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ACTIN-MYOSIN FORCE GENERATION AND SYMMETRY
BREAKING IN THE MODEL CONTRACTILE FIBER*

BEN FOGELSONT AND ALEX MOGILNER#

Abstract. Myosin-powered force generation in nonmuscle cells underlies many cell biological
processes and is based on contraction of random actin arrays. One of the most prominent examples
of such arrays is a contractile fiber—a one-dimensional actin-myosin fiber with focal adhesions at
its ends. We explore an active gel model widely used in theoretical biophysics with effective viscous
dashpots at the ends of the actin-myosin gel strip as a model for such a fiber. Scaling analysis reveals
that three length scales characterize the behavior of the model, which consists of two PDEs describing
force balance and myosin transport in the fiber. We use singular perturbation analysis and numerical
simulations to investigate how the myosin distribution, actin flow, and contractile force generated
by the fiber depend on model parameters and fiber length. The model predicts that the contractile
force either increases, with or without saturation, with fiber length, or reaches a maximum at certain
length and then decreases in longer fibers, depending on parameters. The model also predicts a
nontrivial symmetry-breaking mechanism: in long fibers with strong focal adhesions at the ends, the
myosin distribution is not uniform but peak-like, and this peak can aggregate to one of the fiber’s
ends. We discuss the model’s implication for mechanobiology of nonmuscle cells.
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1. Introduction. Force generation is one of the most fundamental actions of
a cell. Prominent examples include cell motility [12], cell division [12], and muscle
contraction [51]. A major component of the cellular force-production machinery is
the actin-myosin system, which at its core consists of a scaffold of actin filaments
upon which myosin motors act to produce contractile stress [49, 54]. Actin-myosin
contraction is fundamental to muscular force production and, in nonmuscle cells, for
producing force in one-dimensional structures such as dynamic stress fibers (SFs) [49]
and cytokinetic rings [35]; two-dimensional structures such as lamellipodia [3] and
cell cortices [10]; and three-dimensional cytoskeletal networks in migrating cells [13].
Important parts of this system are crosslinking proteins [29, 46, 53] that transiently
bind actin filaments together, creating effective internal friction and, in nonmuscle
cells, focal adhesion complexes that transduce force from actin-myosin arrays to the
extracellular matrix [18, 21].

In this paper, we focus on one-dimensional contractile networks of actin, myosin,
and crosslinking proteins in nonmuscle cells. The most prominent example of such
a network that comes to mind is the SF, a one-dimensional actomyosin bundle that
extends between focal adhesions (FAs) and is found in many types of cells [49]. Much
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experimental research has been devoted to the assembly and dynamics of SFs, but
the molecular mechanisms underlying their assembly are still largely unknown [49].
Similarly, a number of studies have experimentally measured contractile forces gener-
ated by SFs in cells [11, 14, 25, 26] and in vitro [15]. It was found that the generated
force increases with the length of the contractile fiber in vitro [47].

A number of modeling papers have been devoted to force-dependent assembly of
SFs [5, 17, 43, 44, 52]. A few models specifically address the question of how much
force the SFs generate by considering muscle-like units connected in series, together
with viscoelastic elements [44]. There was also an active investigation of microscopic
mechanisms of force generation in random actin-myosin-crosslinker arrays [28, 32].

In this paper, we investigate a one-dimensional continuous “active gel” model
widely used in soft matter physics and biophysics [6, 8, 24, 38]. In the remainder
of the paper, we call the subject of the investigation a contractile fiber (CF) and
emphasize that we model an idealized macroscopic CF, in the sense that we do not
deal with the precise mechanism of force generation by individual actin filaments
and myosin motors. In the discussion (section 7), we address the issue of the model’s
applicability to specific biological structures, such as SFs, in vitro contractile bundles,
cytokinetic contractile rings, and lamellipodial networks.

The model consists of two PDEs: one describing myosin transport and another the
balance of active contractile force with the passive forces of crosslinking and adhesion
in the fiber. The novel parts of the model are the mechanical boundary conditions
at the FAs at the CF ends. We use perturbation theory analysis and numerical
simulations to find highly nontrivial distributions of myosin and deformations of the
CF and the force generated by the CF as a function of its length.

Besides force generation, the contractile networks also play a critical role in cell
polarization [37]. Polarization is the process by which a cell breaks symmetry and
transitions from a symmetric to an asymmetric configuration, in terms of its distribu-
tion of actin, myosin, and crosslinking elements, as well as its mechanical properties.
Such symmetry breaking is a necessary step in motility initiation: before a cell can
move, it must develop a defined front and rear [2]. It was shown in [2, 38] that such
symmetry breaks can be purely mechanical, based on contraction and redistribution
of myosin in the active gel, but physical movement of the whole cell was an essential
part of the phenomenon. In this paper, we report the finding that a mechanical sym-
metry break can occur in stationary CFs and come up with a physical explanation
for this self-organizing asymmetry.

2. Mathematical model of actin-myosin CF mechanics. Our model con-
sists of two equations: a force balance equation and a transport equation. The force
balance equation has the form

0 [ Ov L L
(2.1) agg(Maerkm) =&v, —5<x<3,
(2.2) W L km=c +k ¢
. — +km=_v — +km=—-(v
H Ox ! x=—% ’ " Ox x:%
We assume a constant fiber length of L and define two dependent variables for f% <
T < %: the velocity of the actin-myosin gel v(z,t) and the myosin density m(z,t)

for position x and time t. The term in parentheses on the left describes the one-
dimensional sum of two stresses: the effective viscous stress that results from transient
crosslinks between actin filaments in the CF and the active stress due to myosin
contraction. This latter stress is assumed to be proportional to the myosin density.
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TABLE 2.1
Variables and parameters in the dimensional SF model.

Notation = Meaning Units

L length of stress fiber pm

k myosin motor contraction strength pgyislil:‘n

o stress fiber internal viscosity coefficient pN X's

13 cortex drag coefficient p;?_l X ﬁ
(i, Cr adhesion friction coefficients pr:Is\I—l

D effective myosin diffusion coefficient pm?s—1

T location along stress fiber pm

t time S

v(zx,t) actin-myosin gel velocity pms~!
m(z,t) myosin linear density myosin/pm

Here k is the proportionality constant giving the mechanical strength per unit myosin
and p is the constant effective actin-myosin gel viscosity. We balance the divergence of
these two stresses against the frictional force per unit length that results from transient
crosslinking of filaments in the fiber with filaments in the neighboring (and assumed
stationary) actin cortex. Following a number of previous models, we assume that
this friction is effectively viscous, proportional to the gel velocity; £ is the constant of
proportionality. Table 2.1 summarizes the model variables and parameters.

