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A hybrid stochastic–deterministic 
mechanochemical model of cell polarization

ABSTRACT  Polarization is a crucial component in cell differentiation, development, and mo-
tility, but its details are not yet well understood. At the onset of cell locomotion, cells break 
symmetry to form well-defined cell fronts and rears. This polarity establishment varies 
across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling 
pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly 
connected to cytoskeletal dynamics and mechanics. Theoretical models that have been devel-
oped to understand the onset of polarization have explored either signaling or mechanical 
pathways, yet few have explored mechanochemical mechanisms. However, many motile cells 
rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a sta-
ble polarized state. We propose a general mechanochemical polarization model based on 
coupling between a stochastic model for the segregation of signaling molecules and a simpli-
fied mechanical model for actin cytoskeleton network competition. We find that local linear 
coupling between minimally nonlinear signaling and cytoskeletal systems, separately not sup-
porting stable polarization, yields a robustly polarized cell state. The model captures the es-
sence of spontaneous polarization of neutrophils, which has been proposed to emerge due 
to the competition between frontness and backness pathways.

INTRODUCTION
The ability to break symmetry spontaneously is fundamental to most 
eukaryotic cells and plays an important role in embryogenesis, cell 
differentiation, cell division, and migration. Intrinsically motile cells 
can switch spontaneously to a migratory polarized phenotype 
(Parent and Devreotes, 1999). Understanding complex molecular 
circuits employed by a cell to establish polarization has been stud-
ied both theoretically (Levchenko and Iglesias, 2002; Maree et al., 
2006; Mori et al., 2008; Altschuler et al., 2008; Lomakin et al., 2015; 
Goryachev and Leda, 2017) and experimentally (Burridge and 

Wennerberg, 2004; Wong et al., 2006; Nguyen et al., 2016; Peglion 
and Goehring, 2019).

Polarity establishment arises primarily through the localization of 
particular proteins and lipids in the cell to specific regions of the 
plasma membrane, and often precedes motility. Experiments have 
identified a few conserved sets of proteins involved in polarization 
including the PAR system (Munro et al., 2004; McCaffrey and Macara, 
2012), the Wnt system (Ip and Gridley, 2002), the Scribble complex 
(Assemat et al., 2008; Su et al., 2012), and the Rho system (Burridge 
and Wennerberg, 2004; Schwartz, 2004). Here, we focus on the Rho 
molecular circuit whose dynamics can lead to cell polarization at the 
onset of cell motility. The Rho family of GTPases is a family of small 
proteins that act as molecular switches (Hall, 1998; Schwartz, 2004). 
Three important members of the family have been studied in detail: 
Cdc42, Rac1, and RhoA (Schwartz, 2004). These proteins cycle be-
tween an inactive (GDP) cytosolic form and an active (GTP) mem-
brane-bound form that signals to the actin cytoskeleton and other 
downstream targets. Mutually antagonistic interactions between 
Rac1 (Rac) and RhoA (Rho) were identified, as well as spatial and/or 
temporal exclusions that produce a tendency for them to segregate 
to the front versus rear of a polarized cell (van Leeuwen et al., 1997; 
Xu et al., 2003; Burridge and Wennerberg, 2004; Byrne et al., 2016). 
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From previous theoretical work, it is well known that mutually inhibi-
tory circuits, such as those in Rac/Rho, could yield a robustly polar-
ized system (Jilkine and Edelstein-Keshet, 2011; Edelstein-Keshet 
et al., 2013).

Cell polarization is also associated with the rearrangement of the 
actin cytoskeleton during polarization, in which branched actin fila-
ments form at the cell front while actomyosin contractile bundles 
segregate to the cell rear (Wong et al., 2006; Yam et al., 2007; Svit-
kina, 2018). Just as diffusible chemical activators and inhibitors trig-
ger biochemical instabilities, mechanical instabilities can arise due 
to stochastic fluctuations in actin filament densities or mechanical 
feedback between motor proteins and cytoskeletal elements 
(Vekhovsky et  al., 1999). In mechanically driven polarity systems, 
cells polarize due to mechanical forces and actin flow generated by 
these forces (Yam et al., 2007; Mullins, 2010; Goehring et al., 2011; 
Barnhart et al., 2015; Lomakin et al., 2015). Two classic cases involv-
ing cytoskeleton-driven polarization are the formation of actin 
comet tails by intracellular pathogens (Dayel et al., 2009; Haglund 
and Welch, 2011) and the directional locomotion of keratocytes 
(Barnhart et al., 2015; Lomakin et al., 2015; Yam et al., 2007). In both 
cases, the mechanical properties of the actin cytoskeletal network 
appear sufficient for polarization, which can be triggered by sto-
chastic or induced asymmetries in the mechanical network.

Mathematical models have been used to explain spontaneous 
pattern formation in cells since the 1950s (Turing, 1952; Meinhardt 
and Gierer, 1974). Initial approaches were based on Turing patterns 
and focused on biochemical signaling pathways for polarity. In Tur-
ing-like models, chemical patterns emerge from stochastic fluctua-
tions combined with interactions between chemical species that 
diffuse at different rates; these models often require elaborate non-
linearities for stable polarized distributions of chemicals (Howard 
et al., 2011; Jilkine and Edelstein-Keshet, 2011).

Recently, many models for cell polarization have been proposed 
based on reaction–diffusion (not necessarily Turing-like) equations 

(Jilkine and Edelstein-Keshet, 2011). In one of the most popular 
models, the “wave-pinning” model (Figure 1a), a minimal bistable 
reaction–diffusion system gives rise to polarization of active/inactive 
chemicals (Mori et al., 2008). In the model, the active form of the 
chemical diffuses slowly on the membrane and autocatalytically ac-
tivates the inactive form of the chemical, which diffuses fast in the 
cytoplasm. Conservation of the total chemical and the fast diffusion 
of its inactive form act as global inhibitors and pin or “arrest” the 
active chemical in space into a stable polarized distribution. The 
model reproduces a number of observed features shared by many 
eukaryotic cells: (a) spontaneous (self-) polarization, (b) maintenance 
of the polarized state after a stimulus is removed, and (c) sensitivity 
to new incoming signals and ability to repolarize in a new direction.

Besides reaction–diffusion models, stochastic polarization 
models have also been proposed (Figure 1b; Altschuler et al., 2008; 
Walther et al., 2012; Wu et al., 2015; Pablo et al., 2018). For exam-
ple, Altschuler et al. (2008) found that clusters of active membrane-
associated molecules can form and persist in time if there is a posi-
tive feedback loop in which active molecules recruit additional 
copies of themselves from a cytoplasmic pool, provided the system 
is operating within a stochastic regime and the molecule number is 
limited. A stochastic version of the wave-pinning model was intro-
duced by Walther et al. (2012). The authors found that when the 
molecule number is lowered, the wave front collapses predomi-
nantly due to the fluctuations in the pinning position of a traveling 
wave. The result of loss of polarization at low cellular concentration 
is in contrast to the work of Altschuler et al. (2008).

A much smaller body of literature exists for actin-driven models 
for cell polarization (van der Gucht et  al., 2005; Goehring et  al., 
2011; Barnhart et  al., 2015; Lomakin et  al., 2015). Most of these 
models focus on the fast-moving fish epithelial keratocytes, which 
do not require the stereotypical signaling cascades to polarize 
(Ridley, 2001). A combined experimental and theoretical effort 
showed that the mechanical feedback between actin network flow, 
myosin, and adhesion is sufficient to amplify stochastic fluctuations 
in actin flow and trigger polarization (Figure 1c); aggregation of 
myosin at the cell rear generates rearward actin flow and forward cell 
movement, which both amplify the myosin concentration at the rear 
(Barnhart et al., 2015). An actin flow–free mechanical mechanism for 
cell polarization was proposed by Lomakin et al. (2015; Figure 1d). 
The authors demonstrated that competition between branched and 
bundled actin networks around the cell periphery leads to segrega-
tion of the actin cytoskeleton into branched filaments at the cell 
front and actomyosin bundles at the rear. A key assumption in this 
model is that protrusion of the boundary favors the branched net-
work, while boundary retraction favors the contractile bundles.

Deterministic models for biochemical polarization mechanisms 
have limitations. For example, in the wave-pinning model, the sta-
bility of the polar distribution of the active chemical requires highly 
nonlinear reaction terms (Mori et al., 2008). Furthermore, when the 
initial condition in the wave-pinning model consists of multiple lo-
calized patches of active chemicals, and when the diffusion constant 
is very small, these initial patches persist in time, corresponding to 
formation of not one but multiple zones of activity on the plasma 
membrane (Figure 2a). Stochastic models for polarity molecules re-
quire very simple kinetics, but also require additional assumptions 
to constrain the number and location of emergent clusters into a 
single one (Figure 2d, N = 100; Altschuler et al., 2008).

