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CHAPT E R 1 2

Molecular Motors: Theory

Evolution has created a class of proteins that have the ability to convert chemical energy
into mechanical force. Some of these use the free energy of nucleotide hydrolysis as fuel,
while others employ ion gradients. Some are �walking motors,� others rotating engines.
Some are reversible, others are unidirectional. Could there be any common principles
amongst such diversity?

The conversion of chemical energy into mechanical work is one of the main themes
of modern biology. Biochemists characterize energy transduction schemes by free energy
diagrams. But thermodynamics tells us only what cannot happen. Recent advances in
laser trap and optical technology, along with advances in molecular structure deter-
mination can augment traditional biochemical kinetic and thermodynamic analyses to
make possible a more mechanistic view of how protein motors function. The result of
these advances has been data that yield load-velocity curves and motion statistics for
single molecular motors. This sort of data enables a more detailed, mechanistic level of
modeling.

At Þrst, the mechanics of proteins may seem counterintuitive because their motions
are dominated by Brownian motion, the name given to the frequent changes in velocity
of a macromolecule as it is buffeted about by random thermal motions of surrounding
water molecules. In addition to �smearing out� deterministic trajectories, Brownian
motion serves an effective �lubricant,� allowing molecules to pass over high energy bar-
riers that would arrest a deterministic system. More subtly, it makes possible �uphill�
motions against an opposing force by �capturing� occasional large thermal ßuctuations.

In this chapter we will discuss protein motions on the molecular scale and derive
a mathematical formalism to model such motions. To illustrate the formalism, in the
next chapter, we will analyze (i) a �switch� controlling the direction of the bacterial
ßagellar motor, (ii) a polymerization ratchet, and (iii) a �toy� model related to the Fo
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Figure 12.1 Amazing variety of molecular motors: (A) Rotary motor DNA helicase translocates uni-
directionally along the DNA strand using nucleotide hydrolysis as a �fuel�. (B) Another rotary motor
hydrolyzing ATP, bacteriophage portal protein, drives DNA in and out. (C) Reversible rotary motor ATP
synthase either produces ATP using ion gradient, or pumps protons hydrolyzing ATP. (D) Linear motor
kinesin is a �walking enzyme�. Utilizing chemical energy stored in ATP, it moves �head-over-head� toward
the plus end of the microtubule �track.� Some of these motors are discussed in this chapter.

motor of ATP synthase. These models are simple enough to yield analytical as well as
numerical results, and to illustrate many of the principles involved in mechanochemical
energy transduction.

There is some ambiguity in what one calls a �motor.� Here we take the narrow
view that the principal - and proximate - function of a molecular motor is to convert
chemical energy into mechanical force. This excludes, for example, ion pumps, which are
surely protein machines that generate forces, but whose purpose is not force production.
Chemical energy comes in various forms, for example, in transmembrane ion gradients
and in the covalent bonds of nucleotides such as ATP and GTP, and the designs of
motor proteins are tailored to each energy form.

Energy stored in one form frequently is converted into intermediate forms be-
fore being released as mechanical work. For example, a polymerizing actin Þlament
or microtubule can generate a protrusive force capable of deforming a lipid vesicle
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or pushing out the leading edge of a cell [Honda et al., 1999, Fygenson et al., 1997,
Dogterom and Yurke, 1997]. The energy source in this process is the free energy of
binding monomers to the polymer tip. This energy is used to rectify the Brownian mo-
tion of the load against which the polymer is pushing. Strictly speaking, the force is
generated by thermal ßuctuations of the load, and the binding free energy is used to
rectify its thermal displacements. Energy conversion here is relatively direct. However,
in the acrosomal process of the Limulus sperm, thermal ßuctuations are Þrst trapped as
elastic strain energy in the actin polymer by the binding of an auxiliary protein, scruin.
Later, this strain energy is released to generate the force required push the actin rod
into the egg cortex [Mahadevan and Matsudaira, 2000].

Many motors use nucleotide hydrolysis to generate mechanical forces, and it is fre-
quently stated that the energy is stored in the γ-phosphate covalent bond. But releasing
this energy to perform mechanical work can be quite indirect. The F1 motor of ATP syn-
thase uses nucleotide hydrolysis to generate a large rotary torque [Yasuda et al., 1998].
However, the actual force generating step takes place during the binding of ATP to
the catalytic site; the role of the hydrolysis step is to release the hydrolysis products,
allowing the cycle to repeat [Wang and Oster, 2000, Oster and Wang, 2000]. In some
motors, not all of the nucleotide binding energy is used immediately for force produc-
tion; some energy is stored in elastic deformation of the protein to be released later
as mechanical work. So energy transduction need not be a �pay as you go� process;
deferred payments are permissible and common.

The bacterial ßagellar motor and the Fo motor of ATP synthase both use trans-
membrane ion gradients to generate a rotary torque [Berg, 2000]. Models of this process
show how the chemical reaction of binding an ion onto a charged site creates an unbal-
anced electrostatic Þeld that rectiÞes the Brownian motion of the motor and/or creates
an electrostatic driving torque [Elston and Oster, 1997, Elston et al., 1998]. Although
the proximal energy transduction process is a chemical binding event, the motion itself
is produced by electrostatic forces and Brownian motion.

Thus a common theme in energy transduction is that chemical reactions power
mechanical using free energy released during binding events, but the Þnal producttion
of mechanical force may involve a number of intermediate energy transductions.

The most important quality of molecular motors that distinguishes them from
macroscopic motors is the overwhelming importance of thermal ßuctuations. For this
reason, all protein motors must be regarded as �Brownian machines.� This means that
carelessly applying macroscopic physics, where Brownian motion is negligible, to mi-
croscopic situations inevitably leads to incorrect conclusions. Therefore, we must begin
our discussion by examining how to model molecular motions dominated by thermal
ßuctuations.



324 12: Molecular Motors: Theory

12.1 Molecular motions as stochastic processes

12.1.1 Protein motion as a simple random walk

Generally, a stochastic process refers to a random variable that evolves in time. An ex-
ample is a one-dimenisonal coordinate, x(t), locating a protein diffusing in an aqueous
solution. We will begin by approximating the coordinate, x(t), by a discrete random
variable. The rationale for this is twofold. Discrete random variables are conceptually
simpler than their continuous counterparts. The results for the discrete case are appli-
cable when studying continuous random processes because continuous random variables
represent limiting behavior of their discrete counterparts. Our discussion is restricted
to Markov processes. A Markov process is a mathematical idealization in which the
future state of a protein is affected by its current state but is independent of its past.
That is, the system has no memory of how it arrived at its current state. To a very
good approximation, all systems considered in this text satisfy the Markov property.
The mathematics involved with studying stochastic processes that are non-Markovian
is considerably more complicated.

In the discrete model, a protein is initially started at x = 0. In each time interval
∆t, it takes one step of length ∆x to the right with probability 1/2 or to the left
with probability 1/2. Because the length of the step that the protein takes is always
the same, this example is referred to as a simple random walk. Let xn denote the
protein�s position at time t = n∆t and deÞne the set of random variables zm with
m = 1, 2, . . . , n to be independent and identically distributed with Prob[zm = 1] = 1/2
and Prob[zm = −1] = 1/2. Then we have

xn = ∆x(z1 + z2 + · · · zn). (12.1)

The collection of random variables x = {x0, x1, x2, · · ·} represents a spatially and tem-
porally discrete stochastic process. In Exercise 1, (12.1) is used to verify that hxni = 0
and Var[xn] = (∆x)

2n = ((∆x)2/∆t)t. Here we use the notation h·i to denote the av-
erage (expectation), and Var[·] to denote the variance: Var[x] ≡ hx2i− hxi2. Note that
the variance in x grows linearly with time. This is a characteristic of diffusion; below
we show in what sense the quantity D = (∆x)2/(2∆t) can be interpreted as a diffusion
coefficient.

To fully characterize x requires knowledge of the probability density for Þnding the
particle at position xn after k steps of size ∆x: pk(n) = Prob[xn = k∆x]. Note that
pk(n) = 0, if n < |k|. This comes from the fact that the protein can only take one step
per time interval. At any time n∆t, the total number of steps taken by the protein
is n = Rn + Ln, where Rn is the number of steps taken to the right and Ln is the
number of steps taken to the left. Clearly, Rn is binomially distributed, like the number
of �heads� in n ßips of a coin:

Prob[Rn = m] =

Ã
n

m

!µ
1

2

¶n
=

n!

n!(n−m)!
µ
1

2

¶n
(12.2)
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Using these deÞnitions, xn is written as

xn = ∆x(Rn − Ln) = ∆x(2Rn − n), (12.3)

or equivalently

Rn =
1

2
(
xn
∆x

+ n). (12.4)

Thus xn/∆x = k if and only if Rn =
1

2
(n + k). Furthermore, xn/∆x must be even if

n is even and odd if n is odd, since Rn must be an integer. Therefore, we immediately
Þnd that the distribution for xn is

pk(n) =

Ã
n

(k + n)/2

!µ
1

2

¶n
(12.5)

for n ≥ |k| and k and n either both even or both odd.
Note that in (12.1) xn is written as the sum of n independent and identically

distributed random variables. Therefore, the central limit theorem of probability theory
guarantees that as n gets large the distribution for xn becomes normal with hxni = 0
and Var[xn] = ((∆x)

2/∆t)t = 2Dt. That is,

pk(n)

∆x
≈ p(x, t) = 1√

4πDt
exp

µ
− x2

4Dt

¶
, x = k∆x, t = n∆t. (12.6)

Fig. 12.2 shows the probability distribution for xn and the normal approximation for
various values of n. By the time n = t/∆t = 15, the distribution of xn is close to normal
and the agreement gets better as n is increased. Physically, the normal approximation
amounts to a �coarse graining� of the process in which only length scales much larger
than ∆x and time scales much larger than ∆t are resolved. In this limit the random
variable xn, which is discrete in both space and time, is approximated by x(t), a random
variable that is continuous in space and time. The value of ∆t can be approximated
well by the �thermalization� time, τ = 10−13 sec, described in Section 12.2.1. Thus,
the continuous and discrete models of a protein�s motion are equivalent at all time and
distance scales of interest to us.

