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Recently, there has been a surge in the number of pio-
neering studies combining experiments with quantita-
tive modeling to explain both relatively simple modules
of molecular machinery of the cell and to achieve
system-level understanding of cellular networks. Here
we discuss the utility and methods of modeling and
review several current models of cell signaling, cyto-
skeletal self-organization, nuclear transport, and the
cell cycle. We discuss successes of and barriers to
modeling in cell biology and its future directions, and
we argue, using the field of bacterial chemotaxis as
an example, that the closer the complete systematic
understanding of cell behavior is, the more important
modeling becomes and the more experiment and
theory merge.

Why Does Cell Biology Need Quantitative Models?
Many individual chemical reactions in the cell involve
a single enzyme catalyzing a single, well-defined transi-
tion in a substrate. Such reactions produce simple be-
haviors that can be plotted with a single exponential
curve and understood with just a couple of Michaelis-
Menten constants. In such cases, it is simple to go
from experimental measurements to theoretical under-
standing, because there are few underlying players,
and the overall behavior occurs on few time scales and
can be represented by so few parameters that you can
count them on one hand (Segel, 1988).

Physics and chemistry has shown us, however, that
even when but a few players interact in nonlinear
ways, complex and startling large-scale phenomena
can result. For example, in the Belousov-Zhabotinskii
reaction, a simple mixture of just a few chemicals spon-
taneously forms pulsating spiral waves in the beaker
(Tyson, 1976). Physics, chemistry, and mathematics
have also taught us that while large-scale behavior is of-
ten counterintuitive and surprising, it is not necessarily
unpredictable, provided one employs an appropriate
quantitative model in the form of a set of mathematical
equations or a computer code. The model is successful
if observed behaviors emerge from qualitative or quan-
titative analysis of these equations/codes. For instance,
by using dynamical systems equations, it is possible to

*Correspondence: mogilner@math.ucdavis.edu

DOI 10.1016/j.devcel.2006.08.004

Review

explain oscillations in Belousov-Zhabotinskii reaction
(Field and Noyes, 1974). In a way, mathematics can be
thought of as a crutch for our intuition, to help us bridge
the gap between what we can see and what we can
think about.

The exact tools that have been used previously in
physical and chemical cases may simply not be directly
applicable to cell biology. This has nothing to do with vi-
talism, but simply with the fact that cell biology occurs
on multiple and radically different scales, both in terms
of time, space, and complexity. Understanding how cel-
lular-scale behaviors arise from molecular actions is fun-
damentally difficult due to the large number of many
different kinds of molecules all interacting in complex
networks. Another difficulty is that cell biological sys-
tems consist of thousands of molecules and so are not
microscopic, but they are not macroscopic either; often,
fluctuations of chemical or physical quantities in the cell
are comparable in magnitude to the average values of
these quantities.

The main difference between modeling in biology and
physics stems from the inherent redundancy and het-
erogeneity of evolved molecular machines that have to
be elucidated by “reverse engineering.” This makes
cell modeling very difficult but also unavoidable as
new technologies produce staggering amounts of data
about the spatiotemporal behavior of molecular assem-
blies. With increasing frequency, these data are quan-
titative—correlation functions, statistical regressions,
and other similarly sophisticated forms—that cannot
be reduced to simple qualitative statements, so mere
qualitative “cartoon drawing” in the discussion section
of a paper is not sufficient. Rather, to integrate and
make sense of these data, quantitative modeling is
needed as a “hypotheses generating machine” and a
natural “endpoint” for the experimental efforts.

The most critical issue in developing a model is decid-
ing its scale. For instance, to capture the biochemistry
underlying the dynamic instability of microtubules, one
could model the movements and interactions of each in-
dividual tubulin dimer as they exchange on and off the
ends and undergo GTPase reactions (VanBuren et al.,
2005). Alternatively, one could simply propose stochas-
tic rules describing how the length of the microtubule is
expected to change over time (Gliksman et al., 1993). In
between these two extremes, there is still tremendous
latitude in deciding how fine-grained a model to employ.
Which approach is right?

Choosing between a fine-grained and a coarse-
grained model involves several tradeoffs. On the one
hand, constructing a coarser-grained model will often
rely on extensive prior intuition about the cellular phe-
nomenon. On the other hand, a finer-grained model
could require more detailed prior information about the
properties of the individual components. Beyond the
simple pragmatic issues of which type of model is easier
to construct, there is a much more important issue
concerning how the model will be used.

A quantitative model can be exploited in many ways.
First, the mere fact that such a model can recapitulate
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the phenomenon of interest is exceedingly important,
because it indicates that we have identified all of the
necessary players and interactions. On the other hand,
a negative result is also important, indicating that we
probably do not qualitatively understand a molecular
mechanism. Second, models can show us which as-
pects of the system are critically important and which
ones matter less. One can run the simulation with arange
of values for some parameter of interest and thereby
learn whether that parameter plays a key role or not.
Finally, the choice of modeling methods depends on
the scale and purpose of the model. For example, statis-
tical methods of bioinformatics are useful for identifying
promoter binding sites; protein interaction network
models are good for identifying all the genes involved in
a certain function. However, these approaches would
have a hard time answering the question: how does the
molecular machine really work; e.g., what molecular pro-
cesses underlie dynamic instability of microtubules? List-
ing the genes involved in this process or drawing a net-
work of their interactions will not tell why microtubules
undergo alternate catastrophes and rescues. Low dimen-
sional differential equation models are appropriate to an-
swer one part of this question and to understand how
simple individual molecular machines that constitute cel-
lular networks work. To answer another part of the ques-
tion and to unravel organization of complex cellular net-
works, one has to use large-scale computational models.
Here we review some recent cell biological models.
We narrowed our choices to explicit, dynamic, mecha-
nistic, bottom-up models that make specific assump-
tions about pathways and the physics of biological phe-
nomena. Thus, we left out wonderful top-down models
that examine global properties of biological networks
(Joyce and Palsson, 2006), identify network motifs and
explore network stability and robustness (Prill et al.,
2005; Yeger-Lotem et al., 2004), as well as integrative ef-
forts that strive to model the entire cell (Ma’ayan et al.,
2005). We also did not mention powerful causal and in-
formatics models, both small- (Weinreb et al., 2006)
and large-scale (Janes et al., 2006). What is exciting
about the growing popularity of modeling in cell biology
is the use of models as sophisticated working hypothe-
ses helping to understand and design experiments, so
the main requirement in our selection was a clear con-
nection between theory and experiment. Even with these
constraints, considering the recent and ongoing surge in
the number of prominent joint experimental/modeling
studies, we had to ignore important examples, for in-
stance, the recent elegant unraveling of mechanisms of
eukaryotic cell chemotaxis (Janetopoulos et al., 2004;
Schneider and Haugh, 2005) and many others. We use
the examples to address the fundamental questions
that are normally not elaborated on in research papers:

What exactly does modeling add to experimental
studies?

What is the appropriate model scale?

What are the appropriate modeling methods?

Further discussion of quantitative modeling in cell bi-
ology can be found in Levchenko (2001), Slepchenko
et al. (2002), Kholodenko (2006), Mogilner (2006), and
Modgilner et al. (2006).

