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Abstract

All parts of motile cells, including the plasma membrane, have to translocate in the direction of locomotion. Both directed
intracellular membrane transport coupled with polarized endo- and exocytosis and fluid flow in the plane of the plasma
membrane can contribute to this overall plasma membrane translocation. It remains unclear how strong a force is required
to generate this flow. We numerically solve Stokes equations for the viscous membrane flow across a flat plasma membrane
surface in the presence of transmembrane proteins attached to the cytoskeleton and find the membrane tension gradient
associated with this flow. This gradient is sensitive to the size and density of the transmembrane proteins attached to the
cytoskeleton and can become significant enough to slow down cell movement. We estimate the influence of intracellular
membrane transport and actin growth and contraction on the tension gradient, and discuss possible ‘tank tread’ flow at
ventral and dorsal surfaces.
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Introduction

The plasma membrane plays several crucial roles in cell life:

separating the inside of the cell from the environment; serving as a

scaffold for regulatory and structural proteins; and organizing

cytoskeletal dynamics [1]. The plasma membrane’s mechanical

characteristics, such as flow [2], tension [1,3] and curvature [4] are

also important for cellular phenomena, especially for cell motility.

Here we mathematically and computationally examine the

mechanical effect that plasma membrane flow and the associated

membrane tension have on motile cell behavior.

Cell migration on surfaces is a fundamental phenomenon

underlying many physiological processes [5]. When a cell

migrates, its parts, including its cytoskeleton, organelles, fluid

cytoplasm and plasma membrane, have to translocate forward

(Fig 1A). In many types of migrating cells, this forward

translocation is driven by the dynamic actomyosin network, one

of the main parts of the cytoskeleton, in which nascent actin

filaments appear and grow at the cell front and push the leading

edge forward, while older parts of the network disassemble and

contract to pull the rear forward [6]. The actomyosin network

adheres to the substrate via molecular complexes which contain

integrins, and which span from actin to the substrate through the

plasma membrane (Fig 1A). These adhesions are crucial for

transducing the effective treadmill of the actomyosin array into

forward propulsion of the cell [7]. The mechanisms by which

organelles and cytoskeletal components move forward are not all

entirely clear, but actomyosin contractions [8], microtubule-based

motors [9] and membrane tension at the cell rear [10] contribute

to these processes in various cells.

The plasma membrane enveloping the cell also has to

translocate from the rear to the front. Because lipids and proteins

in the mosaic membrane diffuse rapidly [11] in the membrane

plane, the membrane can simply flow forward (Fig 1A). The flow

of the plasma membrane can be supplemented, or even replaced,

by directed intracellular movement of membrane vesicles medi-

ated by motor-driven transport, so that endocytosis is responsible

for removing plasma membrane at the rear and exocytosis for

adding membrane at the front (Fig 1D). Indeed, in some cases

there is evidence of polarized membrane trafficking [2,12].

There is sometimes confusion in the literature that stems from

the fact that the membrane flow looks different in the frame of the

moving cell and in the lab coordinate system. In this paper, we will

consider a cell steadily moving forward with the rate Vcell (Fig 1A),

such as fish epithelial keratocyte [13]. We illustrate possible types

of membrane flow in Fig 1B–D. The simplest possibility is if in the

lab coordinate system both ventral and dorsal membranes flow

forward (Fig 1B, blue arrows) at rates equal to the cell speed:

Vv~Vd~Vcell . In the cell frame, there is no flow in this situation.

Such a case was observed in a number of motile cells, including

fibroblasts, fish keratocytes [14–16], leukocytes [17], and Dictyos-

telium amoebae [18]. A more complex possibility is a tank-tread

flow in which, in the lab coordinate system, both ventral and

dorsal membranes flow forward with different speeds; for example,

the dorsal flow is faster (Fig 1C, blue arrows). Conservation of

membrane material requires that in this case VvzVd~2Vcell .

Then in the cell frame the dorsal flow Vd{Vcellð Þ is directed

forward, and the ventral flow Vv{Vcellð Þ is directed rearward

(Fig 1C, red arrows; note that Vd{Vcellð Þ~{ Vv{Vcellð Þ).
Finally, if intracellular traffic is solely responsible for forward

membrane translocation, then in the lab coordinate system the
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membrane is stationary, while in the cell frame the membrane

flows backward with equal rates at the ventral and dorsal surfaces

equal to the cell speed Vcell (Fig 1D, red arrows). Interestingly, in

neuronal growth cones it was observed that membrane flow is

directed from the front to the rear in the cell frame [19].

The membrane flow is determined by a force that drives it. This

force arises from the gradient of the in-plane membrane tension

[20] (Fig. 1A), so that the tension at the front, Tf , is higher than

that at the rear, Tr, and so the more tensed membrane at the front

pulls the plasma membrane forward against weaker tension at the

rear. A front-rear membrane tension difference on the order of

,1 pN/mm was indeed measured between the cell body and the

growth cone in neurons [19], where this tension gradient was

accompanied by membrane flow. For comparison, average

membrane tension in different cell types varies widely, from a

few pN/mm in neuronal growth cones to tens of pN/mm in

melanoma cells [21] to hundreds of pN/mm in rapidly moving fish

keratocytes [22].

Another set of factors determining the membrane flow are the

mechanical properties of the membrane. With respect to out-of-

plane deformations, the membrane has complex, partially elastic

properties, but in-plane, the membrane is an incompressible

viscous fluid [23]. Effective resistance to the flow of the membrane

Figure 1. Possible types of membrane flow. A–E: View of the motile keratocyte cell’s lamellipodium from the side. Shaded ellipsoid is the cell
body. A: Growth of actin network (green) inside the lamellipodium pushes the leading edge forward, resisted by the membrane tension at the front
(yellow arrows,Tf). At the rear, membrane tension (yellow arrows, Tr) pushes forward the disassembling actin networks. Besides the breaking actin
network, breaking adhesions (orange rectangle) also resist rear retraction. Myosin (dark red dumbbells) powered contraction assists rear retraction.
The membrane flows forward in the lab coordinate system (blue arrows) on the ventral and dorsal surfaces. Adhesions (blue rectangles) linked to the
stationary actin network resist this flow at the ventral surface; transmembrane proteins (light blue ovals) resist this flow at the dorsal surface. B–E:
blue (red) arrows show the membrane flow in the lab (moving cell) coordinate systems, respectively. B: One possibility is that the membrane flow is
the same at the ventral and dorsal surfaces. In this case, these flows’ rates are the same as the cell speed in the lab coordinate system, and the flows
are zero in the cell frame. C: Example of tank-tread flow. D: In this case the membrane is transported from the rear to the front solely through the
intracellular transport of membrane vesicles. The membrane flow is zero in the lab coordinate system and directed to the rear in the cell frame. E:
Hypothesis about how the membrane flow can be the same on the ventral and dorsal surfaces for any different protein concentrations at these
surfaces. This can be explained if the membrane flow across the leading edge (black) is obstructed. In this case, the membrane tension at the rear of
the dorsal and ventral surfaces is the same, but rear-to-front gradients of tension are different along the ventral and dorsal surfaces because the same
ventral and dorsal flows are resisted by different protein concentrations at these surfaces. Thus, tensions at the fronts of the ventral and dorsal
surfaces are different. F: View of the motile keratocyte cell’s lamellipodium from above. Shaded ellipsoid is the cell body. Insert: Cartoon of membrane
flow around solid circular obstacles (proteins). Proteins attach to the cytoskeleton and/or the external environment, and so stay stationary (in the lab
frame of reference). Thus, as the cell moves, the membrane is forced to flow around the proteins.
doi:10.1371/journal.pone.0084524.g001
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relative to the substrate arises largely due to transmembrane

