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Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod
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ABSTRACT The lamellipod, the locomotory region of migratory cells, is shaped by the balance of protrusion and contraction.
The latter is the result of myosin-generated centripetal flow of the viscoelastic actin network. Recently, quantitative flow data was
obtained, yet there is no detailed theory explaining the flow in a realistic geometry. We introduce models of viscoelastic actin
mechanics and myosin transport and solve the model equations numerically for the flat, fan-shaped lamellipodial domain of
keratocytes. The solutions demonstrate that in the rapidly crawling cell, myosin concentrates at the rear boundary and pulls
the actin network inward, so the centripetal actin flow is very slow at the front, and faster at the rear and at the sides. The
computed flow and respective traction forces compare well with the experimental data. We also calculate the graded protrusion
at the cell boundary necessary to maintain the cell shape and make a number of other testable predictions. We discuss model

implications for the cell shape, speed, and bi-stability.

INTRODUCTION

Many cells move on surfaces using flat motile appendages
called lamellipodia (1). These appendages are made of
a network of actin filaments (F-actin) enveloped by the cell
membrane. The growth of filaments by polymerization at
the lamellipodial periphery causes protrusion. Graded adhe-
sion (firm at the front and weak at the rear) and contraction of
the actin network lead to the forward translocation of the cell
(Fig. 1). The cell body at the rear of the motile cell is often a
passive cargo (2); indeed, lamellipodial fragments without a
nucleus are able to crawl with shapes and speeds similar to
intact cells (3,4). Thus, it is justified to focus on the lamelli-
pod without the cell body. Lamellipodial contraction is
mainly caused by myosin I motors (1,5) (later called simply
“myosin’’), and it is the self-organization of the actin-
myosin lamellipodial network that is responsible for the
movements and forces of the motile cell that we aim to
understand here in numerical detail.

Usually, the lamellipodial movements are complex, but
fish and amphibian keratocytes, when present as single cells,
are able to crawl on surfaces with remarkable speed (up to
1 um per second) and persistence, while almost perfectly
maintaining their shape (6,7). The keratocyte is canoe-
shaped or fanlike, with a smooth-edged, flat lamellipodium
at the anterior side of the cell body (Fig. 1) (6,7). Thus, the
keratocyte lamellipodial shape is likely to represent the basic
shape of the crawling cell in its pure form, determined solely
by the actin network dynamics. The lamellipod is only a few
tenths of a micron thick but is tens of microns long and wide,
and contains a dense branched actin network (1,8).

A combination of the dendritic nucleation (1) and myosin-
powered network contraction (5) models has been advanced
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to explain lamellipodial motility in broad strokes (reviewed
extensively in the literature (1,6,7,9—11)): In the keratocyte,
the steps of protrusion, graded adhesion, and retraction are
continuous and simultaneous. At the center and sides of the
leading edge, nascent actin filaments branch from the
existing filaments and grow, thus pushing the lamellipodial
boundary outward until these new filaments are capped. Since
a new generation of growing filaments replaces the capped
ones, the process is continuous. The filaments are distributed
along the leading edge unevenly, with higher density at the
center and lower at the sides (12—14). This leads to a graded
rate of protrusion that is faster at the center, where the
membrane resistance in terms of force per filament is lower,
and slower at the sides, where the resistance per filament is
higher. According to the geometric graded radial extension
model (15), the lamellipodial boundary extends in a locally
normal direction (Fig. 1 B), and thus the graded rate of actin
growth, decreasing from the center to the sides, translates
into the characteristic fanlike shape of the lamellipod.
Thousands of myosin molecules, each developing a
pN-range force, are distributed throughout the cell (5). These
forces do not perturb drastically the relatively stiff actin
network in the front half of the lamellipod. However, the
actin network disassembles throughout the lamellipod (16)
and likely weakens mechanically toward the rear. At the
same time, in the coordinate system of the moving cell,
myosin molecules attached to the F-actin network are effec-
tively swept to the rear, where they generate contractile
stresses and collapse the isotropic actin network into a bipolar
actin-myosin bundle at the very rear of the lamellipod (5,17)
(Fig. 1 A). Subsequent musclelike sliding contraction of this
bundle advances the rear boundary of the lamellipod and
restrains the lamellipodial sides (Fig. 1 B). The actin fila-
ments adhere to the surface on which the cell crawls through
dynamic molecular complexes involving transmembrane
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FIGURE 1 Two-dimensional model of the actin network
flow. (A) Motile keratocyte cell, view from above. The
cargo of the cell body is depicted by the gray ellipse at
the rear. The lamellipod glides with the steady shape and
velocity V, while the branched actin network (crisscross
segments) grows at the leading edge and retracts at the
rear due to the contractile action of myosin (thick double-
arrows). (Inset) Mechanical model of the actin-myosin
lamellipodial network. Actin filaments (segments, density p)
glide with velocity u, undergo relative viscoelastic sliding
(spring and dashpot in series, viscoelastic stress 7), and
are contracted by working myosins (density 7;). Adhesion

results in effective viscous drag (dashpot, density &).
Myosin molecules cycle between the working and free
(density my) states. (B) Hypothesized maintenance of the
lamellipodial shape: The actin network grows at the front
and sides (solid arrows), while the centripetal actin flow
is fast at the rear and sides and slow at the front (dashed
arrows). At the sides, the outward growth and inward
flow cancel each other. At the rear, there is no actin growth,
and the centripetal actin flow is equal to the cell speed
(dotted arrow). The front advances with the cell speed

adhesion receptors (9). These adhesion complexes are dense
along a narrow rim at the leading edge (18), and in addition,
there are two large adhesive regions at the rear corners of the
lamellipod.

Recently, microscopy revealed how the lamellipodial
actin network flows relative to the surface (19,17): the char-
acteristic flow is centripetal, directed inward from the edges
to the center of the cell (Fig. 1 C). The flow is fast, ~0.1 um/s,
at the sides and rear and slow, ~0.01 um/s, at the front. This
flow map suggests the following attractive hypothesis: the
centripetal flow complements the graded protrusion in deter-
mining the shape and speed of the lamellipod by balancing
the actin growth at the sides and pulling the actin network
forward at the rear (Fig. 1 B). As a part of testing this hypoth-
esis, mathematical modeling has to confirm that the qualita-
tive ideas about the mechanisms of the myosin distribution
and actin flow maintenance conforms with basic physics of
actin-myosin transport and polymer gel mechanics. Thus,
we set out to numerically reproduce the observed actin
flow map, as well as the measured distribution of tractions
that the moving cell exerts on the surface (2).