Although cell polarity can emerge from systems that are either 
chemical or mechanical, in many cases cell polarity depends on the 
interplay between the two (Bois et  al., 2011; Dawes and Munro, 
2011; Howard et  al., 2011; Prager-Khoutorsky et  al., 2011). One 

FIGURE 1:  Simple models of cell polarization. Biochemical (a, b) and 
mechanical (c, d) approaches for polarity establishment. (a) Reaction–
diffusion model of Rho GTPase signaling pathways are based on 
mutual antagonism between signaling molecules. (b) Stochastic model 
of the cycling of active–inactive states of signaling molecules with 
autocatalytic feedback. (c) Polarization can also emerge due to 
positive feedback between myosin concentration gradients and 
myosin transport by the flow, which generates actomyosin flow up the 
gradient. (d) In an advection-free model, polarization emerges due to 
the competition between the branched protrusive actin network and 
contractile bundles of the actomyosin network caused by competition 
for a conserved number of molecular resources.
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such example of mechanochemical polarization is the establishment 
of the anterior–posterior axis in Caenorhabditis elegans embryos, 
which depends on both actomyosin flow and the biochemistry of 
PAR polarity proteins (Munro et al., 2004; Dawes and Munro, 2011; 
Goehring et al., 2011). In this system, asymmetrical cell contractility 
and cortical actin flow are essential for polarity establishment (Dawes 
and Munro, 2011; Munro et  al., 2004). By coupling an advective 
transport of the flowing cell cortex to a reaction–diffusion system for 
PAR protein segregation, Goehring et al. (2011) showed that advec-
tion could serve as a mechanical trigger and would be sufficient to 
form stable asymmetric PAR distribution. Similar experimental ob-
servations of the feedback between mechanics and biochemical 
signaling in polarity of other organisms continue to appear (Gra-
ziano et al., 2018).

Here, we set out to uncover a minimal coupling between the 
simplest biochemical signaling and cytoskeletal circuits that supports 
robust cell polarization. The competition between two actin net-
works (branched and protruding vs. bundled and contracting) is one 
such minimal cytoskeletal mechanism not requiring advective actin 
flow (Lomakin et al., 2015). However, to generate stable polariza-

tion, this mechanism requires coupling to physical cell movement. 
Most cells move slowly and break symmetry before initiating loco-
motion (Prager-Khoutorsky et al., 2011). Here, we show that the sim-
plest feedback between two-network competition and the simplest 
stochastic model of biochemical polarization with minimal nonlin-
earities leads to robust cell polarization. The model is applicable to 
neutrophils, in which a competition between frontness and back-
ness pathways, each built from a mutually beneficial actin network 
and a signaling circuit, is essential for the spontaneous polarization 
of cells (Xu et al., 2003). Separately, neither competition between 
the leading-edge actin and the rear-edge actomyosin networks nor 
feedback between Rac-and Rho-related pathways can polarize 
these cells, but when they are coupled, the polarization emerges, as 
our model will demonstrate.

MODEL FORMULATION
Minimal biochemical signaling model
The biochemical part of our model is a simplification of well-studied 
Rho GTPase kinetics (Moissoglu and Schwartz, 2014). Each Rho 
GTPase molecule cycles between two states: an active GTP-bound 

FIGURE 2:  Neither model produces a stable polarized cell state. (a) Given patchy initial conditions and low diffusion on 
the membrane, the wave-pinning model (Mori et al., 2008) cannot yield a polar distribution of the membrane-bound 
active polarity molecules. (b) In the mechanical cytoskeleton model for polarization of keratocytes without movement 
(Lomakin et al., 2015), perturbations to the polar distributions of the branched and bundled actin networks lead to 
annihilation of one of the networks. (c) Schematic of the stochastic polarization model modified from Altschuler et al. 
(Altschuler et al., 2008) describes the cycling of active–inactive states of two species of signaling molecules: Rac and 
Rho. (d) Results of model simulations from (c) with varying total number of species N. With a small number of particles, 
long-lasting patches of active form of Rac and Rho appear; however, there is no control on the number of emergent 
patches or their merging into single protrusive and contractile fronts. Decreasing the number of signaling molecules 
leads to increasing levels of spatial segregation between the two signaling species. (e) In our coupled model, we link the 
nonpolarizing mechanical model for the cytoskeleton to the nonpolarizing simple kinetics model for Rac/Rho dynamics. 
(f) Schematic of the coupled model: Rac proteins and the branched actin network engage in mutual local feedback and 
similarly; so do Rho proteins and the bundled actin network.
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form, bound to the plasma membrane, and an inactive GDP-bound 
form, diffusing in the cell cytosol (Burridge and Wennerberg, 2004; 
Hall, 1998). The conformational changes between these two states 
are facilitated by a class of regulatory proteins such as GEFs, GAPs, 
or GDIs (Burridge and Wennerberg, 2004; Hall, 1998). Rac and Rho 
pathways cross-talk with one another, and previous research has re-
vealed evidence of mutual inhibition of Rac and Rho signaling 
(Burridge and Wennerberg, 2004; Byrne et al., 2016; van Leeuwen 
et al., 1997; Xu et al., 2003). Furthermore, this mutual antagonism is 
believed to promote spatial and/or temporal exclusions that produce 
a tendency for Rac and Rho segregation (Yamada and Nelson, 2007).

At the onset of polarity, nascent polar sites appear along the 
plasma membrane and their presence is believed to be sustained by 
local positive feedback that depends on the assembly of branched 
actin filaments (Inoue and Meyer, 2008; Ma et al., 2018). These initial 
polar sites are thought to be sustained through local positive feed-
back loops that depend both on the presence of polarity molecules 
(Nguyen et  al., 2016) and on actin assembly (Inoue and Meyer, 
2008; Srinivasan et al., 2003; Weiner, 2002). Specifically, in their ac-
tive state, Rho GTPase can bind to downstream effector proteins 
that control the actin cytoskeleton rearrangements (Heasman and 
Ridley, 2008; Ridley, 2006). Rac polarity sites mediate the formation 
of a branching actin filament network at the leading edge (Weiner 
et al., 1999). Interaction between Rac and branched actin network 
appears to be mutual—Rac activates nucleation-promoting factors 
such as WAVE and WASP, which activate Arp2/3 branching com-
plexes (Higgs and Pollard, 2001; Machesky and Insall, 1998), while 
recruitment of additional Rac in nascent polarity zones in highly pro-
trusive regions is also reported (Das et  al., 2015; Nguyen et  al., 
2016; Weiner et al., 2007). Rho is believed to stimulate the forma-
tion of a bundled actomyosin network through recruitment of myo-
sin II molecular motors at the opposing end (Hall, 1998; Pertz et al., 
2006). While less is known about the interaction from actomyosin 
bundles to Rho, recent work seems to indicate that localization of 
Rho activators is actin-dependent (Segal et al., 2018).

Our signaling kinetics model is formulated on a one-dimensional 
circular domain representing polarity molecules on the plasma 
membrane and a thin volume of cytoplasm adjacent to the mem-
brane on the circular edge of a disk-like cell spread on a flat surface. 
Position of the molecules is represented by the arc length s on a 
circle. We track coordinates of activated Rac and Rho molecules on 
the membrane along the cell edge, x s t( , )i

Rac  and x s t( , )i
Rho , where i 

is the index of the specific molecule. Cytoplasmic concentrations of 
Rac and Rho are assumed to be homogeneous due to the fast diffu-
sion in the cytoplasm. For the dynamics of these proteins, we ex-
tend the theory of Altschuler et al. (2008) to include two species of 
signaling molecules. The redistribution of signaling molecules is 
determined by the rates of four mechanisms (Figure 2c): 1) positive 
feedback–induced activation and recruitment of cytoplasmic mole-
cules to the locations of membrane-bound active signaling mole-
cules with rate kfb; 2) spontaneous activation and association of cy-
toplasmic molecules to random locations on the plasma membrane 
with rate kon; 3) lateral diffusion (with coefficient d) of active mole-
cules along the membrane; and 4) deactivation and disassociation 
of signaling molecules from the membrane with rate koff. For sim-
plicity, we use the same kinetic rates for both Rac and Rho.