Modeling Successes

We review recent successful models in order of increas-
ing complexity of the nature of the addressed phenom-
enon, of the methods used, and of the models’ utility.
For convenience, the reviewed models are listed and
classified in Table 1. The space constraints preclude
us from detailed discussions, so a few models (Marshall
and Rosenbaum, 2001; Kimura and Onami, 2005; Mali-
kov et al., 2005) are discussed in greater detail in the
Supplemental Data (available with this article online) in
order to illustrate better how the modeling logic works.
A Simple Mathematical Model Can Be Used as

a Quantitative Hypothesis to Be Tested in Future
Experiments or Can Simply Be Thought Provoking
The mathematician Georg Polya remarked once that if
there is a difficult problem that you cannot solve, then
there is also a simpler problem you do not understand.
Traditional modeling is an art of abstracting a simpler
system, which is a “caricature” rather than a “photo-
graph” of the actual biological system. Complex
computer experiments and system-level analyses (see
below) are all the rage now, but coarse-grained mathe-
matical models remain useful steps in a reductionist
agenda of studying single-scale modules in vast cellular
networks when so few details about the actual in vivo
processes are known that it is difficult to proceed with-
out numerous (and often arbitrary) assumptions about
the nature of nonlinearities and parameter values.

Mathematical modeling is no different from other sci-
entific methodologies. Just like in experimental biology,
the important step is to identify an important problem
that could benefit from modeling. Data are necessary
to make the model grounded in reality, but not sufficient.
It is the scientific question motivating the model that is
the key for a good model. When a mathematical model
is developed, it is often possible to understand it in an
intuitive way. That is, one can look at such a model
and grasp how the behavior might rely on a certain range
of parameters, without actually solving the model equa-
tions (scaling and nondimensionalization are invaluable
tools: see the Supplemental Data). Such qualitative in-
sight requires very hard and long thinking, so a really
good model cannot be cranked up overnight. Thus, bio-
logical insight may be an immediate product of building
the model, so, like in Zen, it is often the path not the end
goal that makes modeling beneficial. The process of
modeling by itself forces the modeler to ask many im-
portant questions: What are the different parts of the
system? Are they all equally important? How do those
components interact? So it is the process of writing
equations and asking these questions that leads to
a new qualitative understanding, which is the real bene-
fit of modeling—after all, we want qualitative under-
standing, not to replace a biological charade with a
mathematical one. The following examples illustrate
these philosophical arguments.

Mathematically, the simplest models emerge when
one looks for a functional dependence of one observ-
able from another—in that case, algebraic equations
(Supplemental Data) suffice. An example of such model
is the recent theoretical explanation (Vavylonis et al.,
2006) of the surprising observation (Kovar et al., 2006)
that in the presense of “leaky capper” formin, the F-actin
polymerization rate is an increasing function of small
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Table 1. Reviewed Models

Dynamics Component Stochastic Technique

Appropriate Quantitative
Reference

Temporal Spatial
Purpose of Model Biological Process
Quantitative Actin dynamics Yes No
hypothesis testing
Biochemical oscillator- Yes No
“clock” in Myxobacteria
MAPK signaling cascade Yes No
Pattern formation in Yes Yes
E. coli division
Data interpretation Fluorescence recovery Yes Yes
after photobleaching
(FRAP)
Data integration Nucleocytoplasmic Yes Yes
transport
Regulation of cell Yes No
cycle in budding yeast
Computer Cytoskeleton dynamics Yes Yes
experiment
Cytoskeleton dynamics Yes Yes

No Algebraic equations Vavylonis et al., 2006

No ODEs Igoshin et al., 2004

No ODEs Markevich et al., 2004

No PDEs Meinhardt and de Boer,
2001

No PDEs Beaudouin et al., 2006

No ODEs, PDEs Smith et al., 2002;
Gorlich et al., 2003;
Riddick and Macara,
2005

No ODEs Chen et al., 2000;
Chen et al., 2004

Yes Monte-Carlo Haviv et al., 2006

simulations
Yes Large-scale Alberts and Odell, 2004

agent-based
computer simulations

concentrations of profilin, a decreasing function of large
concentrations of profilin, and has a maximum at an
intermediate profilin concentration. Profilin facilitates
ADP-ATP exchange on actin monomers and shifts the
equilibrium to ATP-G-actin-profilin complexes associat-
ing with filaments’ barbed ends. Vavylonis et al. (2006)
hypothesize that both profilin and actin-profilin com-
plexes can bind to one of two formin domains (that re-
main processively attached at the growing filament’s
barbed end) and get transferred from formin to the
growing tip. It is easy to see that this explanation of an
optimal profilin concentration giving a maximal actin
elongation rate is very simple: a high profilin concentra-
tion suppresses elongation, largely because free profilin
displaces profilin-actin from the formin. However, with-
out writing equations and thinking about them, this ex-
planation is not easy to come up with. This model is
a novel quantitative hypothesis that can be tested by
biochemistry, but it cannot explain some previous
observations. Commendably, the authors do not obfus-
cate this fact but rather discuss, based on the model

framework, how these discrepancies can elucidate still
murky ATP-hydrolysis mechanisms coupled to actin
polymerization.

The next level of mathematical complexity is deter-
ministic temporal dynamics described adequately by or-
dinary differential equations (ODEs; see Figure 1 and the
Supplemental Data)—the most common type of repre-
sentation used to model cell signaling and metabolic
pathways in cases when the cell can be considered as
a well-stirred reactor and when stochastic effects can
be neglected. Models of this type are especially useful
when biological oscillators and switches are consid-
ered—only through very advanced intuition coming
from years of working with nonlinear dynamical systems
can one tell whether a known system of interactions
manifests some systems-level property and, if so,
how? Two characteristic examples are a model of the
C signaling-based reversal biochemical clock of Myxo-
coccus xanthus cells (Igoshin et al., 2004) and a model
of the mitogen-activated protein kinase (MAPK) cas-
cade bistable switch (Markevich et al., 2004).
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Figure 1. Example of a Simple ODE Model of a Biochemical Network

time [min]

A simple biochemical network consists of three proteins. Each hypothetical protein can be in one of two states, phosphorylated and unphos-
phorylated. The network includes three feedback interactions (curves with circles at their ends represent activation of respective reactions) be-
tween the different proteins. Even with this simplified network containing three proteins, it is hard to predict based on intuition alone what the
network behavior will be. The network layout (A) is implemented as a mathematical model using ODEs with Michaelis-Menten expressions for all
reactions (B). Simulations results are shown in (C). A more detailed description of this model, which is a simplified version of the biological clock

model of (Igoshin et al., 2004), is presented in the Supplemental Data.
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Phosphatase

Figure 2. Example of a Simple Spatial Model
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In eukaryotic cells, localization of proteins plays an important role in many biological phenomena. In this hypothetical example, a protein can
exist in two states, A and B. A kinase that catalyzes the A— B reaction is bound to the cell membrane, and a phosphatase that catalyzes the
B — A reaction is localized diffusively throughout the cytoplasm (A). A PDE model of this network (B) includes both diffusion and reaction terms.
A hypothetical example of the result of such a model—stable steady spatial distribution of protein in one of the states—is shown in (C). A more

detailed description of the model is presented in the Supplemental Data.

Myxobacteria—common soil bacteria that are often
studied for their multicellular social behavior—glide
back and forth on the surface in the “rippling phase,” ex-
hibiting unusual nonrandom reversal time distribution
and a “refractory period” after each reversal during
which the cell is not responsive to signaling, indicating
that the cells have “memory.” These observations led
Igoshin et al. (2004) to hypothesize an internal biochem-
ical cycle that controls reversals and acts as a clock af-
fected by collisions between cells through C signaling
homologous to the chemosensory signal transduction
pathway (Che system) of E. coli. By pondering the
known “interactome” of the C signaling circuit and hy-
pothesizing that part of it constitutes delayed positive
feedback, and another part constitutes a negative feed-
back oscillator, the authors demonstrate that a relatively
simple (yet, impossible to intuit without math) kinetic
scheme (Figure 1) results in stable oscillations, effec-
tively proposing the quantitative hypothesis about the
structure and dynamic of the “clock.” Igoshin et al.
(2004) use the model to explain all observations, from
both wild-type and mutant assays, and propose exper-
iments to test the model.

