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Abstract. In this study we consider the density of motor proteins in filament
bundles with polarity graded in space. We start with a microscopic model that
includes information on motor binding site positions along specific filaments
and on their polarities. We assume that filament length is small compared to
the characteristic length scale of the bundle polarity pattern. This leads to
a separation of scales between molecular motor movement within the bundle
and along single fibers which we exploit to derive a drift-diffusion equation
as a first order perturbation equation. The resulting drift-diffusion model re-
veals that drift dominates in unidirectional bundles while diffusion dominates
in isotropic bundles. In general, however, those two modes of transport are
balanced according to the polarity and thickness of the filament bundle. The

model makes testable predictions on the dependence of the molecular motor
density on filament density and polarity.

1. Introduction. Cells depend on intracellular transport of cargo like vesicles, or-
ganelles and protein complexes. Simple diffusion is rarely effective; usually, this
transport is driven by the movement of processive, cargo binding molecular motor
proteins along polar filaments, such as microtubules and actin [5]. Examples are
motor proteins of the dynein and kinesin families which move along polar micro-
tubule fibers to minus and plus ends, respectively [15] (figure 1), and proteins of
the myosin family transporting cargo along actin filaments [8].

The polarity, i.e. orientation of plus and minus ends, of filaments within the
bundle in general changes along the bundle ([14]). Our focus is the effect of vari-
ations of polarity and bundle width in space on the distribution and dynamics of
molecular motors. It is known that molecular motors frequently detach from one
filament and attach to another, and as a result frequently change their direction
of movement [9]. As a result, their density therefore would evolve according to a
diffusion-drift process rather than through mere drift.
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While this case has not been treated in the modeling literature, a drift-diffusion
model was formulated in [13] that relied on the assumption the filaments are long,
spanning the whole filament bundle, while diffusion is caused by random motion
within the cytoplasm. A variant of this model has been analyzed using variational
methods [3] and various other variants of it have been used to describe unidirectional
transport in axons coupled to backward diffusive flux within the cytoplasm ([11,
10]). Recently a comprehensive review on modes of intracellular transport ([2]) has
been published which thoroughly elaborates on the interplay of directed transport
along filaments and diffusive modes of transport in the cytoplasm. We also note
that the deep connection between transport models and drift-diffusion equation
was elucidated by Peter Lax and colleagues [4], and the general idea of deriving a
drift-diffusion model from more complex transport models has a long and venerable
tradition in mathematical biology [7, 6, 12].

Our aim here is to derive the drift-diffusion equation for molecular motors moving
along anisotropic filament bundles. We are considering generic molecular motor
proteins which move along protein fibers at a given velocity. The fibers themselves
are assumed to have the same characteristic length and to be aligned in parallel
forming a bundle that corresponds to a microtubule-filled axon [1] or to a bundle
of actin filaments coated with myosin motors engaged in cargo transport [17]. The
filaments are assumed to be polar and might therefore, within the filament bundle,
point in one of two possible directions (figure 1). We call those two fiber ends minus
end and plus end and assume that our generic molecular motors move towards the
plus end at a given fixed speed.

Figure 1. A: Cargo bound molecular motor proteins move along
filaments. Arrowheads mark the polarity of the filaments which
determines the direction of movement. B: Once molecular motors
reach the tip of the filament they, a), fall off and, b), immediately
reattach to a another filament that is randomly picked out of those,
which overlap with the molecular motor protein.

We further assume that the motors are processive and move to the filament ends;
once a molecular motor reaches the plus end, it falls off that specific filament and
immediately reattaches to another filament that is picked randomly out of those
which overlap with the instantaneous molecular motor position (see figure 1). As
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that randomly picked filament might have any of the two polarities, the molecular
motor will either keep its direction or turn and move in the opposite direction.

It is clear that molecular motors within a bundle will undergo frequent pauses
and/or changes of direction, and their distribution will evolve according to a general
drift-diffusive pattern. If one filament polarity dominates, we should expect more
drift; if average polarity is zero, we expect more diffusion. One could therefore
come up with an ad hoc model that combines both effects, weighting them with
coefficients that depend on the anisotropy of the filament bundle.

In this study it is our aim to derive such macroscopic drift-diffusion model as
perturbation approximation of a detailed transport model which includes informa-
tion on the position of molecular motor binding sites on specific filaments and their
polarities. To this end we introduce a scaling of respective parameter with regard
to the filament length and we derive the first order perturbation model as an ap-
proximation of the original microscopic model in the case of slowly varying polarity
and width of the filament bundle.

