the chain is
 \[\Phi \triangleq \min_{S: \pi(S) \leq \frac{1}{2}} \Phi(S). \]

- **Theorem:**
 Every Markov chain satisfies
 \[t_{\text{mix}} \left(\frac{1}{4} \right) \geq \frac{1}{4\Phi}. \]
Bottlenecks in Glauber for Ising

- Recall the definition of the dynamics:
 - Update sites via iid Poisson(1) clocks
 - Each update replaces a spin at \(u \in V \) by a new one \(\sim \mu \) conditioned on \(V \setminus \{u\} \) (heat-bath version).

- How fast does it converge to equilibrium?
 - Can be exponentially slow in the size of the system:
 At low temp. (large \(\beta \)) there may be a bottleneck between "plus" and "minus" states (see tutorial).
General (believed) picture for the Glauber dynamics

- Setting: Ising model on the lattice \((\mathbb{Z} / n\mathbb{Z})^d\).
 Belief: For some critical inverse-temperature \(\beta_c\):
- Low temperature: \(\beta > \beta_c\)
 gap\(^{-1}\) and \(t_{\text{mix}}\) are exponential in the surface area.
- Critical temperature: \(\beta = \beta_c\)
 gap\(^{-1}\) and \(t_{\text{mix}}\) are polynomial in the surface area.
- High temperature: \(\beta < \beta_c\)
 - Rapid mixing: gap\(^{-1} = O(1)\) and \(t_{\text{mix}} \sim \log n\)
 - Mixing occurs abruptly, i.e. there is cutoff.
Gap/mixing–time evolution for Ising on the complete graph

\[\text{gap}^{-1}, \ t_{\text{mix}} \asymp \frac{1}{\beta - 1} \exp \left[\frac{3}{4} (\beta - 1)^2 n \right] \]

\[\text{gap}^{-1}, \ t_{\text{mix}} \asymp n^{1/2} \]

\[\text{gap}^{-1} = \frac{1+o(1)}{1-\beta} \frac{1+o(1)}{2(1-\beta)} \log[(1-\beta)^2 n] \]

\[t_{\text{mix}} = \frac{1+o(1)}{2(1-\beta)} \log[(1-\beta)^2 n] \]

\[O(1/\sqrt{n}) \]

(Scaling window established in [Ding, L., Peres ’09])
Bottleneck in sampling colorings

- A *legal coloring* of an undirected graph $G = (V, E)$ is a mapping $\varphi: V \to \mathbb{N}$ such that $\varphi(u) \neq \varphi(v)$ for all $(u, v) \in E$.

- **Problem definition:**
 - Input: Undirected graph $G = (V, E)$ and integer q.
 - Goal: Sample a *uniform legal coloring* via q colors.

- Is there even a single legal coloring?
 - In general this is **NP-complete** to determine.
 - Main interest: graphs that are k-colorable for some small k (e.g. graphs with maximal degree $\Delta = O(1)$).

- How can we sample a coloring uniformly?
Sampling recipe for legal colorings

- Glauber dynamics for colorings:
 - Markov chain on $\Omega = \text{legal colorings} (\Omega \subseteq [q]^V)$.
 - Start at an arbitrary legal coloring.
 - Transition rule:
 - Choose a uniform vertex $v \in V$.
 - Replace its color by a uniformly chosen color out of all legal ones (i.e. not occupied by neighbors).
- Reversible with respect to the uniform distribution π since the transition kernel is symmetric.
- How long does it take the chain to converge to π?
 - $(\text{We will later see that } t_{\text{mix}} = O(|V|\log|V|) \text{ when } q > 2\Delta)$
Slow mixing with large degrees

PROPOSITION:

The Glauber dynamics for colorings of the n-vertex star via $q \geq 3$ colors has $t_{\text{mix}} \geq \frac{1}{16} n e^{n/(q-1)}$.

- Few colors here analogous to low temperature Ising...
- In this example we can easily color the graph using 2 colors yet sampling a 100-coloring uniformly via Glauber is exponentially slow in n...
- Where is the bottleneck?
 - Let S be all colorings assigning the color 1 to middle vertex...
Slow coloring of the star (ctd.)

- Def.: \(S = \{ \sigma \in \Omega : \sigma(v_0) = 1 \} \). (\(|S| = q^{n-1} \))

- For all \(\sigma \in S, \sigma' \in S^c \) we have \(Q(\sigma, \sigma') = 0 \) unless:
 - \(\sigma(v_0) = 1 \) and \(\sigma'(v_0) \neq 1 \),
 - \(\sigma(u) = \sigma'(u) \) for every leaf \(u \), and
 - \(\sigma(u) \notin \{1, \sigma'(v_0)\} \) for every leaf \(u \).

