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CHAPT E R 1 3

Molecular Motors: Examples

13.1 Switching in the bacterial ßagellar motor

As an example of the numerical algorithm developed in the previous chapter, we con-
sider a model for switching in the bacterial ßagellar motor proposed by Scharf et al.
[Scharf et al., 1998]. Some bacteria, such as Escherichia coli, swim by spinning long heli-
cal ßagella. Each cell has multiple ßagella, all of which have the same handedness. When
the ßagella are spun in the counterclockwise (CCW) direction, they come together to
from a bundle that propels the cell through the ßuid. The motor that is responsible for
ßagella rotation is reversible. When spun in the clockwise (CW) direction, the ßagella
ßy apart and the cell undergoes a tumbling motion. Addition of a chemical attractant
causes the cell to suppress tumbling when moving toward the food source. One of the
proteins in the signaling pathway is CheY. The binding of phosphorylated CheY to the
portion of the motor located within the cytoplasm promotes CW rotation. To model
motor reversals, the protein complex which forms the rotor is assumed to exist in two
distinct conformational states that correspond to CW and CCW rotation. The binding
of CheY decreases the free energy of the CW state, while at the same time increasing
the free energy of the CCW by an equivalent amount. To capture this effect, the free
energy of the rotor is assumed to have the following form (see Fig. 13.1A):

G(x) = 4∆Gnb

µ
x4

4
− x

2

2

¶
− 1
2
∆Gx, (13.1)

where x is an appropriate reaction coordinate and ∆G = G(−1) − G(1) is the free
energy difference between the CW and CCW states. ∆Gnb = G(0)−G(−1) is the free
energy difference between the transition state and either the CW or CCW state when
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Figure 13.1 (A) The free energy digram for the rotor at various levels of CheY concentration. (B)
Time series generated from the three potentials shown in A. (C) The stationary distributions for the three
potentials shown in A.

the CheY concentration is such that ∆G = 0 (i.e., there is no bias toward CCW or CW
rotation).

To model the chemical kinetics of CheY, we assume that the binding of CheY to
the motor is a two state processes with a single binding site either being empty or
occupied. Let pE(t) be the probability that the site is empty at time t and pO(t) be
the probability that the site is occupied. The probabilities satisfy the following set of
coupled equations:

dpE(t)

dt
= −konpE(t) + koffpO(t), (13.2)
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dpO(t)

dt
= −koffpO(t) + konpE(t), (13.3)

where koff is the dissociation rate constant and kon is the rate at which CheY binds
to the motor. From the law of mass action, kon should be proportional to the CheY
concentration. That is, kon = k

0
on[CheY], where k

0
on is a second order rate constant and

the brackets stand for concentration. If the concentration of CheY is held constant,
then pE and pO will relax to their equilibrium values. These are found by solving
(13.2) and (13.3) with the time derivatives set equal to zero. Doing this yields pO =
[CheY]/(Kd + [CheY]) where Kd = koff/k

0
on = 9.1 µM is the dissociation constant.

There are approximately 26 binding sites on the motor, and the average number of
occupied sites is 26pO. In the absence of CheY, ∆G = ∆G0 = 14kBT and at saturating
concentrations of CheY, ∆G = ∆G∞ = −9kBT . Therefore, the change in ∆G from
low to high CheY concentrations is ∆∆G = ∆G0 −∆G∞ = 23kBT , where the symbol
∆∆G indicates that we are talking about a change in the value of ∆G. Thus each CheY
contributes roughly .88kBT towards changing the relative free energy of the CW and
CCW states. These considerations lead to the following expression for ∆G:

∆G = ∆G0 −∆∆G [CheY]

Kd + [CheY]
(13.4)

Graphs of the free energy at various CheY concentrations are shown in Fig. 13.1A,
with two minima located roughly at x = ±1 Generally, we shall measure distance, x,
in nanometers (nm) and force in picoNewtons (pN). In these units kBT = 4.1 pN-nm
at room temperature (T = 298 K). The force that arises from changes in free energy is
−∂G/∂x. Therefore, the force vanishes at the minima. Additionally, if the conformation
of the rotor is slightly displaced from either minima, it experiences a force that moves
it back towards that minimum. The force also vanishes at the local maximum located
near x = 0. However, when the conformation of the rotor is slightly displaced from
the origin, the force acts to move away from the rotor at x = 0 and toward one of the
two minima. Thus, we expect the rotor to spend most of its time near the minima.
To surmount the energy barrier between the minima requires a substantial thermal
ßuctuation.

The reaction coordinate x(t), which determines the state of the rotor, can take on
values anywhere between ±∞. Clearly we cannot use an inÞnite interval in our nu-
merical algorithm. However, since G(x) → ∞ as x → ±∞, there is a strong restoring
force that drives the reaction coordinate back toward the origin when |x| is large. This
means that the probability of Þnding x(t) at distances far from the origin is small and
ignoring large values of |x| will not signiÞcantly affect our numerical solutions. For the
parameters we shall consider, the interval (−2, 2) is wide enough to ensure numerical
accuracy. In practice, an appropriate interval can be determined by successively enlarg-
ing the length until the numerical results no longer change appreciably. At x = ±2,
we enforce reßecting boundary conditions as described in Section 12.5.2. The diffusion
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equation for this process is:

∂p

∂t
= D

∂

∂x

µ
∂G(x)

∂x

p

kBT
+
∂p

∂x

¶
. (13.5)

To Þnd the equilibrium distribution for p(x, t), the above equation is solved with
∂p/∂t = 0. This yields:

peq(x) =
exp

³
−G(x)

kBT

´
R∞
−∞ exp

³
−G(y)

kBT

´
dy
. (13.6)

The diffusion coefficient D in (13.5) represents an effective diffusion coefficient for the
reaction coordinate that includes many microscopic effects. For all the results presented
below D = 70 nm2/sec and ∆Gnb = 5kBT . These values were chosen to be consistent
with experimental observation that at 14 µM of CheY, motor reversals occur at an
average rate of 2 sec−1 (we expand on this point below). Fig. 13.1B shows time series
generated by the three potentials shown in Fig. 13.1A. The bistable nature of the system
is clearly evident. The time series can be used to produce histograms of the reaction
coordinate. An approximation for p(s)n is constructed by dividing the number of points
in each bin of the histogram by the total number of points in the time series. Then
we estimate p(xn) ≈ p(s)n /∆x. Fig. 13.1C shows distributions generated in this fashion.