Bistability is a ubiquitous principle of cellular regula-
tion when pathways display switch-like behavior in
response to a stimulus. Positive or double-negative
feedback regulation is generally considered to be a pre-
requisite for bistability, so at first glance, bistability can-
not arise at, say, an individual kinase level unless there is
allosteric activation or inhibition of a converter enzyme
by its product or substrate, creating a positive circuit re-
quired for bistability. By mathematically investigating
MAPK pathways, which are critical for cellular decisions
to proliferate, differentiate, or undergo apoptosis, Mar-
kevich et al. (2004) discovered that a dual phosphoryla-
tion-dephosphorylation cycle for the kinase and phos-
phatase already possesses all the required ingredients
to display bistable behavior. This conclusion is invalu-
able as a reference point for future experimental work
on cell signaling pathways.

Dynamical systems models are useful, not only when
the biological dynamics are complex, but even when
the system is exceedingly simple mathematically, for in-
stance, when a simple stable steady state is observed.
One such mathematical model (Marshall and Rose-

nbaum, 2001) provides clues about the molecular activ-
ities that control flagellar length and is reviewed in detail
in the Supplemental Data.

A unique feature of cells is the utilization of spatial
separation of components and interactions. Partial dif-
ferential equations (PDEs, which are much more com-
plex than ODEs; see the Supplemental Data and Fig-
ure 2) can be used to model spatially heterogeneous
and compartmentalized dynamics. An excellent exam-
ple of such model is the theory of MinC/MinD spatial-
temporal oscillations (Meinhardt and de Boer, 2001). In
bacteria, the division plane is determined by a polymeric
ring of the FtsZ protein. The site of this ring assembly is
controlled by the Min system, suppressing FtsZ poly-
merization away from the center. It was observed that
the Min proteins in E. coli undergo unusual oscillations
between the membrane of both cell halves. Meinhardt
and de Boer (2001) showed that they can reproduce
the oscillatory pattern if the following assumptions are
made: (1) the MinD ATPase self-assembles on the mem-
brane and recruits both MinC, an inhibitor of Z ring for-
mation, and MinE, a protein required for MinC/MinD os-
cillation; (2) alocal accumulation of MinE is generated by
areaction based on local self-enhancement and a long-
range antagonistic effect; and (3) MinE displaces MinD
from the membrane, causing its own local destabiliza-
tion and shift toward higher MinD concentrations. By
translating these assumptions into a system of PDEs
and solving them numerically, the authors demon-
strated that this local destabilization results in a wave
of high MinE concentration traveling from the cell center
to a pole, where it disappears. MinD reassembles on
the membrane of the other cell half and attracts a new
accumulation of MinE, causing a wave-like disassembly
of MinD, again resulting in a pole-to-pole oscillation of
MinC/MinD. On the average, MinC concentration is high-
est at the poles, forcing FtsZ assembly to the center. Yet
again, after the model is suggested, it can easily be un-
derstood without math, but not before the equations are
written and investigated. This model’s value is in ex-
plaining the system as a self-organizing one, not requir-
ing any prelocalized “morphogen gradients,” yet maybe
the greatest achievement of the Meinhardt and de
Boer’s paper is that it started (together with Howard
et al., 2001) an avalanche of increasingly sophisticated
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and realistic models, addressing, among others, ques-
tions about the role of stochastic effects in pattern for-
mation (reviewed in Howard and Kruse, 2005).

A Model Can Be a Tool for Data Interpretation

Often, it is hard to interpret raw data. Quantitative
models can be useful in analyzing complex measure-
ments and extracting rates. For example, fluorescent re-
covery after photobleaching (FRAP) is often the method
of choice for analyzing the kinetics of binding of fluores-
cently labeled proteins. However, the analysis of FRAP
measurements is not trivial, and many FRAP studies
use simplifications by ignoring boundaries and assum-
ing infinite volume and neglecting diffusion, assuming
that it is much slower than the reaction studied. Those
simplifications are not always justified, often, the bleach
region is comparable in size to the volume in which
molecules can diffuse, and many reactions are as fast
as diffusion.

Using explicit description of both the diffusion and re-
action components and solving respective PDEs, Beau-
douin et al. (2006) overcame the need to simplify. The
mathematical model used is very simple conceptually:
the protein is free to diffuse within the nucleus with
some characteristic diffusion coefficient and can bind
and unbind from DNA with appropriate kinetic parame-
ters. Using an explicit mathematical model rather than
simplifying assumptions, the authors showed that very
fast kinetics cannot be distinguished from diffusion,
suggesting that DNA binding protein might perform
a search which can be approximated by effective one-
dimensional diffusion along the DNA filament, rather
then a three-dimensional diffusion in the entire nuclear
volume. Another beautiful example of using modeling
to interpret data is recent investigation of the leading
edge dynamics in motile cells by Waterman-Storer’s
and Danuser’s labs (Ponti et al., 2003).

Models as Tools for Data Integration

and Understanding

Experimental studies increasingly expose complex cel-
lular networks with potentially vast arrays of rates char-
acterizing them. Which of these rates are the most
important to measure accurately? A good example of
such a system is the transport in and out of the nucleus
(Smith et al., 2002; Gorlich et al., 2003; Riddick and Mac-
ara, 2005), the chemical environment of which is con-
trolled by the nuclear pore complexes (NPC) and an ex-
tensive protein system. To allow such transport, the cell
uses the GTPase Ran. The Ran guanine-nucleotide ex-
change factor (RanGEF), Rccl, is localized in the nu-
cleus and converts RanGDP into RanGTP, while the
Ran GTPase-activating protein (RanGAP) that catalyzes
the RanGTP to RanGDP transition localizes to the cyto-
plasm. These differences in localization of the “source”
and “sink” create a concentration gradient of RanGTP
across the nuclear membrane (Figure 2). This gradient
is utilized to create directionality of both import and ex-
port using an array of importin and exportin proteins to
determine specificity of transported molecules (Pem-
berton and Paschal, 2005). Nucleocytoplasmic transport
is very complex: there are more than 15 import/export
carriers and several additional accessory proteins that
create and maintain the RanGTP gradient across the nu-
clear membrane. To gain an insight, a few groups have
used quantitative modeling to explore nucleocytoplas-

mic transport at a system level, as a system of coupled
integrated modules.

The initial modeling attempt (Smith et al., 2002) used
several simplifications. Only a few important aspects
of the transport machinery were modeled; for example,
all the different import and export carriers were repre-
sented by a single generic “carrier” protein. In addition,
multistep reactions were simplified into a single step as-
suming Michaelis-Menten kinetics. Even this simplified
model provided insights into the relative importance of
different parts of the system. For example, sensitivity
analysis (testing how much the results vary when model
parameters are changed systematically) revealed that
the transport rate was most sensitive to changes in Ran-
GEF’s catalysis of the RanGDP to RanGTP exchange.
The second attempt (Gorlich et al., 2003) used similar
tools (ODEs derived from wiring diagram of the changes
in the localization and states of molecules) but different
simplifications and reached a different conclusion: that
changes in RanGEF are less important than the per-
meability of the membrane to RanGDP. Gorlich et al.
(2003) explicitly modeled all reaction steps instead of
the Michaelis-Menten simplification; however, they did
not include the carriers but just calculated the “poten-
tial” in the form of the resulting RanGTP gradient. Care-
ful comparison between the two models shows that the
difference in the results is not a consequence of the dif-
ferent simplifications but rather a change in the numeri-
cal value of one of the parameters in the models: the
permeability of the membrane to RanGDP. Without
modeling, it would be practically impossible to deter-
mine which factor limits transport. The difference be-
tween the models suggested which of the estimated pa-
rameters in this system is most significant and should be
measured with greater experimental accuracy. Addi-
tional experimental work with a next generation, more
detailed model (Riddick and Macara, 2005) resolved
this issue and demonstrated that the RanGEF is unlikely
to be the limiting factor and that the permeability and
concentration of Ran and other accessory molecules
are more likely candidates. The study of the Ran trans-
port system is a good example of embracing cellular
complexity, in which modeling assisted experiments
that lead to a second generation of more detailed
models.

