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Computational Estimates of Membrane Flow and
Tension Gradient in Motile Cells
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Abstract

All parts of motile cells, including the plasma membrane, have to translocate in the direction of locomotion. Both directed
intracellular membrane transport coupled with polarized endo- and exocytosis and fluid flow in the plane of the plasma
membrane can contribute to this overall plasma membrane translocation. It remains unclear how strong a force is required
to generate this flow. We numerically solve Stokes equations for the viscous membrane flow across a flat plasma membrane
surface in the presence of transmembrane proteins attached to the cytoskeleton and find the membrane tension gradient
associated with this flow. This gradient is sensitive to the size and density of the transmembrane proteins attached to the
cytoskeleton and can become significant enough to slow down cell movement. We estimate the influence of intracellular
membrane transport and actin growth and contraction on the tension gradient, and discuss possible ‘tank tread’ flow at
ventral and dorsal surfaces.
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Introduction

The plasma membrane plays several crucial roles in cell life:
separating the inside of the cell from the environment; serving as a
scaffold for regulatory and structural proteins; and organizing
cytoskeletal dynamics [1]. The plasma membrane’s mechanical
characteristics, such as flow [2], tension [1,3] and curvature [4] are
also important for cellular phenomena, especially for cell motility.
Here we mathematically and computationally examine the
mechanical effect that plasma membrane flow and the associated
membrane tension have on motile cell behavior.

Cell migration on surfaces is a fundamental phenomenon
underlying many physiological processes [5]. When a cell
migrates, its parts, including its cytoskeleton, organelles, fluid
cytoplasm and plasma membrane, have to translocate forward
(Fig 1A). In many types of migrating cells, this forward
translocation is driven by the dynamic actomyosin network, one
of the main parts of the cytoskeleton, in which nascent actin
filaments appear and grow at the cell front and push the leading
edge forward, while older parts of the network disassemble and
contract to pull the rear forward [6]. The actomyosin network
adheres to the substrate via molecular complexes which contain
integrins, and which span from actin to the substrate through the
plasma membrane (Fig 1A). These adhesions are crucial for
transducing the effective treadmill of the actomyosin array into
forward propulsion of the cell [7]. The mechanisms by which
organelles and cytoskeletal components move forward are not all
entirely clear, but actomyosin contractions [8], microtubule-based
motors [9] and membrane tension at the cell rear [10] contribute
to these processes in various cells.
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The plasma membrane enveloping the cell also has to
translocate from the rear to the front. Because lipids and proteins
in the mosaic membrane diffuse rapidly [11] in the membrane
plane, the membrane can simply flow forward (Fig 1A). The flow
of the plasma membrane can be supplemented, or even replaced,
by directed intracellular movement of membrane vesicles medi-
ated by motor-driven transport, so that endocytosis is responsible
for removing plasma membrane at the rear and exocytosis for
adding membrane at the front (Fig 1D). Indeed, in some cases
there is evidence of polarized membrane trafficking [2,12].

There is sometimes confusion in the literature that stems from
the fact that the membrane flow looks different in the frame of the
moving cell and in the lab coordinate system. In this paper, we will
consider a cell steadily moving forward with the rate V. (Fig 1A),
such as fish epithelial keratocyte [13]. We illustrate possible types
of membrane flow in Fig 1B-D. The simplest possibility is if in the
lab coordinate system both ventral and dorsal membranes flow
forward (Fig 1B, blue arrows) at rates equal to the cell speed:
Vy=Vi=Vee. In the cell frame, there is no flow in this situation.
Such a case was observed in a number of motile cells, including
fibroblasts, fish keratocytes [14-16], leukocytes [17], and Dictyos-
telium amoebae [18]. A more complex possibility is a tank-tread
flow in which, in the lab coordinate system, both ventral and
dorsal membranes flow forward with different speeds; for example,
the dorsal flow is faster (Fig 1C, blue arrows). Conservation of
membrane material requires that in this case Vy,+ Vy=2V .
Then in the cell frame the dorsal flow (Vy— V) is directed
forward, and the ventral flow (¥, — Vi) is directed rearward
(Fig 1C, red arrows; note that (Vg— Ver)=—(Vy— Veen)).
Finally, if intracellular traffic is solely responsible for forward
membrane translocation, then in the lab coordinate system the
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Figure 1. Possible types of membrane flow. A-E: View of the motile keratocyte cell’s lamellipodium from the side. Shaded ellipsoid is the cell
body. A: Growth of actin network (green) inside the lamellipodium pushes the leading edge forward, resisted by the membrane tension at the front
(yellow arrows,Ty). At the rear, membrane tension (yellow arrows, T,) pushes forward the disassembling actin networks. Besides the breaking actin
network, breaking adhesions (orange rectangle) also resist rear retraction. Myosin (dark red dumbbells) powered contraction assists rear retraction.
The membrane flows forward in the lab coordinate system (blue arrows) on the ventral and dorsal surfaces. Adhesions (blue rectangles) linked to the
stationary actin network resist this flow at the ventral surface; transmembrane proteins (light blue ovals) resist this flow at the dorsal surface. B-E:
blue (red) arrows show the membrane flow in the lab (moving cell) coordinate systems, respectively. B: One possibility is that the membrane flow is
the same at the ventral and dorsal surfaces. In this case, these flows’ rates are the same as the cell speed in the lab coordinate system, and the flows
are zero in the cell frame. C: Example of tank-tread flow. D: In this case the membrane is transported from the rear to the front solely through the
intracellular transport of membrane vesicles. The membrane flow is zero in the lab coordinate system and directed to the rear in the cell frame. E:
Hypothesis about how the membrane flow can be the same on the ventral and dorsal surfaces for any different protein concentrations at these
surfaces. This can be explained if the membrane flow across the leading edge (black) is obstructed. In this case, the membrane tension at the rear of
the dorsal and ventral surfaces is the same, but rear-to-front gradients of tension are different along the ventral and dorsal surfaces because the same
ventral and dorsal flows are resisted by different protein concentrations at these surfaces. Thus, tensions at the fronts of the ventral and dorsal
surfaces are different. F: View of the motile keratocyte cell’'s lamellipodium from above. Shaded ellipsoid is the cell body. Insert: Cartoon of membrane
flow around solid circular obstacles (proteins). Proteins attach to the cytoskeleton and/or the external environment, and so stay stationary (in the lab
frame of reference). Thus, as the cell moves, the membrane is forced to flow around the proteins.

doi:10.1371/journal.pone.0084524.9001

~1 pN/um was indeed measured between the cell body and the
growth cone in neurons [19], where this tension gradient was
accompanied by membrane flow. For comparison, average
membrane tension in different cell types varies widely, from a
few pN/um in neuronal growth cones to tens of pN/um in
melanoma cells [21] to hundreds of pN/um in rapidly moving fish
keratocytes [22].