To do that, one has to choose appropriate mechanical
properties of the malleable actin network that can have
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equal to the difference between the local rates of actin
growth and centripetal flow. To maintain the steady shape,
the net local normal extension rate at the lamellipodial
boundary has to obey the equation (V,, — V¢ - n) =V X
cosf, where V, is the local actin growth rate, V< is the local
actin centripetal flow velocity, n is the local normal unit
vector, and 6 is the angle between n and the direction of
movement. (C) Characteristic map of the actin centripetal
flow, u(r), in the lab coordinate system. (D) In the frame-
work of the steadily moving cell, there is the kinematic
flow of F-actin to the rear with constant rate V equal to
the cell speed. (E) In the framework of the cell, the actin-
myosin network drift is the geometric sum, (u(r) — V), of
the flows shown in panels C and D. If V > |u(r)|, then
the resulting drift sweeps the myosin to the rear.

a wide range of rheologies depending on biological condi-
tions. Generally, the actin network of the cell is viscoelastic,
with very complex mechanical properties that can be approx-
imated by a combination of Maxwell and Kelvin-Voight
models (20-24). The viscoelastic rheology of actin gels,
modeled in the literature (25-27), is nonlinear and sensitive
to many parameters. Both purely elastic (28) and Kelvin
(elastic with viscous transients) (29,30) models of the lamel-
lipodial network were derived and simulated, but here we
will use the Maxwell model such that if a constant force is
applied to the actin network, then there is a short-term elastic
response followed by a long-term viscous, flowlike behavior.
This choice is justified by the observations of the stationary
disklike keratocytes (31) and lamellipodial fragments (4), in
which the actin network flows steadily and centripetally for
many minutes under the action of constant contractile stress.

The myosin-powered movements of the cellular actin
network were modeled before, starting from pioneering
theory of reactive interpenetrating viscous flow that treated
the cytoplasm as a two-phase fluid (32,33). Among several
later efforts (29,34-37), one is especially relevant for our
study: in Kruse et al. (35), the viscoelastic behavior in the
ventral-dorsal cross-section of the lamellipod was modeled.



Actin-Myosin Flow in the Lamellipod

In a sense, Kruse et al. (35) addressed the dynamics of the
lamellipod as seen from the side. Here, we model the visco-
elastic actin-myosin dynamics in the keratocyte lamellipod
as seen from above (Fig. 1 A), in a realistic two-dimensional
geometry. Using the Maxwell model, we compute the actin
flow, myosin distribution, and traction forces and compare
the results with the experimental observations. Then, we
discuss implications of the model predictions for the lamel-
lipodial shape maintenance, which was earlier examined
quantitatively with help of various models in the literature
(13,28,38-41).

EXPERIMENTAL MEASUREMENTS OF THE FLOW
AND ADHESION STRENGTH

Only F-actin flow was measured in the literature (17,19). To
compare the measured flow rates with the theory and to esti-
mates the adhesion strength distribution, we measured the
actin network velocity in the migrating cell as described in
Schaub et al. (17) and simultaneously measured the stress
exerted on the elastic substrate (details will be reported else-
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where). Then, assuming that the adhesion has a viscous char-
acter, the adhesion strength distribution was computed at
every spatial point as a ratio of the local traction force per
unit area to the local actin network speed. The results are
shown in Fig. 2 and discussed below.

Mathematical model of the myosin-powered
flow of viscoelastic actin network

Mechanics of the actin-myosin network

Several studies have proposed a hyperbolic model describing
the properties of polymeric viscolelastic fluids (42,43). We
use a modification of this model containing diffusionlike
(44,45) terms. The model variables and parameters are gath-
ered in the Supporting Material. The equation of motion in
such a model has the form
du

p {E + (u- V)u} =-Vp+V-:2(l—a)nD(u) + 7] + F.
Here p is the F-actin density, 7 denotes the effective viscosity
of the F-actin network, and u is the local velocity of the actin

umfs

FIGURE 2 Experimentally measured distribution of
actin network velocity and adhesion strength in migrating
keratocyte. (A) Two-dimensional actin velocity map
obtained as described in Schaub et al. (17). Bar, 10 um.
(B) Distribution profile of posterior-anterior component of
actin velocity along posterior-anterior direction. Zero
position corresponds to the back of the cell; velocity values
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for each distance from the back of the cell were averaged
within the vertical rectangular region indicated on velocity
map in panel A. (C) Distribution profile of lateral component
of actin velocity along lateral direction. Zero position
corresponds to the left side of the cell; velocity values for
each distance from the left side were averaged within the
horizontal rectangular region indicated on velocity map in
panel A. Posterior-anterior (D) and lateral (E) distributions
of adhesion strength parameter in, respectively, vertical
and horizontal rectangular regions shown in panel A.
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network in the lab coordinate system. The right-hand side
describes the local forces: p is pressure; the second term is
the sum of the divergence of viscous and viscoelastic stresses
explained below; and the last term is responsible for the
external body force,

F=V.smm™ + Fadh'

The latter in our model is generated by

1. The divergence of the myosin contractile stress, 7™°, and

2. The effective viscous drag, F,q,, between the actin
network, adhesive complexes and surface to which the
lamellipod adheres and is described below.

Note that the mechanics equations in our model are written in
the lab coordinate system, not in the framework of the
steadily moving cell.

