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ABSTRACT Polarization is a crucial component in cell differentiation, development, and mo-
tility, but its details are not yet well understood. At the onset of cell locomotion, cells break
symmetry to form well-defined cell fronts and rears. This polarity establishment varies
across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling
pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly
connected to cytoskeletal dynamics and mechanics. Theoretical models that have been devel-
oped to understand the onset of polarization have explored either signaling or mechanical
pathways, yet few have explored mechanochemical mechanisms. However, many motile cells
rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a sta-
ble polarized state. We propose a general mechanochemical polarization model based on
coupling between a stochastic model for the segregation of signaling molecules and a simpli-
fied mechanical model for actin cytoskeleton network competition. We find that local linear
coupling between minimally nonlinear signaling and cytoskeletal systems, separately not sup-
porting stable polarization, yields a robustly polarized cell state. The model captures the es-
sence of spontaneous polarization of neutrophils, which has been proposed to emerge due
to the competition between frontness and backness pathways.
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INTRODUCTION

The ability to break symmetry spontaneously is fundamental to most
eukaryotic cells and plays an important role in embryogenesis, cell
differentiation, cell division, and migration. Intrinsically motile cells
can switch spontaneously to a migratory polarized phenotype
(Parent and Devreotes, 1999). Understanding complex molecular
circuits employed by a cell to establish polarization has been stud-
ied both theoretically (Levchenko and Iglesias, 2002; Maree et al.,
2006; Mori et al., 2008; Altschuler et al., 2008; Lomakin et al., 2015;
Goryachev and Leda, 2017) and experimentally (Burridge and
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Wennerberg, 2004; Wong et al., 2006; Nguyen et al., 2016, Peglion
and Goehring, 2019).

Polarity establishment arises primarily through the localization of
particular proteins and lipids in the cell to specific regions of the
plasma membrane, and often precedes motility. Experiments have
identified a few conserved sets of proteins involved in polarization
including the PAR system (Munro et al., 2004; McCaffrey and Macara,
2012), the Wnt system (Ip and Gridley, 2002), the Scribble complex
(Assemat et al., 2008; Su et al., 2012), and the Rho system (Burridge
and Wennerberg, 2004, Schwartz, 2004). Here, we focus on the Rho
molecular circuit whose dynamics can lead to cell polarization at the
onset of cell motility. The Rho family of GTPases is a family of small
proteins that act as molecular switches (Hall, 1998; Schwartz, 2004).
Three important members of the family have been studied in detail:
Cdc42, Rac1, and RhoA (Schwartz, 2004). These proteins cycle be-
tween an inactive (GDP) cytosolic form and an active (GTP) mem-
brane-bound form that signals to the actin cytoskeleton and other
downstream targets. Mutually antagonistic interactions between
Rac1 (Rac) and RhoA (Rho) were identified, as well as spatial and/or
temporal exclusions that produce a tendency for them to segregate
to the front versus rear of a polarized cell (van Leeuwen et al., 1997;
Xu et al., 2003; Burridge and Wennerberg, 2004; Byrne et al., 2016).
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FIGURE 1: Simple models of cell polarization. Biochemical (a, b) and
mechanical (c, d) approaches for polarity establishment. (a) Reaction-
diffusion model of Rho GTPase signaling pathways are based on
mutual antagonism between signaling molecules. (b) Stochastic model
of the cycling of active-inactive states of signaling molecules with
autocatalytic feedback. (c) Polarization can also emerge due to
positive feedback between myosin concentration gradients and
myosin transport by the flow, which generates actomyosin flow up the
gradient. (d) In an advection-free model, polarization emerges due to
the competition between the branched protrusive actin network and
contractile bundles of the actomyosin network caused by competition
for a conserved number of molecular resources.

From previous theoretical work, it is well known that mutually inhibi-
tory circuits, such as those in Rac/Rho, could yield a robustly polar-
ized system (Jilkine and Edelstein-Keshet, 2011; Edelstein-Keshet
etal., 2013).

Cell polarization is also associated with the rearrangement of the
actin cytoskeleton during polarization, in which branched actin fila-
ments form at the cell front while actomyosin contractile bundles
segregate to the cell rear (Wong et al., 2006; Yam et al., 2007; Svit-
kina, 2018). Just as diffusible chemical activators and inhibitors trig-
ger biochemical instabilities, mechanical instabilities can arise due
to stochastic fluctuations in actin filament densities or mechanical
feedback between motor proteins and cytoskeletal elements
(Vekhovsky et al., 1999). In mechanically driven polarity systems,
cells polarize due to mechanical forces and actin flow generated by
these forces (Yam et al., 2007; Mullins, 2010; Goehring et al., 2011;
Barnhart et al., 2015; Lomakin et al., 2015). Two classic cases involv-
ing cytoskeleton-driven polarization are the formation of actin
comet tails by intracellular pathogens (Dayel et al., 2009; Haglund
and Welch, 2011) and the directional locomotion of keratocytes
(Barnhart et al., 2015; Lomakin et al., 2015; Yam et al., 2007). In both
cases, the mechanical properties of the actin cytoskeletal network
appear sufficient for polarization, which can be triggered by sto-
chastic or induced asymmetries in the mechanical network.

Mathematical models have been used to explain spontaneous
pattern formation in cells since the 1950s (Turing, 1952; Meinhardt
and Gierer, 1974). Initial approaches were based on Turing patterns
and focused on biochemical signaling pathways for polarity. In Tur-
ing-like models, chemical patterns emerge from stochastic fluctua-
tions combined with interactions between chemical species that
diffuse at different rates; these models often require elaborate non-
linearities for stable polarized distributions of chemicals (Howard
et al., 2011; Jilkine and Edelstein-Keshet, 2011).

Recently, many models for cell polarization have been proposed
based on reaction—diffusion (not necessarily Turing-like) equations
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(Jilkine and Edelstein-Keshet, 2011). In one of the most popular
models, the “wave-pinning” model (Figure 1a), a minimal bistable
reaction—diffusion system gives rise to polarization of active/inactive
chemicals (Mori et al., 2008). In the model, the active form of the
chemical diffuses slowly on the membrane and autocatalytically ac-
tivates the inactive form of the chemical, which diffuses fast in the
cytoplasm. Conservation of the total chemical and the fast diffusion
of its inactive form act as global inhibitors and pin or “arrest” the
active chemical in space into a stable polarized distribution. The
model reproduces a number of observed features shared by many
eukaryotic cells: (a) spontaneous (self-) polarization, (b) maintenance
of the polarized state after a stimulus is removed, and (c) sensitivity
to new incoming signals and ability to repolarize in a new direction.

Besides reaction—diffusion models, stochastic polarization
models have also been proposed (Figure 1b; Altschuler et al., 2008;
Walther et al., 2012; Wu et al., 2015; Pablo et al., 2018). For exam-
ple, Altschuler et al. (2008) found that clusters of active membrane-
associated molecules can form and persist in time if there is a posi-
tive feedback loop in which active molecules recruit additional
copies of themselves from a cytoplasmic pool, provided the system
is operating within a stochastic regime and the molecule number is
limited. A stochastic version of the wave-pinning model was intro-
duced by Walther et al. (2012). The authors found that when the
molecule number is lowered, the wave front collapses predomi-
nantly due to the fluctuations in the pinning position of a traveling
wave. The result of loss of polarization at low cellular concentration
is in contrast to the work of Altschuler et al. (2008).

A much smaller body of literature exists for actin-driven models
for cell polarization (van der Gucht et al., 2005; Goehring et al.,
2011; Barnhart et al., 2015; Lomakin et al., 2015). Most of these
models focus on the fast-moving fish epithelial keratocytes, which
do not require the stereotypical signaling cascades to polarize
(Ridley, 2001). A combined experimental and theoretical effort
showed that the mechanical feedback between actin network flow,
myosin, and adhesion is sufficient to amplify stochastic fluctuations
in actin flow and trigger polarization (Figure 1c); aggregation of
myosin at the cell rear generates rearward actin flow and forward cell
movement, which both amplify the myosin concentration at the rear
(Barnhart et al., 2015). An actin flow—free mechanical mechanism for
cell polarization was proposed by Lomakin et al. (2015; Figure 1d).
The authors demonstrated that competition between branched and
bundled actin networks around the cell periphery leads to segrega-
tion of the actin cytoskeleton into branched filaments at the cell
front and actomyosin bundles at the rear. A key assumption in this
model is that protrusion of the boundary favors the branched net-
work, while boundary retraction favors the contractile bundles.

Deterministic models for biochemical polarization mechanisms
have limitations. For example, in the wave-pinning model, the sta-
bility of the polar distribution of the active chemical requires highly
nonlinear reaction terms (Mori et al., 2008). Furthermore, when the
initial condition in the wave-pinning model consists of multiple lo-
calized patches of active chemicals, and when the diffusion constant
is very small, these initial patches persist in time, corresponding to
formation of not one but multiple zones of activity on the plasma
membrane (Figure 2a). Stochastic models for polarity molecules re-
quire very simple kinetics, but also require additional assumptions
to constrain the number and location of emergent clusters into a
single one (Figure 2d, N = 100; Altschuler et al., 2008).

Although cell polarity can emerge from systems that are either
chemical or mechanical, in many cases cell polarity depends on the
interplay between the two (Bois et al., 2011; Dawes and Munro,
2011; Howard et al., 2011; Prager-Khoutorsky et al., 2011). One
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Neither model produces a stable polarized cell state. (a) Given patchy initial conditions and low diffusion on
the membrane, the wave-pinning model (Mori et al., 2008) cannot yield a polar distribution of the membrane-bound
active polarity molecules. (b) In the mechanical cytoskeleton model for polarization of keratocytes without movement
(Lomakin et al., 2015), perturbations to the polar distributions of the branched and bundled actin networks lead to
annihilation of one of the networks. (c) Schematic of the stochastic polarization model modified from Altschuler et al.
(Altschuler et al., 2008) describes the cycling of active-inactive states of two species of signaling molecules: Rac and
Rho. (d) Results of model simulations from (c) with varying total number of species N. With a small number of particles,
long-lasting patches of active form of Rac and Rho appear; however, there is no control on the number of emergent
patches or their merging into single protrusive and contractile fronts. Decreasing the number of signaling molecules

leads to increasing levels of spatial segregation between the two signaling species. (e) In our coupled model, we link the
nonpolarizing mechanical model for the cytoskeleton to the nonpolarizing simple kinetics model for Rac/Rho dynamics.
(f) Schematic of the coupled model: Rac proteins and the branched actin network engage in mutual local feedback and

similarly; so do Rho proteins and the bundled actin network.

such example of mechanochemical polarization is the establishment
of the anterior—posterior axis in Caenorhabditis elegans embryos,
which depends on both actomyosin flow and the biochemistry of
PAR polarity proteins (Munro et al., 2004; Dawes and Munro, 2011;
Goehring et al., 2011). In this system, asymmetrical cell contractility
and cortical actin flow are essential for polarity establishment (Dawes
and Munro, 2011; Munro et al., 2004). By coupling an advective
transport of the flowing cell cortex to a reaction-diffusion system for
PAR protein segregation, Goehring et al. (2011) showed that advec-
tion could serve as a mechanical trigger and would be sufficient to
form stable asymmetric PAR distribution. Similar experimental ob-
servations of the feedback between mechanics and biochemical
signaling in polarity of other organisms continue to appear (Gra-
ziano et al., 2018).