Another set of factors determining the membrane flow are the
mechanical properties of the membrane. With respect to out-of-

membrane is stationary, while in the cell frame the membrane
flows backward with equal rates at the ventral and dorsal surfaces
equal to the cell speed Vo (Fig 1D, red arrows). Interestingly, in
neuronal growth cones it was observed that membrane flow is
directed from the front to the rear in the cell frame [19].

The membrane flow is determined by a force that drives it. This
force arises from the gradient of the in-plane membrane tension
[20] (Fig. 1A), so that the tension at the front, T, is higher than
that at the rear, 7}, and so the more tensed membrane at the front

pulls the plasma membrane forward against weaker tension at the
rear. A front-rear membrane tension difference on the order of

PLOS ONE | www.plosone.org

plane deformations, the membrane has complex, partially elastic
properties, but in-plane, the membrane is an incompressible
viscous fluid [23]. Effective resistance to the flow of the membrane
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relative to the substrate arises largely due to transmembrane
proteins, especially integrins, and proteins with domains which
insert into or bind the membrane [24]. According to the mosaic
model of plasma membrane structure, up to 50% of the
membrane surface is occupied by such proteins, with lipid
molecules filling the rest [25]. In general, lipids and membrane
proteins are free to diffuse within the membrane, however, a
subset of transmembrane proteins are restricted by binding to
cytoskeletal structures [26,27]. For example, membrane-associated
proteins such as fodrin, plectin, and ankyrin attach to actin [28].
ERM and Ena/VASP are other examples of the protein families
that associate both with actin and membrane. Given the
abundance and strength of cell-substrate adhesion sites, they also
contribute extensively to membrane-cytoskeleton interactions.

After a brief surge of interest in the role of membrane transport
in cell locomotion [2], the efforts of motility researchers were
largely concentrated on actin and myosin dynamics. The implicit
assumption in most of the literature is that the plasma membrane
flows forward effortlessly in motile cells. However, this assumption
was never critically examined. Indeed, in the large part of the
lamellipodium/lamellum (dynamic motile appendage of the cell,
see Fig. 1), the actomyosin network is either almost stationary
relative to the substrate [13] or undergoes rearward flow [29] in
the direction opposite to that of cell migration. If a fraction of the
transmembrane proteins are associated with this stationary or
rearward moving cytoskeleton, then these proteins are effective
buoys that obstruct the forward membrane flow. How much
resistance these buoys exert on the flow is an open problem (an
initial foray into this problem was recently made [24]). Recently, a
few studies have reported that inhibition of membrane trafficking
in several cell types, for example fibroblasts, endothelial cells and
Dictyostelium, reduces persistent migration [30,31]. One possible
explanation is that membrane transport could be rate-limiting for
cell forward translocation. Here, we compute the geometry of the
plasma membrane flow and associated membrane tension
gradients, and we predict conditions for high and low membrane
tension gradients and for equal versus unequal ventral and dorsal
flows.

Results

1. Model

1.1 Estimate for the drag coefficient of a single cylindrical
protein. Variables and parameters in the models are defined
and explained in Table 1 and Table 2. Saffman and Delbruck [32]
derived an analytic estimate for the drag coefficient of a single
cylindrical protein embedded in a flat, infinite sheet of membrane:

Lo=4mi'h/(log(2¢'h/ ud) —7) (1)

Here ' is the three-dimensional viscosity of the membrane, / is
the thickness of the membrane, u is the viscosity of the fluid
surrounding the membrane, d is the diameter of the protein, and
y=0.577 is the Euler-Mascheroni constant. Note that the two-
dimensional membrane viscosity 1 can be related to u' from
equation (1) by the expression #=/'h, so:

Lo="4mn/(log(2n/ud) —7) (2)

1.2. Flow and tension distributions on the flat membrane
surface. We model transmembrane proteins or protein com-
plexes, such as adhesions, attached to the actin network as rigid
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cylindrical solid objects embedded in the membrane (Fig 1F). We
consider steadily moving cells of a constant shape, like fish
keratocytes (Fig 1F). In keratocytes, the motile appendage — the
lamellipodium — is a flat actomyosin network with a characteristic
canoe-like shape (Fig 1F). Most of this network, other than a small
part at the very rear of the cell, is almost immobile relative to the
surface [33], so we assume that in the lab coordinate system the
transmembrane cylindrical ‘buoys’ are immobile. Following
previous studies [24,34-36], we represent the membrane as a
thin layer of a continuous incompressible viscous fluid. Since the
membrane is extremely thin, we treat it as a 2D fluid, and so we
also treat the membrane domain of a protein as a circular
obstruction in the 2D fluid domain. As the transmembrane buoys
are held stationary during cell migration while the membrane
advances forward in the lab coordinate system, the membrane and
proteins interact mechanically to produce a non-uniform mem-
brane flow, as sketched in Fig 1F. We model the flow as 2D viscous
Stokes flow:

nAU+VT=0,V-U=0 (3)

Here T is the local membrane tension, and U is the local
membrane velocity in the lab coordinate system. Note that in two
dimensions, the tension (which can be considered as pressure with
opposite sign) has the dimensions Force/Length instead of the
usual Force/ Length2 in the 3D Stokes equations. Similarly, the
membrane viscosity has the dimensions of Force x Time/Length,
rather than the usual 3D viscosity dimensions of Force x Time/
Length®. Another assumption we make is that we neglect
attachment (between membrane and cytoskeleton) energy contri-
bution to the membrane tension, so in equation (3) 7" is the in-
plane membrane tension. The length scale in this model is the
characteristic length of the lamellipodium, L=10um, and the
speed scale is the characteristic keratocyte speed Ve =0.1pm/s
[13]. The natural membrane tension scale that we use In
numerical calculations is # Ve /L.