We derive the boundary conditions (2.2) by balancing the stress at the left and
right SF endpoints with the effective friction force between the flowing actin-myosin
gel and adhesive proteins of the FAs at the SF ends. We assume that this friction is
linear and viscous, with (; and (. as the strengths of friction of the left and right FAs,
respectively.

Together, these mechanical equations prescribe the local actin velocity v(x,t) for
a given linear density m(z,t) of myosin. To close the system, we need an equation for
this myosin density. Following previous modeling, we assume that myosin molecules
are bound to the actin gel most of the time and drift with it. Molecules frequently
unbind from actin, diffuse in the cytoplasm, and rapidly rebind. In the limit of fast
binding and unbinding kinetics, the total linear myosin density can be described with
the drift-diffusion equation

om 0 9°m
(2:3) Tt aem) =D —h<e<k
om
(24) vm = D% x:i%7

where D is the effective diffusion coefficient in the fast kinetic limit and where the
natural boundary conditions in (2.4) mean that there is no flux of myosin out of the
endpoints of the CF. There are other reasonable ways to model myosin dynamics. In
section SM1 of the supplementary materials, linked from the main article webpage,
we discuss two alternate models: the full kinetic model with bound and unbound
myosin populations and a model with a constant reservoir of cytoplasmic myosin.
There we show that each of these alternatives gives qualitatively similar results to the
drift-diffusion model of (2.3) and (2.4).

We are interested in using this model to compute the traction stress exerted by
the fiber on the underlying substrate, since traction stress is the important mechanical
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output for the cell and is what can be measured in experiments. To find this, we must
compute the force exerted by the CF on its left and right ends. If the only stresses
acting on the adhesions were those produced by the fiber, then from (2.2) the stresses
at the left and right would be Qv(—%,t) and (,,v(%,t), respectively. In general,
however, our model does not guarantee that Clv(—%, t) and C,,v(%,t) are equal and
opposite. In particular, we expect that for nonzero &, drag between the SF and the
actin cortex will likely lead to different stresses at the two endpoints. To correctly
compute the traction stress at the two endpoints, we need to take into account how
drag by the CF on the cortex generates additional stresses acting on the two FAs.
The cortex is a dense, branched network of actin filaments. Because of this mesh-
like structure, individual filaments in the cortex are far less motile than filaments in
the fiber. With this in mind, we model the cortex as a solid, nondeformable structure.
This means that we can write the net drag force exerted by CF on the cortex as

L
(2.5) Fiirag = € / " v(a,1) de.
2

This force will be positive if the solid cortex is being dragged to the right and negative
if it is being dragged to the left. Since cells typically build FAs to tether actin that
is being pulled away from the adhesion, we assume that for Fy,.g > 0 the entire net
drag force is applied to the left adhesion, and similarly for Fy..e < 0. Under this
assumption, we can define the traction force as

(2.6) Firaction = Qv(—%,t) + max(Furag, 0) = —¢v(%,t) + min(Farag, 0).

We can reduce the number of parameters in the model by rescaling (2.1)—(2.4).
The natural choices for length scale and myosin density are the CF length L and
the conserved average myosin density m, respectively. By balancing the viscous and
myosin stresses in the force balance equation, we obtain the characteristic velocity
scale, kmL/u. Dividing the length scale by the velocity scale, we get the time scale,
wu/km. Introducing nondimensional variables by dividing the dimensional ones by
the chosen scales, we arrive at the nondimensional system, where we keep the same
notation for the nondimensional variables:

(2.7) aax(g;—l—m):a%, —3<z<i,
ov ov
(28) %-l-m:ﬁw 1o %—l—m——&v 1
r=—7 =75
om 0 9?m 1 1
(2.9) T T (m) =1gE <<y
om
(2.10) vm=yo | 1

The system behavior depends on four nondimensional parameter combinations:

6 LClr DN’
2.11 _ &L g =t g = PR
( ) @ \/; ’ Bl, 1 al Y kmL2

Parameter a? serves as the nondimensionalized cortex drag coefficient, while param-
eters 3 are the nondimensional FA friction coefficients at the left and right, respec-
tively. Parameter ~ is the nondimensional diffusion coefficient. Note that v can also
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be thought of as one over the Péclet number from classical fluid mechanics, so we can
interpret «v as the rate of diffusive myosin transport over the rate of advective myosin
transport.

The profound meaning of these nondimensional parameter combinations is that
they introduce three fundamental length scales and that competition between these
length scales completely governs the model behavior. For g; = 8, =  we can write
a = L/Laag, B = L/Lpiction, and v = (Ldiftusion/L)?, so the system can be char-
acterized by the ratios of the CF length to the length scales Lgrag, Liriction, and
Lgiffusion- Ldrag = v/ /€ determines the characteristic length over which the CF can
transmit forces through the interior before substantial drag-induced decay. Similarly,
Liriction = 14/C is the characteristic length over which viscosity can transmit forces
from inside the fiber to a focal adhesion. Finally, Laigtusion = v/ Dp/km is the char-
acteristic distance by which myosin diffuses over the characteristic time scale. In
what follows, we examine nonrigorously, semiquantitatively, the system’s behavior
predicted by the model in two regimes: L < Lgiftusion and L > Lgiftusion. We inves-
tigate how this behavior depends on the length scales Lgrag and Liiction. Then we
confirm our gained intuition with perturbation analysis and numerical simulations.

3. Model predictions in the limit of fast diffusion. We start with the limit
v — 00, which corresponds to a CF so short that diffusion spreads myosin almost
uniformly across the CF. Indeed, in this limit, a zeroth-order approximation in a
regular perturbation of the myosin equations (2.9) and (2.10) gives the simple solution

(3.1) m(z,t) = 1.

(In dimensional units, m(x,t) = m.) From (3.1), the velocity equations (2.7) and
(2.8) simplify to

82
(3.2) a—xz—azv, —3<z<4i,
ov ov
3.3 — 4+1= —4+1=-5, ]
( ) 8x * 6”] w:—%, 8(E + ﬁ v x:%

These equations have the explicit solution

2asinh (§) sinh (az) + By sinh (a(z + 1)) + B, sinh (a(z — 3))
a a(B + Br) cosha + (a2 + B;5,) sinh '

(34) w(x,t)=

There is a centripetal actin-myosin gel flow, with velocities that are positive at the
left and negative at the right (such flows are depicted in Figure 3.1). Such a flow
profile makes intuitive sense—since myosin motors are contractile, they should pull
the gel inward.