The result is a drift-diffusion model equation which includes expressions for drift
and diffusion weighted by local bundle polarity, but it also includes additional ve-
locity fields which are caused by changes in bundle width and polarity, which would
otherwise be overlooked in an ad hoc model. The resulting model for the density
of motor proteins ρ = ρ(t, x) where x ∈ R corresponds to space and t ≥ 0 to time
reads

∂tρ+ ∂x

(

Vm

[

Q+
l

6

(
1−Q2

) ∂xr

r
+

l

12
∂x(Q

2)

]

ρ

)

=
l

3
Vm∂x

(
(
1−Q2

)
∂xρ

)

,

(1)
where Vm > 0 is the constant speed at which molecular motors move along filaments
and l > 0 is the length of filaments. Here we omit initial and boundary data
since those typically need to be adapted to the specific modeling application. The
distribution of plus-end-forward and minus-end-forward directed fibers is given by
r+(x) and r−(x) respectively. Their sum r(x) = r+(x)+r−(x) represents the width
of the filament bundle, i.e. the number of filaments per cross-section, while their
difference r̄(x) = r+(x)− r−(x) represents the polarity of the bundle. The relative
polarity

Q :=
r̄

r
=

r+ − r−

r
(2)

ranges between −1 and 1 and the order parameter Q2 represents the anisotropy of
the bundle and ranges between 0 (isotropic) and 1 (fully anisotropic).

In addition, we also take into account the case where the two types of oppositely
oriented filaments with densities r+ = r+(t, x) and r− = r−(t, x) are moved by
given velocity fields v+ = v+(t, x) and v− = v−(t, x). Notation-wise we write their
average velocity as v = (v+ + v−)/2 and the relative velocity as v̄ = (v+ − v−)/2.
The modified evolution equation for the density of molecular motors in this case
reads

∂tρ+ ∂x

(

vρ+ (v̄ + Vm)

[

Q+
l

6

(

1 +
2v̄

Vm

)
(
1−Q2

) ∂xr

r
+

l

12
∂x(Q

2)

]

ρ

)

=

=
l

3
∂x

(
(v̄ + Vm)2

Vm

(
1−Q2

)
∂xρ

)

. (3)

The average velocity affects the dynamics through an additional drift term while
the relative velocity v̄ acts as a correction to the molecular motor speed Vm.
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The structure of this papers is as follows. In section 2 we formulate the micro-
scopic structured model which describes the population of molecular motors retain-
ing the information about the polarity of the filament to which they are attached
and the relative positions of the binding sites.

In section 3 we derive a first order perturbation equation which represents an
approximation to the original model under the scaling assumption that the filament
length is small compared to the bundle length scale.

In section 4 we analyze the relative magnitude of the diffusive and the drift terms
in the resulting drift-diffusion model and demonstrate the effect of one of the drift
terms using numerical steady state solutions. Note that as the external velocity
fields only add correction terms we restrict the final discussion to the equation for
a static bundle (1). Finally section 5 will be devoted to concluding remarks.

Figure 2. A: A molecular motor at position x moves at speed Vm

in the direction of the filament plus end marked with an arrowhead.
Its relative position η ∈ [−l/2, l/2] represents the distance towards
the filament center point c, hence η = x−c. η = l/2 corresponds to
the molecular motor being positioned at the plus end and η = −l/2
refers to the minus end. B: The same situation for a molecular
motor attached to a minus-end-forward direction filament. The
relative position is now computed as c−x and therefore the filament
center is at x+ η while η = l/2 and η = −l/2 still refer to the plus
end and minus end, respectively.

2. Microscopic model formulation. First, we formulate a structured reaction-
transport model which describes two types of molecular motors, bound to plus-
end-forward and minus-end-forward filaments, respectively. The motor densities
χ± = χ±(t, x, η) are interpreted as densities with respect to the position within the
filament bundle x and with respect to the microscopic dimension η ∈ [−l/2, l/2]
which corresponds to the distance of the molecular motors to the center point of
the filament they are attached to. The interpretation of η varies between the two
groups of molecular motors. However, η = l/2 always refers to the plus end of the
filament and η = −l/2 refers to the minus end in both cases (see figure 2).