1.3. Cell shape, boundary conditions and protein
We solve equation (3) for a flat membrane
domain, which represents either the dorsal or ventral membrane
surface. We define the shape of this domain similar to that of the
keratocyte lamellipodium (Fig 2A) and represent the boundary of
this domain by the equations:

distributions.

y,-m,,,=s(M+ \/l—l——x—\/i) (4)

for the front half of the boundary, and

.Vreur:*b<m+\/l—+—);*\/§)7C(x271) (5)

for the rear half in the Cartesian coordinate system with the y-axis
passing from the rear to the front through the middle of the cell,
where s=1,b=1,c=0.4. Here the length is non-dimensionalized
using the lamellipodial length scale defined above.

We follow the Graded Radial Extension model for the steady
lamellipodial locomotion [16] and require that at each point along
the lamellipodial boundary the local membrane velocity is directed
normal to the boundary, with magnitude

|U(x)| = Veer cos(0(x)) (6)
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where 0(x) is the angle between the direction of cell motion and
the normal to the boundary, as shown in Fig 2A. This boundary
condition ensures that the plasma membrane translocates forward
in a manner that preserves a steady cell shape. In non-dimensional
U(x)| = cos(0(x)).

We use the no-slip boundary condition U =0 on the 2D circular
surface of each protein. After the Stokes flow equation (3) with
these boundary conditions is solved numerically (Methods), we
calculate the average membrane tension at the front and rear

edges of the cell (shown in Fig. 2B) as:

Tyr= J T (sy.)dsy.r/ (J de,r) (7
—0.75<x<0.75 —0.75<x<0.75

where Ty and T are the average membrane tensions at the front
and rear edges, respectively, and sy and s, are the arclengths along
the front and rear boundaries, Vfion (X) and Yyear(X), respectively.

units,

We investigate the effect of transmembrane proteins or protein
complexes on membrane tension by randomly placing circular
obstructions in the interior of the membrane. We generate protein
positions according to one of two distributions (Fig 2C,D). Proteins
are either uniformly placed throughout the interior of the
membrane (Fig 2C), or are restricted to being near the front of
the cell (Fig 2D). We chose this latter distribution to account for
the observations that at the ventral surface the adhesion complexes
and respective traction are concentrated near the leading edge of
the cell [37,38] and that the membrane is loaded with proteins at
the leading edge [39,40]. For these front-loaded proteins, we
required that each protein be entirely in the front half of the cell
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Table 1. Parameters in the models.
Variable notationValue Meaning Reference
Vel ~0.1um/s cell speed [13]
Iz ~1073pN x s/ um? viscosity of aqueous medium [32]
n ~0.01pN x s/um two-dimensional membrane viscosity [51]

0.1pum Adhesion complex diameter [43]

0.02um Transmembrane protein diameter [44]
y 0.577 Euler-Mascheroni constant [42]
I 10um Order of magnitude ide-to-side lamellipodial width [13]
L 10um front-to-rear lamellipodial length [13]
N n/d, varies number of transmembrane proteins linked to actin NA
¢ ~0.1(10%) area fraction of the transmembrane proteins linked to actin Assumed
Co ~0.02pN x s/pum drag coefficient of a single cylindrical protein embedded Computed in this paper

in a flat, infinite sheet of membrane
s,b,c s=1,b=1,c=04 parameters defining the lamellipodial shape Chosen in this paper to qualitatively fit
the observed shape
Gk depends on other parameters effective combined viscous drags of the transmembrane Computed in this paper
buoys in the ventral and dorsal surfaces

n Defined in combination with intracellular membrane vesicles per second per surface [45,46]

ana~0.02um/s
a Defined in combination with average membrane area per vesicle [45,46]

nna~0.02um/s
T ~1000pN / um characteristic membrane tension that stalls protrusion [22,41]

. . o . Vo T,

i D2l I Coliuliei o i eisy characteristic retraction speed of the cell rear, | (10]

parameters VT

i i inati i Vo T

i Defined in combination with other characteristic membrane tension at the rear, — — ~ 1 (o]

parameters 2%
doi:10.1371/journal.pone.0084524.t001

(defined by the line y =0), and that the protein be within 1 pm of
the front half of the cell boundary. For both the uniform and the
front-loaded distributions, protein placement is generated in
several steps: 1. Points are sampled from a uniform random
distribution covering the entire cell. These points will become the
centers for our circular proteins. 2. For each generated point, we
check to ensure that it is in the correct region of space (either the
cell interior for the uniform distribution or the front 1 pmof the
cell for the front-loaded distribution). Any points failing this check
are replaced by new random points. For numerical accuracy, we
also require that all points be at least 0.25 pmaway from the
membrane boundary. 3. To ensure that none of the circular
proteins overlap with one another, we impose a short range
repulsive interaction on neighboring points. This repulsion moves
the protein centers until all centers are a distance of at least one
diameter apart from one another.

1.4. Tank-tread flow at ventral and dorsal surfaces. So
far, we have described the membrane flow in the flat plane of
either the ventral or the dorsal surface of the cell in the case when
the ventral and dorsal flows are the same. The computational 2D
model is useful for estimates of the membrane tension gradient and
transmembrane protein resistance to the flow, and for visualizing
the non-uniform membrane flow in the membrane plane. In the
more general cases when either the flows are different or effects of
actin mechanics and intracellular membrane transport are
included, full simulation of the 2D flow would be difficult because
of the complex actin mechanics and geometry of the curved
plasma membrane at the rear and leading edges of the cell and
unknown distribution of intracellular transport at the edges.
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Table 2. Variables in the models.