Here, we set out to uncover a minimal coupling between the
simplest biochemical signaling and cytoskeletal circuits that supports
robust cell polarization. The competition between two actin net-
works (branched and protruding vs. bundled and contracting) is one
such minimal cytoskeletal mechanism not requiring advective actin
flow (Lomakin et al., 2015). However, to generate stable polariza-
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tion, this mechanism requires coupling to physical cell movement.
Most cells move slowly and break symmetry before initiating loco-
motion (Prager-Khoutorsky et al., 2011). Here, we show that the sim-
plest feedback between two-network competition and the simplest
stochastic model of biochemical polarization with minimal nonlin-
earities leads to robust cell polarization. The model is applicable to
neutrophils, in which a competition between frontness and back-
ness pathways, each built from a mutually beneficial actin network
and a signaling circuit, is essential for the spontaneous polarization
of cells (Xu et al., 2003). Separately, neither competition between
the leading-edge actin and the rear-edge actomyosin networks nor
feedback between Rac-and Rho-related pathways can polarize
these cells, but when they are coupled, the polarization emerges, as
our model will demonstrate.

MODEL FORMULATION

Minimal biochemical signaling model

The biochemical part of our model is a simplification of well-studied
Rho GTPase kinetics (Moissoglu and Schwartz, 2014). Each Rho
GTPase molecule cycles between two states: an active GTP-bound
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form, bound to the plasma membrane, and an inactive GDP-bound
form, diffusing in the cell cytosol (Burridge and Wennerberg, 2004;
Hall, 1998). The conformational changes between these two states
are facilitated by a class of regulatory proteins such as GEFs, GAPs,
or GDlIs (Burridge and Wennerberg, 2004; Hall, 1998). Rac and Rho
pathways cross-talk with one another, and previous research has re-
vealed evidence of mutual inhibition of Rac and Rho signaling
(Burridge and Wennerberg, 2004; Byrne et al., 2016; van Leeuwen
etal., 1997; Xu et al., 2003). Furthermore, this mutual antagonism is
believed to promote spatial and/or temporal exclusions that produce
a tendency for Rac and Rho segregation (Yamada and Nelson, 2007).

At the onset of polarity, nascent polar sites appear along the
plasma membrane and their presence is believed to be sustained by
local positive feedback that depends on the assembly of branched
actin filaments (Inoue and Meyer, 2008; Ma et al., 2018). These initial
polar sites are thought to be sustained through local positive feed-
back loops that depend both on the presence of polarity molecules
(Nguyen et al., 2016) and on actin assembly (Inoue and Meyer,
2008; Srinivasan et al., 2003; Weiner, 2002). Specifically, in their ac-
tive state, Rho GTPase can bind to downstream effector proteins
that control the actin cytoskeleton rearrangements (Heasman and
Ridley, 2008; Ridley, 2006). Rac polarity sites mediate the formation
of a branching actin filament network at the leading edge (Weiner
et al., 1999). Interaction between Rac and branched actin network
appears to be mutual—Rac activates nucleation-promoting factors
such as WAVE and WASP, which activate Arp2/3 branching com-
plexes (Higgs and Pollard, 2001; Machesky and Insall, 1998), while
recruitment of additional Rac in nascent polarity zones in highly pro-
trusive regions is also reported (Das et al., 2015; Nguyen et al.,
2016; Weiner et al., 2007). Rho is believed to stimulate the forma-
tion of a bundled actomyosin network through recruitment of myo-
sin Il molecular motors at the opposing end (Hall, 1998; Pertz et al.,
2006). While less is known about the interaction from actomyosin
bundles to Rho, recent work seems to indicate that localization of
Rho activators is actin-dependent (Segal et al., 2018).

Our signaling kinetics model is formulated on a one-dimensional
circular domain representing polarity molecules on the plasma
membrane and a thin volume of cytoplasm adjacent to the mem-
brane on the circular edge of a disk-like cell spread on a flat surface.
Position of the molecules is represented by the arc length s on a
circle. We track coordinates of activated Rac and Rho molecules on
the membrane along the cell edge, xf¢(s,t) and xF°(s, 1), where i
is the index of the specific molecule. Cytoplasmic concentrations of
Rac and Rho are assumed to be homogeneous due to the fast diffu-
sion in the cytoplasm. For the dynamics of these proteins, we ex-
tend the theory of Altschuler et al. (2008) to include two species of
signaling molecules. The redistribution of signaling molecules is
determined by the rates of four mechanisms (Figure 2c): 1) positive
feedback-induced activation and recruitment of cytoplasmic mole-
cules to the locations of membrane-bound active signaling mole-
cules with rate kg,; 2) spontaneous activation and association of cy-
toplasmic molecules to random locations on the plasma membrane
with rate kg,; 3) lateral diffusion (with coefficient d) of active mole-
cules along the membrane; and 4) deactivation and disassociation
of signaling molecules from the membrane with rate ko. For sim-
plicity, we use the same kinetic rates for both Rac and Rho.

We first describe the simple case where the signaling molecules’
kinetic rates are constant in space. At initialization, 10% of the sig-
naling molecules of each type, N, are randomly placed along the
cell membrane, while it is ensured that there is no spatial overlap
between particles of different types. Based on the dynamics de-
scribed above, the number of Rac (or Rho) molecules on the mem-
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brane, n(t), evolves by a continuous-time Markov-chain process
where the transitions in the numbers of membrane-bound particles
are jumps by +1 or 1. Because the kinetic rates governing the Pois-
son process will be spatially dependent (see Mechanochemical cou-
pling), we consider individual transition rates: the time and location
of the next biochemical reaction event is computed discretely based
on the locations of the already membrane-bound particles. For each
membrane-bound particle j, we compute the time to its next reac-
tion, which is exponentially distributed with rate:

An); =(koﬂ),-+(ﬂ—1]((kon>,-+(kfb),-5) (1)
n N

The rate A(n); should be interpreted as a reaction rate per mem-
brane-bound particle—hence, the unbinding rate per particle is a
constant ko, while the binding rate is proportional to the remaining
fraction of available binding spots on the cell membrane with a con-
stant of proportionality (kon)+(kfb)%. The spontaneous association
rate per particle is constant but the enhanced association per particle
due to its implicit dynamics of enhanced recruitment is proportional
to the fraction of molecules that are still in the cytosol. After n ran-
dom times based on these rates are generated, the time for the next
reaction in the system is chosen as the minimum time across all active
particles. Then, for each respective particle, either a disassociation
event with probability (kof);/A(n);, a spontaneous association event

with probability (%— 1j(kon)j/l(n)j, or an induced association event

with probability (1—%)(kfb)j/l(n)j is generated. If a disassociation

event has occurred, the particle is removed from the membrane and
added to the well-mixed homogeneous cytoplasmic pool of inactive
particles. If a positive feedback-induced recruitment association
event has occurred, a particle is added to the membrane from the
cytoplasmic pool and its position is chosen to coincide with the posi-
tion of the already membrane-bound particle. Last, for a spontane-
ous association event, the new particle is added from the cytoplas-
mic pool of inactive particles to the membrane at a randomly chosen
location within the spatial segment centered at particle j. The end-
points of the spatial segment associated with particle j are at the
halfway location between the nearest neighboring membrane-bound
particles of the same type. Independently, this process is repeated
for both Rac and Rho particles. Between Markov events, the number
of membrane-bound Rac (or Rho) particles is constant and the parti-
cles diffuse freely on the membrane. A steric repulsion is enforced
between Rac and Rho polarity molecules so that the two chemicals
cannot cross paths at any moment in time. The rates of transition
(Zhang and Zheng, 1998; Moissoglu et al., 2006; Altschuler et al.,
2008; Mori et al., 2008; Falkenberg and Loew, 2013; Das et al., 2015),
relative rates of diffusion (Mogilner and Keren, 2009), and concentra-
tions of active and inactive states (Altschuler et al., 2008; Das et al.,
2015) are readily biologically interpretable and estimated from ex-
perimental data (see Supplemental Table S1). In the Supplemental
Material, we explain in detail how the diffusive random walk of the
molecules on the membrane is simulated, as well as the numerical
implementation of the modified spatial Gillespie first reaction algo-
rithm for chemical reactions (Gillespie, 1977, 2007). We also note
that the above description only considers a model for the signaling
pathway in the absence of the actin dynamics. The modified model
that incorporates actin dynamics will follow in the next subsection.

Minimal actin network model

Two different actin structures are characteristic of polarized cell mi-
gration: a branched, protrusive actin network at the cell front, and a

Molecular Biology of the Cell



contractile network made up of actomyosin bundles at the cell rear
(Lomakin et al., 2015). These two actin networks compete mechani-
cally (Lomakin et al., 2015): protrusion of the branched network
leaves the bundled network behind the cell edge, while the contrac-
tile bundles collapse the branched filaments into bundles. The net-
works also compete for the same pool of actin monomers and other
molecular resources in the cytosol (Rotty and Bear, 2014). Thus, our
model has the features of a system with two competing species
(Edelstein-Keshet, 1988). The spatiotemporal distributions of the
two species of actin networks along the plasma membrane arc
length are A(s, t) for the protrusive network and B(s, t) for the con-
tractile actin—-myosin meshwork. We assume that the branched net-
work is protrusive and devoid of myosin Il motors, while the bundled
network contains contractile actomyosin bundles that generate con-
tractile forces and retract the cell's posterior. Their dynamics are
given by the following nondimensionalized coupled system of
equations adapted from Lomakin et al. (Lomakin et al., 2015):

0A

— = A-A?2-myAB+DAA

at

2B

E:B—Bz—moAB+DAB 2

Full model assumptions and details are explained in the Supple-
mental Material. The rate of network growth is proportional to their
density, but it is limited at high densities by the finite amounts of
molecular resources (e.g., depletion of monomers or branching
complexes or myosin Il motors). The model assumes that the com-
petition terms, proportional to the product AB, stem from either
mechanical competition or competition for limited molecular re-
sources. Parameter mg is the magnitude of competition between
the networks. Last, the diffusive terms describe the action of myosin
Il motors that slide and shuffle bundled filaments in the contractile
actomyosin network, as well as the random lateral displacements of
the growing ends of the barbed filaments along the cell membrane
(Lomakin et al., 2015).