As an exercise, the reader is asked to verify that p(x, t) satisÞes the diffusion
equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (12.7)

justifying our association of the quantity (∆x)2/(2∆t) with a diffusion coefficient.

12.1.2 Polymer growth

Let us consider another example of a stochastic process: the number of monomers, N(t),
in a polymerizing biopolymer. There is an important distinction between the stochastic
variables x(t) and N(t). In the Þrst example, x(t) is a continuous random variable since
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Figure 12.2 In the limit of large n, the binomial distribution is well approximated by a normal distribution.
In all three panels the bar graph represents the binomial probabilities and the solid line is the normal
approximation. (A) n = 3, (B) n = 8, (C) n = 15

it can take on any real value. On the other hand, the number of subunits in a growing
polymer is restricted to the positive integers, so that N(t) is a discrete random variable.

Markov processes in which the random variable is discrete are often referred to
as Markov chains because they can be represented as a sequence of jumps between
discrete states. The simple random walk is an example of a spatially and temporally
discrete Markov chain. As an example of a Markov chain in which time is continuous
we consider a polymerizing biological polymer (Þlament), e.g. an actin Þlament or a
microtubule. Fig. 12.3A depicts the type of process we have in mind. In this example,
two events change the length of the polymer by one monomer: polymerization and de-
polymerization. Mathematically, the state of the system is speciÞed by a single number
N(t), the number of monomers in the Þlament at time t. N(t) is a random variable,
because we have no way to predict when the next polymerization or depolymerization
event will occur. A diagram of the Markov chain for this process is shown in Fig. 12.3B.

There are two equivalent, but conceptually different, levels at which stochastic pro-
cesses can be studied. The Þrst is at the level of individual sample paths or realizations
of the process. To understand what is meant by a sample path, suppose that, at t = 0,
we start with three Þlaments that are each exactly 5 monomers long. As time goes on,
we observe that the number of monomers in each Þlament instantaneously changes or
�jumps� by ±1 at random times. Fig. 12.4 graphically illustrates this behavior. Even
though each sample path starts with N(0) = 5, they all evolve differently, illustrating
the randomness of the process. The sample paths of a large ensemble of such Þlaments
can be used to determine the statistics of N(t).

The second approach is to ask how the probability pn(t) of having exactly n
monomers in the Þlament at time t changes in time. If pn(t) can be determined for



12.1: Molecular motions as stochastic processes 327

A B
polymer filament

polymerization
depolymerization

monomer

rp

rd

Pn Pn+1Pn-1

Figure 12.3 A discrete Markov process (Markov chain). (A) A polymer Þlament grows by incorporating
monomers from the solution onto its tip (polymerization). The process is stochastic. The monomer on the
tip may dissociate from the Þlament into the solution (depolymerization). (B) A Markov chain model for
the Þlament polymerization. Pn represents the state of the Þlament when its length is n monomers. rp is
the polymerization rate. rd is the depolymerization rate. If rp > rd, the Þlament will grow over long times.

all t and n, then we have a complete characterization of the process. Both approaches
are equally valid and are useful methods for studying stochastic processes. The advan-
tages of staying at the level of sample paths are that in general it is easy to numerically
generate single realizations of the process and sample paths allow us to see the dynam-
ics of the system. The advantage of working directly with the probability distribution
is that it fully characterizes the system without having to average over many sample
paths to compute the statistics. Of course, there is no free lunch: obtaining all this
information comes at a computational price. Below we describe numerical techniques
for treating both cases.

To begin our discussion we derive an equation that governs the evolution of pn(t).
Let us assume that we know pn(t) for a speciÞc value of t. At a slightly later time t+∆t,
we expect pn(t+∆t) to be equal to pn(t) plus a small correction. The key is to assume
that ∆t is so small that the probability of two events in the interval (t, t+∆t) is very
unlikely. Here an event means polymerization or depolymerization. Then we can write:

pn(t+∆t) = Prob [N(t) = n and no event occurs in (t, t+∆t)]

+ Prob [N(t) = n− 1 and polym. occurs in (t, t+∆t)]
+ Prob [N(t) = n+ 1 and depol. occurs in (t, t+∆t)] , (12.8)

where the right-hand-side follows from the fact that the three events described in the
square brackets are mutually exclusive. Next we make the reasonable assumption that
the probability of polymerization or depolymerization is independent of the length of
the Þlament. We also assume that these probabilities are proportional to ∆t, and let
rp∆t and rd∆t be the probability of polymerization and depolymerization, respectively,
in (t, t+∆t). Under these assumptions (12.8) can be written as

pn(t+∆t) = pn(t)(1− (rp + rd)∆t) + pn−1(t)rp∆t+ pn+1(t)rd∆t
= pn(t) +∆t [rppn−1(t) + rdpn+1(t)− (rp + rd)pn(t)] , (12.9)
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where (1−(rp+rd)∆t) is probability of no event in ∆t. There are two important points
to be drawn from (12.9). First, it is clear that if we know pn(t) for all n at a given
time, then we have a mechanism for updating the probabilities at all later times. This
illustrates the Markov property. Secondly (12.9) represents a numerical algorithm for
updating pn(t). That is, once a ∆t is chosen, we can write a computer program to
generate pn(t + k∆t), where k is positive integer. We now take the limit ∆t → 0 in
(12.9):

lim
∆t→0

pn(t+∆t)− pn(t)
∆t

=
dpn(t)

dt
=

−(rp + rd)pn(t) + rppn−1(t) + rdpn+1(t). (12.10)

Therefore, (12.9) is an algorithm for numerically solving the ordinary differential equa-
tion given by (12.10). This algorithm is called the Forward Euler method, and is a very
useful numerical tool that works adequately for many situations. However, problems
may arise when using this scheme, as discussed below. Also, note that (12.10) can be
interpreted as a chemical rate equation, so that rp and rd are the rates of polymerization
and depolymerization, respectively.

12.1.3 Sample paths of the process

The next question we address is how to numerically generate sample paths that are
consistent with (12.10). To analyze this problem consider the following experiment. At
time t = 0, we start with a Þlament containing exactly m monomers. That is, pm(0) =
1. Next we watch the Þlament until the Þrst event occurs (either polymerization or
depolymerization). When this event occurs we record the time and start the experiment
again. After doing this experiment many times, we Þnd that the amount of time we
must wait for the Þrst event to occur is a random variable. Let�s call it T . We are
after the probability density fT (t) for T . Let q(t) be the probability that no event has
occurred in (0, t). Under the conditions of the experiment and from the derivation of
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Figure 12.4 Three sample trajectories of the tip of a
growing Þlament. The polymerization process is stochastic
with occasional depolymerization events.
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(12.10), we have:

dq

dt
= −(rp + rd)q. (12.11)

Solving this equation, we Þnd q(t) = exp(−(rp + rd)t). q(t) starts at 1 and decreases
to 0 as time goes on. The probability that at least one event has occurred in (0, t) is
(1 − q(t)). Hence, we can use (1 − q(t)) to deÞne a probability density funtion, fT (t),
for the waiting time distribution:

1− q(t) = Prob [Waiting time T < t] = 1− q(t) =
Z t

0

fT (t
0)dt0, (12.12)

By differentiating (12.12), we Þnd the relationship:

fT (t) = −dq(t)
dt

= (rp + rd) exp(−(rp + rd)t). (12.13)

That is, the waiting time until the next event occurs has an exponential distribution
with mean 1/(rp + rd). Thus, to produce realizations of N(t), we need to be able to
generate samples of an exponential random variable.

Most programming languages have built-in random number generators that produce
numbers that are uniformly distributed between 0 and 1. If R is such a random variable,
its probability density function is fR(t) = 1 in [0, 1]. The transformation that converts
R to an exponential random variable with mean 1/(rp + rd) is

T (R) = − 1

(rp + rd)
lnR. (12.14)

This can be veriÞed mathematically as follows:Z t

0

fT (t)dt = Prob [T (R) < t] (12.15)

= Prob [R > exp(−(rp + rd)t)]
= 1− exp(−(rp + rd)t) = 1− q(t). (12.16)

Given this way to compute when the next transition occurs, the next thing we need
to determine is whether polymerization or depolymerization takes place. Remember
that in any time interval of length ∆t the probability of polymerization is rp∆t. Like-
wise, the probability of depolymerization is rd∆t. Therefore, given that an event has
occurred, the probability that it was polymerization is:

P [polymerization|an event occurred at t] = rp
rp + rd

. (12.17)

We may now generate sample paths of the stochastic process as follows: Start N with
a given value. Generate an exponentially distributed random number using (12.14).
This determines when the next event takes place. To determine the type of event that
occurred, generate a uniformly distributed random number R2. If R2 < rp/(rp + rd),
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then let N → N+1, otherwise N → N−1. Repeat the process and plot N as a function
of time. The trajectories shown in Fig. 12.4 were generated in this way.

Before using this method to simulate protein motions, we brießy discuss the
statistical behavior of polymer growth.

12.1.4 The statistical behavior of polymer growth

Since the intervals of time between events of monomers assembly and/or disassembly
are random, one can measure only the statistical behavior of polymer growth, such
as the average velocity of the polymer�s tip, hV i = LhNi/t, where L is the size of a
monomer. Much useful information is buried in the statistical ßuctuations about this
mean velocity. One quantity that can be monitored as the polymer grows is the variance
of the tip�s displacement about the mean:

Var[x(t)] ≡ hx2i− hxi2 = L2(hN 2i− hNi2).
It is easy to show (see Exercise 4) that the average velocity of the polymer tip and the
variance of its displacement are:

hV i = L(rp − rd), Var[x(t)] = L2(rp + rd)t.