Variable

notation Meaning Dimension

Vs Vinemp Speed of the membrane flow at the um/s
ventral surface

Vi, Vinemp Speed of the membrane flow at the um/s
dorsal surface

T, Membrane tension at the rear PN /um

Ty Membrane tension at the front pN /um

U Local membrane flow rate um/s

X,Yfront-Vrear>Sr,r  Coordinates describing lamellipodial um
boundary

0(x) Angle between the direction of cell n/d
motion and the normal to the boundary

doi:10.1371/journal.pone.0084524.t002

However, simple estimates in the general cases can be made if we
consider a simplified 1D model of the plasma membrane in the
side view of the cell in the lab frame (Fig 1A). In this model, we
approximate the flows in the ventral and dorsal planes as uniform
(this approximation is in general very good, as shown in the results
reported below) with rates V, and Vy, respectively. Let {, and {y
be the effective viscous resistance (due to the transmembrane
proteins) of the ventral and dorsal surfaces, respectively. Then the
membrane tension gradient between the front and rear of the cell
is:

(Ty=T)/L=LaVa=LV, ®)

for the dorsal and ventral surfaces. Note that coefficients {, and {,
have different dimensions (Force x Time/Length®) than that of
the protein viscous drag {y. This can be best understood in the
example of the linear approximation, when the drag imposed by

A B
8(x)

Membrane Flow and Tension in Motile Cells

N proteins 1s additive. In this case, if N proteins, each
characterized by the protein viscous drag {y, are distributed over
the rectangular region of the membrane in the presence of the
uniform flow with speed U, with the leading and rear edge length /
and the rear-to-front length L, then the total resistance force from
the proteins is equal to {yNU, and the rear-to-front difference in
membrane tension can be estimated is (Tf— Tr) =({NU/I
Introducing average density of proteins N, we can write:
(Ty—T,)=(NLIU/I, and (T;—T,)/L=({,N)U. From com-
parison with equation (8), it is clear that coefficients {, and {; have
dimension Force x Time/Length® because the protein viscous
drag {y has dimensions Force x Time/Length, and the average
density of proteins N has dimensions 1/Length®.

We complement equations (8) with a third equation for
conservation of membrane material for the plasma membrane:

Vv"’ Vd:2Vcell~ (9)

We will solve the three equations (8-9) for the three unknowns
(Ty—T,),Va4,V,) below.

1.5. Effects of actin pushing at the front, actin contraction
at the rear and intracellular membrane transport. Another
similar 1D model considers the effect of intracellular membrane
transport and force balances at the front and rear of the motile cell
on both the membrane flow and the tension gradient. For
simplicity, in this model we consider equal viscous resistance { for
the ventral and dorsal surfaces, and therefore equal respective
membrane flows equal to V,emp at these two surfaces. In this case,
the force balance for the membrane flow and membrane tension
gradient has the form:

Tf' - Tr = (L Vmemb ( 10)

Figure 2. Lamellipodial shape and protein and velocity distributions. Shape of cell’s lamellipodium given by equations (4-5). A: Sketch of
velocity boundary condition (equation (6)) given by the graded radial extension model. Velocity at the boundary is normal to the boundary, and
decreases in magnitude from a maximum when the normal points in the direction of cell motion to zero when the boundary is tangent to the
direction of motion. B: Membrane boundary with leading and rear edges in red. We integrate tension over these red curves to compute the average
tension at the front and rear of the cell, which allows us to compute the tension drop in the membrane. C-D: Randomly generated placements of
transmembrane proteins distributed uniformly throughout the membrane (C) and distributed within 1 um of the cell front (D).

doi:10.1371/journal.pone.0084524.g002
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Let n intracellular membrane vesicles with average membrane
area a per vesicle per second per surface (dorsal or ventral) be
transported from the rear to the front of the cell (Fig 1D) per one
micron of the leading edge. Then the protrusion length AL per
time At is equal to AL = V,yemp At +nadt =V pAt. Therefore, the
cell speed, 4L/ At, is equal to:

Veet = Vipemp +na ( 1 1)

The two equations (10-11) for the four unknown variables
(VeeitsVinemb»Ty,Ty) have to be complemented by the force
balances at the front and rear of the cell. At the front, we use
the force-velocity relation for the actin network polymerizing
against the membrane load:

Ty
Veen =Vo| 1— == 12
I 0( Ts) (12)

Here V) is the free polymerization rate in the absence of load,
and the expression in brackets is the force-dependent factor that
accounts for the slowing down of protrusion by membrane tension.
Parameter 7 is the stall tension at which the protrusion halts. For
simplicity we use the linearized force-velocity relation, which is an
approximation to the non-linear relations measured and fitted for
keratocytes [13,41]. At the rear, we use the force-velocity relation
for the disassembly-weakened actin network being crushed and
hauled forward by the membrane tension, which was suggested
and fitted to the data in [10]:

T,
cell = — 1
Vee =" T (13)

Here V) is the rate of the cell rear retraction generated when
the membrane tension at the cell rear is equal to parameter 77.
Below, we solve the four equations (10-13) analytically, allowing
us to examine the effects of intracellular transport and actin
mechanics on membrane flow and tension gradients.

2. 2D membrane flow and tension distributions in the
plane of the membrane

We performed numerical simulations on flat membrane
domains, which can represent either ventral or dorsal membrane
surfaces. For both uniform and front-loaded protein distributions,
we performed simulations with total numbers of proteins ranging
from N =0 to 350. Fig 3 shows representative simulation results
for both uniform and front-loaded distributions. Figs 3A,C and
B,D show maps of magnitude and directions of flow and tension
distributions, respectively, in sample simulations. More results at
other protein densities and distributions are shown in Figures S1—
S6. Interestingly, the flow concentrates in narrow meandering
effective channels on the membrane surface. In these channels,
which are effectively paths devoid of the attached proteins, the
flow rate could be a few-fold higher than the cell speed.