We restrict ourselves to the case of very low Reynolds
numbers, which is usual for cell biology, so we drop the
nonlinear term (u - V )u in the equation of motion. Further-
more, we drop the pressure term based on the following
considerations. In the two-phase interpenetrative flow model
(32), the pressure originates from the incompressibility of the
combined polymer/fluid system. Separately, however, the
polymer mesh is compressible, and when the local polymer
density changes, the fluid fraction of the cytoplasm flows in
or out of the polymer mesh. There is a limiting case, in which
the polymer dynamics can be effectively uncoupled from the
fluid dynamics (33), namely, when Darcy friction forces
between the porous polymer mesh and fluid squeezing
through it can be neglected. These forces can be estimated
as the characteristic F-actin movement rate, ~0.1 um/s,
divided by the hydraulic permeability of the cytoskeleton,
~0.01 ,u,m3 /(pN X s) (46), so the order of magnitude of respec-
tive stress is ~10 pN/um?. Myosin contractile stress in kerato-
cyte (and viscoelastic polymer stresses balancing it) is
~100 pN/,urn2 (2,47). In this limit, the Darcy forces and fluid
hydrostatic pressure can be neglected if the polymer move-
ments are considered. (These forces are not negligible if one
models fluid movements (48), but here we are not addressing
them.) In addition, it is feasible that the lamellipodial actin
mesh consists of a denser ventral layer of polymers and
a less dense dorsal layer (49). Then, fluid would be largely
squeezed out of the ventral layer and move almost freely
near the dorsal surface. This would diminish gradients of
the fluid hydrostatic pressure and make the dense F-actin
network effectively compressible.

Thus, we use the equation of motion in the form

0
p 671: = V-2(1 -a)ypD(u) + 7] + V+7™° + Faa.
(1

In the expression for the internal stress in the polymer
network, (2(1-a)nD(u) + 7), the first term describes the
viscous part of the stress tensor proportional to the rate-of-
deformation tensor, D,
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o al/lj - 1 éui auj _ 1 T
(Vu); = ox;’ b = 2(axj * Gxi> = 5(Vu+ (Vu))-
)

Parameter o determining a non-Newtonian fraction of
viscosity can be defined by the ratio of two timescales char-
acteristic for the polymer mesh—the retardation time A,
(relaxation time for strain) to the relaxation time A (relaxation
time for stress): « = 1 — (A/A) (44).

The equation describing the viscoelastic part of the stress
tensor, 7, has the form

or

o +u-Vr—7-Vu— (Vu)' + 7| = 2anD.

T+ A

3

The dynamics described by this equation corresponds to the
Upper Convected Maxwell model of a viscoelastic fluid (44),
which in the limiting case A = 0 reduces to the standard
linear relation between the stress tensor and the deformation
rate tensor for Newtonian fluids obeying the Navier-Stokes
equation. Equation 3 is the simplest variant out of a dozen
or so model equations used for the description of the non-
Newtonian fluids (44). In the extreme case of a purely
non-Newtonian fluid (o = 1), this equation becomes hyper-
bolic. The boundary condition to Eqgs. 1-3 is a zero normal
component of stress tensor at the lamellipodial boundary,

2(1—a)yD + 7 + 7] +n = 0, @)
where n is the locally normal unit vector at the boundary.

Characteristic parameters and scales

We choose the characteristic lamellipodial size, L ~10 um, as
the scale of distance and cell speed, and V ~0.2 um/s as the
scale of the velocity, so L/V ~50 s is the scale of time.
Maximum F-actin density at the leading edge, po, is the scale
of density (measured in units of g/p,m3; its actual value does
not appear to be important since the Reynolds number is
low). Finally, we choose 1V, where 7 is the characteristic
viscosity of the F-actin network at the leading edge (its value
in units of pN X s/um is estimated below), as the scale of
force.

Using these scales, we introduce the nondimensional
quantities, for which we keep the same notations, as

% p n 7L FL?

u
u=— r=— t=— p=>— n=— 7=>—— F=

v’ L L Po o’ MV NV’
Note that we consider the two-dimensional problem appro-
priate for the flat lamellipodial geometry, so the dimensions
of the body force and stress are pN/um? and pN/um, respec-
tively. In the nondimensional form, the mechanics model
equations read
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Re p (;—l; = V- [(1-a)n(Vu+ (Vu)') + 7]

®)
+ V7™ + Fup,
(97 T
7+DeE+u-VT—7-Vu—(Vu) .7
= an(Vu + (Vu)'), (6)
[(1—a)n(Va + (V)') + 7 + 7™°] +n
= 0 at the boundary. ©)

Here Re = poVL/ng is the Reynolds number, and De = AV/L
is the Deborah number. The Reynolds number in cell biology
is very small compared to 1 (27,32,48); in the simulations we
use Re = 0.1. Note that we keep and use the inertial term
proportional to the Reynolds number just as an artificial
time-stepping to relax the system of equations to their
steady-state values. The presence of this term does not affect
the model: we checked that decreasing the Reynolds number
by an order of magnitude does not alter the results.

The viscoelastic relaxation time was measured to be
approximately a few seconds (22-24) (or even ~0.1 s (20)),
much smaller than the characteristic timescale L/V ~50 s, so
the Deborah number De ~0.02-0.2 is small; in simulations
we used De = 0.2. This means that the elastic memory in
the lamellipod fades rapidly, and the system is effectively
viscous. To the best of our knowledge, there are no direct
reports of numerical values for parameter « for the actin
gels. In the Supporting Material, we estimate this parameter
a ~0.9-0.99 based on data in the literature (23,24).

Finally, let us note that there are no rapid (second scale)
transient flows or large spatial gradients in flows or stresses
in the cell movements. We checked that retaining the visco-
elastic terms in the model equations introduce only ~10%
corrections to the purely viscous solutions. Qualitatively,
these corrections are equivalent to slightly damping the
myosin-generated stress and resulting decrease in the magni-
tude and gradients of the flow. Thus, our model suggests that
treating actin network as a complex fluid versus a viscous,
Newtonian fluid would give comparable results.