Thus the variance grows linearly with time. In fact, a plot of Var[x(t)]vst can be used
to deÞne an effective diffusion coefficient: Deff ≡ Var[x(t)]/2t [Wang et al., 1998] (see
also (??)). Deff can be combined with the average velocity hV i to form a �randomness
parameter� [Schnitzer and Block, 1995]:

r ≡ 2Deff

L · hV i . (12.18)

As an example of the utility of this randomness parameter, let us consider the case when
there is no depolymerization: rd = 0. Then, Var[x(t)] = L

2rpt, Deff = L
2rp/2, hV i =

Lrp, and r = 1. Now suppose that each polymerization event involves a sequence of
reaction processes. Since chemical reactions are also stochastic processes, an additional
variance is added to the spatial diffusion, so that the total variance will grow faster,
and the randomness parameter is greater than 1. In this case, 1/r gives a lower bound
on the number of reaction processes per step (i.e., 1/r < number of reaction processes
per step) [Schnitzer and Block, 1995].

Similar arguments are applicable to some �walking� motors, e.g. kinesin, that take
a spatial step of constant size at random times. This time is determined by a sequence
of hydrolysis reactions. If there is only one reaction, the walking motor is equivalent
to the polymerizing Þlament, and is called �Poisson stepper.� Such a stepper is char-
acterized by randomness parameter r = 1. In the next chapter we will show that the
average velocity of a molecular motor is a function of the load force resisting the mo-
tor�s advancement. The importance of considering the effective diffusion coefficient (or,
equivalently, the randomness parameter), is that just as load-velocity data gives in-
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formation about the motor performance, load-variance data can provide independent
estimates of model parameters (see, for example [Peskin and Oster, 1995]).

12.2 Modeling molecular motions

The botanist Robert Brown Þrst observed Brownian movement in 1827. While studying
a droplet of water under a microscope, he noticed tiny specks of plant pollen dancing
around. Brown Þrst guessed, and later proved, that these were not living, although at
the time he had no clue as to the mechanism of their motion. It was not until Einstein
contemplated the phenomenon 75 years later that a quantitative explanation emerged.
In order to develop an intuition about molecular dynamics we begin with some simple
remarks on Brownian motion of proteins in aqueous solutions.

12.2.1 The Langevin equation

The radius of a water molecule is about 0.1 nm, while proteins are two orders of mag-
nitude larger, in the range 2 - 10 nm. This size difference suggests that we can view the
ßuid as a continuum. A protein moving through the ßuid is acted on by frequent and
uncorrelated momentum impulses arising from the thermal motions of the ßuid. We
model these ßuctuations as a time-dependent random �Brownian force,� fB(t), whose
statistical properties can be mimicked by a random number generator in a computer in
a fashion described below. At the same time, the ßuid continuum exerts on the moving
protein a frictional drag force, fd, proportional to the protein�s velocity: fd = −ζv,
where ζ is the frictional drag coefficient (see Section 12.6.1). Thus we can write New-
ton�s law for the motion, x(t), of a protein moving in a one-dimensional domain of
length L:

dx

dt
= v, m

dv

dt
= −ζv + fB(t), 0 ≤ x(t) ≤ L. (12.19)

The mass, m, of a typical protein is about 10−21 kg, and the drag coefficient is about
10−7 pN·sec/nm.

If we multiply (12.19) by x(t) and use the chain rule, we get:

m

2

d2(x2)

dt2
−mv2 = −ζ

2

d(x2)

dt
+ x · fB(t). (12.20)

In order to see the consequences of (12.20) for molecular motions we Þrst must
average (12.20) over a large number of proteins so that the peculiarities of any particular
trajectory are averaged out. We use the notation h·i to denote this ensemble average:

m

2

d2hx2i
dt2

− hmv2i = −ζ
2

dhx2i
dt

+ hx · fB(t)i. (12.21)

Next we take advantage of a central result from statistical mechanics called the
Equipartition Theorem(Section 12.6.2), which states that each degree of freedom of a
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Brownian particle carries an average energy

hEi = 1

2
kBT, [Equipartition Theorem] (12.22)

where kB is Boltzmann�s constant and T the absolute temperature [Landau et al., 1980].
Therefore, the second term in (12.21) is just twice the average kinetic energy of the
protein: hmv2i = kBT . At room temperature, the quantity kBT ' 4.1 pN·nm is the
�unit� of thermal energy.

Because the random impulses from the water molecules are uncorrelated with po-
sition, hx(t) · fB(t)i = 0. Introducing these two facts into (12.21) and integrating twice
between t = (0, t) with x(0) = 0:

dhx2i
dt

=
2kBT

ζ
(1− e−t/τ), hx2i = 2kBT

ζ
[t− τ(1− e−t/τ)], (12.23)

where we have introduced the time constant τ = m/ζ.
For very short times, t ¿ τ , we can expand the exponential in (12.23) to second

order to obtain:

hx2i = kBT

m
t2 (t¿ τ). (12.24)

That is, at very short times the protein behaves as a ballistic particle moving with
a velocity v =

p
kBT/m. For a protein with m ' 10−21 kg [= 10−18 pN·sec2/nm],

v ' 2 m/s. However, in a ßuid the protein moves at this velocity only for a time
τ ∼ m/ζ = 10−13 sec, much shorter than any motion of interest in a molecular motor.
During this short time the protein travels a distance v · τ ∼ 0.01 nm before it collides
with another molecule. This is only a fraction of a diameter of water molecule, so
the ballistic regime is very short lived indeed! Very quickly, the kinetic energy of the
protein comes into thermal equilibrium (is �thermalized�) with the ßuid environment.
Thus when tÀ τ , the exponential term disappears and (12.23) becomes

hx2i = 2kBT
ζ
t (tÀ τ). (12.25)

Einstein recognized that the frictional drag on a moving body is caused by random
collisions with the ßuid molecules, which is the same effect as the Brownian force, fB(t)
that gives rise to the diffusive motion of the body. Therefore, there must be a connection
between the drag coefficient and diffusive motion. By comparing (12.25) to the relation
we previously derived between the mean square displacement of a diffusing particle and
its diffusion coefficient,

hx2i = 2Dt, . (12.26)

we arrive at the famous relation derived by Einstein in 1905:

D = kBT/ζ, [Einstein Relation] (12.27)
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where D is the diffusion coefficient of the protein, typically D ∼ 107 nm2/sec. For
diffusion in 2 and 3 dimensions, respectively, the relation is

hx · xi = 2ν ·Dt = 2ν kBT
ζ
t,

where ν = 2, 3.
If an external force, F , acts on the protein, this can be added to (12.19), so that

the equation of motion for a protein becomes ζ · dx/dt = F (x, t) + fB(t) (the inertial
term has been neglected; see Section 12.6.1). In general, forces acting on proteins can
be characterized by a potential, F (x, t) = −∂φ(x, t)/∂x, so the equation of motion for
a protein moving through a ßuid becomes:

ζ
dx

dt
= −∂φ(x, t)

∂x
+ fB(t). (12.28)

(12.28) is frequently referred to as a Langevin equation, although this term more
properly applies to the corresponding (12.19) that includes inertia.

12.2.2 Numerical simulation of the Langevin equation

Here we show how the stochastic algorithms developed above can be applied to a con-
tinuous Markov process describing a protein diffusing in water. According to Langevin�s
equation (12.28). We want a numerical algorithm for generating sample paths of (12.28).
Let us integrate both sides of this equation over the interval (t, t+∆t):

x(t+∆t) = x(t)− 1
ζ

Z t+∆t

t

∂φ(x, t0)

∂x
dt0 +

1

ζ

Z t+∆t

t

fB(t
0)dt0

≈ x(t)− 1
ζ

∂φ(x, t)

∂x
∆t+

1

ζ

Z t+∆t

t

fB(t
0)dt0. (12.29)

In Section 12.6.3 we demonstrate that the way to include the effect from the Brownian
force, fB(t), is to use the following numerical method for simulating (12.29):

x(t+∆t) ≈ x(t)− 1
ζ

∂φ

∂x
∆t+

√
2D∆tZ, (12.30)

where Z is a standard normal random variable, i.e. with mean 0 and variance 1. Many
numerical software packages have built-in random number generators that will generate
samples of a standard normal distribution. If one is not available, then a standard
normal random variable Z can be generated from two independent uniform random
variables R1 and R2:

Z = −
p
−2 lnR1 cos(2πR2). (12.31)

A derivation of this result is similar to the one presented above for generating an
exponential random variable.

Although simulating (12.30) on a computer is easy (see Exercise 6), it is also easy
to generate erroneous results, e.g. numerical instabilities which look very like random
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displacements due to Brownian motion, or currents that do not vanish at equilibrium.
In order to derive a numerical method of simulating random motions that does not
have these problems, we have to consider an alternative description of the molecular
motion.

12.2.3 The Smoluchowski model

Consider a protein moving under the inßuence of a constant external force, for example,
an electric Þeld. Because of Brownian motion, no two trajectories will look the same.
Moreover, even a detailed examination of the path cannot distinguish whether a par-
ticular displacement �step� was caused by a Brownian ßuctuation or the effect of the
Þeld. Only by tracking the particle for a long time and computing the average position
vs. time can one detect that the diffusion of the particle exhibits a �drift velocity� in
the direction of the force. Therefore, a better way to think about stochastic motion is
to imagine a large collection of independent particles moving together. Then we can
deÞne the concentration of particles at position x and time t as c(x, t) [#/nm], and
track the evolution of this ensemble.

