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In living cells, the cytoskeleton connects to the extracellular environment through focal adhesions,
multimolecular structures that can sense applied force. A model is presented that for the first time explains
why the focal adhesions tend to high-curvature regions at the cell periphery. It is based on experimental
evidence for positive feedback between adhesion formation and assembly of actomyosin bundles (stress
fibers). The model predicts that the focal adhesions propagate by treadmilling with a velocity proportional

to the integrin diffusion coefficient.
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Living cells actively change shape and move by con-
verting chemical energy into mechanical forces. The cy-
toskeleton, a complex network of polymers, plays an
important role in these processes. The key cytoskeletal
structures involved in active force generation are stress
fibers, needle-shaped bundles of actin filaments interacting
with myosin motor proteins [1]. Stress fibers are connected
to the cell membrane by anchoring at complex micron-size
multimolecular structures known as focal adhesions [1],
through which forces are transmitted to surrounding tis-
sues. Although the detailed mechanism of stress fiber
assembly remains uncertain, current observations point to
two major steps: establishment of focal adhesion sites and
association of actin and myosin into contractile bundles,
each connecting two such sites [2,3].

Focal adhesions not only provide the physical link be-
tween the cytoskeleton and the extracellular matrix (ECM)
but also serve as a cell’s tactile device probing the rigidity
of the external environment [4—7]. Although the nature of
mechanical sensing by focal adhesion is not fully under-
stood, several possible mechanisms have been proposed [8]
and a growing body of evidence suggests that the traction
forces developed at the contact sites increase the rate of
assembly of focal adhesions [9-11]. In particular, the
traction generated at a ““‘mature,” stationary focal adhesion
was found to be proportional to its surface area.

Recent experimental discoveries point to another intri-
guing feature of stationary cells: most of them tend to
organize long stress fibers, with large focal adhesions
concentrating at the cell periphery in high-curvature re-
gions [12-14]. A number of important questions arise from
these observations. Could an adhesion/stress fiber interac-
tion lead to this self-organizing behavior? Why is the
homogeneous distribution of adhesions disfavored? Why
do adhesions tend toward the cell periphery? What deter-
mines the time scale of adhesion redistribution? In this
Letter we introduce a model that answers these questions
and provides a quantitative framework for the interpreta-
tion of experimental observations.
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Consider a stationary cell with a given geometry ()
(Fig. 1). For simplicity, we will follow the dynamics of
only the key surface receptors mediating adhesion assem-
bly, integrins, while the detailed kinetics of other adhesion
proteins is omitted. Because the numbers of stress fibers
and integrins are large enough we describe them in terms of
their densities and concentrations.