proteins, especially integrins, and proteins with domains which

insert into or bind the membrane [24]. According to the mosaic

model of plasma membrane structure, up to 50% of the

membrane surface is occupied by such proteins, with lipid

molecules filling the rest [25]. In general, lipids and membrane

proteins are free to diffuse within the membrane, however, a

subset of transmembrane proteins are restricted by binding to

cytoskeletal structures [26,27]. For example, membrane-associated

proteins such as fodrin, plectin, and ankyrin attach to actin [28].

ERM and Ena/VASP are other examples of the protein families

that associate both with actin and membrane. Given the

abundance and strength of cell-substrate adhesion sites, they also

contribute extensively to membrane-cytoskeleton interactions.

After a brief surge of interest in the role of membrane transport

in cell locomotion [2], the efforts of motility researchers were

largely concentrated on actin and myosin dynamics. The implicit

assumption in most of the literature is that the plasma membrane

flows forward effortlessly in motile cells. However, this assumption

was never critically examined. Indeed, in the large part of the

lamellipodium/lamellum (dynamic motile appendage of the cell,

see Fig. 1), the actomyosin network is either almost stationary

relative to the substrate [13] or undergoes rearward flow [29] in

the direction opposite to that of cell migration. If a fraction of the

transmembrane proteins are associated with this stationary or

rearward moving cytoskeleton, then these proteins are effective

buoys that obstruct the forward membrane flow. How much

resistance these buoys exert on the flow is an open problem (an

initial foray into this problem was recently made [24]). Recently, a

few studies have reported that inhibition of membrane trafficking

in several cell types, for example fibroblasts, endothelial cells and

Dictyostelium, reduces persistent migration [30,31]. One possible

explanation is that membrane transport could be rate-limiting for

cell forward translocation. Here, we compute the geometry of the

plasma membrane flow and associated membrane tension

gradients, and we predict conditions for high and low membrane

tension gradients and for equal versus unequal ventral and dorsal

flows.

Results

1. Model
1.1 Estimate for the drag coefficient of a single cylindrical

protein. Variables and parameters in the models are defined

and explained in Table 1 and Table 2. Saffman and Delbruck [32]

derived an analytic estimate for the drag coefficient of a single

cylindrical protein embedded in a flat, infinite sheet of membrane:

f0~4pm0h= log 2m0h=mdð Þ{cð Þ ð1Þ

Here m0 is the three-dimensional viscosity of the membrane, h is

the thickness of the membrane, m is the viscosity of the fluid

surrounding the membrane, d is the diameter of the protein, and

c = 0.577 is the Euler-Mascheroni constant. Note that the two-

dimensional membrane viscosity g can be related to m0 from

equation (1) by the expression g~m0h, so:

f0~4pg= log 2g=mdð Þ{cð Þ ð2Þ

1.2. Flow and tension distributions on the flat membrane

surface. We model transmembrane proteins or protein com-

plexes, such as adhesions, attached to the actin network as rigid

cylindrical solid objects embedded in the membrane (Fig 1F). We

consider steadily moving cells of a constant shape, like fish

keratocytes (Fig 1F). In keratocytes, the motile appendage – the

lamellipodium – is a flat actomyosin network with a characteristic

canoe-like shape (Fig 1F). Most of this network, other than a small

part at the very rear of the cell, is almost immobile relative to the

surface [33], so we assume that in the lab coordinate system the

transmembrane cylindrical ‘buoys’ are immobile. Following

previous studies [24,34–36], we represent the membrane as a

thin layer of a continuous incompressible viscous fluid. Since the

membrane is extremely thin, we treat it as a 2D fluid, and so we

also treat the membrane domain of a protein as a circular

obstruction in the 2D fluid domain. As the transmembrane buoys

are held stationary during cell migration while the membrane

advances forward in the lab coordinate system, the membrane and

proteins interact mechanically to produce a non-uniform mem-

brane flow, as sketched in Fig 1F. We model the flow as 2D viscous

Stokes flow:

gD~UUz+T~0,+:~UU~0 ð3Þ

Here T is the local membrane tension, and ~UU is the local

membrane velocity in the lab coordinate system. Note that in two

dimensions, the tension (which can be considered as pressure with

opposite sign) has the dimensions Force/Length instead of the

usual Force/Length2 in the 3D Stokes equations. Similarly, the

membrane viscosity has the dimensions of Force 6Time/Length,

rather than the usual 3D viscosity dimensions of Force 6Time/

Length2. Another assumption we make is that we neglect

attachment (between membrane and cytoskeleton) energy contri-

bution to the membrane tension, so in equation (3) T is the in-

plane membrane tension. The length scale in this model is the

characteristic length of the lamellipodium, L~10mm, and the

speed scale is the characteristic keratocyte speed Vcell~0:1mm=s

[13]. The natural membrane tension scale that we use in

numerical calculations is gVcell=L.

1.3. Cell shape, boundary conditions and protein

distributions. We solve equation (3) for a flat membrane

domain, which represents either the dorsal or ventral membrane

surface. We define the shape of this domain similar to that of the

keratocyte lamellipodium (Fig 2A) and represent the boundary of

this domain by the equations:

yfront~s
ffiffiffiffiffiffiffiffiffiffi
1{x
p

z
ffiffiffiffiffiffiffiffiffiffi
1zx
p

{
ffiffiffi
2
p� �

ð4Þ

for the front half of the boundary, and

yrear~{b
ffiffiffiffiffiffiffiffiffiffi
1{x
p

z
ffiffiffiffiffiffiffiffiffiffi
1zx
p

{
ffiffiffi
2
p� �

{c x2{1
� �

ð5Þ

for the rear half in the Cartesian coordinate system with the y-axis

passing from the rear to the front through the middle of the cell,

where s~1,b~1,c~0:4. Here the length is non-dimensionalized

using the lamellipodial length scale defined above.