As the cloud of particles diffuses and drifts, we can write an expression for the
ßux of particles passing through a unit area, J [#/area/time]; in one dimension Jx has
dimensions [#/sec]. The diffusive motion of the particles is modeled well by Fick�s law:
Jx = −D∂c/∂x. The external Þeld exerts a force on each particle, F = −∂φ/∂x which,
in the absence of any diffusive motion, would impart a drift velocity proportional to
the Þeld: v = F/ζ. Thus the motion of the body is the sum of the Brownian diffusion
and the Þeld-driven drift: Jx = −D∂c/∂x+ v · c, which can be written in several ways
(see also Section 12.6.4:

Jx = −D ∂c
∂x| {z }

Diffusion ßux

−

Drift velocityz }| {
(
D

kBT
· ∂φ
∂x
) c| {z }

Drift ßux

= −D( ∂c
∂x
+
∂(φ/kBT )

∂x
· c)

= −1
ζ
(kBT

∂c

∂x
+ c

∂φ

∂x
). (12.32)

At equilibrium the ßux vanishes: (kBT/ceq)(∂ceq/∂x)+∂φ/∂x = 0. Integrating with
respect to x, shows that the concentration of particles at equilibrium in an external Þeld,
φ(x), is given by the Boltzmann distribution:

ceq = c0e
−φ/kBT . [Boltzmann distribution] (12.33)

Since the number of particles in the swarm remains constant, c(x, t) must obey a
conservation law. This is simply a balance on a small volume element, ∆x:

∂

∂t
(c∆x) = Net Flux into ∆x = Jx(in)− Jx(out) = Jx(x)− Jx(x+∆x)
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or, taking the limit as ∆x→ 0:

∂c

∂t
= −∂Jx

∂x
. [conservation of particles] (12.34)

Rather than focussing our attention on the swarm of particles, we can rephrase
our discussion in terms of the probability of Þnding a single particle at (x, t). To do
this we normalize the concentration in (12.32) by dividing by the total population,
p(x, t) ≡ c(x, t)/(

R L
0
c(x, t)dx). Inserting (12.32) expressed in terms of p(x, t) into the

conservation law ((12.34)) yields the Smoluchowski equation:

∂p

∂t
= D[

∂

∂x

¡
p
∂(φ/kBT )

∂x

¢
| {z }

Drift

+
∂2p

∂x2|{z}
Diffusion

]. [Smoluchowski Equation] (12.35)

Comparing this with the Langevin equation 12.28 shows that the Brownian force is
replaced by the diffusion term and the effect of the deterministic forcing is captured by
the drift term.

We can nondimensionalize (12.35) by deÞning time and space scales. If the domain
0 ≤ x ≤ L, the spatial variable can be normalized as x/L. A time scale can be de-
Þned by τ = L2/D. Introducing the space and time scales, (12.35) can be written in
dimensionless form as

∂p

∂t
=
∂

∂x

¡
p
∂φ

∂x

¢
+
∂2p

∂x2
, (12.36)

where where t and x are now dimensionless, and the potential, φ, is measured in units
of kBT .

(12.36) must be augmented by appropriate boundary conditions specifying the value
of p(x = 0, t), p(x = L, t), and p(x, t = 0), where p(x, t) is deÞned on the interval [0, L].
These will depend on the system being modeled.

12.2.4 First passage time

A very useful quantity in modeling protein motions is the average time it takes for
a diffusing protein to Þrst reach an absorbing boundary located at x = L, starting
from position 0 ≤ x ≤ L [Berg, 1993, Weiss, 1967]. Denote the mean Þrst passage time
(MFPT) to position L starting from position x by T (x, L). The equation governing
T (x, L) is derived as follows. A particle released at position x can diffuse either to
the right or to the left. After a time τ , it covers an average distance ∆, so that it is
located at x±∆ with equal probability 1/2. The MFPT to L from the new positions
are T (x + ∆, L) and T (x − ∆, L). The average value of T (x, L) is just T (x, L) =
τ + (1/2)[T (x+∆, L) + T (x−∆, L)]. This equation can be re-written in the form:

1

∆

¡(T (x+∆, L)− T (x))
∆

− (T (x)− T (x−∆, L))
∆

¢
+
2τ

∆2
= 0.
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Taking the limit as ∆ → 0 and τ → 0 (so that ∆2/2τ = const) and recognizing that
∆2/2τ is just the diffusion coefficient, D, the MFPT equation becomes:

D
∂2T

∂x2
= −1. [MFPT Equation] (12.37)

The boundary conditions for this equation are simple. At an absorbing boundary, T = 0
(it takes no time to get there). At a reßecting boundary, T is unchanged (i.e. a constant),
so ∂T

∂x
= 0. For example, releasing a particle at a position x with a reßecting boundary

at x = L and an absorbing boundary at x = 0, the MFPT is T (x, L) = (2Lx−x2)/2D.
The special case when x = L (releasing the particle at the reßecting boundary) is just
T = L2/2D. Note the resemblance to the familiar equation hx2i = 2Dt. This gives the
mean squared distance diffused in time t, whereas the MFPT gives hti = x2/2D, the
mean time to diffuse a distance x. This suggests that the MFPT equation might be
related to the Smoluchowski diffusion equation; in fact they are adjoints of one another
(see, for example [Lindenberg and Seshadri, 1979]). We will use this result to compute
the average velocity of the perfect Brownian ratchet in the next chapter.

12.3 Modeling chemical reactions

So far, we paid attention exclusively to protein mechanics. To understand molecular mo-
tors, we have to consider chemical reactions, which supply the energy to drive molecular
motors. Two of the most common energy sources are nucleotide hydrolysis and trans-
membrane protonmotive force. The former uses the energy stored in the covalent bond
that attaches the terminal phosphate (γ-phosphate) to the rest of the nucleotide. The
latter uses the electrical and entropic energy arising from a difference in ion concen-
trations across a lipid bilayer. Hydrolysis is a complicated process, still incompletely
understood. Therefore, we will introduce the reaction model using the simple exam-
ple of a positively charged ion (e.g. H+) binding to a negatively charged amino acid:
H++A− ←→ H ·A. If we focus our attention on the amino acid, we see it exists in two
states: charged (A−) and neutral (H · A ≡ A0, so that the neutralization reaction from
the viewpoint of the amino acid is simply

A−
k1 · [H+]
*)

k−1

A0 (12.38)

Here we use the chemists� convention of denoting concentrations in brackets: k1 · [H+]
and k−1 are the forward and reverse rate constants; the forward rate constant depends
on the ion concentration, [H+], which we will treat as a constant parameter (i.e. we
shorten our notation to k1 · [H+] ≡ k∗1, where k

∗
1 is called a pseudo-Þrst order rate

constant).
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The rate constants in reaction (12.38) conceal a great deal of physics, for the pro-
cess of even as simple a reaction as this is quite complex at the atomic level. To model
this reaction at a more microscopic level involves introducing additional coordinates
to describe the process by which an ionic chemical bond is made and broken. These
coordinates have a spatial scale much smaller than the motion of the motor itself (e.g.
angstroms vs. nanometers), and a time scale much faster than any motion of the motor
(picoseconds vs. microseconds). This is because all reactions involve a redistribution of
electrons, and electrons, being very small, move very rapidly. Moreover, in all but the
simplest cases, their movements are governed by quantum mechanics rather than clas-
sical mechanics. Nevertheless, it is instructive to use the Smoluchowski model to derive
a more detailed expression for the rate constants. A deeper discussion can be found in
[Billing and Mikkelsen, 1996, Warshel, 1991, Naray-Szabo and Warshel, 1997].

The fundamental concept underlying the modeling of reactions is the notion of a
�reaction coordinate,� which we denote by ξ. In molecular dynamics simulations, this
is actually a 1-D path through a very high dimensional state space along which the
system moves from reactants to products [Billing and Mikkelsen, 1996, Warshel, 1991,
Naray-Szabo and Warshel, 1997]. For the reaction (12.38), ξ(t) is the distance between
the ion (H+) and the amino acid charge, (A−). The spatial scale of this coordinate
is much smaller (i.e. angstroms) than the spatial scale of the motor�s motion, but we
can imagine a �super-microscopic� view of the process as shown in Fig. 12.5A, where
we have plotted the free energy change, ∆G, during a reaction as a function of the
reaction coordinate, ξ. The reason for using free energy is because there are many
�hidden� degrees of freedom that must be handled statistically, as will become clear
presently. Here the chemical states of the amino acid, A−and A0, are pictured as energy
wells separated by barriers of heights ∆G1 and ∆G2, and whose difference in depth is
∆G. The �transition state� (TrSt) is located at the top of the pass between the two
wells.

For a Þxed H+concentration, the forward chemical reaction A− → A0 proceeds with
a rate k∗1 · [A−] [#/sec]. However, this rate is a statistical average over many �hidden�
events. For a particular reaction to take place, the proton must diffuse to within a
few angstroms of the amino acid charge so that the electrostatic attraction between
them is felt. Moreover, if the amino acid is located within a protein, there will be
steric diffusion barriers that must be circumvented before the two ions �see� each other
electrostatically. (Actually, protons inside proteins move by �hopping� along strings of
water molecules, or �water wires.�) As the concentration of H+increases, there will be
more �tries� at neutralization (i.e. hops from the left well to the right well).

Similarly, the reverse reaction, A− ← A0 takes place when a thermal ßuctuation
confers enough kinetic energy on the proton to overcome the electrostatic attraction.
Even then, the �free� proton will more often than not �jump� back and rebind to the
amino acid, especially if the route between the solution and the amino acid is tortuous.
Only when the proton manages a successful escape into solution (the left well) does it
count in computing k−1.
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Figure 12.5 (A) Free energy diagram illustrating the chemical reaction A←→ B and the corresponding
Markov model. The transition state, TrSt, is ∆G+1 above the left well and ∆G

+
2 above the right well.