We specify the terms F,q,, 77°°, and the spatial variations
of the F-actin density and viscosity below. We use the value
of the actin network viscosity ~2 X 10% Pa x s (20) to esti-
mate the characteristic viscosity in the two-dimensional
model by multiplying this value by the characteristic thick-
ness of the lamellipod, 0.2 um (8), so no = 400 pN x s/um.
Considering that the maximum observed gradients of the
flow rate in the lamellipod are ~0.1 (um/s)/um, the character-
istic scale of stress in our model (product of the viscosity and
flow rate gradient) is tens of pN per micron. This stress is
of the same order of magnitude as the observed myosin-
generated contractile stress (2,47).
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Myosin transport and stress generation

We consider the steady movement of the lamellipod with the
constant velocity V (Fig. 1) and assume that the myosin
motors are either associated with or dissociated from the
F-actin network. We denote the density of these subpopula-
tions of the motors as m(r, #) and my(r, t), respectively. The
actin-associated working motors are assembled into clusters,
with multiple motor heads producing power-strokes and
generating the contractile stress. These motors drift, together
with the F-actin network, with the rate (—V + u(r, 7)). Note
that here we consider myosin dynamics in the framework of
the cell moving forward with constant speed. Therefore, in
the cell framework, in addition to drifting with F-actin
with the rate u (in the lab coordinate system), myosin is
also swept to the rear with the constant rate (—V) (Fig. 1 D).
We assume that the free motors (dissociated from the actin
network) diffuse in the cytoplasm with diffusion coefficient
D, that the working motors detach with the constant rate k,
and that the free motors attach with the constant rate k;. We
neglect the possibility that there is a small convective flow of
the fluid fraction of the cytoplasm due to the cell motion. The
equations of motion for the myosin densities are

a

== —kmi o+ komy = V- (W= V)m),  ®)
Gmo 2

W = klml — k()Wl() + DV mMy. (9)

The free myosin density has to obey the no-flux boundary
conditions at the entire lamellipodial boundary. The natural
boundary condition for the hyperbolic equation for the
working myosin is zero density at the part of the boundary
where the effective drift (—V + u) moves myosin inward.
Mathematically, this part of the boundary can be identified
by the sign of the dot product of the effective drift with the
outward unit normal vector: (—V + u(r, 7)) - n(r, 1) < 0.

The term 7™° in Eq. 1 describes actin-myosin contractile
stress (32,50,51). Following Herant et al. (32) and interpret-
ing data reported in Janson et al. (52), we assume that this
macroscopic stress is isotropic, like a negative hydrostatic
pressure in the cytoskeleton, so only the diagonal compo-
nents of the stress tensor, equal to each other, are nonzero.
We assume that the magnitude of stress is proportional to
the working myosin density #7°° = km,(r, t). The propor-
tionality coefficient « is chosen so that at the characteristic
total average myosin density, the contractile stress is
100 pN/,um2 (2,47). In the two-dimensional model, we
have to multiply this stress by the lamellipodial thickness,
~0.2 um, to get 7"7° ~ 20 pN/um.

F-actin turnover and viscosity

We assume that the F-actin is polymerized at the leading
edge and depolymerized with a constant rate elsewhere
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across the lamellipod (16), so the F-actin density is governed
by the reaction-drift equation:

op

5 =V (w=V)p) —p. (10)

Note that, same as the myosin dynamics, the actin kinetics
are considered in the framework of the cell moving forward
with constant speed. Here v is the disassembly rate, the order
of magnitude of which can be surmised from the observation
that the actin filaments’ half-life in the keratocyte lamellipo-
dium is tens of seconds (16). In the simulations, we use
v = 0.03/s. The boundary condition for Eq. 10 is the constant
F-actin density p = pg at the part of the boundary where the
effective drift is inward (same as that for the working myosin
equation). We scale the actin equation using the scales of
density, time, and distance introduced above. In the simula-
tions, we assume that the viscosity is linearly proportional to
the actin density (so that n = 19 at p = po). Finally, note that
recent data (17) suggests that the disassembly rate is not
constant, but rather increasing toward the rear, perhaps accel-
erated there by the myosin action. There is no difficulty in
using such spatially nonuniform rate in the computations;
however, trial simulations showed that this does not change
results qualitatively, so for simplicity, we kept the disas-
sembly uniform.

Adhesion distribution

The exact mechanics of adhesion between the cell and
substrate is unknown, so we choose the simplest description
of the interaction between the actin network and the surface
through a viscous drag force on the cell that is proportional to
the actin flow velocity:

Foan = —&(r) x u(r).

This choice for the drag force has been used in a number of
other models for cell motility (36,37,53).

The line plots of the adhesion strength (Fig. 2, D and E)
suggest that the effective adhesion drag coefficient, £(r),
correlates with the observed higher density of the adhesions
at the narrow rim along the leading edge and strong adhesion
regions at the rear corners of the lamellipodia, in addition to
weak evenly distributed adhesions throughout the lamellipod
(18,54). Mathematically, we modeled this distribution with
the linear superposition of the Gaussian bell-shaped functions
centered along the leading edge with additional functions of
similar shapes at the rear side corners of the lamellipod
(Fig. 3 A). The range of the spatial spread of the strong adhe-
sion near the leading edge and rear sides was equal to 1 um.
The characteristic magnitude of the adhesion viscous drag
can be estimated by dividing the characteristic traction force
density, ~100 pN/,um2 (2), by the characteristic flow rate,
~0.1 um/s, s0 £y ~1000 pN x s/um?>. This estimate is in agree-
ment with our measurement (Fig. 2, D and E).
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FIGURE 3 Actin flow and traction forces. (A) Spatial distribution of the
adhesion strength used in the calculations (dark shading corresponds to
stronger adhesion). (B) Open arrows show the computed actin flow map.
Shading shows the myosin density (light corresponds to high density). (C)
Computed distribution of the traction forces. (D) Actin growth rate distribu-
tion at the lamellipodial boundary required to maintain the steady shape.

ANALYSIS OF THE MODEL
Myosin distribution

The myosin distribution in the lamellipod can be understood
from first analyzing the one-dimensional example, in which
the equations for the myosin densities are solved on the ante-
rior-posterior segment of length L: y < 0 < L, where 0 and
L are the coordinates of the rear and front, respectively. In
this case, the equations of motion for the myosin densities
read

om d

a—tl = —kim; + komg *a—y((“(Y) = V)my), (11)
amo azm()

? = klml — koWl() + D a—yz (12)

Choosing the lamellipodial size L as the length scale, 1/k; as
the timescale, and koM/(kg + ki) and k;M/(kg + k) as the
scales of the densities of working and free myosin, respec-
tively, we can rewrite the myosin equations in the nondimen-
sional form,
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i (S ). 0

67710 ko ~ ~ D azmo
o _ (% - = 14
at (kl) |:m1 mO + (k0L2> 65}2 :| ’ ( )

where 7 = kit, y=y/L,m; = (ko + ky)m /(koM), g = (ko—+
k1)/(kyM), and M is the total average myosin density. The
boundary conditions in one dimension are no flux at both
front and rear for the free myosin and zero working myosin
density at the front (y = L), providing the cell speed is greater
than the magnitude of the F-actin flow: V > u(y).