We first describe the simple case where the signaling molecules’ 
kinetic rates are constant in space. At initialization, 10% of the sig-
naling molecules of each type, N, are randomly placed along the 
cell membrane, while it is ensured that there is no spatial overlap 
between particles of different types. Based on the dynamics de-
scribed above, the number of Rac (or Rho) molecules on the mem-

brane, n(t), evolves by a continuous-time Markov-chain process 
where the transitions in the numbers of membrane-bound particles 
are jumps by +1 or 1. Because the kinetic rates governing the Pois-
son process will be spatially dependent (see Mechanochemical cou-
pling), we consider individual transition rates: the time and location 
of the next biochemical reaction event is computed discretely based 
on the locations of the already membrane-bound particles. For each 
membrane-bound particle j, we compute the time to its next reac-
tion, which is exponentially distributed with rate:

λ = + −






+






n k
N

n
k k

n

N
( ) ( ) 1 ( ) ( )j off j on j fb j � (1)

The rate λ n( ) j should be interpreted as a reaction rate per mem-
brane-bound particle—hence, the unbinding rate per particle is a 
constant koff, while the binding rate is proportional to the remaining 
fraction of available binding spots on the cell membrane with a con-
stant of proportionality +k k n

N( ) ( )on fb . The spontaneous association 
rate per particle is constant but the enhanced association per particle 
due to its implicit dynamics of enhanced recruitment is proportional 
to the fraction of molecules that are still in the cytosol. After n ran-
dom times based on these rates are generated, the time for the next 
reaction in the system is chosen as the minimum time across all active 
particles. Then, for each respective particle, either a disassociation 
event with probability λk n( ) ( )off j j, a spontaneous association event 

with probability λ−





N
n k n1 ( ) ( )j jon , or an induced association event 

with probability λ−





n
N k n1 ( ) ( )j jfb  is generated. If a disassociation 

event has occurred, the particle is removed from the membrane and 
added to the well-mixed homogeneous cytoplasmic pool of inactive 
particles. If a positive feedback–induced recruitment association 
event has occurred, a particle is added to the membrane from the 
cytoplasmic pool and its position is chosen to coincide with the posi-
tion of the already membrane-bound particle. Last, for a spontane-
ous association event, the new particle is added from the cytoplas-
mic pool of inactive particles to the membrane at a randomly chosen 
location within the spatial segment centered at particle j. The end-
points of the spatial segment associated with particle j are at the 
halfway location between the nearest neighboring membrane-bound 
particles of the same type. Independently, this process is repeated 
for both Rac and Rho particles. Between Markov events, the number 
of membrane-bound Rac (or Rho) particles is constant and the parti-
cles diffuse freely on the membrane. A steric repulsion is enforced 
between Rac and Rho polarity molecules so that the two chemicals 
cannot cross paths at any moment in time. The rates of transition 
(Zhang and Zheng, 1998; Moissoglu et al., 2006; Altschuler et al., 
2008; Mori et al., 2008; Falkenberg and Loew, 2013; Das et al., 2015), 
relative rates of diffusion (Mogilner and Keren, 2009), and concentra-
tions of active and inactive states (Altschuler et al., 2008; Das et al., 
2015) are readily biologically interpretable and estimated from ex-
perimental data (see Supplemental Table S1). In the Supplemental 
Material, we explain in detail how the diffusive random walk of the 
molecules on the membrane is simulated, as well as the numerical 
implementation of the modified spatial Gillespie first reaction algo-
rithm for chemical reactions (Gillespie, 1977, 2007). We also note 
that the above description only considers a model for the signaling 
pathway in the absence of the actin dynamics. The modified model 
that incorporates actin dynamics will follow in the next subsection.

Minimal actin network model
Two different actin structures are characteristic of polarized cell mi-
gration: a branched, protrusive actin network at the cell front, and a 
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contractile network made up of actomyosin bundles at the cell rear 
(Lomakin et al., 2015). These two actin networks compete mechani-
cally (Lomakin et  al., 2015): protrusion of the branched network 
leaves the bundled network behind the cell edge, while the contrac-
tile bundles collapse the branched filaments into bundles. The net-
works also compete for the same pool of actin monomers and other 
molecular resources in the cytosol (Rotty and Bear, 2014). Thus, our 
model has the features of a system with two competing species 
(Edelstein-Keshet, 1988). The spatiotemporal distributions of the 
two species of actin networks along the plasma membrane arc 
length are A(s, t) for the protrusive network and B(s, t) for the con-
tractile actin–myosin meshwork. We assume that the branched net-
work is protrusive and devoid of myosin II motors, while the bundled 
network contains contractile actomyosin bundles that generate con-
tractile forces and retract the cell’s posterior. Their dynamics are 
given by the following nondimensionalized coupled system of 
equations adapted from Lomakin et al. (Lomakin et al., 2015):

A

t
A A m AB D A

B

t
B B m AB D B

2
0

2
0

∆

∆

∂
∂

= − − +

∂
∂

= − − + � (2)

Full model assumptions and details are explained in the Supple-
mental Material. The rate of network growth is proportional to their 
density, but it is limited at high densities by the finite amounts of 
molecular resources (e.g., depletion of monomers or branching 
complexes or myosin II motors). The model assumes that the com-
petition terms, proportional to the product AB, stem from either 
mechanical competition or competition for limited molecular re-
sources. Parameter m0 is the magnitude of competition between 
the networks. Last, the diffusive terms describe the action of myosin 
II motors that slide and shuffle bundled filaments in the contractile 
actomyosin network, as well as the random lateral displacements of 
the growing ends of the barbed filaments along the cell membrane 
(Lomakin et al., 2015).

Mechanochemical coupling
To couple the cytoskeleton meshwork dynamics to the cycling of 
signaling molecules, we assume, based on the experimental evi-
dence described above, the simplest possible local feedback loops 
between 1) Rac and the branched actin network, and 2) Rho and the 
bundled actin network (Figure 2f). Specifically, we posit that the 
chemical rates in the signaling module are no longer constant but 
rather are linear functions of the local concentration of each respec-
tive actin network, which evolves in space and time. On the other 
hand, the growth rate of each actin network is linearly proportional 
to the respective local densities of active polarity proteins. We use 
the following mathematical expressions for the modified rates of 
Rac and Rho kinetics (Figure 2e):

β( )( ) ( )
( )

= +  
=

k s k max C s C

k s k

1 ,fb on fb on max

off off

, ,

� (3)

Here, the expressions for on and off rates are for either Rac or 
Rho chemical kinetics. For Rac/Rho kinetics, C denotes branched/
bundled actin network density, A or B, respectively. Thus, the in-
duced on rate for Rac increases with the local branched actin den-
sity, while the Rho induced on rate increases with the local bundled 
actin–myosin density. The off rates are constant. The maximum 
function in the expressions for kfb and kon is a pointwise maximum 

function and serves to ensure that the association rates do not ex-
ceed a threshold value. In principle, all kinetic rates could depend 
on the spatial distribution of actin. Additionally, introducing spatial 
dependence into the disassociation rate produced no qualitative 
changes from the results presented here (unpublished data). Simi-
larly, not all kinetic rates need to depend on actin concentration, 
and as an example, we found that in order to reproduce the results 
presented here, only the enhanced association rate should vary spa-
tially with actin concentration. The coupling constant β is the mea-
sure of this feedback strength. The growth term in the actin net-
works equations is altered as follows:

α ∆

α ∆

( )

( )

( ) ( )

( ) ( )

∂
∂

= + − − +

∂
∂

= + − − +

A s t

t
A n s t A m AB D A

B s t

t
B n s t B m AB D B

,
1 ,

,
1 ,

Rac

Rho

2
0

2
0 � (4)

The coupling constant is a measure of the feedback from Rac/
Rho to the branched/bundled actin, respectively. In these expres-
sions, n s t( , )Rac  and n s t( , )Rho  are the densities of Rac and Rho, re-
spectively. Numerically, these densities are computed from the dis-
crete locations of the respective molecules by computing at each 
time step a superposition of Gaussian peaks with variance and cen-
ters at their molecular locations.

Importantly, in the presence of the feedback from actin networks 
to the signaling molecules, their on/off rates depend on the spatial 
positions on the cell edge due to varying actin densities. In this case, 
the numerical implementation of the chemical kinetics becomes 
more complex; because the kinetic rates vary spatially, the individual 
time between events in the number of membrane-bound molecules 
is determined for every individual molecule according to the rates

λ = + −






+






n s k
N

n
k s k s

n

N
( , ) ( ) 1 ( ( )) ( ( ))j off j on j fb j � (5)

and the minimum time is chosen as the first event in the Poisson 
process. Then, the dissociation, spontaneous association, and in-
duced association events take place with probabilities given above 
for the spatially independent model; however, the rates now de-
pend on the positions of the active signaling molecules. The nu-
merical implementation of this modified stochastic model is pro-
vided in the Supplemental Material. The codes used are accessible 
online on a public repository (link provided in Supplemental Mate-
rial). The values for the coupling constants range between 0 
(uncoupled) and 2 (strongly coupled).