∆G is the free energy difference between the well bottoms. The equilibrium distribution between the wells
depends only on ∆G. (B) The effect of entropic factors on the reaction A ←→ B. Potential, rather
than free, energy is shown as the fuction of ξ, effective one-dimensional reaction coordinate that involves
concerted changes in both the chemical state and physical position along the path of the chemical reaction.
The equilibrium populations in each well remain the same, but the transition rates between the wells are
different due to the entropic effects of widening the transition state, TrSt, and the width, W, of the right
well.

The net ßux over the barrier is

Jξ = k
∗
1 · [A−]− k−1 · [A0]. (12.39)

After a long time the net ßux between the two wells will vanish: Jξ = 0, so that the popu-
lation of neutral and charged sites will distribute themselves between the wells in a Þxed
ratio, which we denote by Keq (the equilibrium constant): Keq ≡ [A0

eq]/[A
−
eq] = k

∗
1/k−1.

If the transition state is high, then we can assume that population apportions between
the two wells according to the Boltzmann distribution (12.33): Keq = exp(∆G/kBT ),
where ∆G is a free energy. The value of ∆G determines how far the reaction goes, but
says nothing about the rate of the reaction. Now we know that ∆G = ∆H −T∆S (c.f.
Section 12.6.4). The enthalpy term, ∆H, is due to the electrostatic attraction between
the proton and the charged site. The entropic term, T∆S, incorporates all the effects
that inßuence the diffusion of the proton to the site and its escape from it, the �hidden
coordinates.� Thus we see that a thermodynamic equilibrium state∆G = 0 comprises a
compromise between energy (∆H) and randomness (T∆S). The role of entropic factors
is discussed further in Section 12.6.5.
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There is one very signiÞcant effect in bio chemical reactions that illustrates the
importance of entropic effects: hydration. Before a charged ion can bind to the amino
acid, it must divest itself of several �waters of hydration�. This is because water, being
a dipole, will tend to cluster about ions in solution, hindering them from binding to a
charged site which is also insulated by its own hydration shell. Suppose for the sake of
illustration that the energies binding the waters to the two reactants are just equal to
the electrostatic energy of binding between the reactants. Binding seems unfavorable
since the ion will loose its translational and rotational degrees of freedom (∼ 3kBT
according to the equipartition theorem, Section 12.6.2). The binding reaction can still
proceed strongly because the liberation of the hydration waters is accompanied by a
large entropy increase since each water gains ∼ 3kBT of rotational and translational
energy, and so the term −T∆S is strongly negative.

All of this means that the rate constants summarize the statistical behavior of a
large number of �hidden� coordinates that are very difficult to compute explicitly, but
may be easy to measure phenomenologically (see, for example [Hanggi et al., 1990]).
For our purposes, we shall adopt this phenomenological view of chemical reactions, and
assume that the rate constants can be speciÞed, so that the only entropic effect we
need to deal with explicitly is the concentrations of the reactants, such as H+in (12.38).
Therefore, we can treat reactions using Markov chain theory, as indicated by the 2-state
model shown at the bottom of Fig. 12.5A, whose equations of motion are:

d[A0]

dt
= −d[A

−]

dt
= net ßow over the energy barrier = Jξ = k

∗
1 [A

−]− k−1[A0],

or in the vector form:

d

dt
P = Jξ = K ·P, P =

µ
p−
p0

¶
, K =

µ
k∗1 −k−1
−k∗1 k−1

¶
. (12.40)

Here p− and p0 are the probabilities to have a negatively charged and neutral amino
acid, respectively. In general, the reaction ßux will have the form Jξ = K(P) ·P, where
the matrix K(P) is the matrix of transition rates, i.e. pseudo-Þrst order rate constants
which may contain reactant concentrations that are held parametrically constant. Im-
plicit in this formulation are the assumptions that (i) the actual reaction takes place
instantaneously (electronic rearrangements are very fast), so that a substance remains
in a chemical state for an exponentially distributed mean time before jumping (react-
ing) to another state; (ii) the transition out of a state depends only on the state itself,
and not on any previous history.

12.4 A mechanochemical model

An important generalization is necessary to model molecular motors. We have spoken
of the potential, φ(x, t), that provides the deterministic forcing as an external force.
However, for a molecular motor φ(x, t) generally includes forces generated internally
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by the motor itself which drive the motor forward. Thus the potential term in (12.36)
must be broken into two parts:

φ(x, t) = φI(x, t)| {z }
Internally generated forces

+ φL(x, t)| {z }
External load forces

,

where φI(x, t) is internally generated force, and φL(x, t) is the external load force. A
common situation is when FL is a constant load force, in which case φL = FL · x, so
that −∂φ/∂x = −FL; i.e. the load force acts to oppose the motor�s forward progress.
The internally generated force potential will generally depend on the chemical state
of the system. That is, the mechanical evolution of the system�s geometrical coordi-
nates governed by (12.36) is coupled to the chemical reactions described by a Markov
chain (12.40). Each chemical state is characterized by its own probability distribu-
tion, pk(x, t), where k ranges over all the chemical states, and each chemical state is
typically characterized by a separate driving potential, φk(x, t). Thus there will be a
Smoluchowski equation (12.36) for each chemical state, and these equations must be
solved simultaneously to obtain the motor�s motion.

For the neutralization reaction considered above, the total change in probability,
p(x, ξ, t), is given by

∂

∂t

µ
p1
p2

¶
= Net ßow in space + Net ßow along reaction coordinates

=

z }| {
−
µ
(∂/∂x1)Jx1
(∂/∂x2)Jx2

¶
+

z }| {µ
Jξ1
Jξ2

¶

= −D
µ−(∂/∂x1)[p1∂(φ1/kBT )/∂x1 + (∂p1/∂x1)]
−(∂/∂x2)[p2∂(φ2/kBT )/∂x2 + (∂p2/∂x2)]

¶
+

µ
k−1p2 − k∗1p1
k∗1p1 − k−1p2

¶
,

(12.41)

where the probability densities pi(xi, t), i = 1, 2 now keep track of the motion along the
spatial and reaction coordinates, and Jξ1 = −Jξ2 keeps track of ßux along the reaction
coordinate (since the reaction is Þrst order, i.e. has only two states). We can visualize
the mechanochemical coupling by plotting the spatial and reaction coordinates as shown
in Fig. 12.6.

12.5 Numerical simulation of protein motion

We return to the problem of simulating the protein�s motion numerically. (12.30) is a
very useful and easy to implement numerical scheme. However, one of its shortcomings
is that it does not preserve the property of detailed balance. Detailed balance is the
constraint placed on ceq(x) to ensure that systems in equilibrium do not experience
a net drift. That is, when a system is in equilibrium, J in (12.32) is required to be
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identically zero. Detailed balance ensures that the equilibrium density has a Boltzmann
distribution.

It is important to understand the distinction between steady state and equilib-
rium. If we watch sample paths of x(t), it is consistent for the trajectories to move
with a mean velocity and for the system to have a steady state. In equilibrium the
sample paths must not exhibit a mean velocity. It can be shown that (12.30) produces
sample paths that show a net drift when the real system satisÞes detailed balance
[Elston and Doering, 1995]. Clearly, it is desirable to have an algorithm that preserves
detailed balance in equilibrium, and can be used to simulate both equilibrium and
nonequilibrium processes.

12.5.1 Numerical algorithm that preserves detailed balance

To obtain an algorithm that has detailed balance built in, we convert the problem into
a Markov chain and and use the procedures described above to numerically simulate
it. The numerical algorithm given by (12.30) is based on the discretization of time.
To convert the problem into a Markov chain requires that we discretize space. Let
xn = (n − 1/2)∆x for n = 0,±1,±2,±3, ... be the discrete sites on which the protein
can reside. Site xn is represented by the interval [xn−∆x/2, xn+∆x/2]. That is, when
the protein is in the interval [xn−∆x/2, xn+∆x/2], we treat it as being at site xn. If the
molecule is at site xn, then it can jump to either xn+1 or xn−1. A diagram of this process
is shown in Fig. 12.7. The notation that we have adopted is that Fn+1/2 is the rate at
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Figure 12.6 The mechanochemical phase
plane. A point is deÞned by its spatial and
reaction coordinates (x(t), ξ(t)). The ßow
of probability in the spatial direction is given
by the Smoluchowski model (12.35), and the
ßow in the reaction direction is given by the
Markov model (12.40).
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Figure 12.7 The numerical discretization in spatial di-
mension. A continuous Markov process (the Langevin
equation) is approximated by a discrete Markov process.
The particle is restricted to a set of discrete sites (xn) and
is allowed to jump only to the neighboring sites (xn−1,
xn+1). The site xn can be viewed as to represent the
interval [xn −∆x/2, xn +∆x/2].
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which the protein jumps from xn to xn+1 (F refers to a �forward� jump). Similarly
Bn+1/2 is the rate at which the protein jumps from xn+1 to xn (B for �backward�).

For small enough ∆x, we have pn(t) ≈ p(x, t)∆x, where pn(t) is the probability
that the protein is at xn at time t. The governing equation for pn(t) is

dpn
dt

= −(Bn−1/2 + Fn+1/2)pn + Fn−1/2pn−1 +Bn+1/2pn+1

= (Fn−1/2pn−1 −Bn−1/2pn)− (Fn+1/2pn −Bn+1/2pn+1) = Jn−1/2 − Jn+1/2, (12.42)
where Jn+1/2 is the net ßux between the points xn and xn+1.