The equation for χ+ reads






∂tχ
+ + ∂x

(
(v+(t, x− η) + Vm)χ+

)
+ ∂η(Vmχ+) =

= R+ Vm

(
χ+(t, x, l/2) + χ−(t, x, l/2)

)
,

χ+(t, x,−l/2) = 0 .

(4)
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The transport term in the direction of η models the fact that molecular motors move
towards the plus end with speed Vm. Transport in physical space is additionally
affected by transport of the fibers themselves and therefore the speed with respect
to physical space is v+(t, x− η)+Vm where x− η is the position of the center point
of the filament while the molecular motor itself is at position x (see figure 2).

Molecular motors detach from the fiber at η = l/2, i.e. once they reach the
plus end. The total number of molecular motors detaching from their filaments per
unit time at x is given by Vm(χ+(t, x, l/2) + χ−(t, x, l/2)). The molecular motors
immediately leave the minus end of filaments, therefore the boundary condition at
η = −l/2 is zero density. Detached molecular motors reattach with equal probability
to any filament within the bundle cross-section at x. This includes actin filaments
with center points between x−l/2 and x+l/2 and therefore molecular motors attach
to filaments at any relative position between η = −l/2 and η = l/2. The polarities
of filaments, however, vary according to the concentrations r+ and r−. Therefore
reattachment to filaments of positive polarity at x − η, or of negative polarity at
position x+ η is weighted the coefficients R+ and R− respectively, which have the
form

R± =
r±(t, x∓ η)

∫ l/2

−l/2
r+(t, x− η)dη +

∫ l/2

−l/2
r−(t, x+ η)dη

. (5)

Note thatR+ andR− are probability densities in the sense that
∫ l/2

−l/2(R
++R−) dη =

1 and therefore reattachment conserves the total number of molecular motors.
The analogous reaction-transport model for the molecular motors moving in neg-

ative direction is given by






∂tχ
− + ∂x

(
(v−(t, x+ η)− Vm)χ−

)
+ ∂η(Vmχ−) =

= R− Vm

(
χ+(t, x, l/2) + χ−(t, x, l/2)

)
,

χ−(t, x,−l/2) = 0 ,

(6)

where the effect of the molecular motor speed Vm has opposite sign in the transport
term with respect to physical space but retains the same sign in the transport term
with respect to the position relative to the filament center.

With a view to derive one single equation for the combined density of right-
moving and left-moving molecular motors we recast this system of equations for the
new quantities

χ = χ+ + χ− and χ̄ = χ+ − χ− ,

which represent the total density of molecular motors and their polarity. We also
recast the velocity fields according to

v =
v+ + v−

2
and v̄ =

v+ − v−

2
,

and we obtain the rewritten system of equations taking the sum and difference,
respectively, of the system (4), (6),






∂tχ+ ∂x

(

(v(t, x− η) + v̄(t, x− η))
χ+ χ̄

2
+ (v(t, x+ η)− v̄(t, x+ η))

χ− χ̄

2
+

+ Vmχ̄
)

+ ∂η (Vmχ) = (R+ +R−)Vm χ(t, x, l/2) ,

χ(t, x,−l/2) = 0 ,

(7)
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∂tχ̄+ ∂x

(

(v(t, x− η) + v̄(t, x− η))
χ+ χ̄

2
− (v(t, x+ η)− v̄(t, x+ η))

χ− χ̄

2
+

+ Vmχ
)

+ ∂η (Vmχ̄) = (R+ −R−)Vm χ(t, x, l/2) ,

χ̄(t, x,−l/2) = 0 .

(8)

3. Derivation of the first order perturbation solution. Based on the system
of equations (7), (8) we consider the asymptotic regime where the filament length
l is small compared to the length scale on which the bundle polarity and width
along the bundle vary, and we derive the first order perturbation equation as an
approximating model.

3.1. Scaling. We scale the distance between the molecular motors and the center
of filaments by the length of the filaments, η̃ = η/l and we drop the tilde to keep
the notation simple. Note that now the boundary value of χ is given at η =
−1/2 and the domain of the microscopic dimension is the interval [−1/2, 1/2]. The
characteristic scales for x and t are ∆x (on which the polarity and width of the
bundle change) and t0 ∼ ∆x/Vm. What we have in mind is the asymptotic regime

where l̃ = l/∆x → 0. Note that implicitly we also scale the densities χ̃ = χ
/

1
l∆x .