RESULTS
Neither the mechanical nor the biochemical model leads 
to stable polarization
A deterministic formulation of the polarity signaling model in Figure 
1b with only one chemical species results in a reaction–diffusion 
equation with stably nonpolar distributions (Altschuler et al., 2008). 
On the other hand, a stochastic formulation of the same kinetics 
leads to the emergence of clusters of Rac and Rho that persist in 
time (Figure 2b). However, we find that neither Rac nor Rho clusters 
localize into a single cluster; Rac and Rho do not concentrate to op-
posite sides of the polarized cell, as observed at the onset of motil-
ity. As the total number of signaling molecules is increased, the 
number of clusters of Rho GTPase activity also increases, resulting in 
a patchy distribution. We varied the biochemical kinetic rates and 
found that these results hold over a wide range of model parame-
ters. The actin competition model is based on the classical Lotka–
Volterra model of the population dynamics of two species competing 
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for a common resource (Edelstein-Keshet, 1988). If the competition 
parameter m0 is small, two networks can coexist in space, and both 
of their densities are spatially constant. However, if the competition 
parameter m0 is large, the situation becomes “winner take all,” and 
one network dominates, while the other goes extinct. We examined 
if polarized actin distributions are possible: one of the networks 
occupies one region in space, while the other occupies the remain-
ing space (Figure 2b). Such a polarized state exists only when the 

FIGURE 3:  Emergence of polarity in the coupled mechanochemical system. (a–c) With weak 
feedback between the polarity molecules and the actin networks, the underlying chemicals do 
not segregate into a polar distribution but remain in a patchy distribution around the cell 
membrane. In this particular simulation, the bundled actin persists and eliminates the branched 
actin meshwork in the system. (e–g) For strong coupling constants, both the mechanical and 
signaling system polarize. The polarity proteins completely segregate and each actin network 
separates into a peak of activity in complementary regions of the cell membrane. (d, h) 
Kymographs of the molecular locations of Rac and Rho around the cell edge. Rac/Rho 
trajectories are blue/yellow, respectively. The weak/strong coupling systems are d/h, 
respectively.

initial distributions are exactly symmetric. 
Any small perturbation of the initial polar-
ized distribution results in one network (the 
one with slightly greater spatial support) tak-
ing over and displacing the other network 
(Figure 2b). Rigorous mathematical analysis 
showed that this nontrivial spatial segrega-
tion of competing species in Lotka–Volterra 
models is not stable (Cosner and Lazer, 
1984; Kan-On, 1998; Takeuchi, 1989).

These simulations led us to wonder if 
coupling between the chemical and me-
chanical modules could stabilize cell polar-
ization. The idea is that the slow destabili-
zation of the polar state of actin networks 
could bias the signaling molecules into 
segregating into two opposite parts of the 
cell; this bias is caused by the up-regula-
tion of Rac on the membrane by the 
branched network and simultaneously the 
up-regulation of Rho by the bundled net-
work. Then patches of Rac and Rho, whose 
positions are arbitrary without feedback, 
could drift to opposing cell regions. In turn, 
feedback from Rho GTPase to the respec-
tive actin networks ensures that one net-
work does not invade another’s territory, 
since each network dominates in a specific 
region due to the presence of its support-
ing chemical.

The coupled mechanochemical model 
produces symmetry breaking 
depending on coupling strength
To assess whether this model with positive 
feedback between protrusive actin and 
Rac, and contractile actin and Rho, can ac-
count for symmetry breaking, we run simu-
lations with two choices for the coupling 
constants (Figure 3). The numerical simula-
tions assume random initial distributions 
and equal total conserved amounts of Rac 
and Rho, and of two types of actin network 
(Figure 3, a and e). We define a polarized 
cell state when two spatially separated well-
defined peaks emerge, one for the 
branched actin and another for the bundled 
actomyosin network, and simultaneously, 
peaks for the chemical concentrations, Rac 
and Rho, form in the same locations as the 
peaks of their respective actin networks. 
For low coupling constants, the polarity 
proteins segregated into many nonoverlap-
ping Rac and Rho clusters (Figure 3d). The 

mechanical model was unable to achieve a polar distribution: 
either the actomyosin bundles or the branched actin meshwork 
went extinct (Figure 3c). In this particular instance of the simulation, 
the protrusive branching network died out while the bundled acto-
myosin network survived and took over the entire plasma mem-
brane (Figure 3c). Tens of instances for this set of parameters were 
considered and a probability of polarization establishment of 5% 
was computed as a fraction of the number of simulations with 
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stable polar distributions of both actin and polarity chemicals over 
the total number of runs.

Next, we considered a strongly coupled system and observed 
that the polarity molecules segregated into two clusters on the 
membrane: a Rac-dominated front and a Rho-dominated rear 
(Figure 3h). Simultaneously, the same spatial pattern is adopted by 
the actin networks: in the Rac-dominated region, a branched actin 
network is assembled, while in the Rho-dominated patch, bundled 
actomyosin is present (Figure 3g). Initial patches of Rac enhance 
local recruitment of the branched actin network, while at the same 
time, in different regions, Rho patches promote the formation of 
actomyosin bundles. This initial feedback-based recruitment leads 
to the formation of peaks in the concentration of each actin net-
work, which ultimately increases the association and feedback 
rates in the signaling system. This transient behavior ultimately 
gives rise to a well-formed and stable peak in each actin species 
and a corresponding peak in its associated polarity molecule con-
centration. While these peaks are dynamic, their locations in space 
remain fixed, given no external stimulus. Furthermore, perturba-
tions of the spatial profiles of the actin networks quickly return to 
equilibrium.

To characterize the parameter dependence on establishing po-
larity in the model, we performed simulations where all biochemical 
signaling and mechanical parameters were held constant but the 

coupling constants were varied. By simultaneously changing these 
two coupling strengths, we obtained heat maps of the polarization 
probability (Figure 4a), defined as the fraction of simulations with 
stable polar distributions of the actin networks and polarity mole-
cules over the total number of runs. Based on Figure 4, the system 
is more likely to polarize in the presence of higher coupling con-
stants. Importantly, both feedback directions—from actin to Rho 
GTPase and from Rho GTPase to actin—are needed for the 
polarization.

The effect of biochemical and other mechanical rates on 
polarity establishment
We performed a series of simulations varying the competition para-
meter in the mechanical model and obtained the corresponding 
polarization probability. For a strongly coupled system, the competi-
tion parameter has little to no effect on the likeliness of establishing 
polarity (Figure 4d). For a system with weaker coupling, the ability to 
establish a polar distribution of the actin networks is diminished 
even further with a lower competition parameter (Figure 4c). In the 
absence of competition, the equations are well known to exhibit 
coexistence with uniform spatial distribution (Edelstein-Keshet, 
1988). We find that in the absence of competition, but coupled to 
the signaling module, the two actin networks can coexist on the 
entire domain, but, due to the randomness of the signaling module, 

FIGURE 4:  Stronger mutual coupling between the actin networks and the signaling system improves cell polarization. 
Twenty simulations are considered for each set of parameters. Based on the outcome, the probability of a stable 
polarized solution is reported as the fraction of polarized solutions out of the total number of simulations for that 
specific choice of parameters. (a) Polarization probability is reported as a function of the two coupling parameters in the 
mechanochemical positive feedback loop, α and β. The parameters that were used to produce the simulations shown in 
Figure 3 are indicated. (b) Polarization probability as a function of two signaling kinetic rates: induced recruitment to the 
membrane rate kfb and disassociation rate koff. (c) Polarization probability as a function of two signaling kinetic rates: 
spontaneous association rate kon and disassociation rate koff. For subplots (a–c), a strongly coupled system is considered 
with α = β = 2. Effect of the actin competition parameter m0 on polarization probability is reported for (d) a weakly 
coupled system, α = β = 0.2, and (e) a strongly coupled system, α = β = 2.
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two actin densities exhibit arbitrarily positioned small-amplitude 
peaks. We also varied the relative initial amounts of branched and 
bundled actin networks and found that even in the case where 90% 
of the F-actin was initially assembled into actomyosin bundles, the 
cell was able to polarize roughly 80% of the time, with half of the 
actin in one type of network and half in the other (Supplemental 
Figure S2a).

