THE FRANK J. FABOZZI SERIES

Fixed Income Securities, Second Edition by Frank J. Fabozzi
Focus on Value: A Corporate and Investor Guide to Wealth Creation by James L. Grant and James A. Abate
Handbook of Global Fixed Income Calculations by Dragomir Krgin
Managing a Corporate Bond Portfolio by Leland E. Crabbe and Frank J. Fabozzi
Real Options and Option-Embedded Securities by William T. Moore
Capital Budgeting: Theory and Practice by Pamela P. Peterson and Frank J. Fabozzi
The Exchange-Traded Funds Manual by Gary L. Gastineau
Professional Perspectives on Fixed Income Portfolio Management, Volume 3 edited by Frank J. Fabozzi
Investing in Emerging Fixed Income Markets edited by Frank J. Fabozzi and Efstathia Pilarinu
Handbook of Alternative Assets by Mark J. P. Anson
The Global Money Markets by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry
The Handbook of Financial Instruments edited by Frank J. Fabozzi
Collateralized Debt Obligations: Structures and Analysis by Laurie S. Goodman and Frank J. Fabozzi
Interest Rate, Term Structure, and Valuation Modeling edited by Frank J. Fabozzi
Investment Performance Measurement by Bruce J. Feibel
The Handbook of Equity Style Management edited by T. Daniel Coggin and Frank J. Fabozzi
The Theory and Practice of Investment Management edited by Frank J. Fabozzi and Harry M. Markowitz
Foundations of Economic Value Added: Second Edition by James L. Grant
Financial Management and Analysis: Second Edition by Frank J. Fabozzi and Pamela P. Peterson
Measuring and Controlling Interest Rate and Credit Risk: Second Edition by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry
Professional Perspectives on Fixed Income Portfolio Management, Volume 4 edited by Frank J. Fabozzi
The Handbook of European Fixed Income Securities edited by Frank J. Fabozzi and Moorad Choudhry
The Handbook of European Structured Financial Products edited by Frank J. Fabozzi and Moorad Choudhry
The Mathematics of Financial Modeling and Investment Management by Sergio M. Focardi and Frank J. Fabozzi
Short Selling: Strategies, Risks, and Rewards edited by Frank J. Fabozzi
The Real Estate Investment Handbook by G. Timothy Haight and Daniel Singer
Market Neutral Strategies edited by Bruce I. Jacobs and Kenneth N. Levy
Securities Finance: Securities Lending and Repurchase Agreements edited by Frank J. Fabozzi and Steven V. Mann
Fat-Tailed and Skewed Asset Return Distributions by Svetlozar T. Rachev, Christian Menn, and Frank J. Fabozzi
Financial Modeling of the Equity Market: From CAPM to Cointegration by Frank J. Fabozzi, Sergio M. Focardi, and Petter N. Kolm
Analysis of Financial Statements, Second Edition by Pamela P. Peterson and Frank J. Fabozzi
Handbook of Alternative Assets, Second Edition by Mark J. P. Anson
Introduction to Structured Finance by Frank J. Fabozzi, Henry A. Davis, and Moorad Choudhry
Financial Econometrics by Svetlozar T. Rachev, Stefan Mittnik, Frank J. Fabozzi, Sergio M. Focardi, and Teo Jasic
Developments in Collateralized Debt Obligations: New Products and Insights by Douglas J. Lucas, Laurie S. Goodman, Frank J. Fabozzi, and Rebecca J. Manning
FJF
To my wife Donna and my children, Francesco, Patricia, and Karly

PNK
To Åke and Gunilla, my parents, and to John and Carmen, my wife’s parents, for their unending love and support

DAP
To my husband, Christian Hicks, and in memory of my grandfather, Georgyi Milyankov