First, we scale the probability densities for reattachment (5), replace r±(x∓ lη)
by Taylor expansions at x and thus find asymptotic expressions for the sum and
difference of R+ and R− which appear in the system (7), (8),

R+ +R− =
1

l

(

1− lη
∂xr̄

r
+ l2

(
η2

2
− 1

24

)

∂xxr +O(l3)

)

,

R+ −R− =
1

l

(
r̄

r
− lη

∂xr

r
+O(l2)

)

.

(9)

Next, we scale the system (7), (8), plug in the asymptotic expansions (9) and
also replace v(x± lη) and v̄(x ± lη) by Taylor expansions, which leads to







∂tχ+ ∂x

(

vχ+ v̄χ̄− lη∂xvχ̄− lη∂xv̄χ+ Vmχ̄
)

+
1

l
∂η (Vmχ) =

=
1

l

(

1− lη
∂xr̄

r
+ l2

(
η2

2
− 1

24

)

∂xxr +O(l3)

)

Vmχ(t, x, 1/2) ,

χ(t, x,−1/2) = 0 ,

(10)







∂tχ̄+ ∂x

(

vχ̄+ v̄χ− lη∂xvχ− lη∂xv̄χ̄+ Vmχ
)

+
1

l
∂η (Vmχ̄) =

=
1

l

(
r̄

r
− lη

∂xr

r
+O(l2)

)

Vmχ(t, x, 1/2) ,

χ̄(t, x,−1/2) = 0 .

(11)

Finally, we introduce the asymptotic expansions of χ and χ̄

χ = χ0 + lχ1 + l2χ2 + o(l2) , χ̄ = χ̄0 + lχ̄1 + o(l) , (12)

and for the macroscopic densities with respect to x we write

µi =

∫ 1/2

−1/2

χi dη , µ̄i =

∫ 1/2

−1/2

χ̄i dη .

Plugging in (12) into (10) and (11), we obtain equations of various orders with
respect to l, which we use in the sequel to assemble an O(l) perturbation equation.
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3.2. System of order l−1. The equation of order l−1 contains the information on
how χ0 depends on η,

{

∂η (Vmχ0) = Vmχ0(t, x, 1/2) ,

χ0(t, x,−1/2) = 0 .

It implies that

χ0 =

(
1

2
+ η

)

χ0(t, x, 1/2) , (13)

and therefore we obtain, by integration on [−1/2, 1/2], the expression

µ0(t, x) =
1

2
χ0(t, x, 1/2) . (14)

Likewise the equation of order l−1 for χ̄0 reads






∂η (Vmχ̄0) =
r̄

r
Vmχ0(t, x, 1/2) ,

χ̄0(t, x,−1/2) = 0 ,

and implies

χ̄0 =

(
1

2
+ η

)
r̄

r
χ0(t, x, 1/2) , (15)

based on which we conclude by integration that

µ̄0 =
1

2

r̄

r
χ0(t, x, 1/2) =

r̄

r
µ0 , (16)

where we used (14).

3.3. Equations of order l0. The order l0 equation of (10) reads






∂tχ0 + ∂x (vχ0 + v̄χ̄0 + Vmχ̄) + ∂η (Vmχ1) =

= Vmχ1(t, x, 1/2)− η
∂xr̄

r
Vmχ0(t, x, 1/2) ,

χ1(t, x,−1/2) = 0 .

(17)

It contains information on the macroscopic dynamics, namely the 0-order pertur-
bation problem, which we obtain directly by integration and using (16),

0 = ∂tµ0 + ∂x

((

v + (v̄ + Vm)
r̄

r

)

µ0

)

. (18)

To isolate the microscopic information contained in (17) note that due to (14)
and (16) it holds that

∂tµ0 + ∂x (vµ0 + v̄µ̄0 + Vmµ̄0) = 0 =
1

2
(∂tχ0 + ∂x (vχ0 + v̄χ̄0 + Vmχ̄0))

and therefore (17) implies that

Vmχ1 =

(
1

2
+ η

)

Vmχ1(t, x, 1/2) +

(
1

8
− η2

2

)
∂xr̄

r
Vmχ0(t, x, 1/2) ,

which allows to infer by integration that

1

2
χ1(t, x, 1/2) = µ1 −

1

6

∂xr̄

r
µ0(t, x) . (19)
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The order l0 equation of (11) on the other hand reads






∂tχ̄0 + ∂x (vχ̄0 + v̄χ0 + Vmχ0) + ∂η (Vmχ̄1) =

=
r̄

r
Vmχ1(t, x, 1/2)− η

∂xr

r
Vmχ0(t, x, 1/2) ,

χ̄1(t, x,−1/2) = 0 .