Next, we varied the kinetic rates in the biochemical signaling 
module. The mechanical parameters and coupling constants were 
held constant, while two chemical rates for both Rac and Rho were 
varied: the induced association rate, kfb, and the disassociation rate, 
koff . We obtained a heat map of the polarization probability (Figure 
4b). For the majority of the heat map, the probability to polarize is 
largely unaffected by variations in these parameters. However, the 
model is sensitive to high disassociation rates and simultaneously 
low enhanced recruitment rates (bottom right corner of Figure 4b). 
In this situation of high disassociation and low feedback rates, there 
are too few polarity molecules on the cell membrane. Hence the 
chemical system is not able to influence the mechanical module, 
and the system gravitates toward the stable “winner takes all” state; 
one of the actin meshworks completely annihilates another. To com-
ment on the effect of the third kinetic rate, we varied the spontane-
ous association rate, kon, and the disassociation rate, koff, while the 
other constants were held constant. The model is largely insensitive 
to variations of the on rate, due to the compensatory effect of the 
induced association rate. We find that for a very low disassociation 
rate, the random initial distribution of actin and polarity molecules is 
enhanced everywhere through recruitment to the membrane, thus 
corrupting the process of polarization.

The total number of polarity molecules in the system was also 
varied. Altschuler et al. (2008) reported that for a large number of 
polarity molecules, the active molecules are spread over the mem-
brane, and polarity is lost. By contrast, our coupled model does not 
exhibit the same response—the probability of polarization is largely 
unaffected by the total number of polarity molecules (Supplemental 
Figure S2b). Last, we report on the response to lowering the diffu-
sion constant by an order of magnitude for a strongly coupled sys-
tem with baseline parameter values. We find that two actin density 
peaks do emerge, one corresponding to a protrusive zone with Rac 
and branched actin present, and a second peak with Rho and bun-
dled actomyosin (Supplemental Figure S3). The width of these 
peaks is notably narrower than that of those reported in our other 
results, due to the lower diffusivity. These peaks are also closer to 
each other. While the cell is, formally speaking, polarized, it does 
not have a well-defined front and rear at opposite ends. Instead, the 
protrusive and retractive regions could be close to each other on the 
cell edge.

Polarization direction is responsive to the orientation of the 
external signal
Thus far, our model simulations suggest that spontaneous polymer-
ization in an arbitrary direction can arise from the coupling between 
the cytoskeletal mechanics and chemical kinetics. To determine 
whether our model exhibits sensitivity and adaptation to external 
signals, we simulated polarization in the presence of directional bias 
(Figure 5, a and b). We assumed that the association/dissociation 
rates for Rac molecules vary along the cell edge, which is equivalent 
to a directional bias, as shown in Figure 5a (the dissociation rate 
varied oppositely to the association rate, as the spatial complement 
of the curve in Figure 5a: the sum of the association and disassocia-
tion rates is constant). The kinetic rates for Rho molecules vary op-
positely to those of Rac: where Rac rates were low, Rho rates were 

high and vice versa. We observed that a polarized state evolved 
from random initial conditions, with Rac and Rho peaks with the 
same orientation as the external bias (Figure 5b). The actin networks 
peaks also colocalized with the respective chemicals and the exter-
nal bias (Figure 5b).

Next, we assessed how an already polarized cell responds to 
changes in the external signal direction. To achieve this, after the 
oriented polarized state established, we abruptly shifted the signal 
direction by 90° (Figure 5, c and e). After a transient reorganization 
of the signaling chemicals, the actin networks rearrange as well and 
the polarization direction turns to the new direction (Figure 5, d and 
e). If this was a motile cell, it would execute a smooth turn: at no 
time was the polarization lost, just its orientation changed smoothly. 
Last, we reversed the direction of the external signal by 180° (Figure 
5, f and h), and observed that the cell repolarized in the new direc-
tion (Figure 5, g and h). Note that in this case, polarization was mo-
mentarily lost but emerged in a new direction.

The model is robust to changes in initial and boundary 
conditions
To investigate the sensitivity to initial conditions, we explore the 
model’s response to different initial distributions of the actin net-
works. A feature of robust polarity establishment is the ability to 
coalesce multiple protrusions, or peaks in the branched actin con-
centration, into a single protrusive front. Thus, we considered an 
initiation of the system where branched actin concentration has 
three evenly spaced peaks, bundled actin density has one square 
peak, but active signaling molecule concentrations are randomly 
distributed along the plasma membrane (Figure 6a). All 10 instances 
of this simulation setup showed the formation of a single protruding 
front (Figure 6a). The location of this front along the cell membrane 
will vary based on the initiation.

Next, the model geometry was changed: instead of the circular 
edge of a disklike cell, we considered the anterior–posterior cross-
section of an elongated cell. The model remains 1D, but the bound-
ary condition becomes no-flux, as actin, myosin, and signaling 
molecules do not enter or exit the cell. All previously described re-
sults in this case qualitatively match those obtained by solving the 
same set of equations on the 1D segment with periodic boundary 
conditions (see Supplemental Figures S4 and S5). We show that 
three possible different initial spatial distributions of actin networks 
all evolve to a stable polarized state with a protrusive network at 
one end of the 1D cell, and a contractile network at the other end 
(Figure 6, b–d).

DISCUSSION
The initiation of cell migration involves a complex web of signaling 
and cytoskeletal modules. While in certain cellular systems polarity 
can arise from only signaling or mechanical pathways, many cells 
rely on the interplay between the two to robustly break symmetry to 
initiate locomotion. We have presented a mechanochemical model 
for cell polarization based on two minimal submodels, one describ-
ing signaling molecular dynamics, the other mechanics of cytoskel-
etal networks. The first submodel is for two types of signaling mole-
cules, such as Rac and Rho, which can diffuse on the cell membrane, 
dissociate from the membrane, or move from the cytoplasm to the 
membrane spontaneously, or can be recruited to the membrane by 
other molecules of the same type. This induced recruitment is the 
simplest autocatalytic feedback and corresponds to the only nonlin-
ear (quadratic) term in the mathematical model. One species of 
molecules with these dynamics aggregates into a finite number of 
clusters (Altschuler et al., 2008). Steric interaction is the only relation 
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FIGURE 5:  Polarization direction responds to changes in the external signal. (a) An external stimulus imposes a 
directional bias on the kinetic rates of both polarity proteins Rac and Rho. Rac association and Rho disassociation rates 
have the profile around the cell edge shown in this plot. (b) With the biased chemical kinetics, polarized distributions of 
both signaling chemical concentrations and actin networks are oriented in the direction of this external stimulus. 
(c) After the polarized distributions shown in b evolve, the peak of the external stimulus is shifted by θ1 = 90°. (d) In 
response to the shift of the external signal, the cell reestablishes polarity in the new direction. (e) Schematic of the 
change in external stimulus and resulting kymograph of the membrane-bound polarity proteins Rac/Rho (blue/yellow) 
along the cell membrane. (f) The peak of the external stimulus is now shifted by θ2 = 180°, corresponding to a reversal 
of the incoming signal. (g) In response to the shift of the external stimulus, the cell reestablishes polarity in the opposite 
direction. (h) Schematic of the change in external stimulus and kymograph of the membrane-bound polarity proteins 
along the cell membrane in response to reversal of the external stimulus. Blue indicates Rac chemicals, while yellow 
indicates Rho chemicals. The arrows in the bottom plots indicate the temporal location of a new stimulus.
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between two different types of molecules in the model. We show 
that this interaction leads to the emergence of multiple interspersed 
clusters across the cell. While the Altschuler model is appropriate for 
capturing Cdc42 cluster emergence in budding yeast, the signaling 
system does not polarize the cell globally: different types of mole-
cules segregate locally, but the clusters of the two kinds do not ag-
gregate in the respective halves of the cell, as required for establish-
ment of a polarity axis for migration. More generally, we find that 
our model resolves patchy initial conditions better than the 
Altschuler et al. model (Altschuler et al., 2008) and the wave-pinning 
model (Mori et al., 2008; Figure 2a) separately.

The second submodel is for two types of dynamic actin networks 
at the cell edge, branched protruding meshwork and actin–myosin 
contractile bundled network. These networks spread slowly and ran-
domly around the cell edge, due to physical movements and tread-
milling of actin filaments, and turn over while maintaining a certain 
equilibrium density. The nontrivial interaction between these net-
works is competition, such that the local density of one tends to di-
minish the density of another. This interaction stems both from me-
chanical effects and from competition for molecular resources. 
Mathematically, it is described by the simplest quadratic nonlinear 
term, which makes this submodel equivalent to the Lotka–Volterra 
equations for two competing populations (Edelstein-Keshet, 1988). 
It was shown in Lomakin et al. (2015) that this competition between 
two actin networks is an important part of the spontaneous polariza-
tion process, but without cell movement, the model is not able to 
polarize the cell, as one network will always win.