Increasingly Complex Generations of Models Can Be
Used to Understand Cellular Networks as Systems
Another spectacular modeling achievement is the re-
cent development of mathematical models of budding
yeast cell cycle (Chen et al., 2004), one of the first true
successes of system biology. This model made the tran-
sition from reductionism to synthesis by integrating sim-
ple signaling modules into multiscale pathways. The
budding yeast cell cycle was extensively studied, and
the respective control system is known in exquisite de-
tail in wild-type cells and more than a hundred mutants,
so intuition cannot be used to understand the system
behavior anymore. Chen et al. (2004) integrated data
from tens of independent studies into a qualitative con-
sensus model of the cell cycle expressed in the form of
a “wiring” network diagram, and they translated the di-
agram into a set of nonlinear ODEs and tested the valid-
ity of the mechanistic model by solving the equations
numerically. One of the most amazing features of the
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cell cycle model was that so few quantitative parameters
were known that its authors had to use genetics to guess
a set of reasonable, internally consistent parameters
to use in the model. The solutions were compared with
experimental results from 131 different yeast mutant
strains. In its current form, the model can explain the re-
sults of 120 mutant strains, which is a definitive success,
suggesting that Chen et al. have identified all essential
players and interactions. The model predicts pheno-
types of new mutant combinations and estimates
many reaction rates that are difficult to measure. This
model also shows which of the complex network mod-
ules, types of reactions, and reaction rates are critically
important and which are not, thereby making important
proposals for future experimental work. The power of
modeling, however, is often not what you can explain
but rather what you cannot—the unexplained 11 mu-
tants indicate specifically which aspects of the mecha-
nism require revisions. Note, that the model’s inability
to account for 11 mutants may be due to defects, not
in the model, but in the experimental design and/or
interpretation.

It is important to realize that the success of the bud-
ding yeast cell cycle model would be impossible without
earlier, simpler models from the same group; Tyson et al.
(1995) suggested an almost primitive model of two
equations that illustrated important general principles,
and then Chen et al. (2000) suggested a much more
elaborate model, albeit with a primitive “exit from mito-
sis” module. These models helped to build intuition and
develop quantitative modules of the whole network
without which the complete model (Chen et al., 2004)
would be incomprehensible.

Characteristically, the early simple models of the cell
cycle were most popular with mathematical biologists
but were completely ignored by molecular cell biolo-
gists, who could not take them seriously because so
many known components of the control mechanism
were missing. This dichotomy is one of the barriers to
modeling in biology, and perhaps the only solution is
to develop both simple and system-level models and
to work back and forth across different modeling scales.
The alternative approach—to build the system-level
models right away by assembling a huge network dia-
gram from the data scattered in tens of papers, then
translating the diagram into tremendous sets of equa-
tions, and then using such models to look for undiscov-
ered dynamics—has dubious value. One recent exam-
ple of such an approach is the model of TLR and IL-1R
signaling networks responsible for immune response
(Oda and Kitano, 2006). The model consists of 652 vari-
ables describing molecular species with 444 reactions
between them and an astronomical number of parame-
ters. It is hard to comprehend how such model can be
used and how the reliability of its conclusions can be
assessed.

From the above, it should be clear that the translation
of a network diagram into a set of mathematical equa-
tions is a crucial step, because there are multiple ways
to do that. There are two types of decisions that need
to be made: first, what type of reaction do each of the ar-
rows represent (e.g., mass action, Michaelis-Menten,
etc.), and second, what are the specific kinetic parame-
ter values characterizing the reaction. With tens of equa-

tions and kinetic parameters in modern models, the gap
between the cartoon and mathematical representations
is tremendous. Fortunately, the large number of esti-
mated parameters does not necessarily mean that the
model is flexible enough to generate any type of result.
The specific form of the equations themselves restricts
the possible result. Still, in the future, different parame-
ter combinations will have to be tested systematically
in order for the system-level models to become truly
predictive. Very recently, a number of groups started
to make promising progress in this direction by using
genetic and stochastic optimization algorithms to auto-
matically explore the whole model parameter space
(Mezer et al., 2006). Such efforts require a significant
amount of quantitative data to be used to “score” the
model’s success, so modeling efforts become insepara-
ble from experimental ones.

Computer Experiments Can Confirm the Plausibility
of a Qualitative Model or Explore a Complex
Phenomenon When There Is Little Intuition about It
Sir Isaac Newton once said, “Equations are smarter than
us”—meaning that formal mathematical solutions sug-
gest qualitative answers that cannot be foreseen with-
out math. This suggests an interesting approach to
modeling: not to theorize much but rather to build acom-
puter model by formally translating qualitative assump-
tions into computational rules, and see how it behaves,
in the same way that a chess programmer writes a pro-
gram and then watches it play. This approach is fruitful if
the modeled phenomenon, on the one hand, yields qual-
itative understanding, but on the other hand, involves
a multidimensional process taking place in time and
space. If, in addition, the discrete nature of the molecu-
lar components cannot be neglected, then traditional
approximations and analyses of ODEs or PDEs are too
difficult and often fruitless. Such a model—a computer
experiment, really—is especially useful for studying in-
terrelationships between microscopic and macroscopic
behaviors in a manner that is difficult or impossible to
do in the lab. This could require a lot of computational
power, but given the constantly increasing speed and
decreasing cost of computers, this is not a limitation
anymore.

One example of such a study is kinetic Monte Carlo
(see the Supplemental Data and Figure 3) simulation of
actin aster-like structures (Haviv et al., 2006). This study
addresses a question about how a motile cell “chooses”
an actin network type: some cells emphasize largely iso-
tropic lamellipodial networks in which actin filaments
branch off of each other at wide angles, whereas other
cells are dominated by filopodia—highly aligned actin
filament bundles. The authors investigated in vitro self-
assembly of actin-based structures and discovered
that Arp2/3 complex and fascin control the network
type; without fascin, the Arp2/3 complex mediates
branching of nascent “daughter” filaments from existent
“mother” filaments, resulting in spontaneous formation
of diffuse aster-like structures. In the presence of the
bundling protein fascin, these asters transition into stars
with filopodia-like bundles of actin filaments growing
from the surface.

The authors came up with an elegant idea that the mi-
croscopic mechanism of actin reorganization is fascin-
mediated bending and bundling of longer filaments
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Figure 3. Example of a Simple Stochastic Monte Carlo Model
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(A) An example of a molecular motor “walking” along a microtubule with a vesicle as cargo. This process can be easily modeled using stochastic

computer simulations.