We follow the Graded Radial Extension model for the steady

lamellipodial locomotion [16] and require that at each point along

the lamellipodial boundary the local membrane velocity is directed

normal to the boundary, with magnitude

~UU xð Þ
�� ��~Vcell cos h xð Þð Þ ð6Þ

Membrane Flow and Tension in Motile Cells
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where h xð Þ is the angle between the direction of cell motion and

the normal to the boundary, as shown in Fig 2A. This boundary

condition ensures that the plasma membrane translocates forward

in a manner that preserves a steady cell shape. In non-dimensional

units, ~UU xð Þ
�� ��~ cos h xð Þð Þ.

We use the no-slip boundary condition ~UU~0 on the 2D circular

surface of each protein. After the Stokes flow equation (3) with

these boundary conditions is solved numerically (Methods), we

calculate the average membrane tension at the front and rear

edges of the cell (shown in Fig. 2B) as:

Tf ,r~

ð
{0:75vxv0:75

T sf ,r

� �
dsf ,r=

ð
{0:75vxv0:75

dsf ,r

� 	
ð7Þ

where Tf and Tr are the average membrane tensions at the front

and rear edges, respectively, and sf and sr are the arclengths along

the front and rear boundaries, yfront xð Þ and yrear xð Þ, respectively.

We investigate the effect of transmembrane proteins or protein

complexes on membrane tension by randomly placing circular

obstructions in the interior of the membrane. We generate protein

positions according to one of two distributions (Fig 2C,D). Proteins

are either uniformly placed throughout the interior of the

membrane (Fig 2C), or are restricted to being near the front of

the cell (Fig 2D). We chose this latter distribution to account for

the observations that at the ventral surface the adhesion complexes

and respective traction are concentrated near the leading edge of

the cell [37,38] and that the membrane is loaded with proteins at

the leading edge [39,40]. For these front-loaded proteins, we

required that each protein be entirely in the front half of the cell

(defined by the line y = 0), and that the protein be within 1 mm of

the front half of the cell boundary. For both the uniform and the

front-loaded distributions, protein placement is generated in

several steps: 1. Points are sampled from a uniform random

distribution covering the entire cell. These points will become the

centers for our circular proteins. 2. For each generated point, we

check to ensure that it is in the correct region of space (either the

cell interior for the uniform distribution or the front 1 mmof the

cell for the front-loaded distribution). Any points failing this check

are replaced by new random points. For numerical accuracy, we

also require that all points be at least 0.25 mmaway from the

membrane boundary. 3. To ensure that none of the circular

proteins overlap with one another, we impose a short range

repulsive interaction on neighboring points. This repulsion moves

the protein centers until all centers are a distance of at least one

diameter apart from one another.

1.4. Tank-tread flow at ventral and dorsal surfaces. So

far, we have described the membrane flow in the flat plane of

either the ventral or the dorsal surface of the cell in the case when

the ventral and dorsal flows are the same. The computational 2D

model is useful for estimates of the membrane tension gradient and

transmembrane protein resistance to the flow, and for visualizing

the non-uniform membrane flow in the membrane plane. In the

more general cases when either the flows are different or effects of

actin mechanics and intracellular membrane transport are

included, full simulation of the 2D flow would be difficult because

of the complex actin mechanics and geometry of the curved

plasma membrane at the rear and leading edges of the cell and

unknown distribution of intracellular transport at the edges.

Table 1. Parameters in the models.

Variable notationValue Meaning Reference

Vcell *0:1mm=s cell speed [13]

m *10{3pN|s=mm2 viscosity of aqueous medium [32]

g *0:01pN|s=mm two-dimensional membrane viscosity [51]

d 0:1mm Adhesion complex diameter [43]

0:02mm Transmembrane protein diameter [44]

c 0.577 Euler-Mascheroni constant [42]

l 10mm Order of magnitude ide-to-side lamellipodial width [13]

L 10mm front-to-rear lamellipodial length [13]

N n/d, varies number of transmembrane proteins linked to actin NA

w *0:1 10%ð Þ area fraction of the transmembrane proteins linked to actin Assumed

f0 &0:02pN|s=mm drag coefficient of a single cylindrical protein embedded
in a flat, infinite sheet of membrane

Computed in this paper

s,b,c s~1,b~1,c~0:4 parameters defining the lamellipodial shape Chosen in this paper to qualitatively fit
the observed shape

fv ,fd ,f depends on other parameters effective combined viscous drags of the transmembrane
buoys in the ventral and dorsal surfaces

Computed in this paper

n Defined in combination with
a,na*0:02mm=s

intracellular membrane vesicles per second per surface [45,46]

a Defined in combination with
n,na*0:02mm=s

average membrane area per vesicle [45,46]

Ts *1000pN=mm characteristic membrane tension that stalls protrusion [22,41]

V1 Defined in combination with other
parameters

characteristic retraction speed of the cell rear,
V0

V1

T1

Ts

*1
[10]

T1 Defined in combination with other
parameters

characteristic membrane tension at the rear,
V0

V1

T1

Ts

*1
[10]

doi:10.1371/journal.pone.0084524.t001
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However, simple estimates in the general cases can be made if we

consider a simplified 1D model of the plasma membrane in the

side view of the cell in the lab frame (Fig 1A). In this model, we

approximate the flows in the ventral and dorsal planes as uniform

(this approximation is in general very good, as shown in the results

reported below) with rates Vv and Vd , respectively. Let fv and fd

be the effective viscous resistance (due to the transmembrane

proteins) of the ventral and dorsal surfaces, respectively. Then the

membrane tension gradient between the front and rear of the cell

is:

Tf {Tr

� �
=L~fdVd~fvVv ð8Þ

for the dorsal and ventral surfaces. Note that coefficients fv and fd

have different dimensions (Force 6 Time/Length3) than that of

the protein viscous drag f0. This can be best understood in the

example of the linear approximation, when the drag imposed by

N proteins is additive. In this case, if N proteins, each

characterized by the protein viscous drag f0, are distributed over

the rectangular region of the membrane in the presence of the

uniform flow with speed U , with the leading and rear edge length l

and the rear-to-front length L, then the total resistance force from

the proteins is equal to f0NU , and the rear-to-front difference in

membrane tension can be estimated is Tf {Tr

� �
~f0NU=l.

Introducing average density of proteins ~NN , we can write:

Tf {Tr

� �
~f0

~NNLlU=l, and Tf {Tr

� �
=L~ f0

~NN
� �

U . From com-

parison with equation (8), it is clear that coefficients fv and fd have

dimension Force 6 Time/Length3 because the protein viscous

drag f0 has dimensions Force 6 Time/Length, and the average

density of proteins ~NN has dimensions 1/Length2.