Numerical solution

Kramer's approximation
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Figure 13.2 Numerical results of the Þrst passage time problem. The concentration of CheY has been
chosen such that ∆G = 0. At t = 0, the reaction coordinate is placed at x = −1. An absorbing
boundary is placed at x = 0 and a reßecting barrier at x = −2. The Þrst passage time is the time for the
reaction coordinate to reach the origin. (A) Time evolution of the probability density. As time increases,
the probability that the reaction coordinate remains inside the region decreases. (B) Probability density
of the Þrst passage time. Inset: an expanded view of the probability density near the origin showing the
nonexponential nature of the distribution.
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The solid lines are the exact results given by (13.6). As is clearly seen from the Þgure,
the numerical algorithm accurately reproduces the equilibrium distribution.

In the discussion of Markov chains and diffusion in the previous chapter, we encoun-
tered the idea of a waiting or Þrst passage time. This is a very important mathematical
concept that comes up in many different biological contexts. At a CheY concentration
of 14 µM the motor reverses roughly twice per second and there is no bias toward CW
or CCW rotation. To compute the switching rate, we must compute the average time
for the system located at the reaction coordinate x to surmount the energy barrier at
x = 0. To this end, the reaction coordinate is started at x = −1 at t = 0 with an
absorbing boundary at x = 0. Fig. 13.2A shows the numerically generated probability
density at various times. To generate this Þgure, 61 grid points were used. Note that
the probability of Þnding the particle in the interval (−∞, 0) is continuously decreas-
ing, due to the absorbing boundary. This probability can be used to determine the Þrst
passage time density f(t) through the relation:

f(t) = − d
dt
Prob [−∞ < x(t) < 0] = − d

dt

Z 0

−∞
p(x, t)dx ≈

− d
dt

MX
n=1

pn(t) = pMF
abs
M+1/2, (13.7)

where the last equality follows from (12.42) and the absorbing boundary condition.
Therefore, the numerical algorithm is well suited for computing Þrst passage time den-
sities. Fig. 13.2B shows the Þrst passage time density. The solid line is the numerical
result. The dashed line is Kramer�s approximation, which assumes the process has an
exponential distribution with mean Þrst passage time

MFPT ≈ kBTπ

D
p
G00(−1)|G00(0)| exp

µ
G(0)−G(−1)

kBT

¶
=

kBTπ

D
√
32∆Gnb

exp

µ
∆Gnb

kBT

¶
. (13.8)

A derivation of this result can be found in [Gardiner, 1997]. Note that the most signiÞ-
cant factor in determining the mean Þrst passage time is∆Gnb. The validity of Kramer�s
approximation depends on ∆Gnb >> kBT . As shown in the inset of Fig. 13.2B, the Þrst
passage time distribution is not exponentially distributed, since it must be equal to zero
at t = 0. However, if we ignore this very short initial time interval, the distribution is
approximated reasonably well with an exponential. Using the numerical distribution to
compute the mean Þrst passage time, we Þnd MFPT= = 0.253 sec, and using Kramer�s
approximation (13.8) we Þnd MFPT= 0.236 sec. An exact expression [Gardiner, 1997]
gives MFPT= 0.259 sec. The agreement between this value and the numerical result
given above provides evidence that the algorithm is faithfully reproducing the dynamics
of the system. The switching rate is 1/(2MFPT ) = 1.98 sec−1, where the factor of 1/2
comes from the fact that half the time the reaction coordinate surmounts the barrier
it falls back into well from which it started. This justiÞes our choice of D and ∆Gnb.
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Figure 13.3 The CW bias as function of CheY
concentration. The solid line is the model predic-
tion and the data points are from Scharf et al.
[Scharf et al., 1998]

To test this simple model, we compute the CW bias as a function of CheY concen-
tration. The CW bias is the fraction of time that the motor spends rotating in the CW
direction. This can be computed by integrating (13.6) over the interval (−∞, 0). That
is,

CW bias =

R 0
−∞ exp

³
−G(x)

kBT

´
dxR∞

−∞ exp
³
−G(y)

kBT

´
dy
. (13.9)

Fig. 13.3 shows a comparison of the model�s predictions to the experimental data of
Scharf et al [Scharf et al., 1998]. The agreement between the data and the theoretical
curve provides evidence to support the model�s validity.

13.2 A motor driven by a �ßashing potential�

The following process called the ßashing ratchet [Doering, 1995, Doering, 1998] is a
paradigm for molecular motors. It is also a good application for the methods developed
in the previous chapter. Imagine a protein driven by alternating its exposure to two
potential energy proÞles: V1 (solid line) and V2 (dashed line), as shown in Fig. 13.4. The
Þrst potential is a piecewise linear asymmetric sawtooth potential, while the second po-
tential is a constant. Thus, in the Þrst potential, the protein is localized near a local
minimum, while in the second potential the protein diffuses freely. While in either po-
tential, the motion of the particle is given simply by ζdx/dt = −dVi/dx+fB(t), i = 1, 2.
Switching between the potentials is governed by a chemical reaction (vertical arrows),
which occurs with the rate k.

Clearly, if the sawtooth potential is symmetric, the average displacement of the
protein must be zero. However, in the case of the asymmetric potential shown in Fig.
13.4, the protein on the average moves to the right, although all steps are reversible.
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Figure 13.4 The ßashing ratchet. In
the Þrst potential, the protein is localized
near a local minimum. Alternatively, the
protein is free to diffuse. When the Þrst
potential is switched back on, the protein
settles into the nearest local minimum.

This phenomenon can be easily understood, when the following inequalities are valid:

kBTL

FD
¿ 1

k
¿ L2

D
. (13.10)

Here L is the wavelength of the sawtooth potential, and F = −dV1/dx is the slope of
the Þrst potential, i.e. the force driving the protein to the right in the Þrst potential.
The corresponding drift rate of the protein is F/ζ = FD/kBT . The order of magnitude
of the time for the protein to drift into a local minimum is kBTL/FD. The diffusion in
the Þrst potential and the protein�s deviations from a local minimum can be neglected
if the slope of the sawtooth potential is very steep. Quantitatively, this means that
kBT ¿ FL (or kBTL¿ FL2 (compare with (13.10)).