(B and C) Computer code (B) can simulate a single walk of the motor and generate a trajectory of distance over time (C). A more detailed descrip-

tion of the model is presented in the Supplemental Data.

and coalescence of other long filaments into these na-
scent bundles. Microscopy resolution is insufficient to
test this hypothesis, so a model was used for in silico ex-
periments, testing it and complementing the in vitro part
of the study. The simulation, indeed, revealed that in the
in silico system of filaments that branch off the sides of
existent filaments polymerize, get capped, bend, and
get crosslinked by fascin with known rates (luckily, the
kinetics and mechanics of actin are studied thoroughly),
the emerging patterns resemble the observed ones. As
a bonus, modeling makes an intuitively clear prediction
that capping protein inhibits star formation—shorter fil-
aments cannot bend and bundle—which is observed,
and a much less intuitive prediction that the transition
from asters to stars depends on the ratio of fascin to
total amount of actin, which is also observed.

Technically very similar simulations were used to de-
cide which of the two mechanisms—*“pushing” or “pull-
ing”—is responsible for nuclear centering in C. elegans
(Kimura and Onami, 2005). Simulations predicted that
the kinetics of the centering process are very different
for these two mechanisms. Remarkably, the experiment
showed that the data support the pulling mechanism’s
prediction. In this case, modeling helped to choose be-
tween two equally plausible hypotheses, and without it
the kinetic data are almost useless (see the detailed dis-
cussion in the Supplemental Data).

In the previous example, behavior is not too complex,
and in principle the theoretical predictions could be
made without elaborate simulations (but probably not
without any modeling). Computer experiments are even
more useful when behavior is so complex that intuition
fails. In such cases it is sometime a good idea to simu-
late an agent-based model, in which each molecule is
represented explicitly and interactions between them
obey simple rules of physics and chemistry. The com-
plexity comes from the great heterogeneous number
of interacting players. The beauty of this approach is
that it requires little pondering (but often a lot of pro-
gramming). The problem is that such an exceedingly
complicated, fine-grained model, even if it can recapitu-
late a known cell biological phenomenon, may not by
itself yield any insight into the principles of the mecha-
nism. Large-scale order may be seen to arise within

a computer model, but understanding how it arises
may be no easier than understanding how it arises in
the living cell in the first place. Yet, the key difference be-
tween the complex simulation and the complex biologi-
cal system is that the model’s designer has exquisite
control over every aspect of the system, something
that any experimental biologist would trade an arm for.
So, the undeniable utility of such a model is that by play-
ing with interaction rules and comparing results to the
data, one can find what the essential molecular mecha-
nisms are even without detailed understanding of how
they work.

One of the best examples of such an approach is the
first in silico reconstruction of Listeria’s movement (Al-
berts and Odell, 2004). Listeria moves by hijacking the
host cell’s actin system to grow a comet-like tail of actin
filaments that pushes the bacterium through the cyto-
plasm (Cameron et al., 2000). In this model, actin fila-
ments both propel the virtual bacterium by polymerizing
against its surface and pushing it and resist its move-
ment by attaching to the surface transiently. Each actin
monomer and actin accessory protein is simulated ex-
plicitly according to relatively well-known rules of actin
dynamics. By accounting for realistic geometry, actin
network architecture, and stochastic processes, which
earlier, more coarse-grained models could not address
(Mogilner, 2006), the authors discovered that Listeria
moves in irregular nano-steps—the phenomenon ac-
tively investigated experimentally—even though the
nature of these steps is still murky. The simulations
also result in a vivid and realistic mimicking of Listeria’s
propulsion.

The Closer the Complete Understanding of Cell
Behavior Is, the Closer Experiment and Theory
Become, and the Question about Utility

of Modeling Fades Away

Probably the most tractable phenomenon for systems
biology is E. coli chemotaxis (Baker et al., 2006). This
relatively simple system is built from a small number of
proteins with quantitative structural and biochemical
details now available for every node and link in the wiring
diagram of the sensory pathway. These vast arrays
of physiological and biochemical data allow mathemat-
ical models of chemotaxis and signal kinetics to be
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generated. Already 10 years ago these models were so
detailed (Spiro et al., 1997; Barkai and Leibler, 1997),
with very little wiggle room to make arbitrary assump-
tions or parameter choices, that quantitative experimen-
tal analysis of bacterial chemotaxis has benefited from
theory ever since. Among other benefits, the concept
of robustness—the ability of a signaling system to toler-
ate variations in protein concentrations and reaction
rates—was understood quantitatively and applied to
many other signaling pathways in prokaryotes and eu-
karyotes. Recently, truly system-level models (Shimizu
et al., 2003; Rao et al., 2004) almost reached the goal
of becoming the “end point” of biological research
(these models account for most observations in chemo-
taxis, but they still have to be “fine tuned” to match the
data more closely). In fact, the bacterial chemotaxis field
has gotten past modeling single cells to consider the be-
havior of populations of cells. For example, Korobkova
et al. (2004) combined experimental measurements
and computer simulations to demonstrate that some
of the parameters of the sensory system are set in
such a way that the bacterial population responds to
chemical signals stochastically and nonuniformly, and
that such a response has survival value. Characteristi-
cally, researchers in this field do not even discuss any-
more the experiment-theory relationship; those merged
recently without any hype, much as theory merged with
experiment in physics more than a century ago. A few
other cell biological fields, e.g., cell migration, are not
far behind, and there are other areas of biology where
the merger took place long ago, such as biochemical
kinetics, neurophysiology, and ion channel biophysics.

The Future of Quantitative Modeling in Cell Biology

There are significant barriers to modeling in cell biology.
A lack of standard modeling tools needed to reproduce
modeling results (Cassman, 2005) is not one of them: re-
producibility is not a big problem for a relatively simple
model, for which it is enough to grasp its essentials
and then utilize it in a somewhat changed form. A num-
ber of groups have already developed standard inter-
faces enabling biologists to build large-scale computa-
tional models, run simulations, and visualize simulation
results in a way that allows direct comparison to exper-
iments (Supplemental Data). One of the obstacles is that
experimental biologists are not typically equipped with
computational expertise sophisticated enough to gen-
erate quantitative predictions from models. On the other
hand, modelers often have difficulty in deciding which
experiments are reliable (the experimental literature in
biology is a minefield of failures in experimental design
and interpretation), and they often lack understanding
of experimental techniques and, more importantly, of
what are important biological questions. The worst
problem is mutual suspicion: many experimentalists still
think that modeling is but “window dressing” and that
modelers “parasitize” hard-earned data, while many
modelers cannot get used to the fast pace of biological
research and complain that their work is not cited
enough. All these difficulties can and will be overcome;
curricula are being developed that have already started
to produce a new generation of researchers equally
comfortable with computation and bench work and
who have double biological/computational mentality.

Most importantly, a number of “dry” and “wet” labs are
engaged in a “closed loop,” in which experiments inspire
models, the predictions of which lead to further experi-
ments, causing refining of the next generation models.

The role of quantitative modeling in biology as a com-
plementary instrument of biological discovery will con-
tinue to increase, but in our opinion it will always be a
peculiar tool, not equal to biochemistry, microscopy,
and genetics—an “art” as much as science. Building
a good model depends too much on intuition, on the
rare abilities to ask the right question and to sense math-
ematical order behind messy facts, on tricky timing (not
too early, when absence of data leaves a model unsub-
stantiated, not too late, when everything is clear without
a model), and on hard, long thinking that makes model-
ing so painful, but also so much fun.