Only two nondimensional parameters, (V/k;L) and (D/k,L?),
determine the steady spatial distribution of the myosin (only
timescales, not spatial effects, depend on the ratio ko/k;). The
first of these parameters, (V/k,L), defines how far a working
myosin molecule drifts before it dissociates from the F-actin,
and the second one, (D/ksz), quantifies how far a free myosin
molecule diffuses before it associates with the F-actin. In the
Supporting Material, we demonstrate that if (V/kL) >> 1,
then most of the stress-generating myosin is at the rear in the
steadily motile cell. As V ~0.2 um/s, and L ~10 um, the disso-
ciation rate has to be k; < 0.01/s for this regime to be valid.
Furthermore, in the Supporting Material we show that in two
dimensions most of myosin is also at the rear, and model its
distribution with constant density along the narrow zone
near the rear boundary (Fig. 3 B).

RESULTS
One-dimensional F-actin flow

To build intuition about the actin network behavior predicted
by the model, it is useful to neglect the two-dimensional

¥
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effects and consider one-dimensional caricature model of
the rectangular lamellipodial domain with uniform adhesion
and myosin density decreasing linearly from its maximum
value at the rear to zero at the front (Fig. 4 A). In this case,
the anterior-posterior and lateral distributions of the flow
velocities can be found analytically. We will use the
subscripts x (y) to denote the spatial derivative d/0x (0/0y).
The anterior-posterior F-actin density can be found by
solving the steady state equation [(V — u)ply — vp = O.
Assuming that we can neglect the flow rate # compared to
the cell speed V, other than very close to the rear, we have
Vpx — vp = 0. The respective solution predicts the density
p = po exp[(y/V)(x — L)] exponentially decreasing away
from the front over the characteristic distance V/y ~10 um,
in qualitative agreement with the observations in the front
half of the lamellipod (4,5).

Neglecting the small terms proportional to Deborah
number, the viscoelastic stress along the lateral cross-section
can be found easily: 7 = 2anu,. Neglecting the small terms
proportional to Reynolds number, we can rewrite the equa-
tion of actin flow in the lateral direction in the form

2(1 — a)guy + 7 + m], = &u,

with the boundary conditions given by 2(1 — a)nu, + 7 +
m = 0. Here m denotes the contractile stress scalar propor-
tional to the working myosin density. Finally, substituting
the equation for stress into the equation of motion and
boundary condition, we derive the simple one-dimensional
lateral flow equation [2nuy + m]y = &u with the boundary
conditions given by 2nu, + m = 0.

This equation can be easily solved analytically along the
lateral cross-section (AB in Fig. 4 A) fromx = —Ltox =L
for constant viscosity 71, adhesion &, and myosin stress m.
Because the myosin stress along the lateral cross-section is

FIGURE 4 Simplified one-dimensional model of the
actin-myosin flow. If the two-dimensional effects are ne-
glected in the rectangular domain with uniform adhesion
and myosin linearly biased to the rear (darker shading
corresponds to higher myosin), then the anterior-posterior
and lateral distributions of the flow velocities can be found

08

06F

—— e | 04}

0.2r

a N N N N { s " s " 0.2
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analytically. (Left/right bottom line plots) Flow rates from
the left to the right side and from the rear to the front,
respectively. The flow rate is in units of the maximum
rate at the side; the unit of distance is the half-width of
the lamellipodial domain.
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constant, the flow equation simplifies to 2nu,, = &u. Intro-
ducing the characteristic length scale on which the flow
is fast near the cell sides, [ = 1/2n/&, the solution has the
form

VnE/2

The predicted actin flow rate shown in Fig. 4 A is directed
inward and antisymmetric relative to the center (positive at
the left and negative at the right). It stays very low near
the center and increases rapidly at the sides. The maximum
flow rate at the sides is proportional to the myosin contractile
stress and inversely proportional to the square roots of the
actin viscosity and adhesion strength.

Similarly, the flow can be calculated along the posterior-
anterior cross-section (CD in Fig. 4, with the rear at y = 0
and front at y = L) with constant viscosity 7, adhesion &,
and myosin stress distributed as m = mi(1 — y/L). In this
case, the flow equation has the form

u=

(exp[(x = L)/1] = exp[( —x = L)/1)).

2nuyy — (m/L) = &u,

with the boundary condition at the front #y, = 0 and that at the
rear 2nuy +m = 0. The approximate analytical solution to
this equation has the form

VnE/2

The predicted actin flow shown in Fig. 4 A is retrograde,
constant and small throughout most of the central part of
the lamellipod. The magnitude of this retrograde flow,
~ (m/(EL)), is proportional to the myosin contractile stress,
inversely proportional to the adhesion strength and is
viscosity-independent. This flow also has to decrease with
increasing cell size. Near the rear, the flow becomes antero-
grade and increases exponentially to significant magnitude
~ m/+/&n, which is similar to the inward flow at the sides
and has similar functional dependencies on myosin, adhesion
and viscosity.

These predicted flow distributions are in qualitative agree-
ments with the experimental line plots (Fig. 2, B and C). The
measured inward flow at the sides decreases slower, more
linearly, toward the center, than predicted. Furthermore,
the anterograde flow at the rear is more irregular and extends
farther to the front than predicted. However, these discrep-
ancies are likely due to the unknown, more complex and
dynamic than assumed, distribution of the myosin, contrac-
tile stresses and, most importantly, effective actin viscosity
at the rear. In addition, note that the rear peak of the flow
corresponds to the fast flow under the cell body; then, there
is a slowing down at the boundary between the cell body and
the lamellipod, and again a fast flow at the rear of the lamel-
lipod. The model, strictly speaking, is applicable to the
lamellipod only.

u=

lexp( —y/0) = ({/L)]-
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Maps of the centripetal flow and traction forces

We scaled and nondimensionalized the model equations as
described above and solved them numerically (using Femlab
software—from The MathWorks, Natick, MA—and various
initial conditions on a desktop PC computer) on the lamelli-
pod-shaped domains. The numerical solutions converged
asymptotically to the stable steady density and velocity
distributions shown in Fig. 3 B.