The Þrst inequality (13.10)) means that the protein reaches a local minimum of the
sawtooth potential well before this potential switches off. The second inequality (13.10)
indicates that when the protein diffuses freely, it rarely can move farther than distance
L, before the sawtooth potential is switched back on: the mean time between �ßashes�
of the potential, 1/k, is much less, than the characteristic diffusion time L2/D. Thus
by the time the sawtooth potential is switched off, the protein is in a local minimum.
When the sawtooth potential is switched off, the protein diffuses with equal probability
to the left and to the right, and will not diffuse very far compared to the period of the
potential. If the protein diffuses to the left, then by the time the sawtooth potential is
switched back on, the protein is in the basin of attraction of the same local minimum
it started from. When the potential is on, the protein returns to the starting point of
the cycle. However, if the diffusion to the right took place, the protein is in the basin
of attraction of the next local minimum to the right. Thus, the protein either does not
move, or moves the distance L to the right, with equal probability. Said another way,
the diffusion in the ßat potential can be viewed as a spreading Gaussian distribution.
The asymmetry of the sawtooth potential, when it is switched on, cuts a larger portion
of the distribution into the next domain of attraction. The corresponding average rate
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of motion is hV i = Lk/4 (the mean duration of a cycle is 2/k and, on average, the
system steps a distance L per two cycles).

We considered the highly peculiar sawtooth potential with one of the slope being in-
Þnitely steep. For more regular, smooth potentials, the velocity of the ßashing ratchet is
computed analytically in the so called �fast� and �slow ßashing� limits [Doering, 1995].
In both of these limits, the protein advances very slowly. If the ßashing is too fast, the
protein does not have time to reach the local minimum, and the effect of asymmetry is
lost. The protein is effectively exposed to the average potential which does not support
any steady movement. On the other hand, if the ßashing is too slow, the freely diffusing
protein moves too far from a local minimum, the information about its initial position
is lost, and the average displacement becomes very small. The mean velocity of the
ßashing ratchet reaches maximum ∼ Lk/4 (for the smooth asymmetric potential, such
that δV ∼ kBT ), when k ∼ D/L2 (ßashing frequency is of the same order of magnitude
as the inverse time to diffuse over the potential�s period).

In the general case, the average velocity of the ßashing ratchet can be computed
only numerically. Following the methods of the previous chapter, we can describe the
ratchet by two coupled Smoluchowsky equations:

∂pi
∂t

= D
∂

∂x
[
∂pi
∂x

+
∂Vi/∂x

kBT
pi] + k(−pi + pj), i = 1, 2, j 6= i. (13.11)

These equations must be solved numerically (see Exercise 2) on the Þnite domain [0, L]
with periodic boundary conditions and normalization condition:Z L

0

(p1(x, t = 0) + p2(x, t = 0))dx = 1.

When the probability distributions achieve steady state, the net current is

J = −D[∂
2(p1 + p2)

∂x2
+
∂V1/∂x

kBT
p1],

from which the average velocity can be found: hV i = LJ .
It is important to realize that in the process energy is consumed from the chemical

reaction that drives the switching between the two potentials. The motion down the
slope of the sawtooth potential 2→ 3, generates heat by frictional dissipation. Finally, if
a small load force directed to the left is applied to the protein, the movement slows down.
The load force is equivalent to tilting the potential to the left. Thus, the ßashing ratchet
is able to generate force, and has all characteristics of a molecular motor. However, there
is no direct correspondence of the ßashing ratchet mechanism to a real motor. In what
follows, we consider two simple models of actual molecular motors.

13.3 The polymerization ratchet

Perhaps the simplest way to convert chemical energy into a mechanical force is by
polymerizing a Þlament against a load force (see the previous chapter). Here the energy
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source is the free energy of binding of a monomer onto the tip of the polymer, ∆Gb.
If a polymer assembles against no resistance, the polymerization velocity (elongation
rate) is simply

Vp = L(konM − koff), (13.12)

where L [nm] is the size of the monomer, M [µM] the monomer concentration, and kon
[(µM·sec)−1], koff [sec−1] are the polymerization and depolymerization rate constants,
respectively.

If an object is placed ahead of the growing polymer there are two mechanisms
by which the polymer can �push� the object: (i) by rectifying the Brownian motion
of the object, (ii) by actively �pushing� against the object, i.e. a power stroke. First,
we discuss the Brownian ratchet. We assume that the polymer is anchored at the left
end and is perfectly rigid. The object has a diffusion coefficient, D = kBT/ζ. For the
moment, we neglect depolymerization (koff = 0). In order for a monomer to bind to
the end of the Þlament the object must open up a gap of size L by diffusing away from
the tip, and remaining there for a time ∼ (konM)−1 to allow a polymerization event to
take place. In the limiting case when polymerization is much faster than diffusion, i.e.
konM À D/L2, we can consider the polymerization to happen instantaneously once a
gap of size L appears. Then the time for the load to diffuse a distance L is simply the
mean Þrst passage time hT i = L2/2D. To cover N such intervals takes N · τ time units,
so the average velocity is simply hVpi = NL/(N · hT i) = 2D/L. This is the speed of an
ideal Brownian ratchet. Note that by reducing the size of the monomer, L, the speed
of the ratchet increases since the likelihood of a thermal ßuctuation of size L increases
exponentially as L decreases. However, this is true only as long as our approximation
holds: konM À D/L2, or LÀp

D/(konM). For smaller values of L the polymerization
reaction becomes the limiting factor, so that Vp ' L ·konM (c.f. (13.12) with koff = 0).

We can picture the situation as shown in Fig. 13.5B: the object diffuses on a �stair-
case� sequence of identical free energy functions, φ(x), each with a step height of the
monomer binding free energy, ∆G = −kBT ln(konM/koff). If a load force, FL, opposes
the diffusive motion of the object, the potential becomes φ(x)−FLx. This corresponds
to tilting the potential so that the object must diffuse �uphill�, as shown in Fig. 13.5B.