Supplemental Data
Supplemental Data include mathematical background and re-
sources and supplemental examples and can be found with this
article online at http://www.developmentalcell.com/cgi/content/
full/11/3/279/DC1/.
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Mathematical Background and Resources
1. Algebraic Equations

Algebraic equations, as well as other basic mathematical tools that every biologist has to
be comfortable with can be learned almost painlessly from a number of good elementary
textbooks, for example (Adler, 2005). A good example of a mathematical model that
needs mere algebraic equations is a very simple model of the so called equilibrium
single-stranded polymer (Howard, 2001). The assumption of this model is that all the
monomer-addition reactions have the same dissociation equilibrium constant, K . That is,

k
krm 0j
A +A %TAH+l K=-2 (1)

where A and A denote the monomer and n-mer, respectively. In the equilibrium, the

concentrations of the polymers are constrained by the infinite system of nonlinear
algebraic equations that stem from the balance of fluxes depicted in (1):

(A XA] _ky =K,n=12,... )
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In general, a nonlinear infinite system (2) is very difficult to solve, but in this particular
case it is very easy to guess the solution (mathematicians call it ansatz):
[An]zKa”,n=1,2,... 3)
where constant a has to be found from the condition of conservation of the total
concentration of subunits:
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estimate the average polymer length (average number of subunits in n-mers longer than
monomer):
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2. Ordinary Differential Equations

Excellent introduction into ODEs and their applications in biology can be found in
(Edelstein-Keshet, 1988; Lin and Segel, 1974; Logan, 1977).

In Fig. 1 in the main text we show the kinetic scheme of the assumed reactions between
proteins FrzE, FrzCD and FrzF in the “Frzlator” model (Igoshin et al., 2004). (We
simplified the model considerably by omitting external signals and changing all protein
modifications to be phosphorylation.) First, the model variables — concentrations

[A].[B].[C] of FrzE, FrzCD and FrzF, respectively, are introduced. Then, using the

condition of conservation of the total number of proteins, the concentrations of the
phosphorylated proteins are expressed as differences between total conserved
concentrations and respective non- phosphorylated concentrations. Then, each arrow in
the model diagram is assigned a Michaelis-Menten reaction term in the right-hand side of
the respective equation. For example, the rate of change of the concentration of the non-

phosphorylated FrzE (d [A] /dt ) is equal to the phosphorylation rate (proportional to
Michaelis-Menten expression ([A,m |- [A])/ (K1 + ([Am, - [A])) ) minus de-
phosphorylation rate (proportional to Michaelis-Menten expression[A]/( K, +[A]) with

the proportionality coefficient k,, [C] reflecting the assumption that this reaction is

facilitated by FrzF). Similar arguments lead to three equations for three unknown
variables. These nonlinear equations cannot be solved analytically, but qualitative
analysis (phase plane analysis, bifurcation theory, perturbation theory, asymptotic
analysis) allow finding regions in parameter space where certain behavior, i.e. limit cycle
oscillations, can be expected. Ultimately, the system of ODEs has to be solved
numerically, which is an almost trivial task these days given availability of huge arrays of
computer ODE solvers (see below). Such solutions (see Fig. 1) can be compared with
experimental time series for protein concentrations.

3. Partial Differential Equations

Excellent introduction into PDEs and their applications in biology can be found in
(Edelstein-Keshet, 1988; Lin and Segel, 1974; Logan, 1977). In Fig. 2 in the main text we
illustrate widely accepted model of ‘morphogen gradient” which the cell can maintain if
kinase and phoshatase are separated spatially (Kholodenko, 2006). (Again, we simplified

the models reported in the literature.) Let B (x, t) be the concentration of the

phosphorylated (active) protein (for simplicity, we consider a one-dimensional spatial
case), and A ( x,7) be the concentration of the de-phosphorylated (inactive) protein. The
left hand sides of the PDEs shown in Fig. 2 are the rates of change of the concentrations
at specified spatial locations. The first terms in the right hand sides describe diffusion of
the protein species in the cytoplasm. The second terms are responsible for chemical
kinetics of phosphorylation and de-phosphorylation reactions, similar to those described
in the ODE example. Coefficients k, , (x) account for spatial distributions of kinase and



phosphatase, respectively. These two equations have to be complemented with boundary
conditions, for example no-flux conditions at the cell boundary. The system of these two
equations can be solved numerically without a problem with the help of readily available
software (see below). Also, if one is only interested in the steady state solution, PDEs can
be converted into ODEs: when transient temporal changes die out, the left-hand sides of
the PDEs become zeros, and partial derivatives at the right-hand sides become ordinary
ones. Then, ODEs can be solved numerically. The solutions (like the one shown in the
figure) can be compared to experimental fluorescent signal, for example.

Note that sometime more complex behavior than just transient relaxation to a single
spatial pattern can be expected. For example, for certain values of model parameters,
spatially uniform distribution of protein is the only stable state, while in other regions of
the parameter space the uniform distribution looses its stability, and temporally steady,
spatially periodic stable distributions evolve (this is the case of famous Turing pattern
formation, ubiquitous in biology). Even more complex, periodic both in time and space,
patterns, can emerge, like in the case reviewed in the main text. In this situation, besides
numerical analysis, qualitative analysis (linear stability analysis and the ODE-related
tools mentioned) is very useful.

4. Scaling and Nondimensionalization

Excellent introductions into scaling and non-dimensionalization can be found in (Lin and
Segel, 1974; Logan, 1977). These tools are largely ‘art’ rather than algorithmic
mathematical methods, and can be only understood by doing many exercises. The
exertion is worth it: scaling and non-dimensionalization often allows significant insight
without actually solving equations. For example, in the case of algebraic equations
described above, it is easy to realize that the dissociation equilibrium constant, K , is the
natural scale of concentrations. Introducing the dimensionless concentrations

a,xa,

a, =[A, 1/ K, (2) can be re-written in simpler form: =1,n=1,2,...and it has

a

n+l

simpler solution. Moreover, an experienced applied mathematician would immediately
realize at this point that there are two qualitatively different regimes in this system: one,
when the total subunit concentration is much smaller than K , and another, when it is
much greater than K . In the former case, almost all subunits are in monomeric form,
while in the latter case they are polymerized. These important conclusions do not require
actual solutions.

In the ODE model case, one just has to realize that[A,, ],[B,,].[C,, ] are the natural scales

ot
for the respective concentrations, while inverted rate constants k,,” ork,,”' are the natural

temporal scales. Using these scales to non-dimensionalize the time and concentrations in
the equations, first, decreases the number of parameters in the model from 15to 11
making it easier to explore the parameter space. More importantly, a few non-
dimensional parameter combinations evolve, some of which are bound to be either much



smaller or much greater than unity, which normally hints at biologically important
hierarchy of time scales in the system.

In the PDE model, assuming thatk,(x) ~ k,(x) ~k,K, ~ K, ~K,D, ~ D, ~ D, allows to

choose the characteristic time scale as1/k and characteristic length scale as the
characteristic distance on which protein diffuses over the characteristic time scale,

D /k . Then, looking at the equations, one can immediately conclude that the gradient,

if it exists at all, can be maintained only over distances of the order of v D/k . Crude
measurements of the diffusion coefficients and reaction rates can be made, and one can
estimate if the chemical gradient of this sort can feasibly be relevant to the studied
phenomenon.

5. Monte Carlo Simulations

Introduction into simple Monte Carlo simulations can be found in (Mogilner et al., 2002).
Often, mathematical analysis is not sufficient and further computational tools are
necessary. A lot can be achieved by simulating assumed rules underlining an investigated
phenomenon. Very simple algorithm that is very straightforward to implement is shown
in Fig. 3 of the main text. It is written as a Matlab code that works as follows:

1. Choose the initial position of the motor, set the step size and probability to take a step
per second.

2. At each computational step, generate a random number and use it (and a simple
procedure from the probability theory) to determine whether the motor takes a step or
not.

3. Update the motor’s trajectory.

4. Repeat the procedure until required.

The result can be plotted and compared visually with observed motor trajectories, or it is
easy to compute the average velocity and effective diffusion coefficient of the motor and
compare those with observables. Similar codes for complex models and respective
simulations can be very long and involved.