In addition to preserving detailed balance, our numerical scheme must approximate
the actual dynamics of the protein. In Section 12.6.6 we demonstrate that the following
jump rates preserve the mean drift motion as well as detailed balance:

Fn+1/2 =
D

(∆x)2
·

∆φn+1/2

kBT

exp
³
∆φn+1/2

kBT

´
− 1

, (12.43)

Bn+1/2 =
D

(∆x)2
·

−∆φn+1/2
kBT

exp
³−∆φn+1/2

kBT

´
− 1

, (12.44)

where

∆φn+1/2 = φ(xn+1)− φ(xn). (12.45)

12.5.2 Boundary conditions

The algorithm described above must be complemented by boundary conditions. We
discuss three types of boundary conditions: periodic, reßecting and absorbing. In each
case the total number of grid points within the interval is M , and ∆x = L/M , where
L is the length of the spatial domain. The placement of the grid has been chosen such
that xn = (n− 1/2)∆x for n = 1, 2 . . .M .
Periodic

Periodic boundary conditions require that pM+1(t) = p1(t) and p0(t) = pM(t). Using
these two equalities in (12.42) for p1(t) and pM(t) produces:

dp1
dt

= −(B1/2 + F3/2)p1 + FM+1/2pM +B3/2p2, (12.46)

dpM
dt

= −(BM−1/2 + FM+1/2)pM + FM−1/2pM−1 +B1/2p1, (12.47)

where we have also made use of the fact that B1/2 = BM+1/2 and F1/2 = FM+1/2.

Reßecting

Fig. 12.8A shows a reßecting boundary condition located midway between the grid
points M and M + 1. A reßecting boundary requires that

JM+1/2(t) = FM+1/2pM(t)−BM+1/2pM+1(t) = 0. (12.48)
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Figure 12.8 Numerical treatments for two types of boundaries. (A) At a reßecting boundary, the particle
is not allowed to jump through the boundary and thus the ßux through the boundary is zero. (B) At an
absorbing boundary, the probability density is zero. Once the particle jumps out of the boundary, it should
not be allowed to come back. However, in the numerical discretization, blocking the particle from coming
back is not enough. The rate of the particle jumping out of the boundary has to be modiÞed.

We know that pM+1(t) = 0, since it is located outside of the reßecting boundary and is
inaccessible to the protein. Therefore, to enforce no ßux through the boundary, we set

F reßectM+1/2 = 0. The equation for pM is then

dpM
dt

= −BM−1/2pM + FM−1/2pM−1. (12.49)

Absorbing

If the protein reaches an absorbing boundary it is instantaneously removed from the
solution. Therefore, the probability of Þnding the protein at an absorbing boundary is
zero. Fig. 12.8B illustrates an absorbing boundary at x = 0. Thus, we must enforce
the condition p(0, t) = 0. In Appendix 7 we derive the appropriate jump rate at this
boundary:

Babsorb1/2 =
D

(∆x)2
· α2

exp(α)− 1− α , α =
φ0 − φ1
kBT

. (12.50)

The equation for p1 is then:

dp1
dt

= −(Babsorb1/2 + F3/2)p1 +B3/2p2. (12.51)

It can be shown that this treatment of the absorbing boundary is accurate to second
order in ∆x and that it preserves the velocity of a perfect Brownian ratchet subject to
any load force (see next Chapter).

Now we are ready to numerically integrate pn. However, before we turn to exam-
ples of implementing the algorithm, we must address the issue of numerical stability
and introduce an implicit method for the time integration as an alternative to Euler�s
method.
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12.5.3 Numerical stability

For notational convenience let pn(k∆t) = p
k
n. Then Euler�s method has the form:

pk+1n ≈ pkn −∆t
£
(Bn−1/2 + Fn+1/2)p

k
n + Fn−1/2p

k
n−1 +Bn+1/2p

k
n+1

¤
. (12.52)

Euler�s method is called an explicit method because pk+1n can be written explicitly
in terms of pkn. Each time we use the above technique to update p

k
n, we introduce a

small error due to the Þnite size of ∆t and round-off error. In the absence of round-off
error, we can achieve any desired accuracy by decreasing ∆t. However, there are some
problems with this approach. Usually the biggest problem is the amount of computer
time required when we chose a very small ∆t. However, the round-off error incurred
in each step does not decrease with ∆t; rather it accumulates. It is possible that if ∆t
is too small, the total error is dominated by the round-off error. In that situation, the
more steps we take the larger the accumulated error. So a careful choice of time step is
important.

Numerical stability is another issue with which we have to contend. That is, we do
not want our numerical solutions to run off to ±∞, when the real solution is bounded
for all time. It is possible to show that Euler�s method is stable only if

∆t < ∆tc = max
n

µ
1

Fn+1/2 +Bn+1/2

¶
, (12.53)

where max in the above equation means to use the value of n that produces the largest
value of the quantity in the parentheses. Fig. 12.9 illustrates this change in stability by
using time steps slightly above and below∆tc. To get an intuitive feel for this instability,
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(F+B)
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Figure 12.9 Numerical stability/instability. (A) When the time step is slightly below the critical step
size, the numerical solution is stable. (B) When the time step is slightly above the critical step size, the
numerical solution is unstable.
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let us consider one time step of the numerical scheme. At t = 0, we take p0m = 1 and
p0n = 0 for n 6= m. From (12.52) we have:

p1m = [1−∆t(Bm−1/2 + Fm+1/2)] p
0
m. (12.54)

It is clear that if ∆t > ∆tc, then p
1
m will be negative. Since p

1
m is a probability, negative

values clearly do not make sense. The condition on ∆t for stability is rather restrictive.
Using the jump rates given in (12.84) and (12.85)), it is possible to show that

∆tc <
(∆x)2

2D
. (12.55)

This implies that in order to reduce the spatial step by a factor of 10 (which could be
necessary to model accurately spatial ßuctuations of the force, for example), the time
step must be reduced by a factor of 100.

12.5.4 Implicit discretization

We now improve upon Euler�s method in two ways. First, we use a second order algo-
rithm that improves the accuracy of the solution for Þxed ∆t. Secondly, we choose an
implicit method that is unconditionally stable. The implicit second order algorithm we
employ is called the Crank-Nicolson method. For a simple one dimensional differential
equation dx/dt = h(x), the Crank-Nicolson method has the form:

xk+1 − xk
∆t

=
h(xk+1) + h(xk)

2
. (12.56)

For (12.42), this scheme becomes:

pk+1n − pkn
∆t

= − (Bn−1/2 + Fn+1/2) · p
k+1
n + pkn
2

+ Fn−1/2 · p
k+1
n−1 + p

k
n−1

2
+Bn+1/2 · p

k+1
n+1 + p

k
n+1

2
. (12.57)

If we now bring all the pk+1 terms to the left-hand-side and use the vector notation:

pk =


pk1

pk2
...

pkM

 . (12.58)

(12.57) can be written in matrix form as

A pk+1 = C pk, (12.59)

where A and C are tridiagonal matrices with elements:

Ann = 1+
∆t

2
(Bn−1/2 + Fn+1/2), An,n−1 = −∆t

2
Fn−1/2, An,n+1 = −∆t

2
Bn+1/2, (12.60)
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and

Cnn = 1− ∆t
2
(Bn−1/2 + Fn+1/2), Cn,n−1 =

∆t

2
Fn−1/2, Cn,n+1 =

∆t

2
Bn+1/2. (12.61)

(12.59) reveals why this method is called implicit. At each time step we must solve
a linear set of coupled equations. Luckily A is a sparse matrix and it is therefore
computationally fast to solve (12.59) for pk+1.

12.6 Derivations and comments

12.6.1 The drag coefficient

The natural units of distance and force on the molecular scale are nanometers (1 nm =
10−9 m) and piconewtons (1 pN = 10−12 N), respectively. In these units, the viscosity of
water at room temperature is η ' 10−9 pN·sec/nm2. Then, a typical value for the hy-
drodynamic drag coefficient of a sphere of radius R = 10 nm is ζ = 6πηR ' 10−7

pN·sec/nm. A dimensionless number that measures the ratio of inertial to viscous
forces is the Reynolds number: Re ≡ ρvR/η, where ρ is the density of water (103

kg/m3 = 10−21 pN·sec2/nm4) [Happel and Brenner, l986, Berg, 1993]. Typical veloci-
ties of molecular motors are v < 103 nm/sec, so on the molecular scale, the Reynolds
number is very small indeed: Re ∼ 10−8. This conÞrms our conjecture that we can
safely ignore the inertial term in (12.19). If the ßuid can truly be viewed as a contin-
uum, then ζ can be computed from hydrodynamics [Happel and Brenner, l986]. The
frictional drag coefficient ζ depends on the particle shape and size as well as the ßuid
viscosity: ζ =(dimensionless geometric drag coefficient)×(size factor)× (shape factor).
For a sphere, ζ = 6πηR; drag coefficients for other shapes are given in [Berg, 1993], a
good source of intuition on Brownian motion.

12.6.2 The equipartition theorem

Let us consider a collision of two particles of masses m1 and m2 with velocities v1 and
v2 before the collision, and with velocities v

0
1 and v

0
2 after the collision, respectively.

Conservation of energy and momentum guarantee conservation of the velocity of the
center-of-mass after the collision, as well as of the absolute value of the relative velocity
[Feynman et al., 1963]. One of the central assumptions of statistical mechanics is that
the velocities of the scattered particles are uncorrelated.