Including the depolymerization rate complicates the analysis considerably. However,
a diffusion equation can be formulated that can be solved exactly when konML, koffL¿
2D/L. In this regime, the approximate load-velocity relationship is given by the simple
formula [Peskin et al., 1993]:

Vp = L(konMe
−fLL/kBT − koff). (13.13)

That is, the polymerization rate in (13.13) is weighted by a Boltzmann factor where
the exponent, FLL/kBT is the work done by the load in moving the object one step
distance, L. The stall load, Fs, is reached when the work done in moving the object a
distance L is just equal to the free energy from the binding reaction, so that Vp = 0:

Fs =
kBT

L
ln[
konM

koff
]. (13.14)
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Figure 13.5 The polymerization ratchet. (a) Monomers of length L polymerize onto the end of a growing
Þlament with rate constants kon, koff . An object with diffusion coefficient D has its thermal motions
rectiÞed by the insertion of each new monomer. A load force, FL, opposes the the motion of the object to
the right. (b) Free energy diagram of the polymerization process. The total free energy ∆G = ∆Gb+FLx
where the binding free energy, ∆Gb À kBT . Left panel: FL = 0, right panel: FL > 0 tilts the potential
so that the object must diffuse uphill. (c) The load-velocity curve for the polymerization ratchet given by
the approximate (13.13). The exact solution is shown by the dashed line [Peskin et al., 1993].

Note that without depolymerization, koff → 0, there is no Þnite stall load.
Variations and elaborations on the polymerization ratchet have been used to model

a variety of cellular processes, including lamellipodial protrusion [Mogilner and Oster, 1996],
the polymerization of microtubules [Mogilner and Oster, 1999], the propulsion of in-
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tracellular pathogens [Mogilner and Oster, 1996] and the translocation of proteins
[Simon et al., 1992, Peskin et al., 1993].

13.4 Model of a simple molecular motor

To illustrate the formalism developed in the previous chapter, we shall examine in detail
a simpliÞed model based on the principle of the ion-driven Fo motor of ATP synthase
[Elston et al., 1998, Dimroth et al., 1999]. This enzyme uses electrochemical energy
stored in a proton motive force across the inner membrane of mitochondria to produce
ATP. This will illustrate many of the principles of mechanochemical energy conversion
by proteins, but is sufficiently simple to analyze analytically and numerically. The mo-
tor is sketched schematically in Fig. 13.6. It consists of two reservoirs separated by an
ion impermeable membrane. The reservoir on the left is acidic (high proton concentra-
tion) with concentration cacid, and the reservoir on the right is basic (low concentration)
with concentration cbase. The motor itself consists of two �parts:� (i) a �rotor� carrying
negatively charged sites spaced a distance L apart that can be protonated and depro-
tonated; (ii) a �stator� consisting of a hydrophobic barrier that is penetrated by an
apolar strip that can allow a protonated site to pass through the membrane, but will
block the passage of an unprotonated site. (The height of the energy barrier blocking
passage of a charge between two media with different dielectric constants ²1 and ²2
is ∆G ' 200[(1/²1) − (1/²2)] ' 45kBT [Israelachvili, 1992, Dimroth et al., 1999]. This
energy penalty arises from the necessity of stripping hydrogen bonded water molecules
from the rotor sites.)

Qualitatively, the motor works like this. Rotor sites on the acidic side of the mem-
brane are frequently protonated. In this state (a nearly neutral dipole) the rotor can
diffuse to the right allowing the protonated site to pass through the membrane-stator
interface to the basic reservoir. Once exposed to the low proton concentration in the
basic reservoir, the proton quickly dissociates from the rotor site. In its charged state,
the rotor site cannot diffuse backwards across the interface: its diffusion is �ratcheted.�
We will show that thermal ßuctuations will consistently drive the rotor to the right in
Fig. 13.6.

Thus a rotor site can exist in two states: unprotonated and protonated. To specify
the mobility state of the rotor, we need to keep track only of the site immediately
adjacent to the membrane on the acidic side. In its unprotonated state, the site adjacent
to the membrane is immobilized since it cannot pass into the stator, nor can it diffuse
to the left since the next rotor site on the basic side of the membrane is almost always
deprotonated, and cannot diffuse to the left. (Of course, this depends on the thickness
of the membrane being the same as the rotor spacing; this is unrealistic, but the full
model treated in the references does not have this constraint.) Thus the progress of the
model can be pictured as a sequence of transitions between two potentials, as shown
in Fig. 13.6. When deprotonated, the rotor is immobilized in potential φd, and when
protonated, it can move in potential φp. The effect of the load force, FL, is to tilt the
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Figure 13.6 SimpliÞed model illustrating the principle of the Fo motor. The state of the rotor can be
pictured as a probability cloud (shown shaded) that drains from one potential to the next. φp is the
potential seen by the site adjacent to the left side of the membrane in the protonated state, and φd is
the potential in the deprotonated state. The potentials are tilted by an amout equal to the difference
between the driving force (FI = e · dψ/dx), and the load force, FL. In the deprotonated state the site
is immobilized, and in the protonated (almost neutral) state it can diffuse in the potential well φp. In the
fast diffusion limit, the probability cloud quickly settles into the exponential Boltzmann distribution inside
φp, which determines the probability of draining into the next deprotonated well, thus completing one step
to the right.

potentials upward, so the motion in potential φp is �uphill� (i.e. the total potential
when protonated can be written as φp(x)− FLx).

Below, we consider two limiting cases. In the Þrst one, diffusion is much faster than
the chemical reaction rates. In the second one, the diffusion time scale is comparable
to the reaction rates in the basic reservoir. The Þrst case can be treated analytically,
while the second one will require numerical simulation.
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13.4.1 The average velocity of the motor in the limit of fast
diffusion

The model can be formulated mathematically in terms of the probability of the depro-
tonated state, pd(t) [non-dimensional], and the probability density of the protonated
state, pp(x, t) [1/nm]. Here x, 0 ≤ x ≤ L, is the distance of the protonated site from the
interface between the acidic reservoir and the membrane. The model equations have
the form:

dpd
dt

= Net deprotonated spatial ßux+ Net reaction ßux

= Jxd + Jξ (13.15)

∂pp
∂t

= Net protonated spatial ßux− Net reaction ßux

= Jxp − Jξ (13.16)

where

Jxd = 0

Jxp = D
∂

∂x

¡∂pp
∂x

− FI − FL
kBT

pp
¢
, Jxp(0) = Jxp(L) = 0

Jξ = deprotonation at acidic reservoir

+ deprotonation at basic reservoir

− net protonation at both reservoirs

= kdpp(0) + kdpp(L)− k̄ppd

Protonation rates are proportional to hyrogen ion concentration on either side of
the membrane, and the net protonation at both reserviors is: k̄p = kpc

acid + kpc
base.

Note that the rates of protonation and deprotonation have the dimensions k̄p [1/sec]
and kd [nm/sec], respectively. We assume that the deprotonation rates are the same at
both reservoirs.