6. Software for Modeling

The increase in use of quantitative modeling in cell biology is accompanied by a similar
surge of software development. We list here but a few examples of the available tools
from the entire available spectrum, from very multi-purpose ones that require both
programming and math background to specific-purpose ones that were designed to be
used by biologists without any math or programming experience. All software tools
mentioned here are free of charge unless specified differently.

General purpose numerical and symbolic packages
Many numerical packages are being used in physical science and engineering
communities for many years. These are general-purpose software tools that are very




versatile and can be used for almost any type of numerical and mathematical modeling
needs. They usually require some knowledge of programming and mathematics.
Matlab - www.mathworks.com (Commercial)

Scilab - www.scilab.org

Octave - www.gnu.org/software/octave

Mathematica - www.wolfram.com (Commercial)

ODE solvers

These packages solve ODEs numerically and can be used to simulate models that are
implemented using ODEs. No programming skills are required, but the user has to write
up the equations themselves.

Xppaut — www.math.pitt.edu/~bard/xpp/xpp.html

Berkeley madonna — www.berkeleymadonna.com

PDE solvers
Virtual Cell — www.nrcam.uchc.edu — is invaluable resource.

Biochemical / genetic networks format

Many software tool specifically written to model and simulate biochemical and genetic
networks were developed in the recent years. To allow software tools to communicate
with one another a few standards emerged, the leading one being SBML (Systems
Biology Markup Language sbml.org). Over 100 different free software tools support
SBML and provide different functionalities: validation, simulations, libraries for other
programming languages, network layout editors and format converter just to name a few.
The combinations of those tools allow the user to design and simulate a biochemical or
genetic network without any need for programming or mathematical expertise. A few
examples of such tools are:

Systems Biology Workbench - sbw.kgi.edu
CellML — www.cellml.org

CellDesigner — celldesigner.org

BioSpice — biospice.org

Virtual Cell — www.nrcam.uchc.edu

Model Repositories

Many of the software tools mentioned above provide a repository of models implemented
using respective package. An additional initiative that is unrelated to a specific software
is the BioModels database (biomodels.net/) that currently holds many published models
in a variety of different formats.
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Supplemental Examples
1. Model of Flagellar Length Control (Marshall and Rosenbaum, 2001)

Flagella and cilia are organelles consisting of nine doublet microtubules projecting out
from the cell surface (Mitchell, 2004). Flagella provide an interesting test-bed for studies
of organelle size control, because they are easy to visualize, non-essential, and most
importantly, their size can be described with a single number, the length. Within a given
cell type, flagellar length tends to be quite fixed. Moreover, in a cell with more than one
flagellum, all the flagella are of the same length. Flagellar length appears to be actively
controlled, because a severed flagellum will rapidly re-grow to the correct length
(Marshall, 2004). When one flagellum is severed and begins to re-grow, the other flagella
on the cell respond by shortening, as though they “know” that they are longer than the
recently severed one. The molecular mechanisms of length control are not known.

Mathematical models for length control have been devised for two purposes. One is to
figure out how much the cell has to “know”, that is, must there be a signal transduction
mechanism that senses length, or can simpler mechanisms suffice. The other purpose is to
provide clues about the types of molecular activities required for length control, as a step
towards identifying the molecular players.

One reasonable model for length control would simply be that the length is determined by
a fixed quantity of some structural protein. The cell could thus increase or decrease
flagellar length by upregulating or downregulating the expression of the gene encoding
this protein. Jarvik and co-workers developed an elegant approach for testing this
mechanism, by employing a very simple mathematical model (Kuchka and Jarvik, 1982).
Their approach is based on mutants of the green alga Chlamydomonas in which cells
have a variable number of flagella, from zero to six per cell. They reasoned that if length
was determined by the complete incorporation of some limiting precursor, then whatever
number of flagella were present in a cell, the total length of all flagella should always add
up to the same number, so if one were to measure flagellar length versus the number of
flagella present, the resulting curve should show a geometric dependence of length on
number. When Kuchka and Jarvik measured lengths in their variable-number mutant,
they found that in fact length did not show such a geometric dependence on number but
instead varied hardly at all over a range of 1-4 flagella. This result did away with the
limiting-precursor model in a single stroke, without having to identify any of the
molecules that might have been involved.

An alternative model for length control has recently been proposed (Marshall and
Rosenbaum, 2001) based on the fact that flagellar microtubules undergo continuous
turnover. Experimental studies revealed that tubulin is continuously removed from the
distal tip of flagella, at a rate which is independent of length, and that this disassembly is
normally balanced by continuous assembly which requires kinesin-mediated transport
whereby large protein complexes called IFT particles move from the cell body out to the
tip of the flagellum, carrying cargo proteins such as tubulin (Fig. S1A). The number of
IFT particles within a flagellum was found to be independent of the length of the



flagellum. If a fixed number of transport complexes are forced to travel a greater and
greater distance at a constant rate (Marshall et al., 2001), as the flagellum elongates, the
round-trip transit time per particle will increase proportional to the length, L, and hence
the overall rate of protein transport by the IFT particles will decrease as 1/L. Assuming
assembly is transport limited, as suggested by the experiment (Marshall et al., 2001), the
rate of assembly should be proportional to 1/L. In order to maintain a fixed length, the
length-dependent assembly rate must equal the length-independent disassembly rate (Fig.
S1B). Because assembly rate is a decreasing function of length, there is a single stable
length at which the assembly rate equals the disassembly rate (Fig. S1B).

The rate of change of the flagellar length (L) can be characterized by the ordinary

differential equation: % = (%) K (P—-NL)-D, where D is the constant
t

depolymerization rate, / is the number of IFT particles per flagellum, V is the speed of

IFT particle, P is the total pool of flagellar material measured in units of length, N is the

number of flagella, and K is the proportionality coefficient for the fraction of the pool of

flagellar material associating with IFT particle. Note that (P — NL) s the available pool of

flagellar material, while 2L/V is the time needed for one IFT particle to go back-and-forth
along the flagellum, so IV/2L is the effective rate of IFT particles ‘visiting’ the flagellar

tip, and K (P — NL)is the length increment per one such visit. ‘Lumping’ the model

IVKP IVK . .. . L A
parameters: A= V2 ,B= ‘; , simplifies the equation: Cfi— =7 (BN + D). It can be
t
easily solved, either analytically, or numerically, predicting as a result the growth kinetics
(Fig. S1C). Equating the right hand side of the equation to zero, allows finding the steady
. . A .

state length as the decreasing function of the number of the flagella: L = BN D (Fig.

+
S1D). Remarkably, all model parameters except two — K and P — can be measured, and
then fitting the data to the theoretical curves in Fig. S1C,D gives the estimates for K and
P. Then, the model can be truly tested (as there are no more free parameters) by
measuring length kinetics of M flagella with various initial lengths and comparing the
data to predictions of the generalized model, in which the dynamics of the /" flagellum is

dL. IV N
described by the equation: —=| — |K(P—-) L |-D.
y the eq = (2@} (P-20 1)
This simple model can account for all reported phenomenological studies of length
control, including the ability of flagella to equalize their lengths when one is severed
(Marshall and Rosenbaum, 2001; Fig. S1C-D). The model also provides an excellent fit
to measurements of flagellar length versus number (Marshall et al., 2005).

One important role of mathematical models in cell biology is to point out potentially key
regulatory steps, in order to focus on the essential molecules. In the case of flagellar
length control, the described balance-point model indicates that two key molecular
players would be (a) whatever molecules set the number of IFT particles active within a
flagellum, and (b) whatever molecules catalyze the continuous turnover of flagellar



microtubules at the distal tip. Now that the existence of these key players has been
suggested by theoretical analysis, genetic and biochemical approaches can be devised to
determine their molecular identities.