The F-actin density is predicted by the solutions to
decrease in a near-exponential fashion from the front to the
rear of the lamellipod (not shown), in agreement with the
observations (4). At the very rear, this decrease is stopped
by the myosin-powered contraction. We obtained the charac-
teristic graded centripetal actin flow distribution similar to
that measured (Fig. 2 and Fig. 3 B): the flow is directed
roughly to the center, slow at the center front, and faster at
the sides and rear. The flow decreases from the periphery
toward the center of the lamellipod.

While the viscous adhesive forces are applied to the
sliding actin network of the motile cell, opposite forces are
applied to the surface on which the cell crawls. In the frame-
work of the model, these tractions forces can be computed by
multiplying the local assumed adhesion strength by the local
computed F-actin velocity. The result is shown in Fig. 3 C.
Numerical integration confirmed that the geometric sum of
the traction forces is equal to zero: total force from the
substrate on the cell is balanced just by drag on the cell
from the aqueous environment. The map of the traction
forces has roughly the same pattern as that of the F-actin
flow. However, the traction forces are disproportionately
great at the rear corners of the lamellipod because great
inward flow speed there is multiplied by the high adhesion
strength. These great rear corner forces are directed inward
and slightly skewed forward and are balanced by widely
distributed low density traction in the front half of the lamel-
lipod. This predicted pattern is in qualitative agreement with
the experimental measurements (2). In the Supporting Mate-
rial, we describe how the flow changes when the model
parameters are varied.

Lamellipodial shaping by the balance between
the actin growth and centripetal flow

The authors of the graded radial extension model (18)
discovered a geometric relation between the steady shape
of the lamellipodial boundary and the local rate of boundary
extension. Generalized to the case when the actin network
grows in a locally normal direction to the boundary with
a rate V,(s), where s is the arc length coordinate along the
boundary, and flows inward at the lamellipodial periphery
with the rate V(s), this geometric relation has the form

(Va(s) = VE(s)n(s)) = V x cos 8 (s),

where n(s) is the local normal unit vector, and § is the angle
between n and the direction of movement (Fig. 1 B).
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The focus of this study is on explaining the actin centrip-
etal flow in the cells of given shapes, therefore the actin
growth velocity along the boundary is not a part of the
model. However, one important question is what the actin
growth velocity along the boundary has to be to maintain
the given steady shape in the presence of the centripetal actin
flow computed for this shape. We used the geometric relation
of the graded radial extension model, as well as the lamelli-
podial shape, computed values of the centripetal actin flow
V¢(s), and cell speed employed in the calculations depicted
in Fig. 3 to calculate the spatial distribution of the actin
growth rates required to maintain this shape. The result is
shown in Fig. 3 D. Almost constant actin growth is needed
at the front, and almost zero growth at the rear. This roughly
corresponds to the simplest cell motility scenario illustrated
in Fig. 1 B; however, the actin growth at the sides has to
be very rapid in this case to cancel the fast inward flow at
the sides. In addition, at the rear sides, the actin growth
has to be distributed with some rapid spatial fluctuations
(Fig. 3 D). In the future, simulations of the free boundary
lamellipodial domain will be needed to estimate whether
the shape remains stable without these fluctuations.

DISCUSSION

We formulated and solved numerically the equations
describing coupled myosin transport and myosin-powered
viscoelastic flow of the F-actin network in a realistic two-
dimensional lamellipodial geometry. The model is based
on the assumptions of isotropic myosin contraction and
viscous adhesion behavior. The model suggests that treating
the lamellipodial network as a complex fluid versus
a viscous, Newtonian fluid gives comparable results, which
is due to the relatively slow cell movements compared to
the actin mesh relaxation time. The computational results
compare qualitatively very well with experimental measure-
ments (2,17,19) and our data. Indeed, the model predicts the
centripetal direction of the F-actin flow. In the anterior-poste-
rior direction the flow in the front of the cell is slow and
retrograde, while at the rear the flow is fast and anterograde
(17,19). The lateral flow at the sides is directed inward—
rapid at the lateral edges of the cell and slow in the central
part of the cell. The predicted map of the traction forces
also agrees with the measurements qualitatively (2).

In agreement with the model prediction, the centripetal
actin flow in cells treated with blebbistatin, which reduces
myosin-based contractility, is reduced (13,17), whereas in
cells treated with calyculin, which increases the action of
myosin, the inward flow accelerates (13). In addition, exper-
imental studies reported positive correlation between the
adhesive close contacts at the leading edge of the cell and
the cell speed (55). This agrees with the theoretical predic-
tion that if adhesion at the front is stronger, then the retro-
grade flow at the front is slower. Effectively, this produces
a more rapid rate of protrusion; at the same time, the antero-
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grade flow at the rear is increased to maintain pace with the
more rapid protrusion at the front.

Our model suggests, following the qualitative scenario in
Verkhovsky et al. (3) and refining simplified physical
arguments given earlier (40), how the myosin helps the
cell to maintain the polarized motile state. In the framework
of the rapidly motile cell, myosin is swept to the rear, where
it contracts the actin network weakened by the depolymer-
ization generating rapid centripetal flow that pulls the rear
forward and the sides inward. These actions help prevent
the sides from spreading and allow the rear to maintain
pace with the protruding front. On the other hand, when
the cell slows down significantly, our model predicts that
myosin will no longer be swept to the rear because the
centripetal actin flow that myosin generates would now
move the working myosin inward everywhere. In this case,
the centripetal flow would be radially symmetric; thus,
if the actin network now grows uniformly at the boundary,
the steady shape of the cell or its lamellipodial fragment
becomes disklike, and the cell or fragment become stationary
in agreement with experimental observations (3,31). We will
test the model on the free boundary domain to investigate
local stability of these symmetric nonmotile and asymmetric
motile states and how global perturbations switch the cell
between them. Some additional mechanisms maintaining
the cell shape and movement are discussed in the Supporting
Material.