From this expression for the actin flow, we can compute the traction stress Firaction
that the cell exerts on the substrate. We derived the expression for this stress in (2.5)
and (2.6) in terms of dimensional variables. In nondimensional form, we write it as

1

Fa, 2
(35) fdrag = kmag = 042/_l ’U(l‘,t) d.L“,

(3.6)

Frac ion .
ftraction = % = 5ZU(_%7t) + maX(fdraga 0) = _Brv(%at) + mln(fdrag7 0)
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Example inward actin flow profiles.
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>
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g : -0.005
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s N Q‘}(O Q~° Q® N ‘f" QQ Q®
&) 2
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Position x along btrebs fiber

Fi1G. 3.1. Characteristic actin flow profiles from (3.4) for several values of «, B;, and Br. For
any parameter values, actin flows inward from both the left and the right edges of the fiber, as we
expect for a contraction-driven flow. Top left: a =1, f; = 1, Br = 1. Top right: o = 10, f; = 1,
Br = 1. Bottom right: o =1, 8; = 10, B, = 1. Bottom left: « = 10, 8; = 10, B, = 1.

First, we compute firaction for the special case 8, = 5, = [, when the two focal
adhesions are equally strong. In this case, symmetry requires that fgqrag = 0, which
simplifies firaction tO

(37) ftraction = 61}(_%’t) = _BU(%’t)
B B
(3-8) — m.

To see how the traction forces scales with CF length, we rewrite firaction With
o = L/Ldrag and B = L/Lfriction:

Ldrag
Ldrag + Lfrlctlon coth

(39) ftraction = .
2Ld ag

For small L (L < Lqyag), we can expand (3.9) to

L
(310) ftraction =7+ O(Lz)a
2Lfriction
which implies that for a sufficiently short fiber, the cell exerts a force on the substrate
that grows linearly with fiber length. At the opposite extreme, when L is large
(compared to Lrag, as far as Larag < Ldiffusion ), We obtain the limit

Ldrag

3.11 raction = T————————.
( ) ft actio Ldrag + Lfriction

The case 8; # 5, makes for more complicated intermediate calculations but produces
qualitatively similar results. When §; < S, for small L we compute

L
3.12 f raction = +0 L2 3
( ) tract Lfriction,l + Lfriction,r ( )
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while for large L we find that

Ldrag
Ldrag + Lfriction,r

(313) ftraction —

Thus, (3.12) and (3.13) exhibit the same qualitative force scaling behavior as (3.10)
and (3.11): linear at low L and constant at high L.

The physical interpretation of these results is as follows. Myosin motors dis-
tributed over the CF length work in series: one can imagine people standing in line
holding hands and pulling each other in. The maximal stress that can be developed
in such a chain is equal to the stress of any unit of this chain (k77 in dimensional
units). If the CF is long enough (but still shorter than Lqifrusion ), S0 that the myosin
contractile stress is not dampened significantly by the actin viscosity, and if the cortex
drag is negligible, then this maximal stress is all transduced to the FAs, in agreement
with (3.11). In this case, the gel velocity profile is linear. Basically, if the CF is long
enough, the gradient of the velocity across the CF is shallow enough to render actin
viscosity negligible. However, if the cortex drag is not negligible, the gel velocity
profile changes: velocity at the CF center becomes almost zero, and the centripetal
velocity only becomes significant near the edges of the fiber. In this case, cortex drag
dampens the maximal possible traction force by the factor Lgrag / (Ldrag + Liriction)-
When the CF becomes very short (compared to Liiction ), the gradient of the velocity
across the CF that is needed to create significant centripetal flow at the FAs becomes
so large that the actin viscosity decreases the myosin power output: effectively, myosin
works mostly against internal viscous friction. In this limit, force is proportional to
CF length.

4. Model predictions in the limit of slow diffusion. In the slow diffusion
limit where the CF is long compared to Lgittusion, ¥ — 0 in (2.3) and (2.9). This
is a singular perturbation problem and thus more mathematically challenging than
the v — oo limit. We defer the full analysis of the singular perturbation problem to
section 6. For now, we study this limit by considering a physically motivated ansatz
about myosin dynamics. This will provide us with important new intuition, which
we will extend to the full model using numerical simulations and then confirm with
singular perturbation analysis.

We use the following physical reasoning: in our model, myosin drifts with the
local velocity v. This velocity is itself influenced by myosin, since motors exert con-
tractile force on the gel. As we saw, this force produces an inward flow, which pulls
myosin motors towards one another. This suggests that myosin will coalesce into a
single cluster. With low diffusion, this cluster may be quite localized. Based on this
prediction, we choose to approximate the myosin density in the limit as v — 0 as
an infinitely sharp peak, replacing m(z,t) with a Dirac § function. In general, this §
function may be located at any x and the location might change with time. For now,
however, we assume that the adhesions at the left and right are equal, 8, = 8, = 3,
and from symmetry that the location of the peak is fixed at the CF center, x = 0.

Under these assumptions, our model equations become

7 __ _1 1
(4.1) Ero e 5 <z<g3,
ov ov
(42) % = B'U w:,%’ aix = _BU w:%
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Equations (4.1) and (4.2) are an inhomogeneous linear boundary value problem, so
we can solve for v by finding a particular solution v, to (4.1) as well as the general
solution to the homogeneous problem. Using a Fourier transform, we find that

e**H(—x) — e “*H(x)
2 )

(4.3) vp(@) =

where H is the Heaviside function. We easily solve the homogeneous problem to give
the general solution

(4.4) vg = ¢1 sinh ax + ¢ cosh az.

To compute ¢; and ¢z, we set v = vy + v, and use the boundary conditions from (4.2).
From this we find that the solution to the full inhomogeneous problem is

g—« . e**H(—x) — e “*H(x)
a_ﬁ+ea(a+ﬁ)smhax+ 5 .

(4.5) v(z) =

Computing the traction force from (4.5), we get

(46) function = o = =
. traction 2c cosh % + 26 sinh % 2L ¢riction cOSh ﬁmg + 2Ldrag sinh ﬁ .

For small L, this expands to

L

— 4+ O(L?
2Lﬁriction * ( ),

(47) ftraction =
while for large L, firaction approaches zero exponentially fast.