Mechanochemical coupling

To couple the cytoskeleton meshwork dynamics to the cycling of
signaling molecules, we assume, based on the experimental evi-
dence described above, the simplest possible local feedback loops
between 1) Rac and the branched actin network, and 2) Rho and the
bundled actin network (Figure 2f). Specifically, we posit that the
chemical rates in the signaling module are no longer constant but
rather are linear functions of the local concentration of each respec-
tive actin network, which evolves in space and time. On the other
hand, the growth rate of each actin network is linearly proportional
to the respective local densities of active polarity proteins. We use
the following mathematical expressions for the modified rates of
Rac and Rho kinetics (Figure 2e):

kfblo,-, (S) = kfblon (1 +ﬁ max[C(s),CmaX :I)
koff (5) = koff (3)

Here, the expressions for on and off rates are for either Rac or
Rho chemical kinetics. For Rac/Rho kinetics, C denotes branched/
bundled actin network density, A or B, respectively. Thus, the in-
duced on rate for Rac increases with the local branched actin den-
sity, while the Rho induced on rate increases with the local bundled
actin-myosin density. The off rates are constant. The maximum
function in the expressions for kg, and ko, is a pointwise maximum
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function and serves to ensure that the association rates do not ex-
ceed a threshold value. In principle, all kinetic rates could depend
on the spatial distribution of actin. Additionally, introducing spatial
dependence into the disassociation rate produced no qualitative
changes from the results presented here (unpublished data). Simi-
larly, not all kinetic rates need to depend on actin concentration,
and as an example, we found that in order to reproduce the results
presented here, only the enhanced association rate should vary spa-
tially with actin concentration. The coupling constant f is the mea-
sure of this feedback strength. The growth term in the actin net-
works equations is altered as follows:

dA(s,t +DAA
8(: ) = A(1+(anaC(s,t))_A2 —moAB+DA

dB(s,t AB 4
(i )_ B('|+OmRh°(s,t)) B2 —myAB+D 4

The coupling constant is a measure of the feedback from Rac/
Rho to the branched/bundled actin, respectively. In these expres-
sions, nfac(s,t) and nfM°(s, t) are the densities of Rac and Rho, re-
spectively. Numerically, these densities are computed from the dis-
crete locations of the respective molecules by computing at each
time step a superposition of Gaussian peaks with variance and cen-
ters at their molecular locations.

Importantly, in the presence of the feedback from actin networks
to the signaling molecules, their on/off rates depend on the spatial
positions on the cell edge due to varying actin densities. In this case,
the numerical implementation of the chemical kinetics becomes
more complex; because the kinetic rates vary spatially, the individual
time between events in the number of membrane-bound molecules
is determined for every individual molecule according to the rates

N n

An,s); = (koff); +(F_1j((kon(5))j +(k(s); NJ ©)
and the minimum time is chosen as the first event in the Poisson
process. Then, the dissociation, spontaneous association, and in-
duced association events take place with probabilities given above
for the spatially independent model; however, the rates now de-
pend on the positions of the active signaling molecules. The nu-
merical implementation of this modified stochastic model is pro-
vided in the Supplemental Material. The codes used are accessible
online on a public repository (link provided in Supplemental Mate-
rial). The values for the coupling constants range between 0
(uncoupled) and 2 (strongly coupled).

RESULTS

Neither the mechanical nor the biochemical model leads

to stable polarization

A deterministic formulation of the polarity signaling model in Figure
1b with only one chemical species results in a reaction—diffusion
equation with stably nonpolar distributions (Altschuler et al., 2008).
On the other hand, a stochastic formulation of the same kinetics
leads to the emergence of clusters of Rac and Rho that persist in
time (Figure 2b). However, we find that neither Rac nor Rho clusters
localize into a single cluster; Rac and Rho do not concentrate to op-
posite sides of the polarized cell, as observed at the onset of motil-
ity. As the total number of signaling molecules is increased, the
number of clusters of Rho GTPase activity also increases, resulting in
a patchy distribution. We varied the biochemical kinetic rates and
found that these results hold over a wide range of model parame-
ters. The actin competition model is based on the classical Lotka—
Volterramodel of the population dynamics of two species competing
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FIGURE 3: Emergence of polarity in the coupled mechanochemical system. (a—c) With weak
feedback between the polarity molecules and the actin networks, the underlying chemicals do
not segregate into a polar distribution but remain in a patchy distribution around the cell
membrane. In this particular simulation, the bundled actin persists and eliminates the branched
actin meshwork in the system. (e-g) For strong coupling constants, both the mechanical and
signaling system polarize. The polarity proteins completely segregate and each actin network
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Kymographs of the molecular locations of Rac and Rho around the cell edge. Rac/Rho
trajectories are blue/yellow, respectively. The weak/strong coupling systems are d/h,
respectively.

for a common resource (Edelstein-Keshet, 1988). If the competition
parameter mg is small, two networks can coexist in space, and both
of their densities are spatially constant. However, if the competition
parameter mg is large, the situation becomes “winner take all,” and
one network dominates, while the other goes extinct. We examined
if polarized actin distributions are possible: one of the networks
occupies one region in space, while the other occupies the remain-
ing space (Figure 2b). Such a polarized state exists only when the
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initial distributions are exactly symmetric.
Any small perturbation of the initial polar-
ized distribution results in one network (the
one with slightly greater spatial support) tak-
ing over and displacing the other network
(Figure 2b). Rigorous mathematical analysis
showed that this nontrivial spatial segrega-
tion of competing species in Lotka-Volterra
models is not stable (Cosner and Lazer,
1984; Kan-On, 1998; Takeuchi, 1989).

These simulations led us to wonder if
coupling between the chemical and me-
chanical modules could stabilize cell polar-
ization. The idea is that the slow destabili-
zation of the polar state of actin networks
could bias the signaling molecules into
segregating into two opposite parts of the
cell; this bias is caused by the up-regula-
tion of Rac on the membrane by the
branched network and simultaneously the
up-regulation of Rho by the bundled net-
work. Then patches of Rac and Rho, whose
positions are arbitrary without feedback,
could drift to opposing cell regions. In turn,
feedback from Rho GTPase to the respec-
tive actin networks ensures that one net-
work does not invade another’s territory,
since each network dominates in a specific
region due to the presence of its support-
ing chemical.

The coupled mechanochemical model
produces symmetry breaking
depending on coupling strength

To assess whether this model with positive
feedback between protrusive actin and
Rac, and contractile actin and Rho, can ac-
count for symmetry breaking, we run simu-
lations with two choices for the coupling
constants (Figure 3). The numerical simula-
tions assume random initial distributions
and equal total conserved amounts of Rac
and Rho, and of two types of actin network
(Figure 3, a and e). We define a polarized
cell state when two spatially separated well-
defined peaks emerge, one for the
branched actin and another for the bundled
actomyosin network, and simultaneously,
peaks for the chemical concentrations, Rac
and Rho, form in the same locations as the
peaks of their respective actin networks.
For low coupling constants, the polarity
proteins segregated into many nonoverlap-
ping Rac and Rho clusters (Figure 3d). The

mechanical model was unable to achieve a polar distribution:
either the actomyosin bundles or the branched actin meshwork
went extinct (Figure 3c). In this particular instance of the simulation,
the protrusive branching network died out while the bundled acto-
myosin network survived and took over the entire plasma mem-
brane (Figure 3c). Tens of instances for this set of parameters were
considered and a probability of polarization establishment of 5%
was computed as a fraction of the number of simulations with
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stable polar distributions of both actin and polarity chemicals over
the total number of runs.

Next, we considered a strongly coupled system and observed
that the polarity molecules segregated into two clusters on the
membrane: a Rac-dominated front and a Rho-dominated rear
(Figure 3h). Simultaneously, the same spatial pattern is adopted by
the actin networks: in the Rac-dominated region, a branched actin
network is assembled, while in the Rho-dominated patch, bundled
actomyosin is present (Figure 3g). Initial patches of Rac enhance
local recruitment of the branched actin network, while at the same
time, in different regions, Rho patches promote the formation of
actomyosin bundles. This initial feedback-based recruitment leads
to the formation of peaks in the concentration of each actin net-
work, which ultimately increases the association and feedback
rates in the signaling system. This transient behavior ultimately
gives rise to a well-formed and stable peak in each actin species
and a corresponding peak in its associated polarity molecule con-
centration. While these peaks are dynamic, their locations in space
remain fixed, given no external stimulus. Furthermore, perturba-
tions of the spatial profiles of the actin networks quickly return to
equilibrium.

To characterize the parameter dependence on establishing po-
larity in the model, we performed simulations where all biochemical
signaling and mechanical parameters were held constant but the
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coupling constants were varied. By simultaneously changing these
two coupling strengths, we obtained heat maps of the polarization
probability (Figure 4a), defined as the fraction of simulations with
stable polar distributions of the actin networks and polarity mole-
cules over the total number of runs. Based on Figure 4, the system
is more likely to polarize in the presence of higher coupling con-
stants. Importantly, both feedback directions—from actin to Rho
GTPase and from Rho GTPase to actin—are needed for the
polarization.