For each simulation, we calculated the average tension drop
across the cell as described above. We performed 10 simulations at
each number of proteins, and computed the average front to rear
tension drop over all runs at each protein number. The membrane
tension increases almost linearly from the rear to the front for the
random uniform distribution of the attached transmembrane
proteins. When the proteins are front-loaded, the same proteins

PLOS ONE | www.plosone.org
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number as in the uniform case produces a greater total average
tension increase from the rear to the front. This suggests that as the
proteins become more tightly packed, they restrict the flow more
than an equal number of well-spaced proteins, as expected.

3. Dependence of the membrane tension gradient on
transmembrane protein size and area fraction in the 2D
model

No matter how much resistance the transmembrane proteins
generate, the average membrane flow rate in the 2D model is of
the order of the cell speed. It is the membrane tension gradient
that must adjust to maintain this flow rate. The Saffman-Delbruck
formula (2) allows us to estimate the drag due to one
transmembrane protein. For the parameter values given in
Table 1, the drag coefficient is {;~0.02pN X s/um. In the linear
approximation, the drag imposed by N proteins is additive, and
the rear-to-front difference in membrane tension can be estimated
as:

T;—T,=L,NU/I (14)

where [ is the lateral width of the lamellipodium.

The computations of the 2D flow allow us to investigate how the
rear-to-front difference in membrane tension depends on protein
density. We plotted respective results in Fig 4A,B. At low protein
densities, there is good agreement between the analytic prediction
(14) and our numerical results (Fig 4A). Our numerical simulations
show that this linear approximation, however, is valid only up to
the density of about one ‘buoy’ per square micron (or area fraction
¢ occupied by proteins less than 1%), in which case
Ty—T,=(NU/I~0.01pN/um, which is very low compared to
the measurements in the neuronal growth cone and which is well
below the experimental noise in the tether-pulling experiments.

At higher protein densities, however, both the uniform and
front-loaded protein distributions quickly produce a much larger
tension drop than would be predicted by the linear theory because
closely spaced proteins affect the flow in a non-additive way, which
is a well-known hydrodynamic phenomenon. Indeed, there is a
certain analogy between the 2D membrane flow through a ‘maze’
of disks and 3D groundwater flow through a maze of spheroid
objects. In the latter case, the well-known Kozeny-Carman
equation describes the pressure drop AP for a fluid of viscosity p
flowing a distance L through a porous medium at an average
velocity U [42]:

_180uLU ¢

M e agy "

The porous medium is assumed to be made up of randomly
placed, immovable particles that can be described by their
sphericity ®@,, which is a measure of how spherical the particles
are (@, =1 for spheres), the diameter d of a sphere having the
same volume as one of the particles, and the volume fraction ¢,
which is the fraction of total volume that is occupied by the solid
particles.

We fitted our numerical data to a similar equation of the form:

_CnLU ¢’

M= gy

TN
=" 16
+q.9 a4 (16)
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2.802
2.402
2.001
1.601
1.201
0.801
0.400
0.000

6.135
5.259
4.382
3.506
2.629
1.753
0.876
0.000
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0.2736
0.2345
0.1954
0.1563
0.1173
0.0782
0.0391
0.0000

0.6015
0.5156
0.4296
0.3437

0.2578
0.1719
0.0859
0.0000

Figure 3. Computed membrane velocity and tension. A-B: Computed membrane velocity (A and C, units of cell speed) and tension (B and D,
units of pN/um) for 350 uniformly distributed (A,B) and front loaded (C,D) proteins. Proteins are shown in white in A,C and black in B,D.

doi:10.1371/journal.pone.0084524.g003

Here ¢~0.01pN/pm is a small correction that stems from the
fact that there is a small viscous resistance to the membrane flow
even in the absence of the protein obstacles, C is the dimensionless
parameter to be found from fitting, and A is the area on which N
disc-like obstacles are randomly placed. We minimized the least
squared error over all our simulation runs, and found that for
C=x200 equation (16) is an excellent fit for our simulations
(Fig 4B). Note that for values of the area fraction ¢ below a few
percent, the numerical data shows agreement with the linear
tension-density relation, not with the Kozeny-Carman quadratic
relation. The reason is that the Kozeny-Carman relation comes
partially from considering flow through narrow, twisting channels,
and the geometry of the flow becomes quite different at very low
protein density. However, tension gradients of biological interest
develop at higher protein density, so for practical purposes
equation (16) is valid. To additionally test equation (16) we did
computations with N =100 proteins varying the protein diameter.
Note that when parameter d varies, so does parameter ¢, so we
plotted the results as shown in Fig 4C. The fit generated by
equation (16) to this numerical data is good.

It is unknown what fraction of the transmembrane proteins
covering a few tens of per cent of the plasma membrane area is
attached to the cytoskeleton. It would be reasonable to assume that
about 10% of the whole membrane area is covered by such attached
proteins. Assuming ¢ =0.1, we use equation (16) to estimate the
tension gradient for d=0.1pwm (respective protein density is

200 x (0.01pN-s/pm) x 10pm x 0.1,um/30.712
(0.1um)? 0.93

~10/um?): AT =
~3 pN .
um

This estimate is very similar to the measurement in the neuronal
growth cones [17].

So far we reported the simulations using the value of d =0.1um
characteristic for nascent adhesion protein complexes at the
leading edge [43]. Single proteins are smaller; the characteristic
size is d =0.02um [44]. With such a value of this parameter, the
estimate for the tension gradient for ¢=0.1 becomes
AT ~70pN /pm, which is a great tension gradient, comparable
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in fact to the average membrane tension in many cells. (Respective
protein density is 300 /um?). Here we report two simulations with
the parameter value d=0.02um that we performed for front-
loaded proteins to verify that the predictions made from our
simulations with d=0.1um are consistent with simulations at a
smaller protein diameter. Figures S7 and S8 show individual
simulations with 2000 and 3000 transmembrane proteins of
diameter d=0.02um, respectively. These two simulations had
area fractions of ¢=0.023 and 0.036, respectively. These
simulations gave membrane tension drops of 1.03 pN/um and
2.65 pN/um, respectively, on the same order as the values
ipN /um predicted by our analytical fit. Further work is necessary
to determine whether our analytic fit is as good in this small
diameter regime as it is for larger diameters.