Thus, for small fiber length (providing it is longer than the diffusion length), the
traction force exerted on the substrate increases linearly with length and in fact is the
same as that in the large diffusion limit. This is not surprising: at small CF lengths,
the friction relative to the cortex, which is distributed over the length, is negligible.
When this friction is negligible, double integration of the force balance equation and
taking into account the FA boundary conditions and that | ey

Ry m(x) de = 1 gives
the useful analytical result

(48) ftraction = g

)

which is equivalent to the dimensional expression Fiyaction = % _%32 m(x) dz.

Thus, in this limit, it does not matter whether myosin is distributed uniformly
or aggregated into a cluster, or however else; all that matters is the total amount of
myosin in the fiber.

For long fibers, the force exerted drops to zero exponentially. The reason is simple:
the combination of cortex drag distributed along the length and gel viscosity causes
decay of the myosin pull on the scale of Lgrag. Therefore, the myosin cluster in the
center is able to transduce only an exponentially small fraction of its stress to the
FAs.

This implies that there is some intermediate length at which the fiber exerts
maximal force. We could try to find this length by differentiating fi,action in (4.6) with
respect to L, but this yields a complicated transcendental equation without a closed
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F1G. 4.1. Force scaling for myosin clustered in a central peak. (a) Color plot of firaction from
(4.6) with mo =1 as a function of a and B. Since a and B scale linearly with L, firaction Scales with
length along a line from the origin in the a-B plane. Examples of such lines are shown. (b) Force
scaling behavior for each of the lines shown in (a). In each case, firgction increases with L until it
reaches a mazimal value, after which it decays back to zero. Plots are in nondimensional units with
the following scalings. Green, solid: o« = 0.9L, 8 = 0.3L. Orange, dashed: o = 0.7L, 8 = 0.7L.
Pink, dotted: o = 0.3L, 8 = 0.9L. (c) Comparison of simulation results to the analytic scaling result
obtained in section 4 for a stationary d-function myosin distribution. Simulations were computed

with o = %, 8= 1L—0, and v = % Color is available online only.

form solution. Instead, we can gain insight into the qualitative behavior of firaction
at intermediate lengths by plotting it in the a-8 plane, as shown in Figure 4.1a.

Remember that o = \/%L =7 dLrag and 8 = %L = Lfrfmn, and so both parameters
are linear in L. Thus, as L varies, values of fi;action Will fall along a line through the
origin in the a-f plane. Such lines are shown in Figure 4.1a, and the resulting plots
of L vS. firaction for each line are shown in Figure 4.1b. We see indeed that for each
line, firaction increases with length up to a maximal value and then smoothly decays

back to zero.

5. Numerical results. The d-function ansatz is plausible, but we would like to
see how force scales and how myosin and velocity distributions behave without making
that approximation. To this end, we numerically solved the full model of (2.7)-
(2.10) by using the numerical method described in section SM2 of the supplementary
materials.

Figure 4.1c shows a typical force scaling result in the regime where o > 5. To
produce this figure, we varied L for fixed values of the other length scales. For
each value of L, we ran the numerical simulation to apparent steady state and then
computed firaction- As we can see from the figure, firaction increases with L up to a
maximal value and then decreases. This is consistent with our analysis based on the
ansatz for the small diffusion limit. Indeed, it makes sense that our numerical result
matches the force scaling in the small-diffusion limit: since v o< L™2, as L increases,
the fiber will inevitably end up in the parameter regime where o > ~ and 8 > ~.

Unexpectedly, the force scaling results are quite different in the regime where
a < B. Figure 5.1 shows the typical behavior in this regime. As in the o >  regime,
ftraction increases before beginning to plateau; however, firaction’s rate of increase
recovers, and it scales linearly with length even at high fiber lengths. This scaling
behavior is not consistent with our ansatz analysis. As we show below, the reason is
that the myosin peak in this regime aggregates to one of the CF ends and not to its
center.

To understand the anomalous force scaling in Figure 5.1, we look in detail at
the spatial distribution of myosin along our simulated SFs. Figures 5.2 and 5.3 show
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ftraction
o
=

F1G. 5.1. Force scaling in the regime where a < 8, which means that Lgrag < Ljriction (actin
cortex drag is less than FA friction). In this regime, force starts out increasing lmearly with L
begins to plateau, and then recovers linear scaling. Simulations were computed with oo = 10 , B=
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and v = %
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Fi1c. 5.2. Force scaling and time-evolution of myosin distribution for a > 3. Top plot: Com-
putational results showing force produced at steady-state as fiber length varies. Plots are in nondi-

mensional units, with nondimensional parameters given by the scaling laws o = %, B = %, and
v = 2. Columns: Time-evolution of myosin distribution (green) and actin velocity (blue) from a

perturbed initial condition for three specific fiber lengths. Color is available online only.

the evolution of myosin from an initially perturbed constant distribution for several
different values of L. Figure 5.2 shows this evolution for the case o > 3, while
Figure 5.3 shows it for the case & < 5. We see that when « > 3, myosin clusters into
a central peak. When a < 3, however, the behavior is more complicated. Myosin still
forms a central peak; however, the peak then migrates from the center to one of the
fiber edges.

Our numerical simulations therefore suggest the possibility of a symmetry-breaking
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Fi1G. 5.3. Force scaling and time-evolution of myosin distribution for a < 3. Top plot: Com-
putational results showing force produced at steady-state as fiber length varies. Plots are in nondi-
mensional units, with nondimensional parameters given by the scaling laws o = %, B = %, and

vy = ﬁ Columns: Time-evolution of myosin distribution (green) and actin velocity (blue) from a
perturbed initial condition for three specific fiber lengths. Color is available online only.

bifurcation when o < 5. In the next section, we analyze this behavior in much greater
detail to understand when and how the symmetry break occurs. For now, however,
its appearance in our numerical results helps us understand why force scales linearly
at high L when a < .

Recall from section 3 that firaction was defined by

ftraction = ﬂﬂ}(—%,t) + max(fdragao) = _6rv(%7t) + min(fdragao)a

where
1

2
fdrag = az/ . v(z,t) d.

2
This definition resulted from our modeling choices in section 2 for both the drag-
mediated fiber-cortex interaction and the transmission of force from cortex to FAs.
Because the cortex is far stiffer than the fiber, we chose to model the cortex as an
infinitely stiff structure. This meant that we could sum the contribution to the drag
force on the cortex over the entire fiber to give the net drag force fyrag. To apply this
net drag force to the substrate, we noted that typical FAs feel a pulling force from
actin within the cell, so we chose to apply the entire quantity fgrag to whichever of
the left or right FAs would feel that force as a pull.