The effect of biochemical and other mechanical rates on
polarity establishment

We performed a series of simulations varying the competition para-
meter in the mechanical model and obtained the corresponding
polarization probability. For a strongly coupled system, the competi-
tion parameter has little to no effect on the likeliness of establishing
polarity (Figure 4d). For a system with weaker coupling, the ability to
establish a polar distribution of the actin networks is diminished
even further with a lower competition parameter (Figure 4c). In the
absence of competition, the equations are well known to exhibit
coexistence with uniform spatial distribution (Edelstein-Keshet,
1988). We find that in the absence of competition, but coupled to
the signaling module, the two actin networks can coexist on the
entire domain, but, due to the randomness of the signaling module,
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two actin densities exhibit arbitrarily positioned small-amplitude
peaks. We also varied the relative initial amounts of branched and
bundled actin networks and found that even in the case where 90%
of the F-actin was initially assembled into actomyosin bundles, the
cell was able to polarize roughly 80% of the time, with half of the
actin in one type of network and half in the other (Supplemental
Figure S2a).

Next, we varied the kinetic rates in the biochemical signaling
module. The mechanical parameters and coupling constants were
held constant, while two chemical rates for both Rac and Rho were
varied: the induced association rate, kg,, and the disassociation rate,
koff . We obtained a heat map of the polarization probability (Figure
4b). For the majority of the heat map, the probability to polarize is
largely unaffected by variations in these parameters. However, the
model is sensitive to high disassociation rates and simultaneously
low enhanced recruitment rates (bottom right corner of Figure 4b).
In this situation of high disassociation and low feedback rates, there
are too few polarity molecules on the cell membrane. Hence the
chemical system is not able to influence the mechanical module,
and the system gravitates toward the stable “winner takes all” state;
one of the actin meshworks completely annihilates another. To com-
ment on the effect of the third kinetic rate, we varied the spontane-
ous association rate, k.., and the disassociation rate, kog, while the
other constants were held constant. The model is largely insensitive
to variations of the on rate, due to the compensatory effect of the
induced association rate. We find that for a very low disassociation
rate, the random initial distribution of actin and polarity molecules is
enhanced everywhere through recruitment to the membrane, thus
corrupting the process of polarization.

The total number of polarity molecules in the system was also
varied. Altschuler et al. (2008) reported that for a large number of
polarity molecules, the active molecules are spread over the mem-
brane, and polarity is lost. By contrast, our coupled model does not
exhibit the same response—the probability of polarization is largely
unaffected by the total number of polarity molecules (Supplemental
Figure S2b). Last, we report on the response to lowering the diffu-
sion constant by an order of magnitude for a strongly coupled sys-
tem with baseline parameter values. We find that two actin density
peaks do emerge, one corresponding to a protrusive zone with Rac
and branched actin present, and a second peak with Rho and bun-
dled actomyosin (Supplemental Figure S3). The width of these
peaks is notably narrower than that of those reported in our other
results, due to the lower diffusivity. These peaks are also closer to
each other. While the cell is, formally speaking, polarized, it does
not have a well-defined front and rear at opposite ends. Instead, the
protrusive and retractive regions could be close to each other on the
cell edge.

Polarization direction is responsive to the orientation of the
external signal

Thus far, our model simulations suggest that spontaneous polymer-
ization in an arbitrary direction can arise from the coupling between
the cytoskeletal mechanics and chemical kinetics. To determine
whether our model exhibits sensitivity and adaptation to external
signals, we simulated polarization in the presence of directional bias
(Figure 5, a and b). We assumed that the association/dissociation
rates for Rac molecules vary along the cell edge, which is equivalent
to a directional bias, as shown in Figure 5a (the dissociation rate
varied oppositely to the association rate, as the spatial complement
of the curve in Figure 5a: the sum of the association and disassocia-
tion rates is constant). The kinetic rates for Rho molecules vary op-
positely to those of Rac: where Rac rates were low, Rho rates were
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high and vice versa. We observed that a polarized state evolved
from random initial conditions, with Rac and Rho peaks with the
same orientation as the external bias (Figure 5b). The actin networks
peaks also colocalized with the respective chemicals and the exter-
nal bias (Figure 5b).

Next, we assessed how an already polarized cell responds to
changes in the external signal direction. To achieve this, after the
oriented polarized state established, we abruptly shifted the signal
direction by 90° (Figure 5, c and e). After a transient reorganization
of the signaling chemicals, the actin networks rearrange as well and
the polarization direction turns to the new direction (Figure 5, d and
e). If this was a motile cell, it would execute a smooth turn: at no
time was the polarization lost, just its orientation changed smoothly.
Last, we reversed the direction of the external signal by 180° (Figure
5, f and h), and observed that the cell repolarized in the new direc-
tion (Figure 5, g and h). Note that in this case, polarization was mo-
mentarily lost but emerged in a new direction.

The model is robust to changes in initial and boundary
conditions

To investigate the sensitivity to initial conditions, we explore the
model’s response to different initial distributions of the actin net-
works. A feature of robust polarity establishment is the ability to
coalesce multiple protrusions, or peaks in the branched actin con-
centration, into a single protrusive front. Thus, we considered an
initiation of the system where branched actin concentration has
three evenly spaced peaks, bundled actin density has one square
peak, but active signaling molecule concentrations are randomly
distributed along the plasma membrane (Figure 6a). All 10 instances
of this simulation setup showed the formation of a single protruding
front (Figure éa). The location of this front along the cell membrane
will vary based on the initiation.

Next, the model geometry was changed: instead of the circular
edge of a disklike cell, we considered the anterior—posterior cross-
section of an elongated cell. The model remains 1D, but the bound-
ary condition becomes no-flux, as actin, myosin, and signaling
molecules do not enter or exit the cell. All previously described re-
sults in this case qualitatively match those obtained by solving the
same set of equations on the 1D segment with periodic boundary
conditions (see Supplemental Figures S4 and S5). We show that
three possible different initial spatial distributions of actin networks
all evolve to a stable polarized state with a protrusive network at
one end of the 1D cell, and a contractile network at the other end
(Figure 6, b—d).

DISCUSSION

The initiation of cell migration involves a complex web of signaling
and cytoskeletal modules. While in certain cellular systems polarity
can arise from only signaling or mechanical pathways, many cells
rely on the interplay between the two to robustly break symmetry to
initiate locomotion. We have presented a mechanochemical model
for cell polarization based on two minimal submodels, one describ-
ing signaling molecular dynamics, the other mechanics of cytoskel-
etal networks. The first submodel is for two types of signaling mole-
cules, such as Rac and Rho, which can diffuse on the cell membrane,
dissociate from the membrane, or move from the cytoplasm to the
membrane spontaneously, or can be recruited to the membrane by
other molecules of the same type. This induced recruitment is the
simplest autocatalytic feedback and corresponds to the only nonlin-
ear (quadratic) term in the mathematical model. One species of
molecules with these dynamics aggregates into a finite number of
clusters (Altschuler et al., 2008). Steric interaction is the only relation
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change in external stimulus and resulting kymograph of the membrane-bound polarity proteins Rac/Rho (blue/yellow)
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FIGURE 6: Polarity establishment is robust to variations of the initial distributions of the cytoskeletal meshworks and of
the boundary conditions. Initial (top row) and evolved (bottom row) distributions of the actin networks and polarity
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are used to represent the circular cell edge. Initially, there is one peak of the bundled network density but three peaks
of the branched network density, two of which colocalized with the bundled network. (b—d) The model on the 1D
segment with no-flux boundary conditions representing the anterior—posterior cross-section of an elongated cell.

(b) Initially, the ends of the cell are contractile, while the middle is protrusive. (c) Initially, the cell ends are protrusive,
while the middle is contractile. (d) Initially, both protrusive and contractile networks are concentrated at the cell center.
In all cases, the same polarized state with segregated protrusive and contractile networks evolve. Notably, for the
segment-like cell, the networks segregate to the opposite ends of the cell, making the cell robustly motile.

between two different types of molecules in the model. We show
that this interaction leads to the emergence of multiple interspersed
clusters across the cell. While the Altschuler model is appropriate for
capturing Cdc42 cluster emergence in budding yeast, the signaling
system does not polarize the cell globally: different types of mole-
cules segregate locally, but the clusters of the two kinds do not ag-
gregate in the respective halves of the cell, as required for establish-
ment of a polarity axis for migration. More generally, we find that
our model resolves patchy initial conditions better than the
Altschuler et al. model (Altschuler et al., 2008) and the wave-pinning
model (Mori et al., 2008; Figure 2a) separately.

The second submodel is for two types of dynamic actin networks
at the cell edge, branched protruding meshwork and actin-myosin
contractile bundled network. These networks spread slowly and ran-
domly around the cell edge, due to physical movements and tread-
milling of actin filaments, and turn over while maintaining a certain
equilibrium density. The nontrivial interaction between these net-
works is competition, such that the local density of one tends to di-
minish the density of another. This interaction stems both from me-
chanical effects and from competition for molecular resources.
Mathematically, it is described by the simplest quadratic nonlinear
term, which makes this submodel equivalent to the Lotka-Volterra
equations for two competing populations (Edelstein-Keshet, 1988).
It was shown in Lomakin et al. (2015) that this competition between
two actin networks is an important part of the spontaneous polariza-
tion process, but without cell movement, the model is not able to
polarize the cell, as one network will always win.

Thus, neither model is capable of producing cell polarization on
its own. Here, we have demonstrated that the simplest coupling
between the chemical and mechanical models—local, linear posi-
tive feedback loops between signaling molecules and actin cyto-
skeletal networks—is sufficient for spontaneous polarity. The model
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works if the strength of the mechanochemical coupling is above a
certain threshold. The qualitative mechanism suggested by the
model is simple: branched/bundled actin networks support recruit-
ment of Rac/Rho to the membrane, respectively, so Rac and Rho
tend to segregate into separate parts of the cell. In turn, neither
network can now invade the other’s territory, because Rac/Rho en-
hance branched/bundled networks, respectively; for example, when
the bundled network tries to encroach into the part of the cell oc-
cupied by the branched actin, Rac colocalizing with branched actin
gives its advantage over bundled actin and prevents the invasion.

The competition between the actin networks has to be strong
enough for stable polarization, so that the networks do not coexist
locally, but not so strong as to overcome the effect of the mechano-
chemical coupling and enable one network to win the cell from the
other. Effective diffusion also has to be neither too slow nor too fast
for the model to work. If the diffusion coefficients in the model are
too small, then the different networks with their supporting signal
molecules localize into peaks that are too narrow and arbitrarily po-
sitioned. If the diffusion coefficients are too large, no pattern forms.
However, overall the model is robust: a fewfold variations of any
other parameters do not change the stable separation of branched
actin and Rac in one half of the cell, and of bundled actomyosin and
Rho to another half. The polarized pattern is not sensitive to the
initial or boundary conditions. It is very likely that the model per-
forms in 2D and 3D as well as in 1D. Interestingly, the model works
even if the total number of signaling molecules becomes too large,
while in this regime, the signaling submodel without mechano-
chemical coupling fails to produce clustering (Altschuler et al.,
2008). Likely, this means that a strongly continuous variant of the
mechanochemical model also supports stable polarization.