From this one can show that hm1v
02
1 i = hm2v

02
2 i. A more general result that can be

derived from statistical mechanics is that each quadratic degree of freedom (e.g. linear
or angular momentum) of a particle carries an average amount of energy hEi = kBT/2
[Reif, 1965]. Thus the mean kinetic energy of a point particle moving in the x direction
is hmv2x/2i = kBT/2, or hv2xi = kBT/m. If the particle is moving in a harmonic potential
well (i.e. on a spring), its mean potential energy is khx2i/2 = kBT/2. Thus the mean
total energy is hEi = hEkini+ hEpoti = kBT .
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12.6.3 A numerical method for the Langevin equation

For (12.29) to be useful, we must specify the statistical properties of fB(t). Since fB(t)
models the net effect of many protein-water interactions, from the central limit theo-
rem, it seems reasonable to assume that fB(t) is normally distributed. Physically, we
also want hfB(t)i = 0, since a protein that is undergoing pure diffusion does not expe-
rience a net force. All that is left to fully characterize fB(t), is to specify its covariance
cov[fB(t)fB(s)]. Remember a necessary condition for two random variables to be inde-
pendent is that their covariance is zero. Since the motion of the water molecules is very
fast as compared with the motion of the diffusing protein, we take fB(t) and fB(s) to
be statistically independent whenever t 6= s. When φ = 0, we should recover diffusive
motion. That is, the variance of Brownian particle started at x(0) = 0 is

Var[x(t)] = hx(t)2i = 2Dt. (12.62)

We claim that an appropriate choice for the covariance is

cov[fB(t)fB(s)] = hfB(t)fB(s)i = 2kBT ζδ(t− s). (12.63)

The Dirac delta function δ(t − s) in (12.63) is a mathematical concept that is best
understood as the limit of a normal distribution centered at s as the variance goes to
zero:

δ(t− s) = lim
σ→0

1√
2πσ2

exp

µ
−(t− s)

2

2σ2

¶
. (12.64)

This is illustrated in Fig. 12.10. The only property of the Dirac delta function that
we need is

R∞
−∞ g(t)δ(t − s)dt = g(s), which is easily understood when the Dirac delta

function is interpreted as a sharply peaked probability density. We now have a complete
description of fB(t). A random variable described as such is referred to as Gaussian
white noise.
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Figure 12.10 The delta function can be viewed as the
limit of a sequence of normal probability density functions
as the standard deviation goes to zero.
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Next we illustrate that our choice of fB(t) makes sense both mathematically and
physically. Note that from (12.28) with φ = 0 and x(0) = 0, we have:

x(t) =
1

ζ

Z t

0

fB(t
0)dt0, (12.65)

from which it is clear that hx(t)i = 0. Assume without loss of generality that t > s.
One can show (from the theory of Dirac�s delta function) that:

cov[x(t)x(s)] =
1

ζ2
h
µZ t

0

fb(t
0)dt0

¶µZ s

0

fb(t
00)dt00

¶
i

= 2D

Z t

0

Z s

0

δ(t0 − t00)dt0dt00 = 2Ds, (12.66)

which is consistent with (12.62), when s = t. Furthermore, since fB(t) is a normal
stochastic variable, so is x(t).

If we deÞne the new random variable W (t) = x(t)/
√
2D, then W (t) is a normal

random variable characterized by

hW (t)i = 0, cov[W (t)W (s)] = min(t, s), (12.67)

where the min in (12.67) means use the value of t or s that is smaller. The random
variable W (t) is referred to as a Weiner process and possesses some interesting math-
ematical properties, which we will not go into here. Note that from (12.29) what we
need for our numerical algorithm is actually the incremental Weiner process deÞned as

∆W (t) =W (t+∆t)−W (t) = 1√
2kBT ζ

Z t+∆t

t

fB(t
0)dt0. (12.68)

Following a procedure similar to that used in (12.66), it is straightforward to show that
∆W (t) is a normal random variable with mean zero and standard deviation

√
∆t. It is

also possible to show that all ∆W (t) and ∆W (s) are statistically independent for t 6= s.
This gives us a way to generalize Euler�s method to include Gaussian white noise. That
is, a numerical method for simulating (12.28) is (12.30).

12.6.4 Some connections with thermodynamics

Note that the ßux ((12.32)) can also be written as Jx = −(c/ζ)∂/∂x(kBT ln c + φ).
There can be many steady states characterized by a constant ßux: Jx = const; one
of these is the special case of equilibrium: Jx = 0. At equilibrium, one can deÞne the
quantity µ = (kBT ln ceq+φ) called the chemical potential. The equilibrium distribution
of ceq(x) can be computed by setting the gradient in chemical potential to zero, so that
µ =const; this is exactly equivalent to enforcing a Boltzmann distribution, ((12.33)).

The chemical potential is also the free energy per mole, G = µN , where N is the
mole number. A mole is an Avogadro�s number Na of objects (e.g. molecules), where
Na = 6.02 · 1023[#/mol]. At equilibrium we can deÞne the entropy, S ≡ −kBN ln ceq
and the enthalpy as H = φN . Then we arrive at the deÞnition of the free energy:
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G = H − TS. These deÞnitions will prove useful when we discuss chemical reactions.
Here we note simply that diffusion smoothes out the concentration leading to an increase
in entropy. Thus entropic increase accompanying the motion of the ensemble is handled
by the Fickian diffusion term in the ßux ((12.32)).

When the particles are charged (e.g. protons, H+), then the chemical potential
difference between two states, or across a membrane, is written as: ∆µ = µ2 − µ1 =
(φ2 − φ1) + kBT (lnc2 − lnc1) = ∆φ− 2.3 kBT ∆pH. Here pH = −log10cH+ , where cH+

is the proton concentration. The protonmotive force is deÞned as p.m.f. = ∆µ/e =
∆ψ−2.3 (kBT/e) ∆pH, where e is the electronic charge, and ∆ψ = ∆φ/e, [mV], is the
transmembrane electric potential.

Consider the simple case when a protein motor is propelled by an internally
generated motor force, fM , and opposed by a constant load force, fL. For example,
fM = ∆G/l, where l is the length of the power stroke and ∆G is the free energy drop
accompanying one cycle of the chemical reaction that is supplying the energy to the
motor. (This would be an ideal motor: it uses all of the chemical energy to produce a
constant force power stroke!) Then the Langevin equation (12.19) becomes

dx

dt
= v, m

dv

dt
= −ζv + fM − fL + fB(t). (12.69)

The diffusion equation associated with (12.69) for the probability density p(x, v, t) is
called the Kramers equation:

∂p

∂t
= − ∂

∂x
(vp)− 1

m

∂

∂v
[((fM − fL)− ζv)p− (ζ kBT

m
)
∂p

∂v
]. (12.70)

The Smoluchowski diffusion equation (12.35) is a special case of the Kramers equation;
both are generically referred to as Fokker-Planck equations [Doi and Edwards, 1986,
Risken, 1989, Gardiner, 1985, Reif, 1965]. However, deriving (12.35) from (12.70) is
not trivial: it requires a singular perturbation treatment that is beyond the scope of this
chapter [Doering, 1990, Risken, 1989].

We set ∂p/∂t = 0 in (12.70) to look for the steady state. Multiplying by v2 and
taking the average by integrating over x and v, and using the equipartition theorem,
we obtain:

0 = − ζ < v2 >| {z }
1

+ FM < v >| {z }
2

− FL < v >| {z }
3

+
kBT

m
ζ| {z }

4

. (12.71)

At constant temperature, the terms in (12.71) (see also Fig. 12.11) have the following
interpretation:

� The rate at which the motor dissipates energy via frictional drag with the ßuid.
� The rate at which energy is being absorbed by the motor from the chemical reaction.
� The rate of work done by the load force against the motor.
� The rate at which the motor absorbs energy from the thermal ßuctuations of the
ßuid.
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Figure 12.11 Energy balance on a protein motor. Qout

is the heat dissipated by the motion of the motor (term 1).
Qin is the heat supplied to the motor by thermal ßuctua-
tions of the ßuid (term 4). The rate of work done by the
load force is −FL· < v > (term 3). The rate of work done
by the chemical reaction driving the motor is FM · < v >
(term 2).

Thus we see that when the chemical reaction is turned off, ∆G = 0, the heat
absorbed by the motor from the thermal environment (term 4) is just equal to the
heat returned to the environment by frictional drag (term 1) in the absence of the load
force. If the reaction driving the motor were endothermic, then it is possible for the
motor to move by taking heat from the environment without violating the 2nd Law of
Thermodynamics.

12.6.5 Jumping beans and entropy

An analogy may make the role of entropic factors more clear. Imagine that the left
enthalpic well in Fig. 12.5B is Þlled with Mexican jumping beans whose hops are random
in height and angle. We can vary the equilibrium populations of beans in each well
without altering the height of the enthalpic barrier by simply increasing the width of
the transition state or of one of the wells. This is shown in Fig. 12.5B. Now a bean in
the right well may execute many more futile jumps before hurdling the barrier: if it
jumps from the right side of the well it will fall back into the well even if its jump is
high enough, or if it reaches the transition state it must diffuse (hop) along the plateau
randomly with a high probability of hopping back into the right hand well. Both of
these effects make it more difficult to escape from the right well, and so the equilibrium
population there will increase, as will Keq, the equilibrium population ratio.

The rate at which beans can pass the barrier from right to left will have the form

k−1 = ν · exp(∆G+
2 /kBT ) =

ν|{z}
1

· exp(∆S/kB)| {z }
2

· exp(−∆H/kBT )| {z }
3

· exp(−∆FLL/kBT )| {z }
4

,

where (1) ν is a frequency factor (number of jumps/unit time). For reactions that in-
volve an atomic vibration, this is approximately kBT/h̄, where h̄ is Planck�s constant.
For diffusion controlled reactions this is of order D/L2, where D is the diffusion coef-
Þcient and L a characteristic dimension. (2) The entropic term, e∆S/kB , accounts for
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geometric and �hidden variables� effects. (3) The enthalpic term, e−∆H/kBT , is a free
energy �payoff� for a successful jump; it accounts for the electrostatic and/or hydropho-
bic interactions. (4) If the reaction involves a mechanical step that is opposed by a load
force, FL, then the fourth term accounts for the penalty exacted by performing work
against the load. All of these effects are contained in the kinetic rate constants, and
can estimated from more detailed models [Hanggi et al., 1990, Risken, 1989].