Now we know, however, that this peak is capable of migrating to the fiber edge.
The rightmost column of Figure 5.3 shows the actin velocity profile for a myosin
peak located near the left fiber edge. Along most of the fiber, actin flows to the
left. This means that fgq,ag Will be a large pulling force applied to the right edge of
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the fiber. Because this force is transmitted by the infinitely stiff cortex, there is no
length-dependent dissipation of this force. Rather, the magnitude of the force grows
with the total quantity of myosin in the cell, which leads to the linear force scaling
observed in Figure 5.1.

The above analysis suggests that the linear force scaling for high lengths when
a < B is a result of our simple representation of the cortex as a stiff solid object.
Clearly, this modeling choice does not fully capture the mechanical nature of the
cortex. We would expect that for long enough fibers, deformations of the cortex—
while far smaller than deformations of the SF—would be important. For short enough
fibers, however, the qualitative scaling behavior in Figure 5.1 is plausible: myosin
clustering in the fiber center leads to a peak in force production, but once symmetry
is broken, cortical stiffness allows force to start growing again. We expect, then, that
for very large cells our model would need to be further developed to more fully account
for cortical mechanics. In the meantime, however, it is clear that understanding the
symmetry break shown in Figure 5.3 is vitally important.

6. Symmetry breaking in the small diffusion limit. Our numerical simu-
lations suggest the possibility of a symmetry break, in which an initially small per-
turbation of a uniform myosin distribution leads to a myosin peak at one side of the
fiber or the other. Furthermore, the numerical evidence hints that this peak goes
to the center if @ > 3, but if a < 3, there is a symmetry-breaking bifurcation and
the peak aggregates to the edge. Such a bifurcation, however, may not exist. An
alternative possibility is that symmetry always breaks, but that for large o our sim-
ulations lack the resolution to observe the myosin peak’s slow migration away from
the center. This would be true, for instance, if the peak’s traveling speed were expo-
nentially slow (see, e.g., [19, 23]). In this section, we show that in the limit v — 0,
a symmetry-breaking bifurcation exists. Moreover, from that analysis we will derive
simple expressions for the myosin distribution in both the symmetric and the asym-
metric parameter regimes. Finally, we will provide a physical interpretation of these
results with important implications for cell polarization.

In this section, we use a matched asymptotic expansion for v < 1 to analyze the
myosin distribution in the full model. This involves solving the model equations to
find an outer solution that is valid for most of the CF, and matching that to an inner
solution obtained by a change of length scale, which is valid for a small neighborhood
around the center of the myosin peak.

One might be tempted to derive a matched asymptotic expansion of the variables
m and v directly from the system of equations. However, both our intuition from
section 4 and our numerical results from section 5 suggest that as v approaches zero,
m(x,t) approaches a Dirac § function. Thus, we cannot expect to match the leading-
order term in m, which blows up, with the leading-order term in v, which remains
O(1).

To overcome this difficulty, we rescale m. Let
(6.1) m(xz,t) = ym(z,t).
We will see that m remains bounded as v — 0, and this rescaling allows us to perform

a useful matched asymptotic expansion.
In terms of 7, our system of equations is

(6.2) 52(722—!—7%) =a’yw, —-i<z<i,
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8
(6.3) (9 +m = By :_%a '7% = —Bryv w:%
om 0 9%
6.4 am 7( NI | 1
(64) 5 o) = gE —h<e<d
om

6.5 n=y— .

(6.5) = G s
We expand both v and m in powers of ~, letting

(6.6) v(w,t) = vo(x,t) +yvi(z,t) + O(y?),
(67) ﬁl(:ﬂ,t) = mO(xat) +")/7?L1(Z,t) +O(72)7
where vg, v1, ... and mg, M1, ... are independent of ~.

Substituting our expansions into the model equations and matching like powers
of v, we get the zeroth-order outer equations

omyg

(6.8) 5 =0 —3<z<4i,

(6.9) o (i%,t) —0,

(6.10) 3;20 68 (vomo) =0, -l<az<l
(6.11) ( ) ( ) —0.

From (6.8) and (6.9) it trivially follows that 1mg(z,t) = 0 for all  and ¢. This makes
physical sense, since %n%(x,t) = m(xz,t). If rhy were nonzero, then as v — 0 the
density m of myosin would approach infinity.

Using mg = 0, the first-order outer equations are

(6.12) 6(1(%1;) +m1> =a’vy, —-i<az<i,
(6.13) 9% 4 iy = B
. 8$ 1 — PLbo 127%7
ovy
(6.14) 87 +1m1 = — B9 x:%7
om0
(6.15) gzl n %(voml) =0, —l<a<l
(6.16) vo(i%,t)ml(i2, ) —0.

This is a nonlinear system with many possible solutions. However, as we mentioned
a moment ago, %m(m, t) = m(z,t). This means that m(z,t) =y (z,t) + O(7). Since
we expect that m will approach a ¢ function as v — 0, this suggests that 7 (x,t) =0
is the physically correct solution; otherwise, the myosin density would remain nonzero
over the whole fiber regardless of how small v became.

Thus, the first-order outer equations simplify to the linear boundary value prob-
lem

(6.17) o2 Yo -3 <z <y,

Ovg vy
6.18 v _ — 3 _
(6.18) o Bivo I S Brvo 1
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The general solution to (6.17) is
(6.19) vo(z,t) = ¢o(t) sinh ax + ¢4 (t) cosh ax

for the yet-to-be-determined real coeflicients co(t) and ¢ ().

It would not be fruitful to compute the coefficients ¢y (t) and ¢; (¢) from the bound-
ary conditions in (6.18). That would correspond to the physically uninteresting solu-
tion where m is identically zero throughout the whole fiber. If there is myosin present
in the fiber, then we expect it to cluster in some small region. In that region, the diffu-
sive term in (6.4) will be nonnegligible, and we need to perform a change of variables
to find the inner solution valid in that region. Intuitively, this region corresponds to
the location of the ¢ function peak we posited in section 4.