Adhesions are characterized by the local density of the
integrins bound to ECM, p(X, ¢) [um~2]. According to
experiments, this density increases in proportion to the
magnitude of the force (per unit area), |F(X, )|, generated
at the adhesion site by stress fibers [9], and the local
concentration of unbound integrins, p*(X,?) [um™2].
Also, adhesions can disassemble with a constant rate k_;.
Unbound integrins are free to diffuse in the cell membrane
with the diffusion coefficient D. We assume random iso-
tropic nucleation of stress fibers at the adhesion sites, with
the rate proportional to the adhesion size. Therefore, the
force generated by a stress fiber grows in proportion to the
number of integrins in each of the adhesions it connects.
The corresponding rate constant, k,f, (fy is the force
generated by a “unit” actomyosin filament) is assumed,
for simplicity, to be independent of distance between the
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FIG. 1. Schematic representation of adhesion-stress fiber in-
teraction (top view of a thin cell lying on a flat 2D substratum).
Tension generated along the stress fibers causes focal adhesions
to stabilize and grow. Unbound integrins freely diffuse in the 2D
cell membrane. New stress fibers, are nucleated at focal adhe-
sions.
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adhesions. This is in line with the fact that long and short
stress fibers are observed in roughly equal proportion in
nonmoving cells. Bundles can also disassemble with a
constant rate k_,. Overall, the model is described as fol-
lows:
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The first two equations represent mass conservation of
the bound and free integrins; k, is the rate of force-
independent assembly of adhesions. Typically, ky < k_,
which follows from the observation that cells form only
small adhesions if the generation of force is inhibited [9].
The third equation, a kinetic law for the force F(X, 1), is
obtained by integrating forces produced by all stress fibers
originating at point X [15]. In the present form, the model
includes eight parameters: ko, k;, k_1, k», k5, fo, D, and
the average concentration of the bound and free integrins p
(through the zero-flux boundary condition for free integ-
rins). Nondimensionalization reduces this number to four.
Define the dimensionless density of bound integrins ¢ =
p/p, density of free integrins c¢* = p*/p, force f =
Fk_,/|1Q|k, fop%, space variable x = X/,/|Q[: @ — O C
R?, and time 7 = tk_,. Equations (1) then take the form
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where B =k_1k_»/kikofop*|Ql, @y = Bko/k_i, a =
k_,/Bk_,, and D = D/|Q|k_, are the nondimensional
parameters of the model. The typical cell size is
~30 pum, and time scales are as follows: seconds for
binding/unbinding of integrins from adhesions [9], minutes
for assembly/disassembly of stress fibers [2], and D ~
1074-10"" um?/sec [16]. This yields the following
ranges for nondimensional parameters: a,~ 1073 —
107, B~102 -1, @~ 10— 102, D~ 1075 — 1072.
The analysis of the steady state is particularly simple and
instructive in the case with D = oo and large k, and k_, so
that the stress fibers are in instantaneous equilibrium with
the adhesion density field c(x). In this case, the redistrib-
ution of focal adhesions is driven by their interaction with
the self-induced force field E = (f/c) = [ c(x/, 7)[(x' —
x)/|x’ — x|]d?x. In dimensional units E is of the order of
fo, and represents the force acting on a unit integrin at
point x. One then can show that for any distribution c(x),
|E| increases from a unique point inside the cell where
|E| = 0 to the boundary 9€)’ [17]. Because c* is spatially
uniform in this case, it follows from the first of Egs. (2) that

the local concentration of adhesions always grows faster at
the periphery and eventually adhesions will accumulate in
an infinitely small boundary layer, just as free charges in a
conductor are pushed out to the surface by their self-
induced electric field [18]. In the further steady-state analy-
sis, because the adhesion density at the boundary rises to
infinity, it is convenient to switch from concentrations and
densities to the ‘“‘mass-type” variables M, such that ¢ =
dM/dx. “Masses” are bounded, and therefore attain
steady-state values if they exist.

We now turn to a rigorous analysis of a general 1D case
(D < ), x € Q = [0, 1]. To find the steady state, we in-
troduce the monotonic variable M(x) = 3 b e(x)sgn(x —
x")dx’', and make use of spatial uniformity of stationary c*.
Convolving the first and the third of Egs. (2) with sgn(x)
yields the following steady-state equation:

Do + mimf = —PM 3
(x 2)“0 1 +2M(0)’ )
where M(0) = —% f(l) cdx = —M(1) [19]. Depending on
ag and B, Eq. (3) may have up to three different solutions
corresponding to different roots of the cubic polynomial,
M?3(0) + %MZ(O) + [(B+ ap)/2]M(0) + = 0.

There are two qualitatively different patterns of adhesion
distribution at steady state: M(x) may be either a continu-
ous differentiable function (the inactive state) or may have
two discontinuities at x = 0 and x = 1 (the active state)
[20]. Stability of these solutions can be established analyti-
cally for the case 0 = oy << 8. The results that turned out
to be independent of D and « are shown for ay = 0 in
Fig. 2(a). In the inactive state, “weak’ adhesions are
distributed over the whole cell surface, whereas in the
active state, along with distributed small adhesions, the
cell has two large adhesions located at the periphery points
x =0 and x = 1 [Fig. 2(b)]. In the region of bistability,
B<1/8, in the limit @y — 0, D — oo, the domain of
attraction of the active state is determined by a critical
initial amount of bound integrins. This threshold drops as
B decreases. Numerical experiments with realistic values
of D and a,, show similar trends. Thus, the system is most
likely to be active when $ is small (integrins firmly asso-
ciate with ECM), which is typical for the wild-type cells
[Fig. 4(b)]. One way to increase B is by impeding fiber
formation. Indeed, continuous adhesion distributions ob-
served in mutants with the inhibited assembly of stress
fibers [21] is consistent with the inactive state of the model.