SMF
To the memory of Bertrand Russell to whom I owe the foundation of my intellectual development
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>About the Authors</td>
<td>xv</td>
</tr>
<tr>
<td><strong>CHAPTER 1</strong></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Techniques in the Investment Management Industry</td>
<td>1</td>
</tr>
<tr>
<td>Central Themes of This Book</td>
<td>9</td>
</tr>
<tr>
<td>Overview of This Book</td>
<td>12</td>
</tr>
<tr>
<td><strong>PART ONE</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Portfolio Allocation: Classical Theory and Extensions</strong></td>
<td>15</td>
</tr>
<tr>
<td><strong>CHAPTER 2</strong></td>
<td></td>
</tr>
<tr>
<td>Mean-Variance Analysis and Modern Portfolio Theory</td>
<td>17</td>
</tr>
<tr>
<td>The Benefits of Diversification</td>
<td>18</td>
</tr>
<tr>
<td>Mean-Variance Analysis: Overview</td>
<td>21</td>
</tr>
<tr>
<td>Classical Framework for Mean-Variance Optimization</td>
<td>24</td>
</tr>
<tr>
<td>The Capital Market Line</td>
<td>35</td>
</tr>
<tr>
<td>Selection of the Optimal Portfolio When There Is a Risk-Free Asset</td>
<td>41</td>
</tr>
<tr>
<td>More on Utility Functions: A General Framework for Portfolio Choice</td>
<td>45</td>
</tr>
<tr>
<td>Summary</td>
<td>50</td>
</tr>
<tr>
<td><strong>CHAPTER 3</strong></td>
<td></td>
</tr>
<tr>
<td>Advances in the Theory of Portfolio Risk Measures</td>
<td>53</td>
</tr>
<tr>
<td>Dispersion and Downside Measures</td>
<td>54</td>
</tr>
<tr>
<td>Portfolio Selection with Higher Moments through Expansions of Utility</td>
<td>70</td>
</tr>
<tr>
<td>Polynomial Goal Programming for Portfolio Optimization with Higher</td>
<td>78</td>
</tr>
<tr>
<td>Moments</td>
<td></td>
</tr>
<tr>
<td>Some Remarks on the Estimation of Higher Moments</td>
<td>80</td>
</tr>
<tr>
<td>The Approach of Malevergne and Sornette</td>
<td>81</td>
</tr>
<tr>
<td>Summary</td>
<td>86</td>
</tr>
</tbody>
</table>
# CONTENTS

## CHAPTER 4
**Portfolio Selection in Practice**
- Portfolio Constraints Commonly Used in Practice: 88
- Incorporating Transaction Costs in Asset-Allocation Models: 101
- Multiaccount Optimization: 106
- Summary: 111

## PART TWO
**Robust Parameter Estimation**

## CHAPTER 5
**Classical Asset Pricing**
- Definitions: 115
- Theoretical and Econometric Models: 117
- Random Walk Models: 118
- General Equilibrium Theories: 131
- Capital Asset Pricing Model (CAPM): 132
- Arbitrage Pricing Theory (APT): 136
- Summary: 137

## CHAPTER 6
**Forecasting Expected Return and Risk**
- Dividend Discount and Residual Income Valuation Models: 140
- The Sample Mean and Covariance Estimators: 146
- Random Matrices: 157
- Arbitrage Pricing Theory and Factor Models: 160
- Factor Models in Practice: 168
- Other Approaches to Volatility Estimation: 172
- Application to Investment Strategies and Proprietary Trading: 176
- Summary: 177

## CHAPTER 7
**Robust Estimation**
- The Intuition behind Robust Statistics: 179
- Robust Statistics: 181
- Robust Estimators of Regressions: 192
- Confidence Intervals: 200
- Summary: 206


## Contents

**CHAPTER 8**
Robust Frameworks for Estimation: Shrinkage, Bayesian Approaches, and the Black-Litterman Model 207
- Practical Problems Encountered in Mean-Variance Optimization 208
- Shrinkage Estimation 215
- Bayesian Approaches 229
- Summary 253

**PART THREE**
Optimization Techniques 255

**CHAPTER 9**
Mathematical and Numerical Optimization 257
- Mathematical Programming 258
- Necessary Conditions for Optimality for Continuous Optimization Problems 267
- Optimization Duality Theory 269
- How Do Optimization Algorithms Work? 272
- Summary 288

**CHAPTER 10**
Optimization under Uncertainty 291
- Stochastic Programming 293
- Dynamic Programming 308
- Robust Optimization 312
- Summary 332

**CHAPTER 11**
Implementing and Solving Optimization Problems in Practice 333
- Optimization Software 333
- Practical Considerations When Using Optimization Software 340
- Implementation Examples 346
- Specialized Software for Optimization Under Uncertainty 358
- Summary 360
PART FOUR

Robust Portfolio Optimization 361

CHAPTER 12
Robust Modeling of Uncertain Parameters in Classical Mean-Variance Portfolio Optimization 363
Portfolio Resampling Techniques 364
Robust Portfolio Allocation 367
Some Practical Remarks on Robust Portfolio Allocation Models 392
Summary 393