Thus, neither model is capable of producing cell polarization on 
its own. Here, we have demonstrated that the simplest coupling 
between the chemical and mechanical models—local, linear posi-
tive feedback loops between signaling molecules and actin cyto-
skeletal networks—is sufficient for spontaneous polarity. The model 

works if the strength of the mechanochemical coupling is above a 
certain threshold. The qualitative mechanism suggested by the 
model is simple: branched/bundled actin networks support recruit-
ment of Rac/Rho to the membrane, respectively, so Rac and Rho 
tend to segregate into separate parts of the cell. In turn, neither 
network can now invade the other’s territory, because Rac/Rho en-
hance branched/bundled networks, respectively; for example, when 
the bundled network tries to encroach into the part of the cell oc-
cupied by the branched actin, Rac colocalizing with branched actin 
gives its advantage over bundled actin and prevents the invasion.

The competition between the actin networks has to be strong 
enough for stable polarization, so that the networks do not coexist 
locally, but not so strong as to overcome the effect of the mechano-
chemical coupling and enable one network to win the cell from the 
other. Effective diffusion also has to be neither too slow nor too fast 
for the model to work. If the diffusion coefficients in the model are 
too small, then the different networks with their supporting signal 
molecules localize into peaks that are too narrow and arbitrarily po-
sitioned. If the diffusion coefficients are too large, no pattern forms. 
However, overall the model is robust: a fewfold variations of any 
other parameters do not change the stable separation of branched 
actin and Rac in one half of the cell, and of bundled actomyosin and 
Rho to another half. The polarized pattern is not sensitive to the 
initial or boundary conditions. It is very likely that the model per-
forms in 2D and 3D as well as in 1D. Interestingly, the model works 
even if the total number of signaling molecules becomes too large, 
while in this regime, the signaling submodel without mechano-
chemical coupling fails to produce clustering (Altschuler et  al., 
2008). Likely, this means that a strongly continuous variant of the 
mechanochemical model also supports stable polarization.

Our simulations showed that the model cell can polarize sponta-
neously, without any signal from the environment, but the direction 

FIGURE 6:  Polarity establishment is robust to variations of the initial distributions of the cytoskeletal meshworks and of 
the boundary conditions. Initial (top row) and evolved (bottom row) distributions of the actin networks and polarity 
molecules. In all initial conditions, the Rac and Rho molecular distributions are random. (a) Periodic boundary conditions 
are used to represent the circular cell edge. Initially, there is one peak of the bundled network density but three peaks 
of the branched network density, two of which colocalized with the bundled network. (b–d) The model on the 1D 
segment with no-flux boundary conditions representing the anterior–posterior cross-section of an elongated cell. 
(b) Initially, the ends of the cell are contractile, while the middle is protrusive. (c) Initially, the cell ends are protrusive, 
while the middle is contractile. (d) Initially, both protrusive and contractile networks are concentrated at the cell center. 
In all cases, the same polarized state with segregated protrusive and contractile networks evolve. Notably, for the 
segment-like cell, the networks segregate to the opposite ends of the cell, making the cell robustly motile.
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of polarization adapts to an external signal. For example, if the ki-
netics of the polarity molecules is biased in a certain direction by an 
external signal, then the cell polarizes in that specific direction. If the 
cell is already polarized, and the signal is applied in a different direc-
tion, this causes a reorientation of the entire mechanochemical po-
larity machinery in the new direction. If the signals direction is close 
to that of the cell orientation, then the mechanochemical pattern 
turns smoothly; otherwise, the cell first momentarily loses polarity 
and then repolarizes in the new direction. This response is similar to 
experimental observations: motile cells execute a smooth turn when 
the external signal is applied normal to the direction of locomotion 
(Allen et al., 2019) but repolarize when the signal is opposite to the 
movement direction (Sun et al., 2013).

The first conceptual biological implication of our model is a 
mathematical demonstration that a signaling module coupled to a 
cytoskeletal module leads to robust spontaneous polarization and 
reorientation in the presence of incoming signals; this occurs de-
spite the fact that each module separately can segregate chemical 
networks in space but cannot stably polarize the cell. Second, there 
are a number of solely chemical and solely mechanical polarization 
models, but for these to work, significantly nonlinear terms, sup-
porting cooperative or switchlike behavior, are required. We show 
that a linear local coupling of two minimally nonlinear models (only 
quadratic nonlinearity in actin growth) can achieve robust cell sym-
metry breaking.

Our model relates conceptually to a number of cell types. The 
first and foremost example is neutrophils, which polarize spontane-
ously when chemoattractant concentration is spatially uniform (Xu 
et al., 2003). This polarization was shown to depend on the competi-
tion of the frontness and backness pathways (Xu et al., 2003) and to 
require intimate involvement of both actin dynamics and signaling 
systems. More specifically, Xu et al. (2003) proposed that the com-
petition between the protrusive actin network and the contractile 
actomyosin network, assisted by feedback between these networks 
and frontness and backness signaling circuits, stably segregate and 
maintain the protrusive cell front and the contractile rear. Experi-
mental studies have shown that Rac/Rho knockout neutrophil cells 
have severely impacted chemotaxis (Roberts et al., 1999; Glogauer 
et al., 2003; Sun et al., 2004), and similarly when actin dynamics is 
arrested (Dandekar et al., 2013). In fact, Xu et al. found that when 
Rho is overexpressed, neutrophils fail to polarize, and when Rho is 
inhibited, protrusions are observed everywhere along the cell pe-
riphery. Similarly, in our model, we demonstrate that blocking either 
the backness or the frontness pathway gives similar results (Figure 7, 
a and b). More recent experimental findings also support the cou-
pled action of actin networks and Rho GTPase pathway in spontane-
ous neutrophil polarization (Dandekar et al., 2013; Graziano et al., 
2018). Previous theoretical studies (Narang, 2005; Onsum and Rao, 
2007) proposed models for the frontness/backness competition that 
were either too abstract (Narang, 2005), or loaded with too many 
unverified details (Onsum and Rao, 2007), and not including the 
actin dynamics explicitly. In the case of neutrophils, three out of the 
four directions in our coupling model between actin and Rac/Rho 
dynamics have been reported previously. The study in Xu et  al. 
(2003) posits an indirect positive feedback from branched actin to 
Rac. The positive feedback from Rac to actin polymerization is also 
well established (Wang et al., 2002; Weiner et al., 2002; Srinivasan 
et al., 2003; Hoeller and Kay, 2007; Inoue and Meyer, 2008). Less is 
known about the interaction between Rho activation and actomyo-
sin bundle formation, although a mechanosensitive factor in Rho 
activation has been implicated previously (Wang et al., 2017; Boyle 
et al., 2018). Similarly, polarization of fibroblasts, macrophages, and 

astrocytes is certainly a mechanochemical, not a purely chemical 
process, with cytoskeletal dynamics intimately intertwined with the 
Rho GTPase signaling pathway in the symmetry breaking process 
before migration (reviewed in Etienne-Manneville, 2006).

We do not claim that our model can predict the biological details 
of polarity for these cell types. In general, polarization involves not 
only actin, but also microtubules, as well as more complex cytoskel-
etal networks, such as stress fibers, multiple pseudopods, and adhe-
sion complexes. Signaling circuits other than Rho could also be impli-
cated in cell polarization. The model does not include many molecular 
players—PIP, PI3K, PTEN, G-proteins, actin regulators—but simply 
conceptually captures their lumped effect on the cross-talk between 
Rac/Rho and actin/actomyosin. Thus, our model posits one of the 
simplest quantitative frameworks for understanding a possible mech-
anism for spontaneous mechanochemical cell polarization.

It is possible for our model to rely on other forms of feedback 
between the biochemical and mechanical circuits. For example, 
negative, instead of positive, feedback between Rac and branched 
actin and Rho and actomyosin, respectively, could do the job (Wong 
et al, 2006; Xu et al., 2003). We also limited the dynamics of the 
model to the local chemical and mechanical processes, but global 
mechanical effects, for example, membrane tension, could play an 
important role in polarization of some cell types (Houk et al., 2012). 
Another paradigm for mechanochemical polarization requires trans-
port of chemicals in the signaling framework. The key to such mod-
els is that myosin-driven flow assists the polarization of signaling 
proteins by mechanically triggering the formation of a stable asym-
metric chemical distribution (Goehring et  al., 2011; Maiuri et  al., 
2015; Tostevin and Howard, 2008). Our model is simpler because it 
does not have directional movement—either in the form of a flow, 
as in these models, or in the form of whole cell movement as in Lo-
makin et  al. (2015). More detailed and complex models have in-
cluded the cell-surface adhesion dynamics as a mechanical compo-
nent in the biochemical polarization pathway (Park et  al., 2017). 
Finally, one of the models of gradient sensing (Gamba et al., 2007) 
is based on an idea similar to that of our model: when signaling 
dynamics is such that clusters of polarity molecules appear on the 
cell membrane, the clusters’ location can be biased to one side of 
the cell by an external signal. Our model adds a novel and simple 
potential polarization mechanism to these theoretical paradigms.