We complement equations (8) with a third equation for

conservation of membrane material for the plasma membrane:

VvzVd~2Vcell : ð9Þ

We will solve the three equations (8–9) for the three unknowns

( Tf {Tr

� �
,Vd ,Vv) below.

1.5. Effects of actin pushing at the front, actin contraction

at the rear and intracellular membrane transport. Another

similar 1D model considers the effect of intracellular membrane

transport and force balances at the front and rear of the motile cell

on both the membrane flow and the tension gradient. For

simplicity, in this model we consider equal viscous resistance f for

the ventral and dorsal surfaces, and therefore equal respective

membrane flows equal to Vmemb at these two surfaces. In this case,

the force balance for the membrane flow and membrane tension

gradient has the form:

Tf {Tr~fLVmemb ð10Þ

Table 2. Variables in the models.

Variable
notation Meaning Dimension

Vv,Vmemb Speed of the membrane flow at the
ventral surface

mm=s

Vd ,Vmemb Speed of the membrane flow at the
dorsal surface

mm=s

Tr Membrane tension at the rear pN=mm

Tf Membrane tension at the front pN=mm

~UU Local membrane flow rate mm=s

x,yfront,yrear,sf ,r Coordinates describing lamellipodial
boundary

mm

h xð Þ Angle between the direction of cell
motion and the normal to the boundary

n/d

doi:10.1371/journal.pone.0084524.t002

Figure 2. Lamellipodial shape and protein and velocity distributions. Shape of cell’s lamellipodium given by equations (4–5). A: Sketch of
velocity boundary condition (equation (6)) given by the graded radial extension model. Velocity at the boundary is normal to the boundary, and
decreases in magnitude from a maximum when the normal points in the direction of cell motion to zero when the boundary is tangent to the
direction of motion. B: Membrane boundary with leading and rear edges in red. We integrate tension over these red curves to compute the average
tension at the front and rear of the cell, which allows us to compute the tension drop in the membrane. C–D: Randomly generated placements of
transmembrane proteins distributed uniformly throughout the membrane (C) and distributed within 1 mm of the cell front (D).
doi:10.1371/journal.pone.0084524.g002
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Let n intracellular membrane vesicles with average membrane

area a per vesicle per second per surface (dorsal or ventral) be

transported from the rear to the front of the cell (Fig 1D) per one

micron of the leading edge. Then the protrusion length DL per

time Dt is equal to DL~VmembDtznaDt~VcellDt. Therefore, the

cell speed, DL/Dt, is equal to:

Vcell~Vmembzna ð11Þ

The two equations (10–11) for the four unknown variables

(Vcell ,Vmemb,Tf ,Tr) have to be complemented by the force

balances at the front and rear of the cell. At the front, we use

the force-velocity relation for the actin network polymerizing

against the membrane load:

Vcell~V0 1{
Tf

Ts

� 	
ð12Þ

Here V0 is the free polymerization rate in the absence of load,

and the expression in brackets is the force-dependent factor that

accounts for the slowing down of protrusion by membrane tension.

Parameter Ts is the stall tension at which the protrusion halts. For

simplicity we use the linearized force-velocity relation, which is an

approximation to the non-linear relations measured and fitted for

keratocytes [13,41]. At the rear, we use the force-velocity relation

for the disassembly-weakened actin network being crushed and

hauled forward by the membrane tension, which was suggested

and fitted to the data in [10]:

Vcell~V1
Tr

T1
ð13Þ

Here V1 is the rate of the cell rear retraction generated when

the membrane tension at the cell rear is equal to parameter T1.

Below, we solve the four equations (10–13) analytically, allowing

us to examine the effects of intracellular transport and actin

mechanics on membrane flow and tension gradients.

2. 2D membrane flow and tension distributions in the
plane of the membrane

We performed numerical simulations on flat membrane

domains, which can represent either ventral or dorsal membrane

surfaces. For both uniform and front-loaded protein distributions,

we performed simulations with total numbers of proteins ranging

from N~0 to 350. Fig 3 shows representative simulation results

for both uniform and front-loaded distributions. Figs 3A,C and

B,D show maps of magnitude and directions of flow and tension

distributions, respectively, in sample simulations. More results at

other protein densities and distributions are shown in Figures S1–

S6. Interestingly, the flow concentrates in narrow meandering

effective channels on the membrane surface. In these channels,

which are effectively paths devoid of the attached proteins, the

flow rate could be a few-fold higher than the cell speed.

For each simulation, we calculated the average tension drop

across the cell as described above. We performed 10 simulations at

each number of proteins, and computed the average front to rear

tension drop over all runs at each protein number. The membrane

tension increases almost linearly from the rear to the front for the

random uniform distribution of the attached transmembrane

proteins. When the proteins are front-loaded, the same proteins

number as in the uniform case produces a greater total average

tension increase from the rear to the front. This suggests that as the

proteins become more tightly packed, they restrict the flow more

than an equal number of well-spaced proteins, as expected.

3. Dependence of the membrane tension gradient on
transmembrane protein size and area fraction in the 2D
model

No matter how much resistance the transmembrane proteins

generate, the average membrane flow rate in the 2D model is of

the order of the cell speed. It is the membrane tension gradient

that must adjust to maintain this flow rate. The Saffman-Delbruck

formula (2) allows us to estimate the drag due to one

transmembrane protein. For the parameter values given in

Table 1, the drag coefficient is f0&0:02pN|s=mm. In the linear

approximation, the drag imposed by N proteins is additive, and

the rear-to-front difference in membrane tension can be estimated

as:

Tf {Tr~f0NU=l ð14Þ

where l is the lateral width of the lamellipodium.

The computations of the 2D flow allow us to investigate how the

rear-to-front difference in membrane tension depends on protein

density. We plotted respective results in Fig 4A,B. At low protein

densities, there is good agreement between the analytic prediction

(14) and our numerical results (Fig 4A). Our numerical simulations

show that this linear approximation, however, is valid only up to

the density of about one ‘buoy’ per square micron (or area fraction

w occupied by proteins less than 1%), in which case

Tf {Tr~fNU=l*0:01pN=mm, which is very low compared to

the measurements in the neuronal growth cone and which is well

below the experimental noise in the tether-pulling experiments.

At higher protein densities, however, both the uniform and

front-loaded protein distributions quickly produce a much larger

tension drop than would be predicted by the linear theory because

closely spaced proteins affect the flow in a non-additive way, which

is a well-known hydrodynamic phenomenon. Indeed, there is a

certain analogy between the 2D membrane flow through a ‘maze’

of disks and 3D groundwater flow through a maze of spheroid

objects. In the latter case, the well-known Kozeny-Carman

equation describes the pressure drop DP for a fluid of viscosity m
flowing a distance L through a porous medium at an average

velocity �UU [42]:

DP~
180mL �UU

W2
s d2

w2

1{wð Þ3
ð15Þ

The porous medium is assumed to be made up of randomly

placed, immovable particles that can be described by their

sphericity Ws, which is a measure of how spherical the particles

are (Ws = 1 for spheres), the diameter d of a sphere having the

same volume as one of the particles, and the volume fraction w,

which is the fraction of total volume that is occupied by the solid

particles.