Dynamics of the 1D system have been studied numeri-
cally. Simulation results in Figs. 3(a)—3(c) illustrate the
specific way in which adhesions, initially concentrated in
the center of a 1D fragment, move to its end points. This
movement occurs in a treadmilling manner. At the initial
stage, the density peak splits into two because of the zero
net force at its midpoint. As disassembly of adhesions in
the space between the peaks continues, the released integ-
rins get recruited at the fronts almost immediately, because
of fast binding and slow diffusion. A steep gradient of free
integrins (see Fig. 3), which is due to substantial difference
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FIG. 2 (color online). (a) Steady-state phase diagram in 1D
(ap = 0). At B < 1/8, there are two stable states: active (A) and
inactive (I); otherwise, only the inactive state exists. (b) Patterns
of steady-state adhesion distribution: discontinuous distribution
with large adhesions at the end points in the active state (left),
and continuous low-density distribution in the inactive state
(right).

in the rates of binding at the rear and the front of the peaks,
leads to diffusion of free integrins ahead of the front, and
therefore drives treadmilling of adhesions towards the
periphery. The dynamic redistribution of adhesions to the
cell periphery was observed experimentally [Fig. 2(a) in
[21], Fig. 1(a) in [22]]. Moreover, isolated aggregates of
bound integrins, mimicked by the initial conditions in
Fig. 3(a), were indeed shown to transform into expanding
circles or quasi-1D ““doublets,” as stress fibers were being
formed [Fig. 3(d)] [23].

Of particular interest is an estimate of the time necessary
for adhesions to move to the cell periphery. This estimate
can be obtained by approximating a solution of Egs. (2) as
traveling waves propagating in opposite directions. The
wave velocity, v, can then be obtained by direct substitu-
tion of a traveling wave solution into Egs. (2). In the case of
slow diffusion, \/Bc;‘;n /BJaB <K 1 (also, ay < B), this
yields v « D~ci*nzt/ B ( cj, is the concentration of free in-
tegrins in the interior between the peaks and is of the order
of ). As the peaks approach the boundary, they either
accumulate at the end points or disperse, depending on the
parameter values (see Fig. 2).

Note that in the diffusion-limited case, v depends on D

in our model as v « D/A, A = B/ci2, in contrast with v

VD, commonly found for waves in reaction-diffusion sys-
tems. Our situation is somewhat analogous to the “fire-
diffuse-fire” type of intracellular calcium waves [24],
where diffusive Ca ion is released at discrete sites sepa-
rated by a distance / when local Ca concentration exceeds a
certain threshold. In this case, if [ is large, Ca diffusion
(Dq, is a diffusion coefficient) is the most time-consuming
step, and v o D, /l. In our case, diffusion is also a limiting
step and “firing” is the release of integrins from the rear of
the peak. In order to trigger this event, free integrins should
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FIG. 3 (color). (a)—(c) Propagation of adhesions to the ends of
a 1D fragment. Numerical solution of 1D Egs. (2) with ¢y =
0.01, @ = 100, 8 = 0.025, D = 0.01. Densities of bound (blue
line) and free (red line) integrins are plotted along the y axis.
Initially, there are no stress fibers, and adhesions are concen-
trated in the center of the fragment. (d) Adhesion doublet formed
from an isolated cluster of bound integrins: fluorescent adhesion
protein and stress fibers are shown in red and blue, respectively.
Arrows indicate the direction of the doublet expansion. Bar =~
2 pm (adapted from [23]).

diffuse from the rear to the front in the amount exceeding a
certain threshold. This threshold amount must be compa-
rable with that in the peak, as these integrins balance the
force in the rear after they get bound. This means that the
“threshold diffusion length ¢ is of the order of the peak
width. Because diffusion on this length occurs in the
presence of fast and strong binding, the effective diffusion
coefficient is Dogy = DS/ where A = B/c;2 is the length
that would be occupied by the threshold amount of integ-
rins in the free form. Finally, as diffusion is the time-
limiting process, v % Dy /8 = D/A .