Our simulations showed that the model cell can polarize sponta-
neously, without any signal from the environment, but the direction
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of polarization adapts to an external signal. For example, if the ki-
netics of the polarity molecules is biased in a certain direction by an
external signal, then the cell polarizes in that specific direction. If the
cellis already polarized, and the signal is applied in a different direc-
tion, this causes a reorientation of the entire mechanochemical po-
larity machinery in the new direction. If the signals direction is close
to that of the cell orientation, then the mechanochemical pattern
turns smoothly; otherwise, the cell first momentarily loses polarity
and then repolarizes in the new direction. This response is similar to
experimental observations: motile cells execute a smooth turn when
the external signal is applied normal to the direction of locomotion
(Allen et al., 2019) but repolarize when the signal is opposite to the
movement direction (Sun et al., 2013).

The first conceptual biological implication of our model is a
mathematical demonstration that a signaling module coupled to a
cytoskeletal module leads to robust spontaneous polarization and
reorientation in the presence of incoming signals; this occurs de-
spite the fact that each module separately can segregate chemical
networks in space but cannot stably polarize the cell. Second, there
are a number of solely chemical and solely mechanical polarization
models, but for these to work, significantly nonlinear terms, sup-
porting cooperative or switchlike behavior, are required. We show
that a linear local coupling of two minimally nonlinear models (only
quadratic nonlinearity in actin growth) can achieve robust cell sym-
metry breaking.

Our model relates conceptually to a number of cell types. The
first and foremost example is neutrophils, which polarize spontane-
ously when chemoattractant concentration is spatially uniform (Xu
etal., 2003). This polarization was shown to depend on the competi-
tion of the frontness and backness pathways (Xu et al., 2003) and to
require intimate involvement of both actin dynamics and signaling
systems. More specifically, Xu et al. (2003) proposed that the com-
petition between the protrusive actin network and the contractile
actomyosin network, assisted by feedback between these networks
and frontness and backness signaling circuits, stably segregate and
maintain the protrusive cell front and the contractile rear. Experi-
mental studies have shown that Rac/Rho knockout neutrophil cells
have severely impacted chemotaxis (Roberts et al., 1999; Glogauer
et al., 2003; Sun et al., 2004), and similarly when actin dynamics is
arrested (Dandekar et al., 2013). In fact, Xu et al. found that when
Rho is overexpressed, neutrophils fail to polarize, and when Rho is
inhibited, protrusions are observed everywhere along the cell pe-
riphery. Similarly, in our model, we demonstrate that blocking either
the backness or the frontness pathway gives similar results (Figure 7,
a and b). More recent experimental findings also support the cou-
pled action of actin networks and Rho GTPase pathway in spontane-
ous neutrophil polarization (Dandekar et al., 2013; Graziano et al.,
2018). Previous theoretical studies (Narang, 2005; Onsum and Rao,
2007) proposed models for the frontness/backness competition that
were either too abstract (Narang, 2005), or loaded with too many
unverified details (Onsum and Rao, 2007), and not including the
actin dynamics explicitly. In the case of neutrophils, three out of the
four directions in our coupling model between actin and Rac/Rho
dynamics have been reported previously. The study in Xu et al.
(2003) posits an indirect positive feedback from branched actin to
Rac. The positive feedback from Rac to actin polymerization is also
well established (Wang et al., 2002; Weiner et al., 2002; Srinivasan
et al., 2003; Hoeller and Kay, 2007; Inoue and Meyer, 2008). Less is
known about the interaction between Rho activation and actomyo-
sin bundle formation, although a mechanosensitive factor in Rho
activation has been implicated previously (Wang et al., 2017; Boyle
et al., 2018). Similarly, polarization of fibroblasts, macrophages, and
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FIGURE 7: If either frontness or backness pathways are inhibited,
then cell polarity cannot be established. (a) When Rho/actomyosin is
inhibited (e, =0 for Rho and bundled actomyosin), protrusions are
all around the periphery, while (b) if Rac/branching actin is inhibited
(e, B=0 for Rac and branched actin), cells fail to form protrusive
areas. Only the coupling rates, o and B, were changed in the
simulations; all other parameters were kept fixed to their baseline
values provided in Supplemental Table S1.

astrocytes is certainly a mechanochemical, not a purely chemical
process, with cytoskeletal dynamics intimately intertwined with the
Rho GTPase signaling pathway in the symmetry breaking process
before migration (reviewed in Etienne-Manneville, 2006).

We do not claim that our model can predict the biological details
of polarity for these cell types. In general, polarization involves not
only actin, but also microtubules, as well as more complex cytoskel-
etal networks, such as stress fibers, multiple pseudopods, and adhe-
sion complexes. Signaling circuits other than Rho could also be impli-
cated in cell polarization. The model does not include many molecular
players—PIP, PI3K, PTEN, G-proteins, actin regulators—but simply
conceptually captures their lumped effect on the cross-talk between
Rac/Rho and actin/actomyosin. Thus, our model posits one of the
simplest quantitative frameworks for understanding a possible mech-
anism for spontaneous mechanochemical cell polarization.

It is possible for our model to rely on other forms of feedback
between the biochemical and mechanical circuits. For example,
negative, instead of positive, feedback between Rac and branched
actin and Rho and actomyosin, respectively, could do the job (Wong
et al, 2006; Xu et al., 2003). We also limited the dynamics of the
model to the local chemical and mechanical processes, but global
mechanical effects, for example, membrane tension, could play an
important role in polarization of some cell types (Houk et al., 2012).
Another paradigm for mechanochemical polarization requires trans-
port of chemicals in the signaling framework. The key to such mod-
els is that myosin-driven flow assists the polarization of signaling
proteins by mechanically triggering the formation of a stable asym-
metric chemical distribution (Goehring et al., 2011; Maiuri et al.,
2015; Tostevin and Howard, 2008). Our model is simpler because it
does not have directional movement—either in the form of a flow,
as in these models, or in the form of whole cell movement as in Lo-
makin et al. (2015). More detailed and complex models have in-
cluded the cell-surface adhesion dynamics as a mechanical compo-
nent in the biochemical polarization pathway (Park et al., 2017).
Finally, one of the models of gradient sensing (Gamba et al., 2007)
is based on an idea similar to that of our model: when signaling
dynamics is such that clusters of polarity molecules appear on the
cell membrane, the clusters’ location can be biased to one side of
the cell by an external signal. Our model adds a novel and simple
potential polarization mechanism to these theoretical paradigms.

1647

A mechanochemical cell polarity model |



ACKNOWLEDGMENTS
This work was supported in part by U.S. Army Research Office Grant
W911NF-17-1-0417 to A.M.

REFERENCES

Allen G, Lee K, Barnhart E, Tsuchida M, Wilson C, Gutierrez E, Groisman A,
Mogilner A, Theriot J (2019). Cell mechanics at the rear act to steer the
direction of cell migration. bioRxiv 443408.

Altschuler S, Angenent S, Wang Y, Wu L (2008). On the spontaneous emer-
gence of cell polarity. Nature 454, 886-889.

Assemat E, Bazellieres E, Pallesi-Pocachard E, le Bivic A, Massey-Harroche D
(2008). Polarity complex proteins. Biochim Biophys Acta 1778, 614-630.

Barnhart E, Lee K.-C., Allen G, Theriot J, Mogilner A (2015). Balance
between cell-substrate adhesion and myosin contraction determines
the frequency of motility initiation in fish keratocytes. Proc Natl Acad Sci
USA 112, 5045-5050.

Bois J, Julicher F, Grill S (2011). Pattern formation in active fluids. Phys Rev
Lett 106, 028103.

Boyle S, Kular J, Nobis M, Ruszkiewicz A, Timpson P, Samuel M (2018).
Acute compressive stress activates RHO/ROCK-mediated cellular pro-
cesses. Small GTPases 17, 1-17.

Burridge K, Wennerberg K (2004). Rho and Rac take center stage. Cell 116,
167-179.

Byrne K, Monsefi N, Dawson J, Degasperi A, Bukowski-Wills J, Volinsky N,
Dobrzyski M, Birtwistle M, Tsyganov M, Kiyatkin A, et al. (2016). Bistabil-
ity in the Rac1, PAK, and RhoA signaling network drives actin cytoskel-
eton dynamics and cell motility switches. Cell Syst 2, 38-48.

Cosner C, Lazer A (1984). Stable coexistence states in the Volterra—Lotka
competition model with diffusion. SIAM J Applied Math 44, 1112-
1132.

Dandekar SN, Park JS, Peng GE, Onuffer JJ, Lim WA, Weiner OD (2013).
Actin dynamics rapidly reset chemoattractant receptor sensitivity follow-
ing adaptation in neutrophils. Philos Trans R Soc London B Biol Sci 368,
20130008.

Das S, Yin T, Yang Q, Zhang J, Wu YI, Yu J (2015). Single-molecule tracking
of small GTPase Rac1 uncovers spatial regulation of membrane translo-
cation and mechanism for polarized signaling. Proc Nat Acad Sci USA
112, E267-E276.

Dawes A, Munro E (2011). PAR-3 oligomerization may provide an actin-
independent mechanism to maintain distinct PAR protein domains in the
early Caenorhabditiselegans embryo. Biophys J 101, 1412-1422.

Dayel M, Akin O, Landeryou M, Risca V, Mogilner A, Mullins R (2009). In
silico reconstitution of actin-based symmetry breaking and motility. PLoS
Biol 7, €1000201.

Edelstein-Keshet L (1988). Mathematical Models in Biology. New York:
Random House.

Edelstein-Keshet L, Holmes W, Zajac M, Dutot M (2013). From simple to
detailed models for cell polarization. Philos. Trans R Soc London B Biol
Sci 368, 20130003.

Etienne-Manneville S (2006). In vitro assay of primary astrocyte migration
as a tool to study Rho GTPase function in cell polarization. Methods
Enzymol 406, 565-578.