(20)

The macroscopic part of this equation, due to (13) and (15), can be written as

∂tχ̄0 + ∂x (vχ̄0 + v̄χ0 + Vmχ0) = −C(t, x)

(
1

2
+ η

)

for a function C(t, x) that does not depend on η and for which we find by integration
that

− 1

2
C(t, x) = ∂tµ̄0 + ∂x (vµ̄0 + v̄µ0 + Vmµ0) . (21)

For the profile of χ̄1 with respect to η this means according to (20) that






∂η (Vmχ̄1) =
r̄

r
Vmχ1(t, x, 1/2) +

1

2
C(t, x) − η

(
∂xr

r
Vmχ0(t, x, 1/2)− C(t, x)

)

,

χ̄1(t, x,−1/2) = 0 ,

and therefore we conclude

Vmχ̄1 =

(
1

2
+ η

)(
r̄

r
Vmχ1(t, x, 1/2) +

1

2
C(t, x)

)

+

+

(
1

8
− η2

2

)(
∂xr

r
Vmχ0(t, x, 1/2)− C(t, x)

)

.

Finally integration on [−1/2, 1/2] yields an expression for µ̄1 which corresponds to
the order-1 version of (16)

µ̄1 =
1

2

r̄

r
χ1(t, x, 1/2) +

1

Vm

1

6
C(t, x) +

1

12

∂xr

r
χ0(t, x, 1/2) (22)

=
r̄

r
µ1 −

1

Vm

1

3

(

∂t

( r̄

r
µ0

)

+ ∂x

(

v
r̄

r
µ0 + v̄µ0 + Vmµ0

))

+
1

6

(
∂xr

r
− r̄

r

∂xr̄

r

)

µ0 ,

where we used previously gathered information, namely (19), (21) as well as (14)
and (16).

3.4. Equation of order l. Summarizing the coefficients of order l in (10) we obtain






∂tχ1 + ∂x

(

vχ1 + v̄χ̄1 − lη∂xvχ̄0 − lη∂xv̄χ0 + Vmχ̄1

)

+ ∂η (Vmχ2) =

= Vm

(

χ2(t, x, 1/2)− η
∂xr̄

r
χ1(t, x, 1/2) + χ0(t, x, 1/2)

(
η2

2
− 1

24

)

∂xxr

)

,

χ2(t, x,−1/2) = 0 .

(23)
After integration with respect to η the right hand side cancels and we obtain the
evolution equation for µ1,

0 = ∂tµ1 + ∂x (vµ1 + (v̄ + Vm) µ̄1) , (24)

where we might substitute (24) to eliminate any dependence on the “bar” quantities
µ̄0 and µ̄1.
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3.5. First order approximating problem. We multiply (24) by l, add the 0-
order limit equation (18) and substitute (22) obtaining

0 = ∂t(µ0 + lµ1) + ∂x

(

v(µ0 + lµ1) + (v̄ + Vm)
r̄

r
(µ0 + lµ1)+

+ l (v̄ + Vm)

(

− 1

Vm

1

3

(

∂t

( r̄

r
µ0

)

+ ∂x

(

v
r̄

r
µ0 + v̄µ0 + Vmµ0

))

+

+
1

6

(
∂xr

r
− r̄

r

∂xr̄

r

)

µ0

))

. (25)

We aim to convert (25) into a first order perturbation equation for (10), (11) by
adding appropriate expressions of order l2.

First, we replace any occurrence of µ0 + lµ1 in (25) by ρ. We also replace any
occurrence of µ0 alone by ρ which implicitly means that we added the missing
multiples µ1 which are of order l2. Thus we obtain

0 = ∂tρ+ ∂x

(

vρ+ (v̄ + Vm)
r̄

r
ρ

)

+ l∂x

(

(v̄ + Vm)

(

− 1

Vm

1

3

[

∂t

( r̄

r
ρ
)

+

+ ∂x

(

v
r̄

r
ρ+ v̄ρ+ Vmρ

)]

+
1

6

(
∂xr

r
− r̄

r

∂xr̄

r

)

ρ

))

. (26)

Note that if we substituted the expansion ρ = ρ0 + lρ1 + ... into (26), the equations
for ρ0 and ρ1 would coincide with (18) and (24) respectively and therefore the

solution to (26) is a first order approximation to µ =
∫ 1/2

−1/2
χdη.