Since the membrane is a very viscous fluid, the tension and
velocity distributions in the plane of the membrane reach steady
state for a given transmembrane protein distribution almost
instantaneously [1], so we can predict the tension and flow for a
given transmembrane protein distribution without regard to the
timescale over which these adhesions move relative to the cell
boundary. However, to verify that our steady-state computations
of membrane tension were valid over the timescales relevant for
cell motility, we simulated an individual membrane with 100
embedded transmembrane proteins for 200 seconds. As in our
other simulations, we computed the membrane flow velocity and
tension in the lab frame, but we allowed the membrane boundary
to move forward relative to the adhesions at the speed of the cell.
To remain consistent with our simulations of transmembrane
proteins concentrated near the leading edge, as the cell moved
forward we removed any transmembrane proteins that became
more than 1 um from the leading edge, and replaced those
proteins with new, randomly generated ones within 1 pm of the
leading edge. Movies SI and S2 (online) show the results of this
simulation for both flow and tension. In the movies, all results are
given in the lab frame, but we show a field of view that keeps pace
with the boundary of the membrane. Figure S9 shows in red the
spatial average membrane tension drop over the cell as a function
of time, and in blue shows the predicted tension drop from the
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Figure 4. Computed membrane tension gradient. A: Computed average membrane tension drop as a function of the area fraction of proteins
for uniform distributions of proteins (red) compared with the analytic linear prediction (blue). B: Computed average membrane tension drop as a
function of the area fraction of proteins for front-loaded proteins (red) compared with the analytic linear prediction from equation (16) (blue). The
data in (A-B) are for variable number of proteins 0.1 um in diameter. C: Numerical results (red) and equation (16) fit (blue) for tension drop as a
function of protein diameter. The data points include front loaded simulations and show individual simulation results from the runs with varied
diameters and protein number equal to 100. Other parameters are listed in Table 1.

doi:10.1371/journal.pone.0084524.9g004

analytical fit for this cell, computed from the average value of ¢ for
this cell over the 200 seconds of simulated time.

4. Tank-tread flow versus no membrane flow in the
framework of the moving cell

Examination of the simple 1D model of membrane flow in the
side view of the cell raises an interesting issue that stems from the
fact that in most motile cells, there is a very high density of
attachments of adhesion molecular complexes that go through the
ventral membrane to the actin network, while at the dorsal
membrane, the molecular nature and number of the actin-
membrane attachments is likely very different. This suggests that
the membrane flows differently at the ventral and dorsal surfaces,
as the effective viscous drag coefficients are scaled by protein
densities. Indeed, the analytical solution for the three linear
equations (8-9),

2, 2{
V= Vet 2 V= Voot ——2—

iy L4 a7

implies that if there is the same density of transmembrane proteins
attached to the cytoskeleton on the dorsal and ventral surfaces (so
that {, ={,) then the dorsal and ventral flows would be the same in
the lab coordinate system (meaning no flow in the cell frame). It
would be very surprising if there is the same density of
transmembrane proteins attached to the cytoskeleton on the
dorsal and ventral surfaces and so in general for {, # {;, the model
predicts a tank-tread flow. How can we reconcile this prediction
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with the fact that in a number of cell types no flow in the cell frame
is observed?

There are reports on abnormally low diffusion coefficients of
membrane-associated proteins at the very leading edge of motile
cells [39,40], suggesting that the leading edges harbors especially
high concentrations of proteins, many of which could be linked to
the cytoskeleton. If this is the case, then the tank-tread membrane
flow across the leading edge would be largely obstructed by this
‘protein crust’, and conservation of lipid number would require
that both dorsal and ventral flow in this case be equal to the cell
speed in the lab coordinate system: Vy= Ve, Vy, = Veep. Interest-
ingly, this means that the tensions at the leading edge at ventral
and dorsal membrane surfaces are different (Fig 1E):

7}(‘10”“[ -T,= CdL Veeit, T}’entral —-T,= C‘,L Vel (18)

An experiment testing this prediction — pulling membrane
tethers from ventral and dorsal leading edge and measuring
respective forces — would be very difficult, but not impossible.

5. Influence of membrane-cytoskeleton attachments on
cell locomotion

To investigate the effects of intracellular membrane transport
and force balances at the front and rear of the motile cell on the
membrane flow and tension gradient, we solve four linear
equations (10-13). The solution has the form:
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el =V 1 1
Veenr 0><(+ )X(+V1T5 T,

~1
Nh, gLVO) (19)

This formula shows that the cell speed is accelerated by
mtracellular membrane transport and is slowed down by the
mechanical resistance of the rear (the first term in the second
bracket) and of the front (the second term in the second bracket).
The influence of intracellular membrane transport is determined
by the relative magnitude of the effective speed of this transport,
na, and of the membrane flow speed generated by the stall tension
(membrane tension that stalls the actin protrusion) against the
transmembrane viscous resistance, Ty /(L.

The overall rates of transport between internal membranes and
the plasma membrane vary among different cell types. In
Dictyostelium amoeba it takes a few minutes to replace an area
equal to the cell surface area [45] whereas in fibroblasts it takes
approximately one hour [46]. If it takes 500 s to replace the whole
plasma membrane, while it takes about 100 s to move one body
length, then equation (11) suggests that na(~).02,um/x. From [41],
TSiO3pN /um, and our estimate of the transmembrane viscous
resistance above is CL§0—700pN><S/,um2. Then, na< <Ty/{L
and so the mechanical influence of intracellular membrane
transport on the cell speed is minuscule. However, if the stall
tension is an order of magnitude lower in non-keratocyte cells,
while the membrane resistance is higher, then it is possible that
intracellular membrane transport becomes the limiting factor in
cell locomotion.