We modeled explicitly here and in the past (reviewed in
(11)) two steps of the migration cycle—protrusion and
contraction—but simply assumed that the distribution of
the adhesion strengths was similar to the observed adhesion
density pattern. One possible explanation for this observed
adhesion pattern is that the adhesion complexes are targeted
to the nascent growing actin filaments at the leading edge
(56); in addition, strong inward pulling action at the lamelli-
podial sides can lead to growth and strengthening of the
adhesions there (57). We did not include adhesion dynamics
into the model because they are not understood well. Further-
more, some observations indicate nonlinearity in adhesion
regulation by myosin contraction (58). In the future, realistic
adhesion dynamics, provided by new measurements, should
be coupled to the actin-myosin equations. Indeed, the great-
est obstacle to improving the detailed quantitative predict-
able capabilities of the model is not, in fact, the theoretical
issues discussed above, but the lack of quantitative biophys-
ical data. Nevertheless, the ability of the model to reproduce
qualitatively a few essential features of keratocyte actomy-
osin network dynamics and traction patterns is encouraging.

SUPPORTING MATERIAL

Supporting text and two tables are available at http://www.biophysj.org/
biophysj/supplemental/S0006-3495(09)01241-7.

We are grateful to K. Keren for fruitful discussions.
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Supplemental Information

1. Characteristic parameters and scales.

There is a simple molecular-level explanation for the relaxation time
scale being on the scale of seconds: the actin network behaves like an elastic
solid while individual elastic filaments maintain contact with neighboring
filaments. After that time, when the neighboring filaments loose contact
and creep past each other, the network behaves as a fluid. In the crosslinked
actin gel, this characteristic time is of the order of the inverse dissociation
rate of crosslinking proteins, which is in the second(s) range (see [1, 2] and
references therein). In the gel without crosslinks, this is the time needed
for the neighboring filaments to disentangle (the so called reptation time),
which is of the order of 0.1 — 1 sec [1].

We used the following argument to estimate this parameter from the
available data. Response of a viscoelastic material to a mechanical per-
turbation with frequency w can be characterized by the so called storage
and loss moduli [3], G' = 047714\)\#212 and G" = w (Hiing +(1— a)n), re-
spectively. Two unknowns - parameters A and « - can be estimated by
measuring the frequencies wy at which G’ = G” and wy at which the ratio
G’ /G" has a minimum. Straightforward algebra shows that if ws is a few-fold
greater than wy, then a ~ 1, and A\ ~ 1/wy, while @ ~ 1 — (w1 /w9)?. From
the reported frequency dependencies of the storage and loss moduli in [2],
one can glean the values wy/w; =~ 3, while the data in [4] gives wy/w; ~ 10.
Thus, a ~ 0.9 — 0.99, and in our model the F-actin mesh is essentially a
linear non-Newtonian fluid. On the molecular level, this means that most
of the viscosity comes from slow deformations of the polymer mesh, rather
than from shear of the fluid fraction of the cytoplasm, which is intuitively
clear. Note also that actual value of « is not crucial if De <« 1: indeed,
according to Eq. 6, if we neglect the small term proportional to De, then
7~ an(Vu+ (Vu)?), and substituting this expression into Eqs. 5,7 of the
main text, we see that parameter « cancels.

2. Analysis of the myosin distribution.

Just two non-dimensional parameters, (V/k1L) and (D/kyL?) determine
the steady spatial distribution of the myosin (only time scales, not spatial



effects, depend on the ratio ko/k1). The first of these parameters, (V/k1L),
defines how far a working myosin molecule drifts before it dissociates from
the F-actin, and the second one, (D/ksL?), quantifies how far a free myosin
molecule diffuses before it associates with the F-actin.

It is easy to show using singular perturbation theory that if the working
myosin dissociates frequently, so that (V/kiL) ~ 1 or (V/k1L) < 1, then
both myosin densities are distributed more or less evenly across the whole
lamellipodial domain. This is not the case experimentally, suggesting that
(V/k1L) > 1; that is, the working myosin dissociates very slowly, much
slower than it drifts across the lamellipod. Indeed, in the latter case, the
perturbation theory states that the working myosin will concentrate at the
rear of the lamellipod, which is also intuitively clear.

In this case, if (D/k2L?) < 1, then the free myosin also concentrates at
the rear: upon detachment, a myosin molecule does not diffuse far before
attaching and drifting back to the rear. If (D/koL?) > 1, then the free
myosin is spread across the lamellipod almost uniformly, mg ~ const, and
the working myosin either increases linearly toward the rear, or exponentially
builds near the front and stays constant across the lamellipod. In any case,
unless most myosin is free, which is very unlikely based on the available
evidence, the amount of the working myosin away from the rear of the
lamellipod is very low, which agrees very well with the myosin imaging data
in motile keratocytes. Thus, we assume that (V/k1L) > 1, and so most of
the stress-generating myosin is at the rear in the steadily motile cell.

In the 2D model, myosin dynamics are similar, but the geometry is more
complex. Nevertheless, the myosin distribution becomes simple in the case
when the cell speed is great enough, so that the y-component of the net
drift velocity of myosin in the frame of the moving cell is directed backward
everywhere (Fig. 1E). Mathematically, the sufficient condition for this is
V' > |u(r)|. In this case, the working myosin drifts along the F-actin flow
lines determined by the velocity field (—=V + u) (Fig. 1E) (mathematically,
along the characteristics of the hyperbolic Eq. 8). Then, in the limiting
case (V/kiL) > 1, almost all working myosin has to concentrate at the
rear boundary defined as the set of end points of the flow lines. In the
case depicted in Fig. 1E, with the sharp corners between the front and
rear lamellipodial boundaries, all working myosin concentrates at the rear
boundary.

The situation is a little more complex form smooth lamellipodial shapes,
in which case the front boundary has to be defined by the condition (—V +
u(r,t))-n(r,t) < 0, and rear one - by the inequality (—=V +u(r,t)) -n(r,t) >
0. Then, there is some ambiguity in the small vicinity of the points sepa-
rating the front and rear, as the myosin concentration near these points is
intermediate between very high and very low. Numerical experiments, how-
ever, showed that exact values of the myosin density in two small areas near
the side/rear boundary do not affect significantly the resulting map of the
F-actin flow.