The mixed derivative ∂xtρ in (26), however, renders any straightforward inter-
pretation of that equation difficult. We therefore undertake a second step in which
we again add terms of order l2 which will allow to rewrite (26) as a classical drift-
diffusion equation. Note that the structure of (26) corresponds to

0 = ∂tρ+ ∂x(U0ρ) + l∂x(U1ρ) + l∂x (G∂tρ) , (27)

where U0, U1 and G do not depend on ρ. The approach which we take is to add
the second order expression −l2∂x(G∂x(G∂x(U0ρ))) which allows to write (27) as

0 = ∂tρ+ ∂x(U0ρ) + l∂x(U1ρ)− l∂x(G∂x(U0ρ))+

+ l∂x
(
G
[
∂tρ+ ∂x(U0ρ) + l∂x(U1ρ)− l∂x(G∂x(U0ρ))

])
. (28)

The rewritten equation (28), however, is the sum of one equation and its derivative
with respect to x multiplied by l. Hence the solution of the following simpler
equation

0 = ∂tρ+ ∂x(U0ρ) + l∂x(U1ρ)− l∂x(G∂x(U0ρ)) (29)

also solves (28) and coincides with the original equation (27) up to the first order
terms.

This procedure applied to (26) yields

∂tρ+ ∂x

(

vρ+ (v̄ + Vm)Qρ

)

+
l

3
∂x

(

(v̄ + Vm)×

×
(
1

2

(
(
1−Q2

) ∂xr

r

)

ρ− ∂x

(
v̄

Vm
+ 1

)
(
1−Q2

)
ρ− 1

Vm
ρ∂tQ+

+

(

− v

Vm
+Q

v̄

Vm
+

1

2
Q

)

∂xQρ

))

=
l

3
∂x

(
(v̄ + Vm)

2

Vm
(1−Q) ∂xρ

)

, (30)
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where we used the notation (2) and where we already distributed expressions to the
right and to the left of the equality sign according to their diffusive, respectively
drift-type nature. Note that setting the fiber velocities v and v̄ to zero we already
recover the first order perturbation drift-diffusion equation for molecular motors in
a static filament bundle (1).

Lastly, we will derive the evolution equation for Q and substitute for ∂tQ in (30)
which will eliminate many of the expressions in (30) which depend on v and v̄. We
use the fact that the velocity fields v+ and v− transport the filament fibers, hence
it holds that

{

∂tr
+ + ∂x(v

+r+) = 0 ,

∂tr
− + ∂x(v

−r−) = 0 ,

which in v and v̄ notation and using r = r+ and r = r+ − r− is equivalent to
{

∂tr + ∂x(vr + v̄r̄) = 0 ,

∂tr̄ + ∂x(v̄r + vr̄) = 0 .

From this we derive

∂tQ = −∂xv̄
(
1−Q2

)
− v∂xQ+ v̄

(

Q∂xQ+ (Q2 − 1)
∂xr

r

)

,

which we plug into (30) to obtain the first order perturbation equation

∂tρ+ ∂x

(

vρ+ (v̄ + Vm)

[

Q+
l

6

(

1 +
2v̄

Vm

)
(
1−Q2

) ∂xr

r
+

l

12
∂x(Q

2)

]

ρ

)

=

=
l

3
∂x

(

Vm

(

1 +
v̄

Vm

)2
(
1−Q2

)
∂xρ

)

. (31)

4. Discussion. The first order approximation model (31) has the classical struc-
ture of a drift-diffusion equation. For the further discussion we set the velocity
fields of the filaments to zero as they only introduce correction terms. For a static
bundle the model reads

∂tρ+∂x

([

VmQ
︸ ︷︷ ︸

=V1

+Vm
l

6

(
1−Q2

) ∂xr

r
︸ ︷︷ ︸

=V2

+Vm
l

12
∂x(Q

2)
︸ ︷︷ ︸

=V3

]

ρ

)

= ∂x

(
l

3
Vm

(
1−Q2

)

︸ ︷︷ ︸

=D

∂xρ

)

,

(32)
where we introduced abbreviating notation for the velocity fields and the diffusion
coefficient. This equation contains the dominant drift term with corresponding
velocity V1 and the diffusive term with corresponding diffusion coefficient D. There
are also small drift terms with corresponding velocities V2 and V3. All three drift
terms and the diffusion term depend on the local polarity Q(x) of the bundle.