First we nondimensionalize the model equations using the re-scaled coordinate,
(x/L)→ x, the re-scaled time, (kdt/L)→ t, and the following dimensionless parameters:

� Ratio of reaction to diffusion time scales: Λ = D/kdL.
� Net work done in moving the rotor a distance L : w = (FI − FL)L/kBT .
� Equilibrium constant: κ = k̄pL/kd.

Here FI = e∆ψ/L is the electrical driving force, which is assumed to be constant.
Substituting these variables and parameters into equations (13.15) and (13.16) gives

dpd
dt

= −κpd + pp(0) + pp(1), (13.17)
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∂pp
∂t

= κpd − pp(0)− pp(1) + Λ ∂
∂x

¡∂pp
∂x

− wpp
¢
, (13.18)

where x, t are now the non-dimensional coordinate and time, respectively.
In many situations it turns out that diffusion is much faster than the chemical

reaction rates: ΛÀ 1. (At D ∼ 107 nm2/sec, L ∼ 10 nm, kd ∼ 103 nm/sec, the order of
magnitude of the parameter Λ is 103.) This means that the time between dissociation
events is much longer than the time to diffuse a distance L, so the process is limited by
the speed of the reactions, not by the diffusion of the rotor. In other words, the diffusive
motion of the rotor is so fast that it achieves thermodynamic equilibrium, and so its
displacement can be described by a Boltzmann distribution. In this case we can express
the probability distribution as pp(x, t) = pp(t) · P (x), where pp(t) is the probability of
the site being in the protonated state and P (x) is the equilibrium spatial probability
density describing the rotor�s position relative to the stator.

We can obtain the steady state Boltzmann distribution, P (x), from (13.18). First,
we divide through by Λ and take advantage of the fact that Λ À 1: all terms but the
last are rendered negligible, so that the distribution of rotor positions in the protonated
state potential well φp(0 ≤ x ≤ 1) in Fig. 13.6 is governed by

dP

dx
−wP = 0.

The solution must be normalized to 1 since it represents a probability density. The
result is:

P (x) =
¡ w

ew − 1
¢
ewx, 0 ≤ x ≤ 1, (13.19)

where the quantity in parenthesis is the normalization factor. Thus, the rates of
protonation at time t are: pp(0, t) = pp(t) · P (0) and pp(1, t) = pp(t) · P (1), respec-
tively. Substituting this into (13.17) and imposing the conservation of probability,
pd(t) + pp(t) = 1, we reduce the problem to the 2-state Markov chain described by:

dpd
dt

= −dpp
dt

= −κpd + (P+ + P−)pp, (13.20)

where P+(w) = w/(1−e−w), P−(w) = w/(ew−1). Therefore, the stationary probabilities
are obtained directly by setting the time derivatives equal to zero and solving for pp:

pd(w,κ) =
P+ + P−

κ+ P+ + P−
, pp(w,κ) =

κ

κ+ P+ + P−
, (13.21)

or, in the dimensional variables:

pd(w,κ) =
kdP+ + kdP−

kp(cacid + cbase)L+ kdP+ + kdP−
, (13.22)

pp(w,κ) =
kp(c

acid + cbase)L

kp(cacid + cbase)L+ kdP+ + kdP−
. (13.23)

The average velocity of the motor can be found using the following heuristic ar-
gument. The rotor effectively moves to the right either from the protonated state,
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when the proton is released to the basic reservoir with the effective rate kdP+, or from
the deprotonated state, when the protonation takes place at the acidic reservoir with
the effective rate kpc

acidL. The corresponding effective rate of movement to the right
is the sum of the corresponding rates weighted by the respective state probabilities:
hVri = kpcacidLpd+kdP+pp. Similarly, the rotor effectively moves to the left either from
the protonated state, when the proton is released to the acidic reservoir with the effec-
tive rate kdP−, or from the deprotonated state, when the protonation takes place at the
basic reservoir with the effective rate kpc

baseL. The corresponding effective rate of move-
ment to the left is the sum of the corresponding rates weighted by the respective state
probabilities: hVli = kpcbaseLpd + kdP−pp. The net average velocity, hV i = hVri − hVli,
can be obtained by using the expressions for the state probabilities (13.22), (13.23) and
some algebra:

hV i(FL) = kpkdLw(cacidew − cbase)
(ew − 1)kpL(cacid + cbase) + kdw(ew + 1) ,

w =
(FI − FL)L

kBT
. (13.24)

As a check, note that when there is no load (FL = 0), no membrane potential
(FI = 0), and no proton gradient (cacid = cbase), the velocity vanishes, as it should.
The load-velocity relationship given by (13.24) looks very similar to the one in the next
limiting case, and is plotted in Fig. 13.8C.

The stall force, Fs, is reached when the load force just brings the motor to a halt
(cacidew − cbase = 0):

Fs = FI +
kBT

L
ln[
cacid

cbase
]. (13.25)

Since the electrical driving force FI = e∆ψ/L, (13.25) can be written as an equilibrium
thermodynamic relation in terms of the energy:

Fs · L = e∆ψ − 2.3kBT∆pH. (13.26)

This says that the reversible work done to move a rotor site across the membrane is
equal to the work done by the electrical Þeld plus the �entropic work� done by the
Brownian ratchet. (The term �reversible� in this context means that the velocity is
so slow (near stall) that we can neglect the viscous dissipation.) Dividing through by
the unit charge, e, gives the work per unit charge, which is just the protonmotive
force discussed previously. One point about (13.26) is worth noting. Since the motor is
working against a conservative load force, as the motor approaches stall its efficiency
approaches 100%. For a motor working against a viscous load, a more sophisticated
treatment is required [Oster and Wang, 2000].

It may seem from (13.24) that there is a deÞnite average velocity of the motor
in the limit T → ∞. In other words, the motor continues to move in the absence of
thermal ßuctuation. The reason is that the solution of the Lengevin and Smoluchowski
equations cannot be treated as a regular perturbation problem in the limit of low
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temperatures. This is a singlular perturbation problem, and the protein behavior at
absolute zero temperature cannot be quantiÞed as a simple limit of such behavior at
low temperatures.

13.4.2 Brownian ratchet vs power stroke

In the last example the motion of the rotor was driven by a combination of Brownian
motion and the membrane potential. The rotor diffusion is biased by the electrostatic
forces that are switched off and on by the binding and dissociation of protons to the
rotor sites. The membrane potential appears to drive the rotor unidirectionally without
the aid of Brownian motion. However, this cannot happen without the binding and
dissociation of protons, a stochastic process driven by thermally excited transitions.
Thus even the �power stroke� depends on Brownian motion, so that setting kBT = 0
in the model equations arrests the rotor motion. This is a fundamental distinction
between molecular and macroscopic motors. The distinction between a motor driven
by a �Brownian ratchet� and one driven by a �power stroke� may not be so clear in
other systems.