Note that the height of the free energy barrier,∆G�
2 determines how fast the reaction

goes. The exponent exp(∆G�
2/kBT ) is called the Arrhenius factor. Because of this factor

the reaction rate depends dramatically on the height of the free energy barrier.

12.6.6 Jump rates

Here we determine the appropriate values of Fn+1/2 and Bn+1/2 in (12.42). Suppose
the system, with proper boundary restrictions, attains an equilibrium as time goes to
inÞnity: p(eq)n = limt→∞ pn(t). Then the rates should preserve the property of detailed
balance. That is,

Jn+1/2 = Fn+1/2p
(eq)
n −Bn+1/2p

(eq)
n+1 = 0. (12.72)

Making use of the equilibrium distribution given by (12.33), we have

Fn+1/2
Bn+1/2

=
p(eq)n+1

p(eq)n

=
peq(xn+1)

peq(xn)
= exp

µ−∆φn+1/2
kBT

¶
. (12.73)

where

∆φn+1/2 = φ(xn+1)− φ(xn). (12.74)

(12.73) is our Þrst constraint on the jump rates.
Besides preserving detailed balance, our numerical scheme must of course approx-

imate the actual dynamics of the protein. Let us consider the two simplest statistical
properties of the random variable x(t), namely, the mean and the variance. To simplify
the presentation, we make the assumption that φ(x) = −fx. That is, our Brownian
particle feels a constant force of strength f . For this problem (12.28) reduces to:

dx

dt
=
f

ζ
+
fB(t)

ζ
. (12.75)

Assuming x(0) = 0, the above equation can be integrated to produce:

x(t) =
f

ζ
t+

1

ζ

Z t

0

fB(s) ds. (12.76)

Using (12.76) the mean and variance of x(t) are found to be:

hx(t)i = f

ζ
t, (12.77)

Var[x(t)] = 2Dt. (12.78)
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Remember in the discrete version, x(t) = ∆xn(t). Since the force acting on the protein
is constant, the forward and backward rates are independent of n. Therefore, we drop
the subscripts and use F and B. Using (12.42), it is straightforward to show that

hx(t)i = ∆xhn(t)i = (F −B)t, (12.79)

Var[x(t)] = (∆x)2Var[n(t)] = (∆x)2(F +B)t. (12.80)

Equating the mean and the variance given in (12.77) and (12.78) with those of (12.79)
and (12.80) gives us two more constraints on the jump rates. To summarize, we would
like F and B to satisÞes the following three equations:

F

B
= exp

µ
f∆x

kBT

¶
, [Detailed Balance] (12.81)

(F −B)∆x = f

ζ
, [Mean] (12.82)

(F +B)(∆x)2 = 2D. [Variance] (12.83)

Generally, it is impossible to satisfy three equations with two unknowns. Let us ignore
the constraint on the variance for the time being. The rates that satisfy (12.81) and
(12.82) are

F =
D

(∆x)2
· − f∆x

kBT

exp
³
− f∆x

kBT

´
− 1

(12.84)

B =
D

(∆x)2
·

f∆x

kBT

exp
³
f∆x

kBT

´
− 1

(12.85)

Additionally, this set of jump rates satisÞes (12.83) with an error of O((∆x)2). We point
out that this choice of F and B is an improvement over the rates used by Elston and
Doering [Elston and Doering, 1995], since the mean is exactly preserved and F and B
have Þnite values as kBT → 0.

In general, the force f will not be constant, but will depend on x. In this case the
jump rates will depend on n, and are given by (12.43) and (12.44).

12.6.7 Jump rates at an absorbing boundary

To derive an appropriate jump rate at this boundary, we approximate (12.35) near
x = 0 by

∂p

∂t
= D

∂

∂x

µ
− f

kBT
p+

∂p

∂x

¶
, (12.86)

where f = −(φ1 − φ0)/∆x is an approximation for −∂φ/∂x in (0,∆x). To derive a
second order treatment of the boundary, we only need a Þrst order approximation for
this derivative.
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Next we assume that at any given time p(x, t) in the interval (0,∆x) is approxi-
mately at steady-state. This assumption is valid because at small length scales diffusion
is the dominant effect. The time scale for a particle with diffusion coefficient D to dif-
fuse a distance ∆x is ∆tdif = (∆x)2/2D, which is proportional to (∆x)2. The time
scale for a ßow with velocity v to travel a distance of ∆x is ∆tflow = ∆x/v, which
is proportional to ∆x. For small ∆x, ∆tdiff ¿ ∆tflow. At small length scales, diffu-
sion relaxes the system to steady state immediately after it is disturbed by the ßow.
Thus, at any given time, the local structure of the solution is given approximately by
the steady-state solution. At an absorbing boundary, the steady-state assumption in
(0,∆x) can also be justiÞed mathematically by examining (12.86) at x = 0. Because
p(0, t) = 0, the left-hand-side of (12.86) is exactly zero at x = 0. Therefore, we set the
left-hand-side of (12.86) to zero in the interval (0,∆x) and solve the resulting ordinary
differential equation subject to the following two conditions:

p(0) = 0,

Z ∆x

0

p(x)dx = p1. (12.87)

The solution is

p(x) = p1
exp( fx

kBT
)− 1

kBT

f
[exp( f∆x

kBT
)− 1]−∆x. (12.88)

Using the above expression for p(x), the ßux is found to be

J = D
f

kBT
p−D ∂p

∂x
= −p1 D

(∆x)2
· α2

exp(α)− 1− α , α =
f∆x

kBT
. (12.89)

In the numerical scheme, the ßux at the boundary is

J1/2 = −p1B1/2. (12.90)

This equation reßects the fact that once the protein is absorbed, it does not return to
the ßuid. Comparing (12.89) with (12.90), we get (12.50).

Suggestions for further reading

� Elementary Applications of Probability Theory, Henry Tuckwell. A good intro-
duction to probability theory and stochastic processes with some applications to
biology. [Tuckwell, 1995]

� Random Walks in Biology, Howard Berg. Introductory text on applying stochastic
processes to cellular and molecular biological systems. This book is written for
biologists. [Berg, 1993]

� Handbook of Stochastic Methods, Crispin Gardiner. A good reference that covers
most important topics for studying stochastic processes. However, it is not a good
book for learning the subject. [Gardiner, 1997]
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Exercises

1. Use (12.1) to verify that hxni = 0 and Var[xn] = (∆x)2n = ((∆x)2/∆t)t.
2. Use (12.6) to compute ∂p(x, t)/∂t and ∂2p(x, t)/∂x2. Substitute your results for
these two expression into (12.7) to directly verify that p(x, t) satisÞes the diffusion
equation.

3. Let pn(t) be the probability that a biological Þlament has n subunits at time t.
Assume that the depolymerazation rate of the growing Þlament is zero. Write down
the equations that govern pn(t). Assuming that p1(0) = 1 solve the equations for
p1(t), p2(t) and p3(t). Can you generalize your results for pn(t)? Compute the Þrst
passage time density for the time it takes the Þlament to grow 4 subunits long.

4. Use (12.10) to verify that hx(t)i = LhN(t)i = L(rp − rd)t and Var[x(t)] =
L2Var[N(t)] = L2(rp + rd)t.

5. For a 10nm sphere of mass m = 10−21kg moving in water, compute the
thermalization time τ .

6. Nondimensionalize (12.30) by choosing L as the spatial scale and a characteristic
time to diffuse across the domain [−2L, 2L] as the time scale. Simulate the resulting
equation on the computer for the double well potential φ(x) = AkBT [(x/L)4 −
(x/L)2], A = 0.1, 1, 10 and x(0) = −L and no ßux conditions at x = ±2L. Justify
your choice of the time steps. Run simulations until (i) tend = L2/D, (ii) tend =
10L2/D, (iii) tend = 100L

2/D. Discuss the results.
7. Use the computer to plot the Boltzmann distributions in the case of the double
well potential φ(x) = AkBT [(x/L)

4 − (x/L)2], −2L < x < 2L, for A = 0.1, 1, 10.
Discuss the results.

8. Solve equation (12.36) numerically on the interval [0, 1] with potential φ(x) = x, no
ßux boundary and arbitrary initial conditions. Use any standard numerical method.
Run the simulations until the transients die out. Compare the solutions with the
corresponding Boltzmann distribution and discuss the results.

9. Derive (12.84) and (12.85) from (12.81) and (12.82).
10. Verify that the steady state probability density given in (12.88) satisÞes (12.86)

and the conditions (12.87).
11. An Ornstein-Uhlenbeck process is characterized by the following stochastic

differential equation:

m
dV

dt
= −ζV + fB(t), hfB(t)i = 0,Cov[fB(t)fB(s)] = 2kBT ζδ(t− s).

Write down the diffusion equation that corresponds to this process. Solve the diffu-
sion equation for the equilibrium density. Using the numerical algorithm described
in this chapter, generate sample paths for this process. Use the sample paths to
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generate a histogram of the particles velocity. Compare the histogram with the
analytic result for the equilibrium density.

12. Write a program to numerically solve the diffusion equation (non-dimensionalize
Þrst!):

∂p(x, t)

∂t
= D

∙
∂

∂x

µ
A sin

µ
2πx

L

¶
+ F

¶
p(x, t)

kBT
+
∂2p(x, t)

∂x2

¸
,

subject to periodic boundary conditions at x = 0 and x = L and the initial condition
p(x, 0) = δ(x−L/2). Plot the distribution at various times to observe the relaxation
to steady-state. Use the steady-state distribution to compute the average velocity.
Investigate how the average velocity changes as the parameters F , A and D are
varied.