CHAPTER 13
The Practice of Robust Portfolio Management: Recent Trends and New Directions 395
Some Issues in Robust Asset Allocation 396
Portfolio Rebalancing 410
Understanding and Modeling Transaction Costs 413
Rebalancing Using an Optimizer 422
Summary 435

CHAPTER 14
Quantitative Investment Management Today and Tomorrow 439
Using Derivatives in Portfolio Management 440
Currency Management 442
Benchmarks 445
Quantitative Return-Forecasting Techniques and Model-Based Trading Strategies 447
Trade Execution and Algorithmic Trading 456
Summary 460

APPENDIX A
Data Description: The MSCI World Index 463

INDEX 473
In the past few years, there has been a notable increase in the use of financial modeling and optimization tools in equity portfolio management. In addition to the pressure on asset management firms to reduce costs and maintain a more stable and predictable performance in the aftermath of the downturn in the U.S. equity markets in 2002, three other general trends have contributed to this increase. First, there has been a revived interest in predictive models for asset returns. Predictive models assume that it is possible to make conditional forecasts of future returns—an objective that was previously considered not achievable by classical financial theory. Second, the wide availability of sophisticated and specialized software packages has enabled generating and exploiting these forecasts in portfolio management, often in combination with optimization and simulation techniques. Third, the continuous increase in computer speed and the simultaneous decrease in hardware costs have made the necessary computing power affordable even to small firms.

As the use of modeling techniques has become widespread among portfolio managers, however, the issue of how much confidence practitioners can have in theoretical models and data has grown in importance. Consequently, there is an increased level of interest in the subject of robust estimation and optimization in modern portfolio management. For years, robustness has been a crucial ingredient in the engineering, statistics, and operations research fields. Today, these fields provide a rich source of ideas to finance professionals. While robust portfolio management undoubtedly demands much more than the robust application of quantitative techniques, there is now a widespread recognition for the need of a disciplined approach to the analysis and management of investments.

In this book we bring together concepts from finance, economic theory, robust statistics, econometrics, and robust optimization, and illustrate that they are part of the same theoretical and practical environment—in a way that even a nonspecialized audience can understand and appreciate. At the same time, we emphasize a practical treatment of the subject, and translate complex concepts into real-world applications for robust return
forecasting and asset allocation optimization. Thereby, we address a number of issues in portfolio allocation and rebalancing. In particular, we discuss how to make portfolio management robust with respect to model risk, long-term views of the market, and market frictions such as trading costs.

The book is divided into four parts. Part I covers classical portfolio theory and its modern extensions. We provide an up-to-date treatment of methods for advanced risk management, nonnormal distributions for asset returns, transaction costs, and multiaccount portfolio management. Part II introduces traditional and modern frameworks for robust estimation of returns. We address a number of topics that include dimensionality reduction, robust covariance matrix estimation, shrinkage estimators, and the Black-Litterman framework for incorporating investors’ views in an equilibrium framework. Part III provides readers with the necessary background for handling the optimization part of portfolio management. It covers major issues in numerical optimization, introduces widely used optimization software packages and modeling platforms, and discusses methods for handling uncertainty in optimization models such as stochastic programming, dynamic programming, and robust optimization. Part IV focuses on applications of the robust estimation and optimization methods described in the previous parts, and outlines recent trends and new directions in robust portfolio management and in the investment management industry in general. We cover a range of topics from portfolio resampling, robust formulations of the classical portfolio optimization framework under modeling uncertainty, robust use of factor models, and multiperiod portfolio allocation models—to the use of derivatives in portfolio management, currency management, benchmark selection, modern quantitative trading strategies, model risk mitigation, as well as optimal execution and algorithmic trading.

We believe that practitioners and analysts who have to develop and use portfolio management applications will find these themes—along with the numerous examples of applications and sample computer code—useful. At the same time, we address the topics in this book in a theoretically rigorous way, and provide references to the original works, so the book should be of interest to academics, students, and researchers who need an updated and integrated view of the theory and practice of portfolio management.

TEACHING USING THIS BOOK

This book can be used in teaching courses in advanced econometrics, financial engineering, quantitative investments and portfolio manage-
ment, as the main course book, as supplemental reading on advanced topics, and/or for student projects. The material in Chapters 2 through 11 of the book is appropriate for undergraduate advanced electives on investment management, and all topics in the book are accessible to graduate students in finance, economics or in the mathematical and physical sciences. The material is also appropriate for use in advanced graduate electives in the decision sciences and operations research that focus on applications of quantitative techniques in finance.