In the polymerization ratchet model described above, the movement of the load is
driven entirely by its Brownian motion. The chemical step simply rectiÞes, or biases, this
motion [Peskin et al., 1993]. By comparison, the F1 motor in ATP synthase is driven by
the hydrolysis of ATP. The conformational change in the protein that constitutes the
power stroke is known: binding of ATP to the catalytic site drives the change in protein
shape that drives rotation. That is, the load is not driven signiÞcantly by Brownian
motion; it sees the protein�s conformational change as a �power stroke.�

However, a closer look at how ATP binds to the catalytic site reveals that it is a
multistep process involving the sequential annealing of hydrogen bonds between the
protein and the nucleotide. Each step in this process is driven by Brownian motion, i.e.
a thermally activated process as illustrated in Fig. 12.5. Therefore, the power stroke
itself can be viewed as a kind of Brownian ratchet, one that proceeds at a smaller length
scale than the protein ( ATP synthase is ∼ 10 nm in diameter, while the catalytic site is
∼ 1 nm). Thus the distinction between a process driven by a Brownian ratchet and by
a power stroke can be largely a matter of size scale; a fuzzy boundary separates the two
notions. In the extreme case where the motion of the load is due only to its diffusion,
and the role of the chemical reaction is only to inhibit diffusion in one direction, we
can say the motor is a Brownian ratchet.

13.4.3 The average velocity of the motor when chemical
reactions are as fast as diffusion

Next we consider a different limiting case: when the diffusion time scale is comparable
to the reaction rates in the basic reservoir. In this case, we have to change the mathe-
matical formulation of the model. We make the simplifying assumption that the proton
concentration in the acidic reservoir is so high that the binding sites on that side are
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always protonated. Now we deÞne the right boundary of the membrane as the origin,
and the distance between the membrane and the binding site nearest the membrane
in the basic reservoir, x, is always between 0 and L. The chemical state of the rotor
is determined by the state of all the binding sites in the acidic reservoir. In general,
if there are N binding sites on this side, the total number of chemical states is 2N .
However, for now we focus on the binding site nearest the membrane. In this case there
are just two states: �off� if this site is unprotonated and �on� if it is protonated. In the
previous chapter, the mechanochemistry of the motor was described by the following
set of coupled diffusion equations:

∂pd
∂t

= D
∂

∂x

µ
FL − FI
kBT

pd +
∂pd
∂x

¶
− k̄ppd + kdpp, (13.27)

∂pp
∂t

= D
∂

∂x

µ
FL − FI
kBT

pp +
∂pp
∂x

¶
+ k̄ppd − kdpp, (13.28)

where pp(x, t) and pd(x, t) [1/nm] are the probability densities for being at position
x and in the protonated and deprotonated states, respectively, at time t. The proton
association and dissociation rates in basic reservoir are k̄p [1/sec] and kd [1/sec], re-
spectively. Note, that dimensions of some of the model parameters and variables are
different in this limit.

We can nondimensionalize these equations using the re-scaled coordinate, (x/L)→
x, the re-scaled time, kdt → t, and the dimensionless parameters Λ = (D/kdL

2), w =
(FI − FL)L/kBT , and κ = kp/kd. The nondimensional equations have the form:

∂pd
∂t

= Λ
∂

∂x

µ
wpd +

∂pd
∂x

¶
− κpd + pp, (13.29)

∂pp
∂t

= Λ
∂

∂x

µ
wpp +

∂pp
∂x

¶
+ κpd − pp. (13.30)

Equations (13.29) and (13.30) are second order partial differential equations. This
means that four boundary conditions are required in order to have a mathematically
complete description of the problem. One boundary condition is that x = 0 is reßecting:∙

wpd +
∂pd
∂x

¸
x=0

= 0, (13.31)

This takes into account the fact that an unprotonated site cannot pass back through
the membrane. The remaining three boundary condtions requires knowing the state
of all the binding sites in the basic reservoir, which would necessitate solving a large
number of coupled diffusion equations (one for each possible chemical state of the rotor).
However, to keep things simple, we construct a reßecting boundary condition at x = 1
(x is now measured in units of L) when the rotor is in the protonated state. That is,∙

wpp +
∂pp
∂x

¸
x=1

= 0. (13.32)

If the proton dissociation rate is fast and the proton concentration is low in the basic
reservoir. we don�t expect this artiÞcial boundary condition to have much of an effect
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Figure 13.7 In general the chemical state of the motor is
determined by all the binding sites in the right chamber.
In the simpliÞed version of the model only the binding
site nearest the membrane is considered. The reßecting
boundary condition in the off-state at x = 0 is due to the
fact that an unprotonated site can not pass back through
the membrane. The reßecting boundary condition in the
on-state at x = L is artiÞcial and is used to simplify the
problem.

since, in this limit, the probability of the Þrst site being occupied when x = 1 is very
small, so that this boundary condition is rarely encountered.

When an unprotonated site moves to the right of x = 1, it brings a protonated
site out of the membrane channel and into the region 0 < x < 1. This protonated site
becomes the new site that we follow. The state of the motor goes from unprotonated
to protonated, and the coordinate of the motor goes from x = 1 to x = 0. Conversely,
when a protonated site moves into the membrane, it brings an unprotonated site into
the region 0 < x < 1. This unprotonated site becomes the new site we follow. The
state and the coordinate of the motor change accordingly. These considerations are
illustrated in Fig. 13.7 by the arrows connecting the right end of pd to the left end of
pp. The boundary conditions that model this situation are:µ

wpd +
∂pd
∂x

¶
x=1

=

µ
wpp +

∂pp
∂x

¶
x=0

, pd(1, t) = pp(0, t), (13.33)

which is the mathematical statement of the fact that the rotor in the off-state at x = 1 is
equivalent to the rotor in the on-state at x = 0. Therefore, to implement these boundary
conditions numerically, we make use of the periodic boundary condition discussed in
the previous chapter. Note that there are two mechanisms for changing the chemical
state of the rotor: movement of the rotor and chemical kinetics.