Let z(t) be the (unknown) location of this myosin peak, and define the inner
variables V (X, t) and M (X,t) by

(6.20) 1% (zxom t> = v(z,t)
Y
and
(6.21) M<x‘”°(t)t) = iz, ).
Y
In terms of X, V, and M , our system of equations becomes
o’V oM 4,
oM oM 9 - M
2 — ()= + == (MV) = .
We expand V and M in powers of 7:
(6.24) VI(X,t) = Vo(X,t) + V(X 1) + O(v?),
(6.25) M(X,t) = Mo(X,t) +yMy(X,t) + O(?).
This gives the zeroth-order inner equations
PVy M,
(6.26) %2 X 0,
oMy 0 , - 9? M
2 —xp(t — (M, = —.

We can solve (6.26) for My by integration, getting

. v
(6.28) Mo(X, 1) = =552 + Colt).

We can substitute this expression into (6.27) and integrate by X, giving a single
differential equation for Vj:

(6.29) (cat) — 552 ) 0 = ah(0) = - G2 + Cato
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In general, solutions to (6.26) and (6.27) may exist for many values of the constants
of integration Cy(t) and Ci(t). For our purposes, all that any particular solution
needs to do to be useful is provide enough degrees of freedom to match with the outer
solutions. As we will see, such a solution comes from simply setting C(t) = C1(¢) = 0.
In this case, the differential equation for Vj simplifies to

W p A%

which has the solution
X

(6.31) Vo(X,t) = z((t) — y/xf(t)? — 2C(¢) tanh( xy(t)? — ZC’(t)Q).

6.1. Matching. Our solution in the transition layer located at « = xo(t) is

X

(6.32) Vo(X, t) = z((t) — /xp(t)? — 2C(¢) tanh( x(t)? — 20(t)2>,

W
. My(X,t) = ——=.
(6:33) o(X, 1) = =2

On either side of this transition layer, the outer solution is a linear combination of
sinh ez and cosh ax, which we can write as

(6.34) vo(z,t) = co(t) sinhaz + ¢1(t) coshaw, —1 <z < zo(t),
(6.35) vo(,t) = c3(t) sinh az + c4(t) coshaw, xo(t) <z < 3.

These equations have six unknowns: the five constants of integration co(t), ¢1(t),
ca(t), es(t), ca(t), and C(¢) and the term z((¢).

To solve for our six unknowns we need six equations. Some of these equations are
immediately available: the boundary conditions on vy and the continuity of the inner
and outer solutions. These give the equations

ov ov
(618) 87; = BI'UO 1 87; = _57”'00 1
rz=—73 =3
and
(6.36) lim = lim Vu(X,t).

z—zo(t)t  X—Foo

Evaluating these limits allows us to rewrite the continuity condition as
(6.37) co(t) sinh o (t) + ¢ (t) cosh azo(t) = x((t) + 1/ x5 (t)% — 2C(1),

(

Together, (6.18), (6.37), and (6.38) give us four equations for our six unknowns.

A fifth equation comes from treating the total amount of myosin in the fiber as
known. Recall that our outer solution for myosin was my = m; = 0. This means
that to leading order, all myosin in the SF is contained in the transition layer around
2o(t). Since we nondimensionalized myosin in terms of its average density,

(6.38) c3(t) sinh o (t) + c4(t) cosh azo(t) = x((t) — 1/ x

:

£)2 4+ 2C(t).

[N

(6.39) 1:/ m(z,t) de.

N
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Then

(6.40) 1= [

Since Mg = my = 0, this means that

1 3 z—zo(t)

RN

2 )
1:/ 7 J ) d

v

mz,t) o

o= NI

T

(6.41) = / h M(X,t) dX

for y < 1.

A sixth and final equation comes from stress balance across the transition layer.
There are two ways to derive this equation: by physical argument and by higher-order
matching of the inner and outer solutions using an intermediate variable. We prefer
the first way.

The physical argument is quite simple. The only way for stress to leave the fiber
is through drag against the cortex. This drag is governed by a coefficient of the
form force per velocity per length. Since the transition layer is very small, and since
velocity is continuous and O(1) in the layer, only a negligible amount of force should
be transmitted from the fiber to the cortex over the length of the transition layer.
This means that the stress computed from the outer solutions on either side of the
layer should be equal:

0 0
(6.42) # - #
T lz=ao(t)- T lz=ao(t)+
or
(6.43) coa cosh axg + ciasinh axg = coa cosh axg + czasinh axg,

giving us the final equation we need to solve for our unknowns.

Equations (6.18), (6.37), (6.38), (6.41), and (6.43) together give us six algebraic
equations for the unknowns co(t), c1(t), ca(t), cs(t), ca(t), C(t), and x4(t). It is a
simple, albeit lengthy, exercise to solve for all six.

We do not write out expressions for all six unknowns. The five constants of
integration are mainly important for computing the actin velocity profile v(z,t). We
are only interested in the myosin peak, whose dynamics are governed by (). Solving
for x((t), we get the ODE

a cosh (ano(t)) (Br — B) + sinh (204300 (t)) (BrB1 — o?)
2a cosh(a)(By + Bi) + 2sinh(a)(a? + B8,61)

Setting x((t) = 0, we can solve for the steady-state value Zg:

From (6.45), it is apparent that Ty is only real-valued if either

(6.44) zo(t) =

(6.46) Oi<a and S, <a
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Fic. 6.1. Physical stability for o = 1 in the B;-Br plane. In the bottom left region, the fized

point Tg exists, is stable, and is in the fiber interior between 7% and % In the top right region, it

exists and is in the fiber interior but is unstable. In the bottom right region, either no steady-state

exists or To < f%; in either case, the myosin peak migrates all the way to the left edge of the SF.
Similarly, in the top left region, the myosin peak migrates all the way to the right edge of the SF.

or
(6.47) a<pf and o< pf.

In fact, from (6.44), it is straightforward to show that if neither of these conditions
holds, then z((t) is either always positive (when 8, < a < ;) or always negative
(when 8, < a < ).

Moreover, even when Ty exists and is real, from (6.45) we can find conditions
for which it is outside the physical domain f% <z < % This means that even
though a steady-state exists, x((¢) is still either always positive or always negative for
all physically relevant values of xo(t). Mathematically, this corresponds to the case
where the stable steady-state of the full PDE system does not exhibit a transition
layer in the interior of the domain but instead has a boundary layer at either z = —%
or x = %

Figure 6.1 shows the physical stability of Tg in the f§;-f3, plane for a fixed value
of . Here parameter space is divided into four sections: the upper left and the lower
right regions correspond to the cases where either Zj is complex or |Zg| > % In the
upper left, ((t) > 0 for all zo(t) between —3 and %, and in the lower right z{(t) < 0.