Based on the analysis of the keratocyte fragments in [10], the
ratio of the stall force to the free polymerization rate T/ Vp is of
the same order of magnitude as the ratio of the characteristic

tension and motion rate at the rear 7)/V) , so the factor
?% ~ 1. Thus, the influence of the membrane flow on the cell
1 4s
speed is determined by the ratio of the free polymerization rate V)
to the membrane flow speed generated by the stall tension against
the transmembrane viscous resistance, Ty/{L. The free polymer-
ization rate could be a few-fold greater than the observed cell
speed. Taking Vo=02um/s, we estimate the ratio
{LVy/Ts~0.01—0.1, depending on the value of (L. Thus, the
effect of the transmembrane proteins’ viscous drag is small but
could be noticeable in slowing down cell movement. Note that in
the limit of extremely high viscous drag (L, V. ~na, tension at
the front is almost at stall, and tension at the rear is very small.
Membrane tension at the front can also be easily estimated from
equations (10-13):

T] na T] Ts -
L S 2
i Vo) x ( T T <LVO) (20)

Tr=Tsx (1+

This tension is relieved by intracellular membrane transport
(negative term in the first bracket), but this effect is quite small for
keratocytes because according to our estimates na/ Vo< <1. This
transport, however, can significantly relieve tension for slow-
moving cells. The greater the transmembrane proteins’ viscous
resistance (L, the greater the membrane tension at the front, and
in the limit of high viscous resistance the membrane tension
approaches the stall tension. Our estimates show that if
{L~30—700pN x s/um?, then the transmembrane proteins’
viscous drag increases the membrane tension at the leading edge
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by at most ~10%. The approximate value of the leading edge

T\ !
T: V(l)) , and at the rear

tension in this case is Ty = T X (1 +

the tension is almost the same.

Discussion

In this paper, we estimated the gradient in membrane tension
from the rear to the front of the cell necessary to maintain the
membrane flow that keeps up with cell locomotion. This gradient
is predicted to be of the order of a few pN/pm if the area fraction
of the transmembrane protein complexes attached to actin is about
10% and if their diameter is of the order of 0.1 pm. However, if at
the same area fraction the protein diameter is of the order of
20 nm, then the tension gradient becomes tens of pN/um. The
apparent average membrane tension extracted from tether-force
measurement values ranges from a few pN/um in neuronal
growth cones [21] to hundreds of pN/um in keratocytes [22].
Thus, the tension gradient could be comparable to the average
membrane tension and detectable in principle if membrane tethers
are pulled from the front and rear of the cell. The caveat to
interpretation of such measurements though is that it is not easy to
separate the in-plane membrane tension from the effective tension
due to membrane-cytoskeleton attachment. Another interesting
model prediction is that the membrane flow could concentrate in
narrow meandering effective channels on the membrane surface.

Furthermore, this tension gradient is generated by the actin
network pushing the leading edge forward, and this force is of the
order of hundreds of pN/um [22,41]. Thus, in principle a non-
negligible part of this pushing force has to support membrane
transport, in addition to pulling up the cell rear and overcoming
resistance of the extracellular environment. We estimate that if the
area fraction of the actin-attached transmembrane proteins
becomes higher than 10%, the force needed to generate the
membrane flow becomes non-negligible, and at 20% it becomes
rate-limiting. With such a high area fraction, the directed
intracellular membrane traffic can also become the principal
mechanism of membrane recycling.

Our model predicts that in general, if the plasma membrane is
an interconnected fluid domain then a tank-tread mode of the
membrane flow has to be observed. The fact that in the majority of
cases where the membrane flow was measured the flow does not
show such a pattern [14-18] may indicate that at the leading edge
the membrane is not fluid but rather a non-flowing (or very slowly
flowing) ‘protein crust’ interspersed with lipids trapped in protein
‘corrals’. We predict that in this case the membrane tensions at the
ventral and dorsal leading edges are different.

Our model has a number of limitations that stem from
simplifying assumptions that we made in order to increase its
transparency and tractability. We considered a constant rate of
intracellular membrane traffic from the rear to the front, implicitly
assuming that the rates of exocytosis at the front and endocytosis at
the rear are not rate limiting. This issue has to be researched
further. In addition, measurements have revealed that rates of
endocytosis decrease as membrane tension increases [47], and
exocytosis 18 likely to also be tension-dependent [20]. In the future,
the model can be extended to include a more detailed and realistic
sub-model for intracellular membrane recycling. We also did not
explicitly consider a possible contribution to the membrane
tension from adhesion breaking at the very rear of the cell,
however, mathematically, this contribution can be included in
model parameters 77 and V7.

The shear between the substrate and ventral membrane for the
motile cell is negligible. Respective mechanical contributions can
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be estimated as water viscosity times cell speed divided by the
characteristic distance 0.03 um between the ventral surface and the
substrate and multiplied by the cell 1073pN x
0.1um/s
0.03um
we likely underestimate the membrane tension gradient because
we did not consider the effect of hydrodynamic interactions with
multiple actin filaments, some of which are proximal to the plasma
membrane. This effect was recently investigated [24], and it is not
negligible. The authors of [24] computed analytically the
membrane flow and forces generated by a number of proteins
anchoring the actin network to the dorsal and ventral membrane
sandwiched between two solid surfaces and found that the effective
friction between the proteins anchoring the actin network to the
membrane and the surface can propel a cell in the absence of any
direct adhesion mechanism with velocities comparable to velocities
of adhesive cells. The geometry of the problem, methods and goals
of that important study are different from those in our paper, yet
[24] also demonstrates that the membrane flow and associated
forces could be important in the cell motility process.

In addition, effects of inhomogeneous distributions of many
types of lipids and proteins in the plane of the plasma membrane
and of various diffusion coeflicients of the lipids and proteins on
the flow and tension gradient in many cells also remain unclear.
Moreover, most cells migrate in a non-steady way, so time
dependent non-steady solutions for the membrane flow equations
have to be explored to investigate membrane recycling in these
cells. Also, there is often a significant retrograde flow of the actin
network near the leading edge of motile cells. Many transmem-
brane proteins at the dorsal surface attached to actin should then
flow to the rear of the cell, while some adhesions at the ventral
surface remain stationary in the lab frame, and some are also
drifting to the rear [29]. Our model can be easily extended to
simulate this situation, but qualitatively it is clear that the effect of
the actin retrograde flow will lead to further increase of the
resistance to the forward membrane flow and of the tension

length:

s/ um? x x 10um~0.03pN /um. On the other hand,

gradient.