- Since there are \((q-1)(q-2)^{n-1}\) such pairs, each satisfying \(Q(\sigma, \sigma') \leq 1/(|\Omega|n) \), we get

\[
Q(S, S^c) \leq \frac{1}{|\Omega|n} (q-1)(q-2)^{n-1},
\]

and so

\[
\frac{Q(S, S^c)}{\pi(S')} \leq \frac{(q-1)(q-2)^{n-1}}{n(q-1)^{n-1}} \leq \frac{(q-1)^2}{n(q-2)} e^{-n/(q-1)}.
\]
Path coupling \((\Rightarrow \text{upper bound for coloring})\)

- **Def.**: a *premetric* on \(\Omega\) is a connected undirected graph \(H=(\Omega,E)\) with positive edge weights \(w:E\rightarrow\mathbb{R}^+\) so that
 - If \(e=(x,y)\in E\) then \(w(e)\leq w(\Gamma)\) \(\forall\) path \(\Gamma\) between \(x,y\).
- Let \(d_H\) denote the metric extending the premetric \(H\).
- **THEOREM**: [Bubley, Dyer ’97]

Let \(H=(\Omega,E_H)\) be a premetric for \(\Omega\) and suppose that for some \(\rho>0\) and \(\forall x,y \in E_H\) there \(\exists\) a coupling such that

\[
\mathbb{E}\left[d_H(X_1,Y_1) \mid X_0 = x, Y_0 = y\right] \leq (1 - \rho)d_H(x,y).
\]

Then there \(\exists\) such a coupling for \(\forall x, y \in \Omega\).
Corollary:

Let $H = (\Omega, E_H)$ be a premetric for Ω with integer weights. Suppose that for some $\rho > 0$ and $\forall x, y \in E_H$ there exists a coupling such that

$$
\mathbb{E}\left[d_H(X_1, Y_1) \mid X_0 = x, Y_0 = y\right] \leq (1 - \rho)d_H(x, y).
$$

Then the mixing time of (X_t) satisfies

$$
t_{\text{mix}}(\varepsilon) \leq \frac{1}{\rho} \left[\log(\text{diam}(\Omega)) + \log\left(\frac{1}{\varepsilon}\right) \right],
$$

where $\text{diam}(\Omega) \triangleq \max\{d_H(x, y) : x, y \in \Omega\}$.
Path coupling (ctd.)

Proof:

Let \(x, y \in \Omega \) (not necessarily adjacent in \(H \)), and let

\[
\Gamma = (x = u_0, u_1, \ldots, u_k = y)
\]

be a shortest path between \(x, y \) in \(H \).

Couple \(X_1, Y_1 \) started at \(x, y \) by composing couplings:

- Base: couple \(X, Y \) started at \((x, u_1) \) satisfying \(\star \).
- Extend a coupling of \((X, Y) \) from \((x, u_i) \) to a coupling of \((X, Z) \) from \((x, u_{i+1}) \) via a coupling of \((Y, Z) \) from \((u_i, u_{i+1}) \) [generate \((X_1, Y_1) \) then generate \((Y_1, Z_1) \) conditioned on \(Y_1 \)].
- This satisfies \(\star \) since:

\[
\mathbb{E}_{x, u_{i+1}} \left[d_H(X_1, Z_1) \right] \leq \mathbb{E}_{x, u_i} \left[d_H(X_1, Y_1) \right] + \mathbb{E}_{u_i, u_{i+1}} \left[d_H(Y_1, Z_1) \right] \\
\leq (1 - \rho) \left(d_H(x, u_i) + d_H(u_i, u_{i+1}) \right) = (1 - \rho) d_H(x, u_{i+1}).
\]

\[\square\]
Example: Sampling legal coloring

Theorem: ([Jerrum ’95], [Salas, Sokal ’97])

Let G be a graph on n vertices with maximum degree Δ. If $q > 2\Delta$ then the Glauber dynamics for legal colorings of G via q colors has $t_{\text{mix}}(\varepsilon) \leq \frac{q-\Delta}{q-2\Delta} n[\log(n) + \log(\frac{1}{\varepsilon})]$.

Proof:

Premetric: connect $x, y \in [q]^n$ (possibly illegal) in H iff they differ in a single coordinate (extends to Hamming distance).

The statement of the theorem will follow from providing a path coupling satisfying the contraction ρ where:

$$\rho = \frac{q - 2\Delta}{(q - \Delta)n}.$$
A contracting coupling on H:
Take two states x,y that differ only at vertex v.

- Update the vertex v itself: coalesce
- Update some u not adjacent to v: identity.
- Update u adjacent to v: available color lists are $C_x \triangleq C \setminus x(v)$ and $C_y \triangleq C \setminus y(v)$ for some $C \subseteq [q]$.
 - If $|C_x| = |C_y| \in C$: couple C_x, C_y via swapping $x(v), y(v)$ and the identity-coupling elsewhere.
 - Else: w.l.o.g. $|C_x| = |C_y| - 1$. Let $y'(u) \in C_y$ uniformly.
 - If $y'(u) \neq x(v)$ then reuse it for $x'(u)$.
 - Else: Let $x'(u) \in C_x$ uniformly.
Sampling legal colorings (ctd.)

- Accounting:
 - Eliminating a disagreement ⇔ Updating v. \(\frac{1}{n}\)
 - New disagreement ⇔ Updating $u \sim v$ and selecting the color $x(v)$ for $y'(u)$. \(\leq \frac{\Delta}{n} \cdot \frac{1}{q - \Delta}\)

- Altogether:

\[
\mathbb{E}_{x,y} [d_H (X_1, Y_1)] \leq 1 - \frac{1}{n} \left(1 - \frac{\Delta}{q - \Delta}\right) = 1 - \frac{q - 2\Delta}{(q - \Delta)n}.
\]