First, let us analyze the relative magnitudes of the three drift terms and the
diffusion term. Recall that ∆x is the characteristic length on which polarity Q(x)
and bundle width r(x) change, and that the scaling assumption under which we
derived (32) was l ≪ ∆x. In general it holds that Q ∼ 1, so the magnitudes of the
diffusion coefficient and the velocity fields, under conditions which are compatible
with the scaling assumption, are

D ∼ Vm
l

3
, V1 ∼ Vm , V2 ∼ Vm

l

6∆x
, V3 ∼ Vm

l

12∆x
.
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In an almost unidirectional bundle, whereQ2 ≈ 1, V2 andD that are proportional
to (1−Q2) are negligible, while V3 ≪ V1 for any value of Q, and the model reduces
to purely drift-like transport with velocity Vm. The other terms start to contribute
significantly in an almost isotropic (or, as it is called in the biological literature,
bipolar) bundle, when |Q| ≪ 1. Let us first consider the case when r(x) = const.
Then, in the zero flux stationary case, the motor density is governed by the equation

VmQρ ≈ l

3
Vm

(
1−Q2

)
∂xρ ≈ l

3
Vm∂xρ ,

the solution of which is

ρ = exp

(
3

l

∫

Q(x)dx

)

.

This solution predicts that the motors will be distributed smoothly in the almost
isotropic bundles with maxima and minima of their densities corresponding to zeros
of polarity Q(x). If we neglected the diffusion term, the motors would concentrate
into delta-function-like aggregates at zeros of polarity Q(x), so the diffusion term
has non-trivial smoothing effect. Note that even in a highly anisotropic bundle this
term is not negligible in the vicinity of zeros of polarity Q(x).

In situations where the width of the filament bundle r varies, the velocity field V2

states that mere thickening of the filament bundle triggers a drift in the direction of
the thickening. This effect is small in the highly anisotropic bundle when Q2 ≈ 1,
but is not negligible in an almost isotropic bundle when |Q| ≪ 1. The fact itself
that thickening of the bundle should cause directed transport of molecular motors
is somewhat counter-intuitive, but it can be explained by the following argument.
In the example of figure 3 sudden thickening of an isotropic bundle happens within

Figure 3. Schematic illustration of bundle thickening causing a
net drift of molecular motors: In this example sudden thickening
of an isotropic bundle happens within a narrow transition zone.
Once molecular motors attach to a filament near to its minus end
they leave the transition zone along this filament. The probability
to leave the transition zone in the direction of the thicker part of
the bundle, however, is higher than in the other direction which
translates into a net drift in that direction.

a narrow transition zone. Molecular motors might circle back and forth within
the transition zone as long as they hop onto filaments near their plus ends. Once
they attach to a filament near to its minus end they leave the transition zone along
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this filament. The probability to leave the transition zone in the direction of the
thicker part of the bundle, however, is higher than in the other direction for the
simple reason that more filaments enter the transition zone from the side where the
bundle is thicker. In the example of figure 3, thickness increases by the factor 2
and therefore also the number of molecular motors leaving the transition zone in
the direction of the thicker bundle is larger by that same factor. It is clear that
this effect must go away as the bundle becomes more anisotropic and also as the
filaments become shorter which is reflected by corresponding factors in V2.

In the special case of perfectly isotropic bundle whereQ ≡ 0, a stationary solution
corresponding to zero motor flux can be found from the equation

∂xρ

ρ
=

1

2

∂xr

r
,

the solution of which is: ρ(x) = C
√
r where constant C > 0 is given by a normal-

ization condition. Hence we predict that in isotropic filament bundles of varying
filament density per cross-section, the concentration of molecular motors per unit
length is proportional to the square root of the density of filaments per cross-section
segment.

The velocity field V3 represents a net drift in the direction of increasing anisotropy
Q2 and it can therefore accelerate the zero order drift V1 or slow it down. It should
be noted that this effect is restricted to anisotropic bundles due to the factor Q
in V3. In terms of magnitude, this velocity field is always dominated by the O(1)
transport with velocity V1 = VmQ since V3/V1 ∼ lQ/12∆x ≪ 1 and we conclude
that V3 can be dropped from (32).

Although its contribution is minor we show numerical steady state solutions
below to illustrate the effect of V3 in scenarios which, rigorously speaking, violate
our scaling assumption l ≪ ∆x.