We fitted our numerical data to a similar equation of the form:

DT~
CgL �UU

d2

w2

1{wð Þ3
zq,w~

p

4

N

A
d2 ð16Þ
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Here q&0:01pN=mm is a small correction that stems from the

fact that there is a small viscous resistance to the membrane flow

even in the absence of the protein obstacles, C is the dimensionless

parameter to be found from fitting, and A is the area on which N
disc-like obstacles are randomly placed. We minimized the least

squared error over all our simulation runs, and found that for

C&200 equation (16) is an excellent fit for our simulations

(Fig 4B). Note that for values of the area fraction w below a few

percent, the numerical data shows agreement with the linear

tension-density relation, not with the Kozeny-Carman quadratic

relation. The reason is that the Kozeny-Carman relation comes

partially from considering flow through narrow, twisting channels,

and the geometry of the flow becomes quite different at very low

protein density. However, tension gradients of biological interest

develop at higher protein density, so for practical purposes

equation (16) is valid. To additionally test equation (16) we did

computations with N~100 proteins varying the protein diameter.

Note that when parameter d varies, so does parameter w, so we

plotted the results as shown in Fig 4C. The fit generated by

equation (16) to this numerical data is good.

It is unknown what fraction of the transmembrane proteins

covering a few tens of per cent of the plasma membrane area is

attached to the cytoskeleton. It would be reasonable to assume that

about 10% of the whole membrane area is covered by such attached

proteins. Assuming w = 0.1, we use equation (16) to estimate the

tension gradient for d~0:1mm (respective protein density is

*10=mm2): DT&
200| 0:01pN:s=mmð Þ|10mm|0:1mm=s

0:1mmð Þ2
0:12

0:93

&3
pN

mm
.

This estimate is very similar to the measurement in the neuronal

growth cones [17].

So far we reported the simulations using the value of d~0:1mm
characteristic for nascent adhesion protein complexes at the

leading edge [43]. Single proteins are smaller; the characteristic

size is d~0:02mm [44]. With such a value of this parameter, the

estimate for the tension gradient for w = 0.1 becomes

DT&70pN=mm, which is a great tension gradient, comparable

in fact to the average membrane tension in many cells. (Respective

protein density is ~3300=mm2). Here we report two simulations with

the parameter value d~0:02mm that we performed for front-

loaded proteins to verify that the predictions made from our

simulations with d~0:1mm are consistent with simulations at a

smaller protein diameter. Figures S7 and S8 show individual

simulations with 2000 and 3000 transmembrane proteins of

diameter d~0:02mm, respectively. These two simulations had

area fractions of w = 0.023 and 0.036, respectively. These

simulations gave membrane tension drops of 1.03 pN=mm and

2.65 pN=mm, respectively, on the same order as the values
~11pN=mm predicted by our analytical fit. Further work is necessary

to determine whether our analytic fit is as good in this small

diameter regime as it is for larger diameters.

Since the membrane is a very viscous fluid, the tension and

velocity distributions in the plane of the membrane reach steady

state for a given transmembrane protein distribution almost

instantaneously [1], so we can predict the tension and flow for a

given transmembrane protein distribution without regard to the

timescale over which these adhesions move relative to the cell

boundary. However, to verify that our steady-state computations

of membrane tension were valid over the timescales relevant for

cell motility, we simulated an individual membrane with 100

embedded transmembrane proteins for 200 seconds. As in our

other simulations, we computed the membrane flow velocity and

tension in the lab frame, but we allowed the membrane boundary

to move forward relative to the adhesions at the speed of the cell.

To remain consistent with our simulations of transmembrane

proteins concentrated near the leading edge, as the cell moved

forward we removed any transmembrane proteins that became

more than 1 mm from the leading edge, and replaced those

proteins with new, randomly generated ones within 1 mm of the

leading edge. Movies S1 and S2 (online) show the results of this

simulation for both flow and tension. In the movies, all results are

given in the lab frame, but we show a field of view that keeps pace

with the boundary of the membrane. Figure S9 shows in red the

spatial average membrane tension drop over the cell as a function

of time, and in blue shows the predicted tension drop from the

Figure 3. Computed membrane velocity and tension. A–B: Computed membrane velocity (A and C, units of cell speed) and tension (B and D,
units of pN/mm) for 350 uniformly distributed (A,B) and front loaded (C,D) proteins. Proteins are shown in white in A,C and black in B,D.
doi:10.1371/journal.pone.0084524.g003
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analytical fit for this cell, computed from the average value of w for

this cell over the 200 seconds of simulated time.

4. Tank-tread flow versus no membrane flow in the
framework of the moving cell

Examination of the simple 1D model of membrane flow in the

side view of the cell raises an interesting issue that stems from the

fact that in most motile cells, there is a very high density of

attachments of adhesion molecular complexes that go through the

ventral membrane to the actin network, while at the dorsal

membrane, the molecular nature and number of the actin-

membrane attachments is likely very different. This suggests that

the membrane flows differently at the ventral and dorsal surfaces,

as the effective viscous drag coefficients are scaled by protein

densities. Indeed, the analytical solution for the three linear

equations (8–9),

Vd~Vcell

2fv

fvzfd

,Vv~Vcell

2fd

fvzfd

, ð17Þ

implies that if there is the same density of transmembrane proteins

attached to the cytoskeleton on the dorsal and ventral surfaces (so

that fv~fd ) then the dorsal and ventral flows would be the same in

the lab coordinate system (meaning no flow in the cell frame). It

would be very surprising if there is the same density of

transmembrane proteins attached to the cytoskeleton on the

dorsal and ventral surfaces and so in general for fv=fd , the model

predicts a tank-tread flow. How can we reconcile this prediction

with the fact that in a number of cell types no flow in the cell frame

is observed?

There are reports on abnormally low diffusion coefficients of

membrane-associated proteins at the very leading edge of motile

cells [39,40], suggesting that the leading edges harbors especially

high concentrations of proteins, many of which could be linked to

the cytoskeleton. If this is the case, then the tank-tread membrane

flow across the leading edge would be largely obstructed by this

‘protein crust’, and conservation of lipid number would require

that both dorsal and ventral flow in this case be equal to the cell

speed in the lab coordinate system: Vd~Vcell ,Vv~Vcell . Interest-

ingly, this means that the tensions at the leading edge at ventral

and dorsal membrane surfaces are different (Fig 1E):

Tdorsal
f {Tr~fdLVcell ,T

ventral
f {Tr~fvLVcell ð18Þ

An experiment testing this prediction – pulling membrane

tethers from ventral and dorsal leading edge and measuring

respective forces – would be very difficult, but not impossible.