We are now in a position to use the numerical algorithm to approximate Equations
(13.29 - 13.33). The interval (0, 1) is divided into M segments. For each of the M grid
points, there are two possible states of the rotor, off- and on-states. Therefore, there are
2M possible states in the discrete approximation of the process. Let the Þrst M states
correspond to the off-state, and the states M + 1 to 2M correspond to the on-state.
The equations used in the numerical scheme for 1 < n < M are:

dpn
dt

= (Fn−1/2pn−1 −Bn−1/2pn)− (Fn+1/2pn −Bn+1/2pn+1)− κpn + pn+M ,
dpn+M
dt

= (Fn−1/2pn−1+M −Bn−1/2pn+M)− (Fn+1/2pn+M −Bn+1/2pn+1+M)− pn+M + κpn,
(13.34)
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and the equations used to implement the boundary conditions are:

dp1
dt

= −(F3/2p1 −B3/2p2)− κp1 + pM+1, (13.35)

dpM
dt

= (FM−1/2pM−1 −BM−1/2pM)− (F1/2pM −B1/2pM+1)− κpM + p2M ,
(13.36)

dpM+1

dt
= (F1/2pM −B1/2pM+1)− (F3/2pM+1 −B3/2pM+2)− pM+1 + κp1,

(13.37)

dp2M
dt

= (FM−1/2p2M−1 −BM−1/2p2M)− p2M + κpM . (13.38)

The potential used in the Fn and Bn is φ(x) = (FL − FI)x. Note that because of
the chemical kinetics, the matrices A and C required for the numerical scheme, are
no longer tridiagonal. However, they are still sparse, so that solving (12.59) is not
computationally expensive.

Let us discuss brießy how to calculate the protonation and deprotonation rates, k̄p
and kd. The chemical reaction is:

site− +H+ ↔ site ·H. (13.39)

At equilibrium, protonation and deprotonation balance. That is,

k̄p[site
−] = kd[site ·H]. (13.40)

Proton concentrations are generally reported as a pH value:

pH = − log10[H+], [H+] = 10−pH. (13.41)

The higher the pH value, the lower the proton concentration. The pKa value of the
binding site is calculated from the measured concentration values of [site ·H] and [site−]
as:

pKa = pH+ log10
[site ·H]
[site−]

. (13.42)

Combining (13.40) and (13.42), we see that the rates k̄p and kd are related to pH and
pKa by

k̄p
kd
= 10pKa

−pH. (13.43)

Generally, k̄p is limited by the rate at which protons diffuse to the binding site. In
this limit, the association rate can be computed from the Smoluchowski formula (this
rate is proportional to the proton concentration, cbase):

k̄p =

Ã
proton

concentration

!
·
Ã
absorption rate to a perfectly

absorbing disk of radius r

!
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= 0.6nm−3 · 10−pH| {z }
protons/nm

3

· 4 r Dproton| {z }
absorption rate

. (13.44)

Here Dproton is the diffusion coefficient of protons. If we know k̄p, kd can be determined
by (13.43). The table shown below lists typical parameter values for ATP synthase.

Parameter Name Parameter Value

Diffusion coefficient of the rod D = 104nm2/s

pKa value of binding site pKa = 6.0

pH of the right compartment pH = 6.0 to 8.0 (variable)

External load force on the rod FL = 0 to 3 pN (variable)

Distance between binding sites L = 8 nm

Diffusion coefficient of proton Dproton = 10
10nm2/s

Absorbing radius of binding site r = 0.5nm

Note, that at these values of the model parameters, at pH = 7, the values of the
nondimensional parameters are: Λ ' 0.1,κ ' 0.1, w ∼ 1.

We now have all the necessary information to use the numerical scheme. Fig. 13.8A
shows the relaxation of the marginal density p(x, t) = pp(x, t)+pd(x, t) to steady state.
The (dimensional) average velocity is a steady-state property of the system and is
related to the total ßux by the relations:

hV i = LJ = −LD
∙
(
FL − FI
kBT

³
p(s)p + p(s)d

´
+
∂

∂x

³
p(s)p + p(s)d

´¸
, (13.45)

where the superscript s in the above equation stands for steady state. Once steady-state
is achieved, the average velocity hV i can then be computed from the relation:

hV i = L(Fn−1/2pn−1 −Bn−1/2pn) + L(Fn−1/2pn−1+M −Bn−1/2pn+M) (13.46)

for 1 < n < M . Typical results for the mean velocity are shown in Fig. 13.8B and Fig.
13.8C.

13.5 Other motor proteins

As we discussed in Chapter 12, there is such a variety of protein motors that no classi-
Þcation scheme can do justice to their diversity. However, for the purposes of discussion
we can identify several physical properties that delineate classes of motors. The liter-
ature on molecular motors is vast, so we shall restrict our discussion here to those for
which reasonably complete mathematical models exist as outlined in Table 13.5. Some
of the most important characteristics of molecular motors are:

Fuel. The two most common energy sources for molecular motors are nucleotide hy-
drolysis (e.g. ATP, GTP) and transmembrane ion gradients. Certain specialized motors
depend on stored elastic energy that has been captured during the assembly of the motor
(e.g. spasmoneme and the acrosome of Limulus [Mahadevan and Matsudaira, 2000]).



376 13: Molecular Motors: Examples

t=0.2ms
t=0.3ms
t=0.5ms
t=0.8ms

pH = 8

8
pH

6 7

0

1

2

1 20

1

2

pH = 8

pH = 7

ρ(
x,

t)

0.4

0.3

0.2

0.1

0.0
2 4 6 8

x

V
el

oc
ity

 [µ
m

/s
] FL=0

V
el

oc
ity

 [µ
m

/s
]

Load force FL, [pN]

A B C

0

t=1ms and ¥

Figure 13.8 Numerical results of the simpliÞed Fo motor. Here pH is the pH value of the right compart-
ment. The external load force is FL. In all the Þgures the number of grid points used in the simulations
was M = 32. (A) Relaxation of the marginal density ρ = ρon + ρoff to steady state for pH = 8 and
no external load. (B) Motor velocity as a function of pH with no external load. (C) Motor velocity as a
function of the load force for pH = 7 and pH = 8.