For a typical course, it is natural to start with Chapters 2, 5, and 6 where modern portfolio and asset pricing theory and standard estimation techniques are covered. Basic practical considerations are presented in Chapters 4 and 11. Chapters 3, 7, 8, 10, 12, and 13 are more advanced and do not have to be covered in full. A possibility is to focus on the most common techniques used in portfolio management today, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) (in Chapter 3), shrinkage estimators and the Black-Litterman model (in Chapter 8), robust optimization (in Chapters 10 and 12), and transaction costs and portfolio rebalancing (in Chapter 13). Student projects can be based on specialized topics such as multiaccount optimization (in Chapter 4), numerical optimization techniques (in Chapter 9), modern trading strategies, optimal execution, and algorithmic trading (in Chapter 14).

ACKNOWLEDGMENTS

In writing a book that covers a wide range of topics in portfolio management theory and practice, applied mathematics, statistics, and operations research, we were fortunate to have received valuable comments and suggestions from the following individuals (listed below in alphabetical order):

- Sebastian Ceria and Robert Stubbs of Axioma, Inc. reviewed Chapter 12.
- Eranda Dragoti-Cela of Siemens—Fin4Cast reviewed Chapter 12.
- Dashan Huang of Kyoto University reviewed Chapters 10, 12, and 13.
- Ivana Ljubic of the University of Vienna reviewed Chapter 12.
- John M. Manoyan of CYMALEX Advisors reviewed Chapter 14.
- Jeff Miller of Millennium Partners reviewed Chapters 13 and 14.
- Bernd Scherer of Morgan Stanley reviewed Chapter 4.
- Melvyn Sim of the National University of Singapore Business School reviewed Chapter 12.
Reha Tütüncü of Goldman Sachs Asset Management reviewed Chapters 10 and 12.

We thank Morgan Stanley Capital International, Inc., http://www.msci.com, for providing us with the MSCI World Index data set used in some of the computational examples throughout the book. In particular, we are indebted to Nicholas G. Keyes for answering all of our questions in regards to the data set.

Megan Orem typeset the book and provided editorial assistance. We appreciate her patience and understanding in working through numerous revisions of the chapters and several reorganizations of the table of contents.

Frank J. Fabozzi
Petter N. Kolm
Dessislava A. Pachamanova
Sergio M. Focardi
About the Authors

Frank J. Fabozzi is Professor in the Practice of Finance in the School of Management at Yale University. Prior to joining the Yale faculty, he was a Visiting Professor of Finance in the Sloan School at MIT. Frank is a Fellow of the International Center for Finance at Yale University and on the Advisory Council for the Department of Operations Research and Financial Engineering at Princeton University. He is the editor of the Journal of Portfolio Management and an associate editor of the Journal of Fixed Income. He earned a doctorate in economics from the City University of New York in 1972. In 2002 was inducted into the Fixed Income Analysts Society’s Hall of Fame and is the 2007 recipient of the C. Stewart Shepard Award given by the CFA Institute. He earned the designation of Chartered Financial Analyst and Certified Public Accountant. He has authored and edited numerous books in finance.

Petter N. Kolm is a doctoral student in Finance at the School of Management, Yale University, a financial consultant in New York City, and a member of the editorial board of the Journal of Portfolio Management. Previously, he worked in the Quantitative Strategies Group at Goldman Sachs Asset Management where his responsibilities included researching and developing new quantitative investment strategies for the group’s hedge fund. Petter coauthored the books Financial Modeling of the Equity Market: From CAPM to Cointegration and Trends in Quantitative Finance. His research interests include various topics in finance, such as equity and fixed income modeling, delegated portfolio management, financial econometrics, risk management, and optimal portfolio strategies. Petter received a doctorate in mathematics from Yale University in 2000. He also holds an M.Phil. in applied mathematics from the Royal Institute of Technology in Stockholm and an M.S. in mathematics from ETH Zürich.

Dessislava A. Pachamanova is an Assistant Professor of Operations Research at Babson College where she holds the Zwerling Term Chair. Her research interests lie in the areas of robust optimization, portfolio
risk management, simulation, and financial engineering. Dessislava’s academic research is supplemented by consulting and previous work in the financial industry, including projects with quantitative strategy groups at WestLB and Goldman Sachs. She holds an A.B. in Mathematics from Princeton University and a Ph.D. in Operations Research from the Sloan School of Management at MIT.