In the lower right region where 8; < a and 3, < «, Tg exists, is between —%
and %, and is a stable steady-state. This means that once myosin has formed a sharp
transition layer, that peak will migrate to g, which is in the interior of the fiber. In
particular, note that Tg = 0 when 5; = (3,, so that the stable steady-state is in the
center of the fiber.

In the upper left region where o < §; and a < §,, Ty also exists and is in the
physical domain but is an unstable steady-state. In this region of parameter space,
the initial location of the myosin peak determines whether it will move to the left or
to the right of the fiber.

We observe the same stability properties for different values of « (see Figure SM3
in the supplementary materials). In each case, the steady-state behavior is qualita-
tively similar, but as « decreases, 8; and 3, must be closer in value to one another in

order for a physically meaningful steady-state to exist.

6.2. Physical interpretation. The steady-state analysis that follows from
(6.44) and (6.45) shows that the symmetry-breaking bifurcation that we observed
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numerically in section 5 is a real phenomenon that occurs when « is smaller than
both §; and (,. Moreover, the specific conditions under which the symmetry break
occurs give us insight into the physical mechanism driving the motion of the myosin
peak.

The peak’s motion is governed by a combination of local and distributed effects:
adhesion-mediated local forces at the left and right fiber edges and drag-mediated
distributed forces spread over the entire domain. The critical difference between these
two effects is that if myosin is off-center, the adhesive forces act to exaggerate that
asymmetry by pulling myosin even further to one side, while the drag forces promote
recentering of the myosin peak.

We can see the tendency of adhesion-mediated forces to promote asymmetry by
recalling the length-scale discussion from section 3. There we found that we could
express the adhesion friction coefficients by

(648) /Bl,r = L

- )
Lfrictionl,r

where Lgiction 1S & measure of the decay length scale of adhesive forces generated at
the fiber edge. Thus, the closer the myosin peak is to an edge, the less decay of that
adhesive force there will be and the more strongly myosin will be pulled toward that
edge.

The distributed cortex-drag-mediated forces have the opposite effect. The magni-
tude of this drag force scales like length times velocity. This means that when myosin
exerts a contractile stress at a point along the fiber, the drag force produced on either
side of the peak will be roughly proportional to the fraction of the fiber length that
is on that side of the peak. This means that if the peak is close to the center of the
cell, the drag force it feels from the left and right sides of the fiber will be equal and
opposite. If, on the other hand, the peak is very close to one side of the fiber, the
drag force it feels will be almost entirely in the direction of the far-off side.

Thus, drag forces promote myosin centering, while adhesive forces promote sym-
metry breaking. We see in the stability diagrams of Figure SM3 in the supplementary
materials and Figure 6.1 that, depending on the magnitude of the cortex drag and
adhesion friction coefficients, one or the other of these two effects dominates. When
« is small compared to 8; and (,, the symmetry-breaking effect wins, while when «
is large, the centering effect wins. When Ty does not exist, « is strong enough that
centering effects dominate one of the two adhesions but not the other.

7. Discussion. We found that three length scales govern the myosin and velocity
distributions and force generation in the model CF. When the CF length is less than
the diffusion length, myosin is distributed almost uniformly across the CF; the traction
force first increases linearly with CF length and then starts to plateau to the value
determined by the adhesion strengths. When the CF length becomes greater than the
diffusion length, positive feedback between the actin gel flow and myosin-powered force
drives myosin into an aggregate. The position of this peak in the myosin distribution
is determined by the relation between the adhesion and cortex drag lengths. If the
former is greater (adhesion to the actin cortex is stronger than the FAs), then the
peak is located at the center of the CF, because the length-dependent centering pull
of the connections between the CF and the cortex is stronger than the effective pull of
the FAs. In this case, the traction force, after reaching a maximum at an intermediate
CF length, decreases in longer CFs, because the myosin effect is wasted on the cortex
drag.
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On the other hand, if the adhesion length is smaller than the drag length (adhesion
to the actin cortex is weaker than the FAs), then the peak shifts to one of the edges,
because the pull to one of the FAs is stronger than the centering effect of the cortex.
In this case, the traction force keeps growing with increasing CF length, because the
amount of myosin accumulating at the CF edge increases linearly with the CF length
and is able to generate greater stress. Our model also makes specific and testable
predictions about the force dependence on the CF length.

The model we considered in this paper is closest to the study [6]. One minor dif-
ference between that study and our model is that we consider contractile stress to be
linearly proportional to the myosin density, m, while there the stress is proportional
to mL_H This difference is not very consequential; more important is that instead
of a periodic boundary condition for the force balance equation in [6], which is very
appropriate to contractile rings, we use a nontrivial balance between viscous, contrac-
tile, and adhesive force at the CF ends. This allows us to investigate traction forces,
which were not studied in [6], and allows us to find nontrivial scaling of these forces
with the fiber’s length. Moreover, though the phenomenon of myosin peak formation
was predicted in [6], our model addresses the previously unexamined question of the
location of these peaks and predicts the phenomenon of a symmetry break.

The model’s applicability to SFs in nonmuscle cells is not a straightforward issue.
SFs are often observed to have a periodic sarcomeric structure and are thought of
as very steady and nondynamic minimuscles [16, 34]. However, recent studies and
reviews show that what was called “the stress fiber” previously is actually a growing
inventory of diverse one-dimensional contractile networks with very complex dynamic
structure [30, 49]. A periodic myosin pattern was reported in some, but not all,
SFs [20]. Specifically, both uniform myosin density along fibers in vivo [27, 50] and
in vitro [47], as well as aperiodic bands and small myosin aggregates along the fibers,
have been reported [40, 43]. Similarly, both uniform and nonuniform but continuous
and aperiodic myosin densities were reported in contractile rings [55]. Moreover,
experimental measurements have revealed that SFs (at least, a number of types of
stress fibers) are not steady: centripetal actin flow near the fibers’ ends was observed
[48], and myosin turnover on the scale of ~ 100 /sec has been observed [20, 31, 45].

We emphasize, again, that we do not address SF dynamics on microscopic, micron
and submicron, scales that involve subtle spatial-temporal patterns of myosin and
crosslinker densities and actin polarity (see, for example, [17, 43]). Nor does our
model address distinctions between different types of SFs. Rather, we consider a
more general and macroscopic model of a contractile actin-myosin gel, assuming that
elementary contractile units are organized at the micron and submicron scales and
that the continuous density approximation for the gel made of these units is justified.