Falkenberg C, Loew L (2013). Computational analysis of Rho GTPase cy-
cling. PLoS Comput Biol 9, €1002831.

Gamba A, Kolokolov |, Lebedev V, Orentzi G. (2007). Patch coalescence
as a mechanism for eukaryotic directional sensing. Phys Rev Lett 99,
158101.

Gillespie D (1977). Exact stochastic simulation of coupled chemical reac-
tions. J Phys Chem 81, 2340-2361.

Gillespie D (2007). Stochastic simulation of chemical kinetics. Annu Rev Phys
Chem 58, 35-55.

Glogauer M, Marchal C, Zhu F, Worku A, Clausen E, Foerster |, Marks P,
Downey G, Dinauer M, Kwiatkowski D (2003). Rac1 deletion in mouse
neutrophils has selective effects on neutrophil functions. J Immunol 170,
5652-5657.

Goehring N, Trong P, Bois J, Chowdhury D, Nicola E, Hyman A, Grill S
(2011). Polarization of PAR proteins by advective triggering of a pattern-
forming system. Science 334, 11371141.

Goryachev A, Leda M (2017). Many roads to symmetry breaking: molecular
mechanisms and theoretical models of yeast cell polarity. Mol Biol Cell
28, 370-380.

Graziano B, Town J, Nagy T, Fonari M, Peni S, Igli A, Kralj-Igli V, Gov N,
Diz-Muoz A, Weiner O (2018). Cell-extrinsic mechanical forces restore
neutrophil polarization in the absence of branched actin assembly.
bioRxiv 457119.

1648 | C.Coposand A. Mogilner

Haglund C, Welch M (2011). Pathogens and polymers: microbe-host inter-
actions illuminate the cytoskeleton. J Cell Biol 195, 7-17.

Hall A (1998). Rho GTPases and the actin cytoskeleton. Science 279,
509514.

Heasman S, Ridley A (2008). Mammalian Rho GTPases: new insights into
their functions from in vivo studies. Nat Rev Mol Cell Biol 9, 690-701.

Higgs H, Pollard T (2001). Regulation of actin filament network formation
through Arp2/3 complex: activation by a diverse array of proteins. Annu
Rev Biochem 70, 649676.

Hoeller O, Kay R (2007). Chemotaxis in the absence of PIP3 gradients. Curr
Biol 17, 813-817.

Houk A, Jilkine A, Mejean C, Boltyanskiy R, Dufresne E, Angenent S,
Altschuler S, Wu L, Weiner O (2012). Membrane tension maintains cell
polarity by confining signals to the leading edge during neutrophil
migration. Cell 148, 175-188.

Howard J, Grill S, Bois J (2011). Turing’s next steps: the mechanochemical
basis of morphogenesis. Nat Rev Mol Cell Biol 12, 392-398.

Inoue T, Meyer T (2008). Synthetic activation of endogenous PI3K and Rac
identifies an AND-gate switch for cell polarization and migration. PLoS
One 3, e3068.

Ip 'Y, Gridley T (2002). Cell movements during gastrulation: snail dependent
and independent pathways. Curr Opin Genet Dev 12, 423-429.

Jilkine A, Edelstein-Keshet L (2011). A comparison of mathematical models
for polarization of single eukaryotic cells in response to guided cues.
PLoS Comput Biol 7, €1001121.

Kan-On Y (1998). Bifurcation structure of stationary solutions of a Lotka-Volt-
erra competition model with diffusion. SIAM J Math Anal 29, 424-436.

Levchenko A, Iglesias P (2002). Models of eukaryotic gradient sensing:
application to chemotaxis of amoebae and neutrophils. Biophys J 82,
50-63.

Lomakin A, Lee K, Han S, Bui D, Davidson M, Mogilner A, Danuser G
(2015). Competition for actin between two distinct F-actin networks de-
fines a bistable switch for cell polarization. Nat Cell Biol 17, 1435-1445.

Ma X, Daglyian O, Hahn K, Danuser G (2018). Profiling cellular morphody-
namics by spatiotemporal spectrum decomposition. PLoS Comput Bio
14, €1006321.

Machesky LM, Insall RH (1998). SCAR1 and the related Wiskott Aldrich
syndrome protein, wasp, regulate the actin cytoskeleton through the
Arp2/3 complex. Curr Biol 8, 1347-1356.

Maiuri P, Rupprecht J, Wieser S, Ruprecht V, Benichou O, Carpi N, Coppey
M, Beco SD, Gov N, Heisenberg C, et al. (2015). Actin flows mediate a
universal coupling between cell speed and cell persistence. Cell 161,
374-386.

Maree A, Jilkine A, Dawes A, Grieneisen V, Edelstein-Keshet L (2006). Polar-
ization and movement of keratocytes: a multiscale modelling approach.
Bull Math Biol 68, 1169-1211.

McCaffrey L, Macara | (2012). Signaling pathways in cell polarity. Cold
Spring Harb Perspect Biol 4, a009654.

Meinhardt H, Gierer A (1974). Applications of a theory of biological pattern
formation based on lateral inhibition. J Cell Sci 15, 321-346.

Mogilner A, Keren K (2009). The shape of motile cells. Curr Biol 19, R762—
R771.

Moissoglu K, Schwartz M (2014). Spatial and temporal control of Rho
GTPase functions. Cell Logist 4, e943618.

Moissoglu K, Slepchecko B, Meller N, Horwitz A, Schwartz M (2006). In vivo
dynamics of Rac-membrane interactions. Mol Biol Cell 17, 2770-2779.

Mori Y, Jilkine A, Edelstein-Keshet L (2008). Wave-pinning and cell polarity
from a bistable reaction—diffusion system. Biophys J 94, 3684-3697.

Mullins R (2010). Cytoskeletal mechanisms for breaking cellular symmetry.
Cold Spring Harb Perspect Biol 2, a003392.

Munro E, Nance J, Priess JR (2004). Cortical flows powered by asymmetrical
contraction transport PAR proteins to establish and maintain anterior—
posterior polarity in the early C. elegans embryo. Dev Cell 7, 413-424.

Narang A (2005). Spontaneous polarization in eukaryotic gradient sensing:
a mathematical model based on mutual inhibition of frontness and back-
ness pathways. J Theor Biol 240, 538-553.

Nguyen T, Park W, Park B, Kim C, Oh Y, Kim J, Choi H, Kyung T, Kim C,

Lee G, et al. (2016). PLEKHG3 enhances polarized cell migration by
activating actin filaments at the cell front. Proc Natl Acad Sci USA 113,
10091-10096.

Onsum M, Rao C (2007). A mathematical model for neutrophil gradient
sensing and polarization. PLoS Comput Biol 3, e36.

Pablo M, Ramirez S, Elston T (2018). Particle-based simulations of polarity
establishment reveal stochastic promotion of Turing pattern formation.
PLoS Comput Biol 14, e1006016.

Parent C, Devreotes P (1999). A cell's sense of direction. Science, 284, 765-770.

Molecular Biology of the Cell



Park J, Holmes W, Lee S, Kim H, Kim D, Kwak M, Wang C, Edelstein-Keshet
L, Levchenko A (2017). Mechanochemical feedback underlies coexis-
tence of qualitatively distinct cell polarity patterns within diverse cell
populations. Proc Natl Acad Sci USA 114, e5750-e5759.

Peglion F, Goehring N (2019). Switching states: dynamic remodelling of
polarity complexes as a toolkit for cell polarization. Curr Opin Cell Biol
60, 121-130.

Pertz O, Hodgson L, Klemke R, Hahn K (2006). Spatiotemporal dynamics of
RhoA activity in migrating cells. Nature 440, 1069-1072.

Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A, Kam
Z, Geiger B, Bershadsky A (2011). Fibroblast polarization is a matrix-
rigidity-dependent process controlled by focal adhesion mechanosens-
ing. Nat Cell Biol 13, 1457-1465.

Ridley AJ (2001). Rho family proteins: coordinating cell responses. Trends
Cell Biol 11, 471-477.

Ridley AJ (2006). Rho GTPases and actin dynamics in membrane protrusions
and vesicle trafficking. Trends Cell Biol 16, 522-529.

Roberts A, Kim C, Zhen L, Lowe J, Kapur R, Petryniak B, Spaetti A, Pollock
J, Borneo J, Bradford G, et al. (1999). Deficiency of the hematopoietic
cell-specific Rho family GTPase Rac2 is characterized by abnormalities in
neutrophil function and host defense. Immunity 10, 183-196.

Rotty J, Bear J (2014). Competition and collaboration between different
actin assembly pathways allows for homeostatic control of the actin
cytoskeleton. Bioarchitecture 5, 27-34.

Schwartz M (2004). Rho signalling at a glance. J Cell Sci 117, 5457-5458.
Segal D, Zaritsky A, Schejter E, Shilo B-Z (2018). Feedback inhibition of actin
on Rho mediates content release from large secretory vesicles. J Cell

Biol 217, 1815.

Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D,
Bourne HR (2003). Rac and Cdc42 play distinct roles in regulating PIP3
and polarity during neutrophil chemotaxis. J Cell Biol 160, 375-385.

Su W, Mruk D, Wong E, Lui W, Cheng C (2012). Polarity protein complex
Scribble/Lgl/Dlg and epithelial cell barriers. Adv Exp Med Biol 763,
149-170.

Sun C, Downey G, Zhu F, Koh A, Thang H, Glogauer M (2004). Rac1 is the
small GTPase responsible for regulating the neutrophil chemotaxis
compass. Blood 104, 3758-3765.

Sun'Y, Do H, Gao J, Zhao R, Zhao M, Mogilner A (2013). Keratocyte frag-
ments and cells utilize competing pathways to move in opposite direc-
tions in an electric field. Curr Biol 23, 569-574.

Svitkina T (2018). The actin cytoskeleton and actin-based motility. Cold
Spring Harb Perspect Biol 10, a018267.

Takeuchi Y (1989). Diffusion-mediated persistence in two-species competi-
tion Lotka—Volterra model. Math Biosciences 95, 65-83.

Tostevin F, Howard M (2008). Modeling the establishment of PAR protein
polarity in the one-cell C. elegans embryo. Biophys J 95, 45124522.

Turing A (1952). The chemical basis of morphogenesis. Philos Trans R Soc
London Ser B 237, 37-72.