5. Influence of membrane-cytoskeleton attachments on
cell locomotion

To investigate the effects of intracellular membrane transport

and force balances at the front and rear of the motile cell on the

membrane flow and tension gradient, we solve four linear

equations (10–13). The solution has the form:

Figure 4. Computed membrane tension gradient. A: Computed average membrane tension drop as a function of the area fraction of proteins
for uniform distributions of proteins (red) compared with the analytic linear prediction (blue). B: Computed average membrane tension drop as a
function of the area fraction of proteins for front-loaded proteins (red) compared with the analytic linear prediction from equation (16) (blue). The
data in (A–B) are for variable number of proteins 0.1 mm in diameter. C: Numerical results (red) and equation (16) fit (blue) for tension drop as a
function of protein diameter. The data points include front loaded simulations and show individual simulation results from the runs with varied
diameters and protein number equal to 100. Other parameters are listed in Table 1.
doi:10.1371/journal.pone.0084524.g004
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Vcell~V0| 1z
nafL

Ts

� 	
| 1z

V0

V1

T1

Ts

z
fLV0

Ts

� 	{1

ð19Þ

This formula shows that the cell speed is accelerated by

intracellular membrane transport and is slowed down by the

mechanical resistance of the rear (the first term in the second

bracket) and of the front (the second term in the second bracket).

The influence of intracellular membrane transport is determined

by the relative magnitude of the effective speed of this transport,

na, and of the membrane flow speed generated by the stall tension

(membrane tension that stalls the actin protrusion) against the

transmembrane viscous resistance, Ts=fL.

The overall rates of transport between internal membranes and

the plasma membrane vary among different cell types. In

Dictyostelium amoeba it takes a few minutes to replace an area

equal to the cell surface area [45] whereas in fibroblasts it takes

approximately one hour [46]. If it takes 500 s to replace the whole

plasma membrane, while it takes about 100 s to move one body

length, then equation (11) suggests that na~00:02mm=s. From [41],

Ts
~1103pN=mm, and our estimate of the transmembrane viscous

resistance above is fL~330{700pN|s=mm2. Then, navvTs=fL
and so the mechanical influence of intracellular membrane

transport on the cell speed is minuscule. However, if the stall

tension is an order of magnitude lower in non-keratocyte cells,

while the membrane resistance is higher, then it is possible that

intracellular membrane transport becomes the limiting factor in

cell locomotion.

Based on the analysis of the keratocyte fragments in [10], the

ratio of the stall force to the free polymerization rate Ts=V0 is of

the same order of magnitude as the ratio of the characteristic

tension and motion rate at the rear T1=V1 , so the factor
V0

V1

T1

Ts

*1. Thus, the influence of the membrane flow on the cell

speed is determined by the ratio of the free polymerization rate V0

to the membrane flow speed generated by the stall tension against

the transmembrane viscous resistance, Ts=fL. The free polymer-

ization rate could be a few-fold greater than the observed cell

speed. Taking V0~0:2mm=s, we estimate the ratio

fLV0=Ts*0:01{0:1, depending on the value of fL. Thus, the

effect of the transmembrane proteins’ viscous drag is small but

could be noticeable in slowing down cell movement. Note that in

the limit of extremely high viscous drag fL, Vcell&na, tension at

the front is almost at stall, and tension at the rear is very small.

Membrane tension at the front can also be easily estimated from

equations (10–13):

Tf ~Ts| 1z
T1

fLV1
{

na

V0

� 	
| 1z

T1

fLV1
z

Ts

fLV0

� 	{1

ð20Þ

This tension is relieved by intracellular membrane transport

(negative term in the first bracket), but this effect is quite small for

keratocytes because according to our estimates na=V0vv1. This

transport, however, can significantly relieve tension for slow-

moving cells. The greater the transmembrane proteins’ viscous

resistance fL, the greater the membrane tension at the front, and

in the limit of high viscous resistance the membrane tension

approaches the stall tension. Our estimates show that if

fL*30{700pN|s=mm2, then the transmembrane proteins’

viscous drag increases the membrane tension at the leading edge

by at most ,10%. The approximate value of the leading edge

tension in this case is Tf ~Ts| 1z
TsV1

T1V0

� 	{1

, and at the rear

the tension is almost the same.

Discussion

In this paper, we estimated the gradient in membrane tension

from the rear to the front of the cell necessary to maintain the

membrane flow that keeps up with cell locomotion. This gradient

is predicted to be of the order of a few pN/mm if the area fraction

of the transmembrane protein complexes attached to actin is about

10% and if their diameter is of the order of 0.1 mm. However, if at

the same area fraction the protein diameter is of the order of

20 nm, then the tension gradient becomes tens of pN/mm. The

apparent average membrane tension extracted from tether-force

measurement values ranges from a few pN/mm in neuronal

growth cones [21] to hundreds of pN/mm in keratocytes [22].

Thus, the tension gradient could be comparable to the average

membrane tension and detectable in principle if membrane tethers

are pulled from the front and rear of the cell. The caveat to

interpretation of such measurements though is that it is not easy to

separate the in-plane membrane tension from the effective tension

due to membrane-cytoskeleton attachment. Another interesting

model prediction is that the membrane flow could concentrate in

narrow meandering effective channels on the membrane surface.

Furthermore, this tension gradient is generated by the actin

network pushing the leading edge forward, and this force is of the

order of hundreds of pN/mm [22,41]. Thus, in principle a non-

negligible part of this pushing force has to support membrane

transport, in addition to pulling up the cell rear and overcoming

resistance of the extracellular environment. We estimate that if the

area fraction of the actin-attached transmembrane proteins

becomes higher than 10%, the force needed to generate the

membrane flow becomes non-negligible, and at 20% it becomes

rate-limiting. With such a high area fraction, the directed

intracellular membrane traffic can also become the principal

mechanism of membrane recycling.

Our model predicts that in general, if the plasma membrane is

an interconnected fluid domain then a tank-tread mode of the

membrane flow has to be observed. The fact that in the majority of

cases where the membrane flow was measured the flow does not

show such a pattern [14–18] may indicate that at the leading edge

the membrane is not fluid but rather a non-flowing (or very slowly

flowing) ‘protein crust’ interspersed with lipids trapped in protein

‘corrals’. We predict that in this case the membrane tensions at the

ventral and dorsal leading edges are different.