Last, but not least, perhaps the most interesting open problem
stems from the fact that in most cells the plasma membrane
enveloping the cell is not pulled taut, but rather is folded, ruffled
and invaginated [48] in multiple local membrane reservoirs, i.e.
cup-shaped caveolae [49]. These folds enable motile cells to
undergo fast changes in cell surface area [48], and it is likely that a
significant effect of the membrane fold dynamics on the forward
membrane flow and tension gradient will be to ease the flow and
decrease the necessary membrane tension gradient. Future
modeling will clarify how important this effect is.

Methods

The numerical method used to produce the solutions to Stokes
equations is the method of regularized Stokeslets. This method was
mtroduced by Cortez, and the details of it are given in [50]. The
method uses a boundary integral approach to approximate the
solution to Stokes equations driven by a discrete collection of
prescribed point forces. The velocity and pressure at any point can
be computed by summing the contributions to the solution from
each force. Alternatively, the method can be used to find the
solution to Stokes equations for a set of points with prescribed
velocities. For this second approach, a 2Nx2N linear system
(where N is the number of points) is solved to compute the force at
each point. Those forces can then be used to compute the solution
at any point in the plane. We used this second approach to
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prescribe the velocity of the membrane at the boundary of the
membrane and at the boundary of each transmembrane protein.

Discretizing the cell

In order to use the method of regularized Stokeslets to compute
membrane flow, we first needed to discretize both the cell
boundary and the boundaries of the transmembrane proteins into
a collection of points. To determine the spacing between
neighboring points in our discretization, we started by discretizing
the transmembrane proteins. For most of our simulations, we used
circular proteins with a diameter of ¢=0.1 pm. At this radius, the
numerical method worked well with 25 equally spaced proteins
around the boundary of the circle. This gave a spacing of s =
nd=25=0.0126 um between neighboring points. We used this
fixed spacing for all our simulations, including on the cell
boundary and on circular proteins of varying radii. As suggested
in [50], we use a blob function ¢, with the spreading parameter €
chosen to scale with this spacing 5. We found that simply using
€ =15 worked well. Discretizing the cell boundary required us to
modify the shape of the cell. The original cell shape is given by
equations (4,5). To generate equally spaced collections of points
along each of these curves, it is necessary to compute each curve’s
arc length, which requires numerical evaluation of the integral

N

x¥=0 and x=1, which made this arc length computation highly
unstable. To fix this, we modified both curves, defining the shape
of the yfmmzs(\/l—x+5+\/l+x+57\/§),
Vrear = —b(\/l —x+0+V1 +x+5—\/§) —c(xz— 1) for a small
value of the parameter 8. In our simulations, we took § =0.00001,

which was enough for us to compute the arc length without
difficulty.

1+ (3 (1))*dr. The derivatives of (4,5) are both singular near

cell as:

Computing tension drops

With the cell boundary and proteins discretized, it is easy to use
the method of regularized Stokeslet. We simply prescribed
velocities at each of our boundary points according to the

GRE model, and prescribed a zero velocity at each point on a
protein boundary. Inverting the mobility matrix as described in
[50] gives us the appropriate force at each boundary point, from
which we can compute pressure and membrane flow everywhere
within the cell. Our main use of this technique was to integrate
pressure at the leading and rear edges of the cell to determine
average lead and rear pressures, from which we computed the
tension drop over the length of the cell. The only complication to
this approach was that the numerical method causes a sharp jump
in the pressure very near the cell boundaries, as shown in Figure
S10. This jump causes evaluations of the pressure on the boundary
itself to be inaccurate. To rectify the inaccuracies caused by the
jump at the boundary, we simply used pressure values that were
very close to, rather than on, the leading edge. To integrate the
pressure at the leading edge, we instead integrated over a curve
parallel to the leading edge, but offset a distance of 45=0.0503 pm
towards the interior of the cell, and similarly for the trailing edge.
As can be seen in Figure S10, computing pressure values offset by
this small amount was sufficient to avoid error caused by the jumps
at the boundaries.

Supporting Information

Figure S1 Computed membrane flow in cell without
transmembrane proteins. Black lines and arrows give
streamlines of the membrane velocity, while the color plot gives
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the local speed. The speed in this and all next supplementary
figures is reported in units of the steady cell speed.

(PDF)

Figure S2 Computed membrane velocity (top) and
tension (bottom) for 30 uniformly and randomly dis-
tributed proteins of diameter 0.1 um. Proteins are shown in
white in the top figure and black in the bottom figure. The speed
in this and all other figures is reported in units of pm/s. The
tension in this and all next supplementary figures is reported in
units of pN/um.

(PDF)

Figure S3 Computed membrane velocity (top) and
tension (bottom) for 30 front-loaded proteins of diam-
eter 0.1 pm. Proteins are shown in white in the top figure and
black in the bottom figure.

(PDF)

Figure S4 Computed membrane velocity (top) and
tension (bottom) for 100 front-loaded proteins of
diameter 0.04 pm. Proteins are shown in white in the top
figure and black in the bottom figure.

(PDF)

Figure S5 Computed membrane velocity (top) and
tension (bottom) for 100 front-loaded proteins of
diameter 0.1 pm. Proteins are shown in white in the top figure
and black in the bottom figure.

(PDF)

Figure S6 Computed membrane velocity (top) and
tension (bottom) for 100 front-loaded proteins of
diameter 0.2 um. Proteins are shown in white in the top figure

and black in the bottom figure.
(PDF)

Figure S7 Computed
tension (bottom) for
diameter 0.02 pm.
(PDE)

Figure S8 Computed
tension (bottom) for
diameter 0.02 pm.
(PDE)

Figure S9 The membrane tension drop as a function of
time. The membrane tension drop over the cell as a function of

membrane velocity (top) and
2000 front-loaded proteins of

membrane velocity (top) and
3000 front-loaded proteins of
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Movie S1 Membrane flow speed distribution in steadily
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(MP4)

Movie S2 Membrane tension distribution in steadily
moving cell. This movie shows the results for the tension of the
simulations described in the legend of the Movie SI.
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