FIGURE 7:  If either frontness or backness pathways are inhibited, 
then cell polarity cannot be established. (a) When Rho/actomyosin is 
inhibited (α, β = 0 for Rho and bundled actomyosin), protrusions are 
all around the periphery, while (b) if Rac/branching actin is inhibited 
(α, β = 0 for Rac and branched actin), cells fail to form protrusive 
areas. Only the coupling rates, α and β, were changed in the 
simulations; all other parameters were kept fixed to their baseline 
values provided in Supplemental Table S1.
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Supplementary Material

S.1 A general description of the model

The model considers the dynamics of two actin networks competing for molecular resources and coupled to the
dynamics of active, membrane-bound Rac and Rho molecules. In the model, the dynamics is localized to the
periphery of the the disc-shaped cell adhering to a substrate, and so the molecular densities are localized to the
circle of circumferential length L.

Actin dynamics. The cytoskeletal model is a competition of two distinct actin networks with the following
dynamics:

1. Autocatalytic growth: The net growth rate of each network is proportional to local network density. This
assumption is based on the processes of polymerization of existent actin filaments and of nucleation of
nascent filaments by proteins binding to the existent filaments, so that the net growth becomes propor-
tional to the existent density.

2. Limited growth: At high density, growth is limited due to lack of availability of molecular resources. In
the case of the bundled actin network, growth could be limited due to depletion of the myosin-II motors
or actin monomers, while the branched actin network growth could be limited by availability of Arp2/3
branching complexes or globular actin monomers.

3. Competition for molecular resources: Both networks compete for a limited cytoplasmic pool of molecular
resources, such as G-actin monomers, Arp2/3 complexes, formins or myosin.

4. Diffusive-driven redistribution of the networks along the cell boundary: We assume, following [38], an
effective diffusive spread of actin densities along the cell edge due to lateral shifts of the actin density due
to filament growth and/or to physical sliding of filaments along the cell edge pulled by myosin motors.

Mathematically, based on these assumed dynamics one arrives at the following set of non-dimensionalized
PDEs [38]:

∂A

∂t
= A−A2 −m0AB +D∆A, (S1)

∂B

∂t
= B −B2 −m0AB +D∆B.

Here A(s, t) denotes the branched actin network density and B(s, t) represents the bundled actin network den-
sity along the cell boundary parameterized by the arc length s. Densities of both actin networks are defined on
the periodic cell boundary. m0 is the non-dimensional competition parameter, and D is the non-dimensional
diffusion coefficient. Note that this effective diffusion coefficient is the result of an effective random walk of
the growing ends of branched filaments along the cell edge. There filaments are growing skewed to the left and
right, and thus glide along the cell edge for about a second before being capped, and then daughter filaments
glide in opposite directions. For bundled filaments, the diffusion originates from the myosin-powered shuffling
of the filaments along the cell edge. Respective diffusion coefficients have the same order of magnitude ana-
lyzed in [38]. Note also that we chose to model the cytoskeleton in a continuous, deterministic way, because the
estimate for the number of actin on the cell edge, N ∼ 104 [1] is much higher than the estimate for the number
of signaling molecules on the membrane: N ∼ 103 in the whole cell, of which∼ 10% is on the membrane [78].

Although Eq. S1 represent conservation laws for the two actin networks, we can also use the balance of
forces to justify the mechanical nature of expressions for some parameters in this model and identify the connec-
tion to physical/mechanical forces including myosin contractile force, membrane tension, and effective friction
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from adhesion of the actin networks to the substrate. Specifically, small and dynamic nascent adhesions based
on integrin molecules spanning the cell membrane interconnect the branched actin and the substrate. More ma-
ture focal adhesions, also integrin based but including many adaptors, force-sensing and signaling molecules,
connect actomyosin bundles with themselves and the substrate. Besides the kinetic effect contributing to the
term m0AB – the competition of the branched and bundled actin networks for the same G-actin monomer
pool – there are also underlying mechanical processes. In the update equation for the branched actin network
(Eq. S1a), the competition term, −m0AB = −(m0B)A, describes the rate at which branched filaments are
incorporated into anti-parallel contractile actin bundles in the presence of myosin motors. The rate is propor-
tional to the actomyosin density. The competition term in the update equation for bundled acto-myosin network
(Eq. S1b) has a similar mechanical underpinning. The expression−m0AB = −(m0A)B is the rate of removal
of the bundled actin by the flow generated by branched actin filaments growing against the membrane at the cell
edge and centripetally pushing the bundles away from the edge. The rate is proportional to the branched actin
density because of the force balance between the membrane tension and strength of adhesions of the bundled
actin to the substrate. Assuming a viscous behavior of adhesions, the centripetal flow rate is v = T/ζ where ζ
is the adhesion strength while T is the membrane tension. The membrane tension which is likely to be propor-
tional to the density of branched filaments pushing on the membrane from within, hence the centripetal flow is
proportional to the density of branched actin network [46].

Signaling molecule dynamics. We focus on the mutually exclusive interactions between Rac and Rho on the
plasma membrane. Following the rationale of the stochastic model proposed by Altschuler et al. [1], we assume
five different kinds of molecular events:

1. Spontaneous association to the membrane: GTP-bound Rho GTPase proteins undergo a conformational
change and transition to an active membrane-bound state. We model this by an association of a respective
molecule from the cytosol to a random location on the membrane at a rate of kon.

2. Spontaneous disassociation from the membrane: GAP proteins regulate the transition of active, membrane-
bound Rho GTPase into an inactive, cytosolic state. This event is modeled through the removal of an
active molecule from the membrane at a rate of koff.

3. Enhanced membrane association through activators: Local positive feedback loops are thought to play a
role in sustaining nascent Rac/Rho sites on the plasma membrane [2–5]. To model these feedback loops
we assume that a membrane-bound (active) molecule of either type (Rac or Rho) can indirectly activate
and recruit a molecule of the same type to its vicinity. The rate at which one molecule recruits from the
cytosol is proportional to the fraction of molecules which are still in the cytosol with a proportionality
constant of kfb.

4. Diffusion on the membrane: Each molecule on the membrane undergoes a Brownian motion with diffu-
sion coefficient d.

5. Steric interaction: In the association, recruitment, and diffusive processes, Rac and Rho proteins cannot
occupy the same location in space at a given time. This assumption is based on the reported mutual
antagonistic interactions between Rho GTPases [6–11].

We first outline the algorithm implementation for the Rac/Rho dynamics when the kinetic rates are constant in
space. The system is initialized with 10% of the total number of signaling molecules of each type (Rac/Rho),N .
These initial molecules are randomly placed along the cell membrane ensuring that particles of different type
do not spatially overlap. The number of Rac (or Rho) particles on the cell membrane, n(t), evolves by a Poisson
process. Because the signaling dynamics will eventually be coupled to spatially-varying actin concentrations,
we consider individual rather than aggregate transition rates. For each membrane-bound particle j, the time
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and location of the next biochemical reaction event is computed discretely. In particular, the time to the next
reaction for membrane-bound particle j is exponentially distributed with rate:

λ(n)j = (koff)j +

(
N

n
− 1

)(
(kon)j + (kfb)j

n

N

)
. (S2)

The next reaction time is compute for all membrane-bound particles, n(t), and the minimum time is chosen
across all active particles of a given type. Then, for the particle with the lowest reaction time, either a disassocia-
tion event with probability koff)j/λ(n)j , or a spontaneous association event with probability

(
N
n − 1

)
kon)j/λ(n)j ,

or an enhanced association event with
(
1− n

N

)
kfb)j/λ(n)j has occurred. If a disassociation event has taken

place, this particles is removed from the membrane and added to the cytoplasmic pool of well-mixed, homo-
geneous inactive particles. If an enhanced recruitment association event has occurred, an inactive particle is
moved to the membrane and its location coincides with the already membrane-bound particle. Lastly, for a
spontaneous association event, an inactive particle is moved to the membrane to a location chosen randomly
halfway between its nearest neighboring particles of the same type. This process is repeated independently for
both Rac and Rho species. The probability for the number of particles of each type can be expressed via a mas-
ter equation as given in Altschuler et al. [1]. However, we note that to our knowledge no such master equation
can be easily expressed in the case of spatially-varying kinetic rates. In the presence of the mechanochemical
coupling, the kinetic rates depend on position on the cell edge, and the algorithm is modified as discussed below.