2. Microtubule-Dependent Centering (Kimura and Onami, 2005; Malikov et al.,
2005)

One of the important examples of spatial self-organization of the cell is an ability of
cytoskeletal structures to find geometric center of the cell. Often, respective processes are
based on dynamics of microtubule asters and associated molecular motors. These
processes were extensively studied, both experimentally and theoretically, in vivo and in
vitro, revealing an amazing diversity of the underlying molecular mechanisms (Reinsch
and GoOnczy, 1998; Burakov et al., 2003; Tran et al., 2001; Holy et al., 1997; Vallee and
Stehman, 2005). Here we review two recent studies that combined live imaging and
computer modeling to elucidate microtubule-dependent centering machinery (Kimura and
Onami, 2005; Malikov et al., 2005).

In C. elegans, male and female pronuclei migrate from the periphery toward the center of
the egg following fertilization. This migration depends on microtubules growing from
two centrosomes associated with the male pronucleus. Two mechanisms — “pushing” and
“pulling” — were previously proposed for this migration (Reinsch and Gonczy, 1998)
(Fig. S2A). In the pushing mechanism, plus ends of the microtubules that reach the cell
edge continue to polymerize against the boundary. This growth generates a
polymerization ratchet force (Dogterom and Yurke, 1997; Mogilner and Oster, 1999) that
pushes the unyielding cell boundary and, as a reaction, buckles these microtubules (Fig.
S2A). Mechanically, microtubules are elastic rods, for which the buckling force is
inversely proportional to their length squared (Howard, 2001), so when the pronucleus is
closer to the right edge of the cell (Fig. S2A), the short buckling microtubules at the right
push the pronucleus to the left. The corresponding force imbalance is great, and so is the
resulting migration speed proportional to the force in the low Reynolds numbers
environment of the cell. Closer to the cell center, microtubules both at the left and at the
right reach the boundaries, but at the right they are still shorter than at the left, so the
pushing force from the right is greater, and the migration continues, albeit at decreasing
rate. Eventually, when the pronucleus is at the center, the forces balance and the
migration stops.

On the contrary, the pulling mechanism assumes that minus-end-directed motors
anchored throughout the cytoplasm (i.e., dynein molecules) pull the microtubules, and as
a result pull the pronucleus. An important model assumption is that there is a constant
number of motors per unit length of microtubules, and that the motor forces are additive,
so the resulting pulling force is proportional to the microtubule length (Fig. S2A).
According to this mechanism, when the pronucleus is close to the right edge of the cell, it
is pulled to the left stronger than to the right, because microtubules growing to the right
are restricted in length by the edge. However, the resulting force is small, because the
microtubule aster initially consists only of short microtubules — they do not have time to
grow significantly yet. Later, when the pronucleus is closer to the center, the misbalance



increases because the microtubules grow faster than the pronucleus migrates, and the
migration accelerates. Closer to the center of the cell, the lengths of the left- and right-
oriented microtubules equilibrates, and the migration slows down.

Kimura and Onami (2005) simulated both mechanisms using Monte Carlo method to
keep track of every microtubule in the aster undergoing dynamic instability and
respective forces and discovered that the resulting positions of the pronucleus as
functions of time are qualitatively different for these two mechanisms in complete
agreement with the qualitative arguments: a pushing mechanism predicts a hyperbolic
function (rate of centering decreases with distance to the center), while a pulling
mechanism predicts a sigmoidal function (the rate first increases, then decreases with
distance) (Fig. S2C). Microscopy revealed that the observed function is indeed sigmoidal
(Kimura and Onami, 2005), so this combination of modeling and experiment argues in
favor of the pulling mechanism of centering.

The centering can be completely forceless in other systems (Malikov et al., 2005). For
example, in microsurgically produced cytoplasmic fragments of fish melanophores
(pigment cells), microtubules are initially oriented with their minus ends toward the cut
edge (right in Fig. S2B) and plus ends toward the opposite (left) edge, reflecting their
orientation in the “mother” cell. The pigment granules in these fragments are scattered
throughout the cytoplasm and are coated with multiple molecular motors including
minus-end-directed dyneins (Vorobjev et al., 2001). Upon stimulation of these motors,
the granules rapidly aggregate to the right edge of the fragment, toward the minus ends of
the microtubules “inherited” from the mother cell (Fig. S2B). Surprisingly, the aggregate
of granules then slowly migrates to the center of the fragment (Fig. S2B). Experiments of
Malikov et al. (2005) revealed that the contact of the microtubules with fragment’s
boundary is not necessary, so the pushing mechanism is out, as is the pulling mechanism,
because the microtubules are immobile and cannot be pulled.

Microscopy suggested, and computer simulations confirmed that the peculiar geometric
centering mechanism in this system is based on self-nucleated microtubules (as opposed
to the majority of microtubules nucleated on granules) which act as a volume sensing tool
(Fig. S2B). More such microtubules would nucleate on the side of the aggregate away
from the nearest edge as the rate of spontaneous nucleation per unit of cytoplasmic area is
assumed to be constant across the cytoplasm. This asymmetry leads to a bias in the
transport of pigment granules in the aggregate and directs their movement away from the
cut edge (Fig. S2B). When the aggregate reaches the center of the fragment, the
cytoplasmic area and thus the probability of microtubule nucleation on all sides of the
aggregate becomes equal, keeping the aggregate in the center, equidistant from the
fragment’s margins. Computer simulations allowed investigation of the centering
dependence on parameters of microtubule dynamics which are impossible to vary
experimentally, and predicted the centering kinetics (Fig. S2D), which turned out to be in
an excellent agreement with the data. In the future, one of the greatest challenges in cell
biology, which will be impossible to meet without modeling, is to understand how
multiple redundant mechanisms, such as the described centering phenomena, cooperate
and/or compete in live cells.
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Figure S1. Flagellar Length Control
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A. Plus-end-directed motor/IFT particle complexes deliver building material to the
flagellar tip, while minus-end-directed motor/IFT particle complexes disassemble the tip
at a constant rate. B. Balance-point model: the stable steady-state length of the flagellum
is determined by the balance between the constant disassembly rate and the assembly rate
which decreases in inverse proportion to the length. C. Kinetics of flagellar growth in the
regeneration experiment (solid curve) predicted by the solution of the model equation.
The dotted line — slope of the tangent to the solid curve at r = 0 — is the maximal growth
rate. D. Dependence of the flagellar length on the number of flagella per cell predicted by

the solution of the model equation.
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Figure S2. Microtubule-Dependent Centering

A. Force-dependent centering mechanisms. Left: “pushing” mechanism. Short
microtubules (plus ends are indicated by the arrows) grow at the cell edge, buckle, and
generate pushing force (dashed arrow) until the buckling forces are balanced when the
pronucleus is at the cell center. Right: “pulling” mechanism. Minus-end directed motors
(black rectangles), the number of which is proportional to microtubule length, generate
forces (dashed arrows) that are unbalanced because microtubule growth to the right is
restricted by the cell edge and, as a result, that are pulling the pronucleus toward the
center, where the forces balance. B. Forceless centering mechanism: initially, minus-end
directed motors transport pigment granules to the edge of the cell fragment. Then, self-
nucleated microtubules (dotted) serve as tracks moving the granules toward the center. C-
D. Computer simulations predict the centering kinetics. Importantly, the pulling
mechanism leads to sigmoidal kinetics (dotted), unlike the hyperbolic kinetics of the
pushing and forceless mechanisms.
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