Another aspect of the myosin dynamics is its spatial distribution: de-
pending on the model parameters and geometry, working myosin can be
distributed unevenly along the rear boundary. Indeed, the working myosin



density increases along the flow lines toward the rear of the lamellipod. If at
the point where the flow line enters the rear boundary the working myosin
density is mi,, and the myosin drift speed is | — V + u,|, then the line
density of the working myosin at the rear boundary at that point, M ,, is
defined by the balance of the in-flux of the myosin from the lamellipod and
the myosin detachment:

’ -V + uT] X my, = /{:1M17T. (1)

We solved Egs. 8,9 numerically varying model parameters and maps of the
F-actin flow (always keeping the characteristic centripetal flow fast at the
side/rear, moderate at the rear and slow at the front), calculated the distri-
bution of the working myosin at the rear boundary using Eq. 1 and found
that, in fact, this distribution did not deviate significantly from constant.
Because of that, for simplicity we used the constant working myosin density
along the rear of the boundary. Also, the locations of the points at the
boundary separating the regions of myosin/no myosin did not change much,
so we chose constant characteristic locations of these points (Fig. 3B).

Finally, the working myosin in the moving cells is not distributed along
infinitely thin boundary, of course, but rather is spread across the relatively
narrow zone along the rear boundary. We did not model this spread dy-
namically, but rather introduced it explicitly with constant density along
the narrow zone near the rear boundary (Fig. 3B).

3. Varying model parameters.

We varied the model parameters and found a number of relations be-
tween the mechanical characteristics and flow parameters. According to the
model, the actin flow velocities are linearly proportional to the amount or
strength of myosin. An overall decrease of the strength of adhesion or of
the effective F-actin viscosity slightly increases the rates of the centripetal
flow. Further, we found that flow magnitude at the rear and sides is roughly
independent of the cell size (if the myosin density at the rear is kept size-
independent), while at the front the flow decreases with the cell size. These
findings are in agreement with respective functional dependencies predicted
by the analytical 1D model solutions. The flow pattern did not change much
when we simulated a graded F-actin density at the leading edge and added
more uniform adhesion [5].

4. Additional mechanisms maintaining the cell shape and movement.

There are additional mechanisms maintaining the cell shape and move-
ment. First, the keratocytes move when myosin is inhibited, but the move-
ment is slower and the shape is less regular [6, 7]. Recent investigations [6]
revealed that the graded density of F-actin at the leading edge, high at the
center and low at the sides may be the cause of the graded actin growth rate



that by itself, without the actin centripetal flow, can maintain the shape of
the front half of the lamellipod. The shape of the posterior part of the cell
is likely determined by a combination of the ability of the dendritic actin
array to maintain self-polarization and of membrane tension to deform the
weakened actin network at the rear such that the sides are restrained and
the rear edge of the cell is retracted.

One of the recent studies [7] looked carefully at F-actin versus myosin
flow in the keratocyte lamellipod and discovered important differences in
these flows. There was slow retrograde flow of actin in the front part of the
lamellipod, whereas myosin velocity in this region was typically zero or ac-
tually flowed forward. By contrast, in the rear part, the anterograde myosin
velocity was faster than that of actin. The boundary between the region
of anterograde and retrograde velocities formed a line nearly parallel to the
leading edge, dividing the lamellipod approximately in half. These results
suggest slow forward translocation of myosin with respect to actin consis-
tent with myosin gliding towards the barbed ends of actin filaments. As our
model assumes that working myosins do not move relative to F-actin, we
miss differential actin/myosin velocity and err in predicting the location of
the anterograde/retrograde boundary. The latter could also have something
to do with neglecting the cell body movements. Therefore, future model
refinements should include a more detailed and realistic microscopic myosin
dynamics. Also in the future, refinements of the model should include more
realistic nonlinear dependencies of F-actin mechanical properties (viscosity,
relaxation times) on applied stresses [1] and possible anisotropy effects [8].
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Tables 1,2: Model variables (top) and parameters (bottom)

Symbol Meaning Estimated value
0 F-actin density absolute value not im-
portant in the model
u F-actin flow rate ~ 0.1 pm/sec
t time characteristic time
scale is 50 sec
r (z,y) spatial coordinate characteristic  spatial
scale is 10 pm
T viscoelastic stress tensor ~ 10 — 100 pN/pm
F.an  adhesion friction force ~ 10 — 100 pN/pm?
D rate-of-deformation tensor 0.01 - 0.1/sec
n effective viscosity of the F-actin network ~ 100 — 1000
pNxsec/pum
T™Y°  myosin contractile stress ~ 10 — 100 pN/um
mo free myosin density absolute value not im-
portant in the model
m working myosin density absolute value not im-
portant in the model
Symbol Meaning Value References
Q non-Newtonian fraction ~ 0.9 estimated roughly using data
of viscosity in [2, 4]
A relaxation  time for ~ 1 —10 sec 2, 4, 9]
stress
L characteristic lamellipo- ~ 10 pym [6, 10, 11], our data
dial size
14 characteristic cell speed ~ 0.2 pm/sec 6, 10, 11]
) characteristic actin net- ~ 400 pNx sec/ym [12]
work viscosity
T0 characteristic contrac- ~ 10— 100 pN/pum  estimated using data of [13,
tile stress 14]; our data
&o characteristic adhesion ~ 1000 estimated using data of [13,
viscous drag pNxsec/pum? 14]; our data
k1 myosin detachment rate ~ 0.01/sec estimated in this paper
ko myosin attachment rate absolute value not important
in the model
D myosin diffusion coeffi- absolute value not important
cient in the model
07 F-actin disassembly rate ~ 0.03/sec estimated using data of [15]




	BorisViscel.pdf
	Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod
	Introduction
	Experimental Measurements of the Flow and Adhesion Strength
	Mathematical model of the myosin-powered flow of viscoelastic actin network
	Mechanics of the actin-myosin network
	Characteristic parameters and scales

	Myosin transport and stress generation
	F-actin turnover and viscosity
	Adhesion distribution

	Analysis of the Model
	Myosin distribution

	Results
	One-dimensional F-actin flow
	Maps of the centripetal flow and traction forces
	Lamellipodial shaping by the balance between the actin growth and centripetal flow

	Discussion
	Supporting Material
	References