Volume 31 July 15, 2020

van der Gucht J, Paluch E, Plastino J, Sykes C (2005). Stress release drives
symmetry breaking for actin-based movement. Proc Natl Acad Sci USA
102, 7847-7852.

van Leeuwen F, Kain H, van der Kammen R, Michiels F, Kranenburg O,
Collard J (1997). The guanine nucleotide exchange factor Tiam1 affects
neuronal morphology; opposing roles for the small GTPases Rac and
Rho. J Cell Biol 139, 797-807.

Vekhovsky A, Svitkina T, Borisy G (1999). Self-polarization and directional
motility of cytoplasm. Mol Cell 9, 11-20.

Walther G, Maree A, Edelstein-Keshet L, Grieneisen V (2012). Deterministic
versus stochastic cell polarisation through wave-pinning. Bull Math Biol
74, 2570-2599.

Wang F, Herzmark P, Weiner O, Srinivasan S, Servant G, Bourne H (2002).
Lipid products of PI(3)Ks maintain persistent cell polarity and directed
motility in neutrophils. Nat Cell Biol 4, 513-518.

Wang T, Hamilla S, Cam M, Aranda-Espinoza H, Mili S (2017). Extracellular
matrix stiffness and cell contractility control RNA localization to promote
cell migration. Nat Commun 8, 896.

Weiner O, Marganski W, Wu L, Altschuler S, Kirschner M (2007). An actin-
based wave generator organizes cell motility. PLoS Biol 9, e221.

Weiner O, Neilsen P, Prestwich G, Kirschner M, Cantley L, Bourne H (2002).
A PtdInsP(3)-and Rho GTPase-mediated positive feedback loop regu-
lates neutrophil polarity. Nat Cell Biol 4, 509-513.

Weiner O, Servant G, Welch W, Mitchison T, Sedat J, Bourne H (1999).
Spatial control of actin polymerization during neutrophil chemotaxis.
Nat Cell Biol 1, 75-81.

Weiner OD (2002). Rac activation: P-Rex1—a convergence point for PIP3
and G? Curr Biol 12, R429-R431.

Wong K, Pertz O, Hahn K, Bourne H (2006). Neutrophil polarization: spatio-
temporal dynamics of RhoA activity support a self-organizing mecha-
nism. Proc Natl Acad Sci USA 103, 3639-3644.

Wu C-F, Chiou J-G, Minakova M, Woods B, Tsygankov D, Zyla T, and et al.
(2015). Role of competition between polarity sites in establishing a
unique front. eLife 4, e11611.

Xu J, Wang F, van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa
Y, Sugimoto N, Mitchison T, Bourne H (2003). Divergent signals and
cytoskeletal assemblies regulate self-organizing polarity in neutrophils.
Cell 114, 201-214.

Yam P, Wilson C, Ji L, Hebert B, Barnhart E, Dye N, Wiseman P, Danuser G,
Theriot J (2007). Actin-myosin network reorganization breaks symmetry
at the cell rear to spontaneously initiate polarized cell motility. J Cell Biol
178, 1207-1221.

Yamada S, Nelson W (2007). Localized zones of Rho and Rac activities drive
initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178,
517-527.

Zhang B, Zheng Y (1998). Negative regulation of Rho family GTPases
Cdc42 and Rac2 by homodimer formation. J Biol Chem 273, 25728-
25733.

1649

A mechanochemical cell polarity model |



Supplementary Material

S.1 A general description of the model

The model considers the dynamics of two actin networks competing for molecular resources and coupled to the
dynamics of active, membrane-bound Rac and Rho molecules. In the model, the dynamics is localized to the
periphery of the the disc-shaped cell adhering to a substrate, and so the molecular densities are localized to the
circle of circumferential length L.

Actin dynamics. The cytoskeletal model is a competition of two distinct actin networks with the following
dynamics:

1. Autocatalytic growth: The net growth rate of each network is proportional to local network density. This
assumption is based on the processes of polymerization of existent actin filaments and of nucleation of
nascent filaments by proteins binding to the existent filaments, so that the net growth becomes propor-
tional to the existent density.

2. Limited growth: At high density, growth is limited due to lack of availability of molecular resources. In
the case of the bundled actin network, growth could be limited due to depletion of the myosin-II motors
or actin monomers, while the branched actin network growth could be limited by availability of Arp2/3
branching complexes or globular actin monomers.

3. Competition for molecular resources: Both networks compete for a limited cytoplasmic pool of molecular
resources, such as G-actin monomers, Arp2/3 complexes, formins or myosin.

4. Diffusive-driven redistribution of the networks along the cell boundary: We assume, following [38]], an
effective diffusive spread of actin densities along the cell edge due to lateral shifts of the actin density due
to filament growth and/or to physical sliding of filaments along the cell edge pulled by myosin motors.

Mathematically, based on these assumed dynamics one arrives at the following set of non-dimensionalized
PDEs [38]:

% = A— A% —myAB + DAA, (S1)
%—f:B—B?—moAB+DAB.

Here A(s,t) denotes the branched actin network density and B(s, t) represents the bundled actin network den-
sity along the cell boundary parameterized by the arc length s. Densities of both actin networks are defined on
the periodic cell boundary. my is the non-dimensional competition parameter, and D is the non-dimensional
diffusion coefficient. Note that this effective diffusion coefficient is the result of an effective random walk of
the growing ends of branched filaments along the cell edge. There filaments are growing skewed to the left and
right, and thus glide along the cell edge for about a second before being capped, and then daughter filaments
glide in opposite directions. For bundled filaments, the diffusion originates from the myosin-powered shuffling
of the filaments along the cell edge. Respective diffusion coefficients have the same order of magnitude ana-
lyzed in [38]]. Note also that we chose to model the cytoskeleton in a continuous, deterministic way, because the
estimate for the number of actin on the cell edge, N ~ 10* [1]] is much higher than the estimate for the number
of signaling molecules on the membrane: N ~ 103 in the whole cell, of which ~ 10% is on the membrane [[78]].

Although Eq. S1 represent conservation laws for the two actin networks, we can also use the balance of
forces to justify the mechanical nature of expressions for some parameters in this model and identify the connec-
tion to physical/mechanical forces including myosin contractile force, membrane tension, and effective friction



from adhesion of the actin networks to the substrate. Specifically, small and dynamic nascent adhesions based
on integrin molecules spanning the cell membrane interconnect the branched actin and the substrate. More ma-
ture focal adhesions, also integrin based but including many adaptors, force-sensing and signaling molecules,
connect actomyosin bundles with themselves and the substrate. Besides the kinetic effect contributing to the
term myAB — the competition of the branched and bundled actin networks for the same G-actin monomer
pool — there are also underlying mechanical processes. In the update equation for the branched actin network
(Eq. Sla), the competition term, —mgAB = —(mB)A, describes the rate at which branched filaments are
incorporated into anti-parallel contractile actin bundles in the presence of myosin motors. The rate is propor-
tional to the actomyosin density. The competition term in the update equation for bundled acto-myosin network
(Eq. S1b) has a similar mechanical underpinning. The expression —myAB = —(mgA) B is the rate of removal
of the bundled actin by the flow generated by branched actin filaments growing against the membrane at the cell
edge and centripetally pushing the bundles away from the edge. The rate is proportional to the branched actin
density because of the force balance between the membrane tension and strength of adhesions of the bundled
actin to the substrate. Assuming a viscous behavior of adhesions, the centripetal flow rate is v = T'/( where ¢
is the adhesion strength while 7" is the membrane tension. The membrane tension which is likely to be propor-
tional to the density of branched filaments pushing on the membrane from within, hence the centripetal flow is
proportional to the density of branched actin network [46]].

Signaling molecule dynamics. We focus on the mutually exclusive interactions between Rac and Rho on the
plasma membrane. Following the rationale of the stochastic model proposed by Altschuler et al. [[1]], we assume
five different kinds of molecular events:

1. Spontaneous association to the membrane: GTP-bound Rho GTPase proteins undergo a conformational
change and transition to an active membrane-bound state. We model this by an association of a respective
molecule from the cytosol to a random location on the membrane at a rate of k.

2. Spontaneous disassociation from the membrane: GAP proteins regulate the transition of active, membrane-
bound Rho GTPase into an inactive, cytosolic state. This event is modeled through the removal of an
active molecule from the membrane at a rate of k.

3. Enhanced membrane association through activators: Local positive feedback loops are thought to play a
role in sustaining nascent Rac/Rho sites on the plasma membrane [2-5]]. To model these feedback loops
we assume that a membrane-bound (active) molecule of either type (Rac or Rho) can indirectly activate
and recruit a molecule of the same type to its vicinity. The rate at which one molecule recruits from the
cytosol is proportional to the fraction of molecules which are still in the cytosol with a proportionality
constant of kg,.

4. Diffusion on the membrane: Each molecule on the membrane undergoes a Brownian motion with diffu-
sion coefficient d.

5. Steric interaction: In the association, recruitment, and diffusive processes, Rac and Rho proteins cannot
occupy the same location in space at a given time. This assumption is based on the reported mutual
antagonistic interactions between Rho GTPases [6-11].

We first outline the algorithm implementation for the Rac/Rho dynamics when the Kinetic rates are constant in
space. The system is initialized with 10% of the total number of signaling molecules of each type (Rac/Rho), N.
These initial molecules are randomly placed along the cell membrane ensuring that particles of different type
do not spatially overlap. The number of Rac (or Rho) particles on the cell membrane, n(t), evolves by a Poisson
process. Because the signaling dynamics will eventually be coupled to spatially-varying actin concentrations,
we consider individual rather than aggregate transition rates. For each membrane-bound particle j, the time



and location of the next biochemical reaction event is computed discretely. In particular, the time to the next
reaction for membrane-bound particle j is exponentially distributed with rate:

)y = (s + (5= 1) (Ghnds + i) ) 52

The next reaction time is compute for all membrane-bound particles, n(t), and the minimum time is chosen
across all active particles of a given type. Then, for the particle with the lowest reaction time, either a disassocia-
tion event with probability k) /A(n) ;, or a spontaneous association event with probability (£ — 1) kon);/A(n);
or an enhanced association event with (1 — %) kg);/A(n); has occurred. If a disassociation event has taken
place, this particles is removed from the membrane and added to the cytoplasmic pool of well-mixed, homo-
geneous inactive particles. If an enhanced recruitment association event has occurred, an inactive particle is
moved to the membrane and its location coincides with the already membrane-bound particle. Lastly, for a
spontaneous association event, an inactive particle is moved to the membrane to a location chosen randomly
halfway between its nearest neighboring particles of the same type. This process is repeated independently for
both Rac and Rho species. The probability for the number of particles of each type can be expressed via a mas-
ter equation as given in Altschuler et al. [[1]. However, we note that to our knowledge no such master equation
can be easily expressed in the case of spatially-varying kinetic rates. In the presence of the mechanochemical
coupling, the kinetic rates depend on position on the cell edge, and the algorithm is modified as discussed below.