Our model has a number of limitations that stem from

simplifying assumptions that we made in order to increase its

transparency and tractability. We considered a constant rate of

intracellular membrane traffic from the rear to the front, implicitly

assuming that the rates of exocytosis at the front and endocytosis at

the rear are not rate limiting. This issue has to be researched

further. In addition, measurements have revealed that rates of

endocytosis decrease as membrane tension increases [47], and

exocytosis is likely to also be tension-dependent [20]. In the future,

the model can be extended to include a more detailed and realistic

sub-model for intracellular membrane recycling. We also did not

explicitly consider a possible contribution to the membrane

tension from adhesion breaking at the very rear of the cell,

however, mathematically, this contribution can be included in

model parameters T1 and V1.

The shear between the substrate and ventral membrane for the

motile cell is negligible. Respective mechanical contributions can
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be estimated as water viscosity times cell speed divided by the

characteristic distance ~00:03mm between the ventral surface and the

substrate and multiplied by the cell length: 10{3pN|

s=mm2|
0:1mm=s

0:03mm
|10mm*0:03pN=mm. On the other hand,

we likely underestimate the membrane tension gradient because

we did not consider the effect of hydrodynamic interactions with

multiple actin filaments, some of which are proximal to the plasma

membrane. This effect was recently investigated [24], and it is not

negligible. The authors of [24] computed analytically the

membrane flow and forces generated by a number of proteins

anchoring the actin network to the dorsal and ventral membrane

sandwiched between two solid surfaces and found that the effective

friction between the proteins anchoring the actin network to the

membrane and the surface can propel a cell in the absence of any

direct adhesion mechanism with velocities comparable to velocities

of adhesive cells. The geometry of the problem, methods and goals

of that important study are different from those in our paper, yet

[24] also demonstrates that the membrane flow and associated

forces could be important in the cell motility process.

In addition, effects of inhomogeneous distributions of many

types of lipids and proteins in the plane of the plasma membrane

and of various diffusion coefficients of the lipids and proteins on

the flow and tension gradient in many cells also remain unclear.

Moreover, most cells migrate in a non-steady way, so time

dependent non-steady solutions for the membrane flow equations

have to be explored to investigate membrane recycling in these

cells. Also, there is often a significant retrograde flow of the actin

network near the leading edge of motile cells. Many transmem-

brane proteins at the dorsal surface attached to actin should then

flow to the rear of the cell, while some adhesions at the ventral

surface remain stationary in the lab frame, and some are also

drifting to the rear [29]. Our model can be easily extended to

simulate this situation, but qualitatively it is clear that the effect of

the actin retrograde flow will lead to further increase of the

resistance to the forward membrane flow and of the tension

gradient.

Last, but not least, perhaps the most interesting open problem

stems from the fact that in most cells the plasma membrane

enveloping the cell is not pulled taut, but rather is folded, ruffled

and invaginated [48] in multiple local membrane reservoirs, i.e.

cup-shaped caveolae [49]. These folds enable motile cells to

undergo fast changes in cell surface area [48], and it is likely that a

significant effect of the membrane fold dynamics on the forward

membrane flow and tension gradient will be to ease the flow and

decrease the necessary membrane tension gradient. Future

modeling will clarify how important this effect is.

Methods

The numerical method used to produce the solutions to Stokes

equations is the method of regularized Stokeslets. This method was

introduced by Cortez, and the details of it are given in [50]. The

method uses a boundary integral approach to approximate the

solution to Stokes equations driven by a discrete collection of

prescribed point forces. The velocity and pressure at any point can

be computed by summing the contributions to the solution from

each force. Alternatively, the method can be used to find the

solution to Stokes equations for a set of points with prescribed

velocities. For this second approach, a 2N62N linear system

(where N is the number of points) is solved to compute the force at

each point. Those forces can then be used to compute the solution

at any point in the plane. We used this second approach to

prescribe the velocity of the membrane at the boundary of the

membrane and at the boundary of each transmembrane protein.

Discretizing the cell
In order to use the method of regularized Stokeslets to compute

membrane flow, we first needed to discretize both the cell

boundary and the boundaries of the transmembrane proteins into

a collection of points. To determine the spacing between

neighboring points in our discretization, we started by discretizing

the transmembrane proteins. For most of our simulations, we used

circular proteins with a diameter of d = 0.1 mm. At this radius, the

numerical method worked well with 25 equally spaced proteins

around the boundary of the circle. This gave a spacing of s =

pd = 25 = 0.0126 mm between neighboring points. We used this

fixed spacing for all our simulations, including on the cell

boundary and on circular proteins of varying radii. As suggested

in [50], we use a blob function we with the spreading parameter e
chosen to scale with this spacing s. We found that simply using

e= s worked well. Discretizing the cell boundary required us to

modify the shape of the cell. The original cell shape is given by

equations (4,5). To generate equally spaced collections of points

along each of these curves, it is necessary to compute each curve’s

arc length, which requires numerical evaluation of the integralÐ x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z y0 tð Þð Þ2

q
dt. The derivatives of (4,5) are both singular near

x = 0 and x = 1, which made this arc length computation highly

unstable. To fix this, we modified both curves, defining the shape

of the cell as: yfront~s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{xzd
p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zxzd
p

{
ffiffiffi
2
p� �

,

yrear~{b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{xzd
p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zxzd
p

{
ffiffiffi
2
p� �

{c x2{1
� �

for a small

value of the parameter d. In our simulations, we took d= 0.00001,

which was enough for us to compute the arc length without

difficulty.

Computing tension drops
With the cell boundary and proteins discretized, it is easy to use

the method of regularized Stokeslet. We simply prescribed

velocities at each of our boundary points according to the

GRE model, and prescribed a zero velocity at each point on a

protein boundary. Inverting the mobility matrix as described in

[50] gives us the appropriate force at each boundary point, from

which we can compute pressure and membrane flow everywhere

within the cell. Our main use of this technique was to integrate

pressure at the leading and rear edges of the cell to determine

average lead and rear pressures, from which we computed the

tension drop over the length of the cell. The only complication to

this approach was that the numerical method causes a sharp jump

in the pressure very near the cell boundaries, as shown in Figure

S10. This jump causes evaluations of the pressure on the boundary

itself to be inaccurate. To rectify the inaccuracies caused by the

jump at the boundary, we simply used pressure values that were

very close to, rather than on, the leading edge. To integrate the

pressure at the leading edge, we instead integrated over a curve

parallel to the leading edge, but offset a distance of 4s = 0.0503 mm

towards the interior of the cell, and similarly for the trailing edge.

As can be seen in Figure S10, computing pressure values offset by

this small amount was sufficient to avoid error caused by the jumps

at the boundaries.

Supporting Information

Figure S1 Computed membrane flow in cell without
transmembrane proteins. Black lines and arrows give

streamlines of the membrane velocity, while the color plot gives
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the local speed. The speed in this and all next supplementary

figures is reported in units of the steady cell speed.