Mechanochemical coupling. For the mutual coupling between actin cytoskeleton and polarity molecules, we
assume that there is a local feedback loop with a linear dependence on relative concentrations. The chemical
rates in the signaling kinetics are no longer constant but rather dependent on the local concentration of each
respective actin network which evolves in both space and time. We assume that Rac and the branched actin
network engage in a positive feedback loop and similarly so do Rho and the bundled actomyosin mesh by
modifying the kinetic rates of Rac and Rho as follows:

kRac
fb, on(s) = kfb, on (1 + β max[A(s), Cmax]) , (S3)

kRho
fb, on(s) = kfb, on (1 + β max[B(s), Cmax]) , (S4)

kRac
off (s) = koff, (S5)

kRho
off (s) = koff. (S6)

The strength of the coupling from actin to the polarity model is denoted by the constant of proportionality
β. The maximum function in the expressions for kfb and kon, is a pointwise maximum function and serves to
ensure that the association rates do not exceed a threshold value. On the reverse, the growth rate of each actin
network is now an evolving parameter that depends linearly on the local amount of active or membrane-bound
polarity proteins:

∂A(s, t)

∂t
= A

(
1 + αnRac(s, t)

)
−A2 −m0AB +D∆A (S7)

∂B(s, t)

∂t
= B

(
1 + αnRho(s, t)

)
−B2 −m0AB +D∆B, (S8)

where α represents the strength of the coupling from the polarity molecules to the cytoskeleton.

In principle, other choices for actin dependence on the signaling kinetic rates could have been introduced –
for example, if only one of these three parameters (kon, koff, kfb) is sensitive to feedback from actin, while the
other two are constant (or only two are actin-dependent, or all three). We found that when the actin dependence
appears only in the enhanced recruitment rate, kfb, the model shows a high polarization probability (90%),
instead of 100% polarization probability. However, when actin dependence is removed from the enhanced
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recruitment association rate, while the other two rates do depend on actin, the polarization probability falls
below 10%. This result indicates that other spatial dependencies of kinetic rates could have been chosen, but
the results presented here are for the particular choice in Eqs. S3-S6.

Parameter Value Description Reported value Reference
L 10 µm Length of cell ∼ 5− 20 µm [12]
d 0.5 µm2/sec

Diffusion coeffi-
cient of signaling
molecules on
membrane

0.02− 0.5 µm2/sec [1, 14, 15]

D 0.5 µm2/sec
Effective diffusion
coefficient of actin

∼ 0.5 µm2/sec [38]

m0 2 Competition or
bundling term

Chosen from com-
partment model
simulations in
order to give rise to
quasi-stable polar
solutions (varied).

N 200 Rho GTPase
molecules in cell
(conserved)

Chosen from
Altschuler et al. [1]
in order to give rise
to patches (varied).

kon 0.001/sec Association rate for
Rho GTPases

1.67 × 10−5/sec-
0.027/sec

[1, 15]

kfb 1/sec Autocatalytic acti-
vation rate for Rho
GTPases

0.1667/sec [1]

koff 0.9/sec Disassociation rate
for Rho GTPases

1/sec, 0.15/sec,
0.02/sec

[1, 14, 16–18]

heq 0.1 Fraction of
membrane-bound
Rho GTPases

2-10% [1, 15]

ε 0.01 µm2 Variance of Gaus-
sian function used
sampling Rac/Rho
concentrations

Cmax 10 Threshold actin
concentration

Table S1: Definition and values of parameters for the hybrid mechanochemical polarity model.

Numerical simulations

The theoretical approach provided above could describe the actin networks concentration and polarity molecules
on a one-dimensional curve or a two-dimensional surface of the plasma membrane. The numerical simulations
carried out here were on one-dimensional circles for ease of visualization, but we believe the results here could
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be reproduced in higher dimensions on arbitrary geometries. To simulate the dynamics of cell polarization, the
computational domain representing concentrations in the plasma membrane and a thin volume of cytoplasm ad-
jacent to the membrane is discretized using 101 points with an averaged spatial discretization of ∆s = 0.1 µm.
The temporal discretization is ∆t = 0.01 sec and simulations are run to 30-100 seconds. The codes are writ-
ten and solved in Matlab. Model parameters along with justifications for the choice of values are provided in
supplementary material, Table S1. We perform simulations using the baseline parameter values listed in Table
S1, unless otherwise indicated. The computational code is freely available online on a Github public repository:
github.com/calinacopos/HybridMechanoChemPolarization.

The actin dynamics PDEs in Eq. S1 are solved on a circular domain using Crank-Nicolson finite difference
numerical method with periodic boundary conditions. The actin networks are randomly distributed initially
with equal relative concentrations between branched and bundled networks.

A modified Gillespie algorithm is used for the next reaction time for the polarity molecules. The time
between Markov jumps is exponentially distributed with individual rate as provided in Eq. S2. In between
the jumps, the molecules with locations xRac

i (t) and xRho
i (t), where i is the index of the specific molecule,

undergo Brownian motion on the membrane with diffusion coefficient d: ∆x =
√

2d∆t. Since we enforce
segregation of Rac and Rho, collisions between a Rac molecule and a Rho molecule in the diffusive process
may occur. We resolve collision events by not allowing either molecule to move into the space (interval of width
∆x around a given molecule) that would result in overlap (collisions between Rac and Rac or Rho and Rho
molecules are tolerated). Other more sophisticated collision resolution methods could have been employed, but
for simplicity we chose this minimal dynamic. We have assessed what would happen in the absence of any such
steric interaction, by running 20 simulations without any collision detection (with default values for all other
parameters) and found a polarization probability of 95% (when such probability is 100% in the presence of
steric interaction). In the instances of polarity establishment, the cell polarizes by actin dynamics but with less
well-defined peaks in Rac and Rho concentrations as illustrated in Fig. S1. Thus, it seems that the assumed steric
repulsion is helpful for the polarization (by assisting spatial segregation of Rac and Rho), but not absolutely
necessary to the overall results of the model.

To complete the numerical algorithm, we define a ‘polarized’ cell state by visually identifying when a peak
establishes for branched actin density and it is co-localized with Rac concentration, and simultaneously a sec-
ond peak forms in a separate spatial location for bundled actin-myosin density co-localized with a peak for
the Rho concentration. The remaining component of the definition of ‘polarized’ state is the runtime for the
simulation in order for a peak to form. To determine this runtime interval, we sample the entire parameter space
by choosing five points and run the simulations long enough for peaks to form and then, double that simulation
time to ensure the peaks persist. The maximum of these time intervals is chosen for simulations for the entire
parameter space.

S.2 Model simulations with no-flux boundary conditions

We performed a series of simulations of the model for a one-dimensional anterior-posterior slice along the long
axis of the cell in order to capture the dynamics of polarization in the anterior-posterior direction of elongated
cells. We solved the system of coupled hybrid stochastic-deterministic equations (S1-9) with no flux boundary
conditions to enforce the conservation of molecular numbers in this new geometry. Overall, the results of
simulations qualitatively agree with the observations reported in the paper for periodic boundary conditions
(Figs. S1 and S2).

https://github.com/calinacopos/HybridMechanoChemPolarization
github.com/calinacopos/HybridMechanoChemPolarization
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Figure S1: One example simulation with no steric hindrance in the diffusion of membrane-bound Rac and
Rho particles. (a) Resulting concentrations of branched and bundled actin network along with Rac and Rho
signaling molecules. (b) Kymograph of the molecular locations of Rac and Rho around the cell edge. Rac/Rho
trajectories are blue/yellow, respectively.
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Figure S3: Model response with a lower diffusion constant of D, d = 0.01 µm2/sec for both actin cytoskeleton
and Rac/Rho systems. (a) One realization of the resulting distributions of both signaling chemical concentra-
tions and actin networks. (b) The corresponding kymograph of the time-evolution of the active, membrane-
bound polarity proteins. (c) Ten simulation results with a diffusion constant of D, d = 0.01 µm2/sec. All other
parameters including the coupling constants are held at their baseline values reported in Table S1.
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Figure S5: Sensitivity of the mechanochemical hybrid model with no flux boundary conditions. Twenty simu-
lations were done for each set of parameters. Based on the outcome, a probability of a stable polarized solution
is reported as the fraction of polarized solutions out of the total number of simulations for that specific choice
of parameters. (a) Polarization probability is reported as a function of the two parameters, α and β, in the
mechanochemical positive feedback loop. (b) Polarization probability is also reported as a function of the two
signaling kinetic rates: feedback-driven association with the membrane kfb and membrane disassociation koff.
(c–d) Lastly, the dependence of the polarization probability on the competition parameter, m0, is reported for
(c) a weakly coupled system, α = β = 0.25, and (d) a strongly coupled system, α = β = 2.5.
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