What parameters are characteristic of SFs? The fibers’ size, L, varies widely, from
a few microns to tens of microns. The order of magnitude of the myosin turnover rate
is kog ~ 0.01s7! [20, 31, 45]. The speed of the inward flow near the fiber’s ends is
on the order of v ~ 0.01 pms™! [1] and likely much slower away from the ends [48].
Thus, assuming that (2.3) describes myosin transport in SFs, T < 1, and so
the prediction would be that myosin is distributed almost uniformly along the fiber
length, in agreement with the observations described above. Isolated SFs contract
telescopically at the rate ~ 0.1s~! [22], which is also true for in vitro actin-myosin
bundles [47] (this rate is estimated as the speed of contraction, which is proportional
to the fiber length, divided by the length). These isolated fibers have no friction
relative to the cortex, and FAs at their ends are removed, and so, according to our
theory, the force balance in these fibers is ug—; ~ km. The myosin generated force,
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km, is on the order of 100 pN [1, 42], so the effective viscosity can be estimated as p ~
km/ % ~ 103pN x s. The FA friction coefficient can be estimated as the generated
force divided by the flow rate, on the order of 0.01ums™?!, so ( ~ 10*pN x s/pm.
Thus, the ratio p/¢ ~ 0.1pm is much smaller than the fiber’s length, and so the
model prediction would be that the SF generates a maximal force that depends very
weakly on the fiber’s length. In addition, though the cortex drag coefficient was never
measured, indirect observations suggest that it is very significant [5, 44]. This drag
would further dampen the length dependence of the traction force.

There are many caveats to these estimates, the main of which is that there is a
significant elasticity associated with SFs [11, 26]; besides, we used estimates from very
different experimental systems and conditions. To truly test the model’s predictions,
a challenging experimental assay has to be put together, in which the strength of
micropatterned adhesions has to be controlled, as well as friction between the fiber
and the surrounding actin network. In addition, traction forces, myosin density, and
the fiber’s viscosity must be measured at varied distances from the adhesions. Perhaps
the best way would be to start from experiments in vitro, by measuring traction
forces in reconstituted CFs stretched between two adhesive spots printed on a flexible
substrate [15].

Finally, there is the issue of FA dynamics at the fiber’s ends. In the model, we
assumed the FAs to be immobile, which is, in fact, often observed for SFs [7]. This
is easily reconciled with the flow of the actomyosin gel at the ends of the fiber, as
the actin mesh is constantly polymerizing and slipping centripetally from the edges
inward [4, 48]. This phenomenon is likely dependent on formins that co-localize
with adhesion molecules and keep actin polymerization going [4]. How the rate of the
polymerization process is regulated to keep it equal to the rate of the actin centripetal
flow is an open problem. However, there are also cases where the adhesion complexes
are either slipping inward relative to the substrate or extending outward [48]. There
is currently no clear understanding of the underlying complex molecular processes
that would warrant a mathematical model of these cases [4]. Qualitatively, there are
two simple limiting cases. Assuming that there is no actin polymerization at the fiber
ends, the ends would be moving inward with a velocity predicted by the solution of
the force balance equation of our model. In one limiting case, when the effective
myosin diffusion or recycling is much faster than the myosin drift, the rate of change
of the fiber’s length will be much slower than the rates of myosin redistribution and of
velocity and stress equilibration. In the zeroth approximation, in this limiting case all
solutions for the constant fiber’s length are valid; the only change would be that the

dL

length, L(t), becomes a function of time, governed by equation % = 21)(%), where

v (é) is given by the solution of the stationary problem. In another limiting case, with
slow myosin diffusion and a peak at the center, the picture is exactly the same: the
peak remains at the center, while the fiber’s length decreases according to equation
% = 21}(%). Finally, when the peak is expected to be at the end of the fiber, it is
qualitatively clear that the myosin aggregate will stay at this end, because this end
moves inward faster than the other end.

This model could also be relevant to contractile rings in cytokinesis. These rings
contract telescopically [9] and exhibit myosin turnover on a finite time scale [33,
41]. The myosin-generated tension in the rings has been measured. However, the
adhesions and drag between the ring and the cell cortex would have to be much
better characterized before quantitative estimates could be made [36].

Finally, the model is also applicable to lamellipodial/lamellar actomyosin net-
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works, with the caveat that these networks are two-dimensional, rather than one-
dimensional. In some cases, however, flat lamellipodial networks are such that their
width, for example, is significantly greater than their length, as in the case of motile
fish keratocyte cells [3, 39]. Interestingly, large myosin aggregates that were not ob-
served in individual SFs were observed in these lamellipodial networks [3], which is
explained by the fact that in these networks the myosin dissociation rate is so slow that
myosin clusters travel across the cell before they detach from the network [39]. The
condition for the symmetry break predicted by our model is the following: adhesion
at the edges has to be stronger than the drag distributed along the network length.
Thus, our analysis suggests a simple mechanism for cell symmetry maintenance and
for cell polarization. To remain symmetric, a cell simply needs to ensure that adhesive
drag along the cell length is stronger than the adhesions at the cell edges. This is
likely the case in keratocytes, and indeed the mechanism of their polarization is based
on a nonlinear dependence of the adhesion strength on the network flow [2]. Our
model suggests that a cell can achieve—or prevent—polarization by another mecha-
nism: regulating the relative strength of the adhesions along the cell length and at
the cell edges. Other potential mechanisms were modeled in [2, 8, 24, 38]; future work
will be needed to see what combination of the proposed mechanisms applies in which
types of cells.

Our model has many limitations: we assumed a constant average myosin density,
so that total myosin scales with CF length. Actual myosin scaling with length could
be different. Simple linear constitutive relations between myosin strength and its
density and between friction forces and velocities could be highly nonlinear. It is
likely that the CF gel is viscoelastic, rather than simply viscous [11, 26]. Effective
actin-myosin gel viscosity could, similarly, depend on actin density, in which case the
model would need to be expanded by adding an equation for actin transport and
turnover. The model does not address microscopic phenomena that give rise to the
periodicity of myosin and crosslinking distributions on submicron scales [16, 34], nor
does it address the subtle distinction between different types of SFs [49]. Last, but not
least, we did not include mechanosensing phenomena in the model [11]. Nevertheless,
the model clearly illustrates the wealth of behavior in even the simplest mechanical
case. Comprehensive mathematical elucidation of this behavior is the necessary first
step on the way to quantitative understanding of the full biological complexity of
contractile actin-myosin networks.
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