(PDF)

Figure S2 Computed membrane velocity (top) and
tension (bottom) for 30 uniformly and randomly dis-
tributed proteins of diameter 0.1 mm. Proteins are shown in

white in the top figure and black in the bottom figure. The speed

in this and all other figures is reported in units of mm/s. The

tension in this and all next supplementary figures is reported in

units of pN/mm.

(PDF)

Figure S3 Computed membrane velocity (top) and
tension (bottom) for 30 front-loaded proteins of diam-
eter 0.1 mm. Proteins are shown in white in the top figure and

black in the bottom figure.

(PDF)

Figure S4 Computed membrane velocity (top) and
tension (bottom) for 100 front-loaded proteins of
diameter 0.04 mm. Proteins are shown in white in the top

figure and black in the bottom figure.

(PDF)

Figure S5 Computed membrane velocity (top) and
tension (bottom) for 100 front-loaded proteins of
diameter 0.1 mm. Proteins are shown in white in the top figure

and black in the bottom figure.

(PDF)

Figure S6 Computed membrane velocity (top) and
tension (bottom) for 100 front-loaded proteins of
diameter 0.2 mm. Proteins are shown in white in the top figure

and black in the bottom figure.

(PDF)

Figure S7 Computed membrane velocity (top) and
tension (bottom) for 2000 front-loaded proteins of
diameter 0.02 mm.
(PDF)

Figure S8 Computed membrane velocity (top) and
tension (bottom) for 3000 front-loaded proteins of
diameter 0.02 mm.
(PDF)

Figure S9 The membrane tension drop as a function of
time. The membrane tension drop over the cell as a function of

time (red), and the predicted tension drop from the analytical fit

for this cell (blue), computed from the average values in the

simulation of the moving cell over 200 seconds of simulated time.

About 100 front-loaded proteins of diameter 0.1 mm are

stationary, appear at the leading edge and disappear at the rear

edge of the protein-loaded band, while the cell moves forward.

(PDF)

Figure S10 Pressure near cell boundaries. A: Pressure

(pN/mm) in a simulated cell, with blue line through middle of the

cell. B: Cross section plot showing pressure in cell along the cell’s

midline. Note that the pressure jumps sharply near both the rear

and leading edges. C–D: Close up of the pressure cross section

near the rear (C) and front (D) of the cell. Note the sharp jumps in

pressure over very small spatial scales. In red (dots and dashed

line), we show the position 4s<0.05 mm away from the edges used

for actual computation of edge pressures. Note also that

membrane tension is equivalent to the pressure with the minus

sign.

(PDF)

Movie S1 Membrane flow speed distribution in steadily
moving cell. Results of the simulations with about 100

embedded transmembrane proteins for 200 seconds. As in other

simulations, the membrane flow velocity and tension are

computed in the lab frame, but the membrane boundary is

allowed to move forward at the speed of the cell. As the cell moves

forward, any transmembrane proteins that are displaced more

than 1 micron from the leading edge are removed and replaced

with new, randomly generated ones within 1 micron of the leading

edge. The results are shown in a field of view that keeps pace with

the boundary of the membrane.

(MP4)

Movie S2 Membrane tension distribution in steadily
moving cell. This movie shows the results for the tension of the

simulations described in the legend of the Movie S1.

(MP4)

Acknowledgments

We thank M. Sheetz, K. Keren and M. Kozlov for useful comments.

Author Contributions

Conceived and designed the experiments: BF AM. Performed the

experiments: BF. Analyzed the data: BF AM. Wrote the paper: BF AM.

References

1. Keren K (2011) Cell motility: the integrating role of the plasma membrane. Eur

Biophys J. 40: 1013–1027.

2. Bretscher MS, Aguado-Velasco C (1998) Membrane traffic during cell

locomotion. Curr Opin Cell Biol. 10: 537–41.

3. Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, et al. (2012)

Membrane tension maintains cell polarity by confining signals to the leading

edge during neutrophil migration. Cell 148: 175–188.

4. Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-

WASP–WIP complex induce membrane curvature-dependent actin polymeri-

zation. EMBO J 27: 2817–2828.

5. Bray D (2000) Cell Movements: From Molecules to Motility. New York:

Garland Science. 392 p.

6. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and

disassembly of actin filaments. Cell 112: 453–465.

7. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, et al. (2003)

Cell migration: integrating signals from front to back. Science 302: 1704–1709.

8. Anderson KI, Wang YL, Small JV (1996) Coordination of protrusion and

translocation of the keratocyte involves rolling of the cell body. J Cell Biol 134:

1209–1218.

9. Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by

Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in

migrating cells. Cell 121: 451–463.

10. Ofer N, Mogilner A, Keren K (2011) Actin disassembly clock determines shape

and speed of lamellipodial fragments. Proc Natl Acad Sci U S A 108: 20394–

20399.

11. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002)

Phospholipids undergo hop diffusion in compartmentalized cell membrane.

J Cell Biol 157: 1071–1081.

12. Fletcher SJ, Rappoport JZ (2010) Moving forward: polarized trafficking in cell

migration. Trends Cell Biol 20: 71–78.

13. Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, et al. (2008)

Mechanism of shape determination in motile cells. Nature 453: 475–480.

14. Kucik DF, Elson EL, Sheetz MP (1989) Forward transport of glycoproteins on

leading lamellipodia in locomoting cells. Nature 340: 315–317.

15. Kucik DF, Elson EL, Sheetz MP (1990) Cell migration produces membrane

flow. J Cell Biol 111: 1617–1622.

16. Lee J, Ishihara A, Theriot JA, Jacobson K (1993) Principles of locomotion for

simple-shaped cells. Nature 362: 167–171.

17. Lee J, Gustafsson M, Magnusson KE, Jacobson K (1990) The direction of

membrane lipid flow in locomoting polymorphonuclear leukocytes. Science 247:

1229–1233.

18. Traynor D, Kay RR (2007) Possible roles of the endocytic cycle in cell motility.

J Cell Sci 120: 2318–2327.

Membrane Flow and Tension in Motile Cells

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e84524



19. Dai J, Sheetz MP (1995) Axon membrane flows from the growth cone to the cell

body. Cell 83: 693–701.
20. Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by

membrane tension. Trends Cell Biol 6: 85–89.

21. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells.
Biophys J 77: 3363–3370.

22. Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K (2013)
Membrane tension in rapidly moving cells is determined by cytoskeletal forces.

Cur Biol 23: 1409–1417.

23. Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomembranes:
part 1. CRC Crit Rev Bioeng 1979 3: 181–330.

24. Schweitzer J, Kozlov MM (2013) Cell motion mediated by friction forces:
understanding the major principles. Soft Matter 9: 5186–5195.

25. Cooper GM (2000) The cell: A molecular approach. Sunderland: Sinauer
Associates. 832 p.

26. Diz-Munoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ, et al. (2010)

Control of directed cell migration in vivo by membrane-to-cortex attachment.
PLoS Biol 8: e1000544.
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