Mechanochemical coupling. For the mutual coupling between actin cytoskeleton and polarity molecules, we
assume that there is a local feedback loop with a linear dependence on relative concentrations. The chemical
rates in the signaling kinetics are no longer constant but rather dependent on the local concentration of each
respective actin network which evolves in both space and time. We assume that Rac and the branched actin
network engage in a positive feedback loop and similarly so do Rho and the bundled actomyosin mesh by
modifying the kinetic rates of Rac and Rho as follows:

0 (5) = kib,on (1 + B max[A(s), Cnax]) , (S3)
KRAS (5) = kiv,on (1 + B max[B(s), Ciax]) . (S4)
fff%c(s) = kofr, (S5)
kg (s) = kot (S6)

The strength of the coupling from actin to the polarity model is denoted by the constant of proportionality
B. The maximum function in the expressions for kg, and ko, is a pointwise maximum function and serves to
ensure that the association rates do not exceed a threshold value. On the reverse, the growth rate of each actin
network is now an evolving parameter that depends linearly on the local amount of active or membrane-bound
polarity proteins:

aAéi - A (Ut anfoe(s 1)) - 42— myAB + DAA er
6Bgz ,1) _ B (1 n anRhO(S t)> — B? —myAB + DAB, (S8)

where « represents the strength of the coupling from the polarity molecules to the cytoskeleton.

In principle, other choices for actin dependence on the signaling kinetic rates could have been introduced —
for example, if only one of these three parameters (kon, koff, ktb) 1S sensitive to feedback from actin, while the
other two are constant (or only two are actin-dependent, or all three). We found that when the actin dependence
appears only in the enhanced recruitment rate, kg,, the model shows a high polarization probability (90%),
instead of 100% polarization probability. However, when actin dependence is removed from the enhanced



recruitment association rate, while the other two rates do depend on actin, the polarization probability falls
below 10%. This result indicates that other spatial dependencies of kinetic rates could have been chosen, but

the results presented here are for the particular choice in Egs. S3-S6.

Parameter | Value Description Reported value Reference
L 10 ym Length of cell ~ 5 —20 pm [12]
d 0.5 um?/sec 0.02 — 0.5 um?/sec | [1}[14} [13]
Diffusion  coeffi-
cient of signaling
molecules on
membrane
D 0.5 ,qu/sec
Effective diffusion | ~ 0.5 um?/sec 138]
coefficient of actin
mo 2 Competition or Chosen from com-
bundling term partment  model
simulations in
order to give rise to
quasi-stable polar
solutions (varied).
N 200 Rho GTPase Chosen from
molecules in cell Altschuler et al. [[1]
(conserved) in order to give rise
to patches (varied).
Kon 0.001/sec Associationrate for | 1.67 x 10~ °/sec- | [1}[15]
Rho GTPases 0.027/sec
ke 1/sec Autocatalytic acti- | 0.1667/sec (L]
vation rate for Rho
GTPases
kott 0.9/sec Disassociation rate | 1/sec, 0.15/sec, | [, 14L16-18]]
for Rho GTPases 0.02/sec
heg 0.1 Fraction of | 2-10% [ [15]]
membrane-bound
Rho GTPases
€ 0.01 pm? Variance of Gaus-
sian function used
sampling Rac/Rho
concentrations
Chnax 10 Threshold actin
concentration

Table S1: Definition and values of parameters for the hybrid mechanochemical polarity model.

Numerical simulations

The theoretical approach provided above could describe the actin networks concentration and polarity molecules
on a one-dimensional curve or a two-dimensional surface of the plasma membrane. The numerical simulations
carried out here were on one-dimensional circles for ease of visualization, but we believe the results here could



be reproduced in higher dimensions on arbitrary geometries. To simulate the dynamics of cell polarization, the
computational domain representing concentrations in the plasma membrane and a thin volume of cytoplasm ad-
jacent to the membrane is discretized using 101 points with an averaged spatial discretization of As = 0.1 um.
The temporal discretization is At = 0.01 sec and simulations are run to 30-100 seconds. The codes are writ-
ten and solved in Matlab. Model parameters along with justifications for the choice of values are provided in
supplementary material, Table [ST} We perform simulations using the baseline parameter values listed in Table
S1, unless otherwise indicated. The computational code is freely available online on a Github public repository:
github.com/calinacopos/HybridMechanoChemPolarization.

The actin dynamics PDEs in Eq. S1 are solved on a circular domain using Crank-Nicolson finite difference
numerical method with periodic boundary conditions. The actin networks are randomly distributed initially
with equal relative concentrations between branched and bundled networks.

A modified Gillespie algorithm is used for the next reaction time for the polarity molecules. The time
between Markov jumps is exponentially distributed with individual rate as provided in Eq. S2. In between
the jumps, the molecules with locations 27%¢(¢) and x?°(t), where i is the index of the specific molecule,
undergo Brownian motion on the membrane with diffusion coefficient d: Az = v/2dAt. Since we enforce
segregation of Rac and Rho, collisions between a Rac molecule and a Rho molecule in the diffusive process
may occur. We resolve collision events by not allowing either molecule to move into the space (interval of width
Ax around a given molecule) that would result in overlap (collisions between Rac and Rac or Rho and Rho
molecules are tolerated). Other more sophisticated collision resolution methods could have been employed, but
for simplicity we chose this minimal dynamic. We have assessed what would happen in the absence of any such
steric interaction, by running 20 simulations without any collision detection (with default values for all other
parameters) and found a polarization probability of 95% (when such probability is 100% in the presence of
steric interaction). In the instances of polarity establishment, the cell polarizes by actin dynamics but with less
well-defined peaks in Rac and Rho concentrations as illustrated in Fig.[ST] Thus, it seems that the assumed steric
repulsion is helpful for the polarization (by assisting spatial segregation of Rac and Rho), but not absolutely
necessary to the overall results of the model.

To complete the numerical algorithm, we define a ‘polarized’ cell state by visually identifying when a peak
establishes for branched actin density and it is co-localized with Rac concentration, and simultaneously a sec-
ond peak forms in a separate spatial location for bundled actin-myosin density co-localized with a peak for
the Rho concentration. The remaining component of the definition of ‘polarized’ state is the runtime for the
simulation in order for a peak to form. To determine this runtime interval, we sample the entire parameter space
by choosing five points and run the simulations long enough for peaks to form and then, double that simulation
time to ensure the peaks persist. The maximum of these time intervals is chosen for simulations for the entire
parameter space.

S.2 Model simulations with no-flux boundary conditions

We performed a series of simulations of the model for a one-dimensional anterior-posterior slice along the long
axis of the cell in order to capture the dynamics of polarization in the anterior-posterior direction of elongated
cells. We solved the system of coupled hybrid stochastic-deterministic equations (S1-9) with no flux boundary
conditions to enforce the conservation of molecular numbers in this new geometry. Overall, the results of
simulations qualitatively agree with the observations reported in the paper for periodic boundary conditions
(Figs. S1 and S2).


https://github.com/calinacopos/HybridMechanoChemPolarization
github.com/calinacopos/HybridMechanoChemPolarization

~~
)
p—
[\*)
S

—o-Branched network - Rac
—-Bundled network --Rho

Concentration
= o

W

(b

N

—
=]

Location
(9]

Figure S1: One example simulation with no steric hindrance in the diffusion of membrane-bound Rac and
Rho particles. (a) Resulting concentrations of branched and bundled actin network along with Rac and Rho
signaling molecules. (b) Kymograph of the molecular locations of Rac and Rho around the cell edge. Rac/Rho
trajectories are blue/yellow, respectively.

~
o
~

(b)

c 2 2
A o o =
e o 9o 29
R o o —

<
o

(=}

Polarization probability
(=}

Polarization probability

10% 50% 90% 99% 100 200 500 1000 2000

Initial relative amount Total number of polarity
bundled network molecules (N)

Figure S2: Model sensitivity to variations in total number of polarity molecules and relative initial concen-
trations of actin. (a) Probability of polarization as a function of the total number of polarity molecules, N.
(b) Probability of polarization as a function of the initial amount of bundled actomyosin network relative to
branched network.
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Figure S3: Model response with a lower diffusion constant of D, d = 0.01 pm?/sec for both actin cytoskeleton
and Rac/Rho systems. (a) One realization of the resulting distributions of both signaling chemical concentra-
tions and actin networks. (b) The corresponding kymograph of the time-evolution of the active, membrane-
bound polarity proteins. (c) Ten simulation results with a diffusion constant of D, d = 0.01 zm?/sec. All other
parameters including the coupling constants are held at their baseline values reported in Table [ST]
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Figure S4: Polarized distributions are stable solutions of the mechanochemical hybrid model with no flux
boundary conditions for large enough coupling constants. (a)-(d) With weak feedback coupling between po-
larity molecules and actin network, patchy initial conditions can result in non-polarized cells. (e)-(h) As the
coupling constants are increased, both the mechanical and signaling systems polarize. (i)-(1) The model displays
sensitivity to new incoming signals and both the cytoskeleton and signaling modules undergo rearrangement in
the presence of a new external stimulus.
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Figure S5: Sensitivity of the mechanochemical hybrid model with no flux boundary conditions. Twenty simu-
lations were done for each set of parameters. Based on the outcome, a probability of a stable polarized solution
is reported as the fraction of polarized solutions out of the total number of simulations for that specific choice
of parameters. (a) Polarization probability is reported as a function of the two parameters, o and [, in the
mechanochemical positive feedback loop. (b) Polarization probability is also reported as a function of the two
signaling kinetic rates: feedback-driven association with the membrane kg, and membrane disassociation Kogt.
(c—d) Lastly, the dependence of the polarization probability on the competition parameter, myg, is reported for
(c) a weakly coupled system, o = = 0.25, and (d) a strongly coupled system, o = 3 = 2.5.
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