Mechanical escapement. Three common motor types are (i) rotary (e.g. the
bacterial ßagellar motor, Fo ATPase); (ii) linear motors that run along a �track,� usu-
ally actin, microtubules, or nucleic acid polymers (e.g. myosin, kinesin, dynein, RNA
polymerase); (iii) polymerization or depolymerization motors that directly push or pull
against a load (e.g. the acrosome, cellular lamellipodia, the propulsive tail of Listeria).
The latter category suggests a subclassiÞcation into those that operate in a continuous
cycle (e.g. myosin, F1), and motors that are �one-shot� processes; i.e. they function for
but a single episode of polymerization after which they are usually disassembled.

Cooperative vs �loners�. Because of its small �duty cycle� (i.e. attachment
time to the load), myosin II must act in concert with many other partners to produce a
continuous force on an actin Þlament. Myosin V and kinesin, however, have longer duty
cycles, and so they can transport a vesicle without the cooperation of other motors.

These categories do not begin to delineate the variety of possibilities. However, one
common event generally commences the transduction process between chemical energy
and mechanical force. Because molecular motors can be viewed as enzymes, the binding
of a substrate onto the motor initiates the transduction process. However, this does not
really tell us much, since it is simply a restatement that chemical reactions (other than
isomerizations) begin by combining substrates. The feature that distinguishes molecular
motors from other enzyme reactions is that the binding event is directly or indirectly
coupled to the creation of mechanical forces. For example, in F1 ATPase, the binding
of ATP to the catalytic site directly generates the power stroke. However, the coupling
may not always be so direct. For example, binding of a proton to the Fo rotor site
switches off the local electrostatic Þeld surrounding the rotor permitting bi-directional
diffusion. The binding of monomers to polymerizing actin captures thermal ßuctuations
in elastic strain, which is subsequently released to power protrusion.
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Several points are important. First, the role of thermal ßuctuations in all these
processes is central, so that none could operate when kBT = 0. Second, energy captured
by binding or dissociation events can be stored and released later, and in a different
location, to produce mechanical work. Third, the operation of every molecular motor
depends on its specialized protein geometry, so that models of motors that ignore
geometry are generally not useful to biologists.

Finally, we do not believe that the operation of molecular motors involves any
novel physics or chemistry. However, the amazing variety of protein shapes requires
that we treat each motor individually. General principles are not likely to provide more
than philosophical comfort in understanding any particular motor. In the words of
Katchalsky:

�It is easier to make a theory of everything, than a theory of something�

�Aharon Katchalsky
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Some molecular motors that have been modeled mathematically.

Motor References

Acrosome [Mahadevan and Matsudaira, 2000,
Oster et al., 1982]

F1 ATPase [Oster and Wang, 2000,
Wang and Oster, 1998,
Oosawa and Hayashi, 1986]

Fo ATPase [Elston et al., 1998,
Dimroth et al., 1999,
Lauger, 1991,
Stein and Lauger, 1990]

Bacterial ßagellar motor [Elston and Oster, 1997,
Lauger, 1990, Berry, 1993]

HSP70 [Peskin et al., 1993,
Simon et al., 1992,
Elston, 2000,
Chauwin et al., 1998]

Kinesin [Peskin and Oster, 1995,
Fox and Choi, 2000,
Derenyi and Vicsek, 1996,
Keller and Bustamante, 2000]

Myosin [Huxley and Simmons, 1971,
Huxley, 1957, McMahon, 1984,
Smith and Geeves, 1995]

Polymerization [Peskin et al., 1993,
Mogilner and Oster, 1996,
Mogilner and Oster, 1999]

RNA polymerase [Wang et al., 1998,
Julicher and Bruinsma, 1998]

Suggestions for further reading

� Millennial musings on molecular motors, R. Vale. [Vale, 2000]
� The mechanochemistry of molecular motors, D. Keller and C. Bustamante.
[Keller and Bustamante, 2000]

� Mechanics of Motor Proteins and the Cytoskeleton, Jonathon Howard. [Howard, 2001]
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Alex Mogilner, Tim Elston, Hongyun Wang and
George Oster

Exercises

1. In the example of switching in the bacterial ßagellar motor, the Þrst passage time
density was calculated for the case ∆G = 0. Write a program that numerically
generates the Þrst passage time density for the case when ∆G 6= 0. Investigate how
the distribution changes as a function of CheY concentration. Do you expect the
Kramer�s approximation for the mean Þrst passage time to be valid for all values
of CheY concentration?

2. Nondimensionalize equations (13.11) using the potentials

V1(x) = kBT [cos(x/L) + 0.3sin(2x/L)], V2 = 0.

Use the parameters L = 10 nm, D = 105 nm2/sec, 102 sec−1 < k < 104 sec−1. Write
a program that solves equations (13.11) numerically and compute the velocity of
the ßashing ratchet for various values of k from the given range. Discuss the results.

3. Simulate two rigid Þlaments growing side by side against a �wall,� which diffuses
with the diffusion coefficient D. Assume that the rates of assembly and disassembly
of the monomers onto the polymer tips are known. Use the computer to model this
two-Þlament polymerization ratchet. Estimate the rate of growth in the absence of
the load force and compare it with the average velocity of the one-Þlament poly-
merization ratchet. Compare the corresponding stall forces. Do the results depend
on the mutual position of two Þlaments?

4. Consider the following model of a �walking� molecular motor that is roughly similar
to kinesin. The motor walks a 1-D track with equidistant binding sites. The motor
has two �legs� that either can be (i) attached to the adjacent binding sites, or (ii)
one foot is attached, while the other diffuses freely between the binding sites adja-
cent to the attached foot. The rate of dissociation of the front foot from the track is
different from that of the rear foot. Similarly, the rate of association of the diffusing
foot to the site in front of the bound foot is different from the rate of association
behind the bound foot. Describe this model with coupled Smoluchowski equations
and demonstrate that it is mathematically equivalent to the model considered in
Section 4.1.

5. Derive Langevin equations describing the model of the �walking� motor in the
previous exercise. Simulate the motor�s walk numerically. By changing the asso-
ciation/dissociation rates Þnd conditions under which the motor would move on
average to the right. Apply a load force to the free foot directed to the left and
estimate the stall force numerically.

6. Estimate numerically the average velocity and effective diffusion coefficient of the
walking motor at various values of the load force. Discuss the results.
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7. Assume the mechanochemical cycle of the �walking� motor is such that only the
rear foot dissociates from the track, and that the diffusing foot binds only to the
site in front of the attached foot (i.e. the motor makes only forward steps). Describe
how to Þnd the ratio of the association and dissociation rates if you know from an
experiment the average velocity and rate of growth of the displacement variance.