The basic property of the 1D model is preserved in a
realistic 2D case: large focal adhesions tend to relocate to
the cell periphery [Fig. 4(c)]. Qualitatively, this behavior
can be explained based on the following observations. The
net force acting on adhesions in the central region of the
cell is small because the stress fibers growing in different
directions compensate each other’s actions. At the periph-
ery, on the other hand, fibers are directed into the interior of
the cell and the net force is relatively large. Therefore, at
the periphery adhesions will assemble more rapidly than in
the central region. This translocation will alter the orienta-
tion of the stress fibers with most of them growing from the
periphery. Such a positive feedback will ultimately result
in accumulation of adhesions at the boundary.

The numerical solution of Egs. (2) on a square [Fig. 4(c)]
can be directly compared to the experimental data on cells
cultured on square islands of substratum [Fig. 4(b)] [12].
The main trend observed in the experiment appears to be in
close agreement with the theory: focal adhesions relocate
to the cell periphery and concentrate at the corners, i.e., at
the regions with the highest boundary curvature (see also
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FIG. 4 (color). Experiment and simulation of the pattern of
cell adhesion on a square substrate. (a) Cell landscape imaged
with the atomic force microscope. Diagonal lines originating at
the corners are stress fibers. (b) Fluorescent focal adhesion
protein, vinculin (green) [12]. (c) Adhesion density as a function
of position on a square cell membrane. Numerical solution of
Egs. (2) on a square at time 7 = 10, with & = 0.001, a = 100,
B =0.1, D = oo. Initially, there were no stress fibers, and
adhesions were concentrated in the center of the square.

experiments by Brock et al [13] for a variety of substratum
island shapes).

Interestingly, the fact that the steady-state adhesion dis-
tribution at the cell boundary follows qualitatively the
curvature of the boundary (Fig. 5) is reminiscent of the
electrostatic distribution of charges over the surface of a
conductor [18], though in our case, as follows from Eqgs. (2)
with oy < B, this distribution is approximately governed
by the integral equation |E| = const, E = [ c(x/)[(x" —
x)/|x’ — x|]d?x. This property of the adhesion distribution
in our model can be qualitatively understood based on the
observation that at the high-curvature regions, the sum of
unit vectors directed along stress fibers is amplified. The
required net force field can therefore be achieved with
lower than average concentrations distributed outside the
high-curvature region thus leading to higher than average
concentration at the locations with high-curvature.

In conclusion, long stress fibers and a highly nonuniform
distribution of focal adhesions are explained by the positive
feedback between cell contractility and adhesion.
Although the assembly/disassembly processes are rela-
tively fast, the redistribution of adhesions occurs on the
slow time scale determined by diffusion of free integrins.
The model predicts that this slow time scale is in hour
range, which is in agreement with observations [23].

Note that our theory directly applies to stationary cells.
In moving cells, the situation is more complex: enzymatic
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FIG. 5 (color online). (a) Steady-state distribution of adhesions
along the boundary of an ellipsoidal cell with the eccentricity
e = 0.42. Adhesion density is plotted in arbitrary units (e, = 0).
(b) Adhesion density ¢ as a function of curvature k. (Note, that
this dependence becomes significantly nonlinear at the points
with sufficiently low curvature.)

activities regulate the adhesion dynamics at the cell leading
edge differently from that in the cell interior [25].
However, in moving cells, large adhesions also tend to
translocate to the cell edge [26]. The model, therefore,
captures general features of adhesion/contractility dynam-
ics and can be extended to account for more complex
processes in moving cells.
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