We consider a filament bundle of constant width and given a specific polarity
pattern and use the parameters Vm = 0.5µm/s and l = 30µm. Figure 4 shows the
stationary solution for a given density at the left boundary given by ρ0 = 0.1µm−1

and with the polarity Q as shown in the lower picture. Here the molecular motors,
since polarity is zero in the left part of the bundle, enter the bundle by diffusion
and since the right part of the bundle is unidirectional they are transported out of
the bundle at the maximal speed Vm. In the center there is a transition zone where
the polarity grows linearly.

The first graph in Figure 4 shows the stationary solution of (32) while the second
graph shows the stationary solution of the equation after we have dropped V3. In
that second scenario the stationary density of molecular motors is continuous and
monotonic while the V3 drift term in the first graph accelerates transport within
the transition zone. However the stationary density rebounds when the polarity
reaches its maximum as the effect of the additional drift isn’t effective any more.
Note that this rebound effect increases even slightly if the transition zone gets more
narrow. However, the effect goes away as the transition zone widens which flattens
the polarity gradient and corresponds to the parameter regime which is actually
covered by the scaling assumption.

In a second scenario we look at the concentration of molecular motors at the
interface where the polarity of a filament bundle suddenly switches sign from positive
to negative. We assume that the filament bundle is unidirectional at both ends and
that the change of polarity is linear within a narrow transition zone where molecular



DRIFT-DIFFUSION MODEL FOR MOLECULAR MOTORS 4565

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08 ρ

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08 ρ without O(l) drift

x[µm]
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

Q

Figure 4. Stationary solution (steady transport from left to right)
with (top) and without (middle) the term corresponding to polarity
gradient-generated drift. Lower graph: given polarity profile.

motors concentrate. In figure 5, the width of the transition zone is 30µm which
corresponds to the filament length. The major difference between the two stationary
density profiles with and without the polarity gradient-generated drift V3 is that the
solution of the full equation (32) seems to enforce a flat plateau in the motor density
along the transition zone while without that drift term there is a more pronounced
peak in the center of the transition zone.

Of course, if the transition zone is even more narrow, the stationary concentration
profile of the microscopic model would be wider, while the stationary concentration
profile predicted by (32) would be supported within the transition zone and therefore
correspond to a bad approximation. Thus, when polarity pattern changes on a
very short length scale, the drift-diffusion approximation to the original microscopic
model is not valid.

Certainly there is a plethora of random effects that causes diffusivity in cargo
transport. One is the randomness of observed molecular motor velocities which only
very roughly can be assumed to be constant. It was the aim of this study to focus
on the diffusive effect of bundle polarity and therefore we made this simplifying
assumption. As a matter of fact, the diffusive effect due to filaments switching
directions, which is included in our model, is large: the characteristic diffusivity is
l/3Vm, where l is the filament length. Comparing this diffusivity to the effect of
variations in motor velocity, one finds that, for example, the standard deviation of
kinesin velocities is in the range of 10% [16] of the mean motor velocity. Hence,
even if motors maintain their individual velocity along their entire runlength, the
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Figure 5. Stationary solution (concentration at the interface of
unipolar bundles of opposite polarity) with (top) and without (mid-
dle) polarity gradient-generated drift V3. The width of the zone
featuring a linear transition between the two unipolar bundles cor-
responds to the filament length. Lower graph: given polarity pro-
file.

diffusivity due to variations in velocity between motors will be roughly 10% of the
diffusivity effect caused by the filaments switching directions.

Similar considerations apply with respect to the diffusive effect of randomness
of fiber trajectories. If fibers are transported by molecular motors in a coordinated
manner, captured in our model by given velocity fields v+ and v−, only deviations
from the mean rate of transport would enter the diffusivity. If the single fibers are
uncoupled, that effect could be much larger, since motors could transport single
fibers in random directions. This situation, however, is definitely not covered by
our model. Implicitly, our model assumes significant cross-linking between fibers,
which diminishes shear movements of the neighboring parallel fibers, and so the
dominant effect is relative sliding of the anti-parallel fibers.

5. Conclusion. In this study we derived a drift-diffusion model for the dynamics
of molecular motors moving in anisotropic filament bundles. The resulting equation
contains three drift terms and a diffusion term that are functions of polarity and
thickness of the bundle. In highly anisotropic bundle, the first drift term with the
velocity proportional to the bundle polarity dominates. In almost isotropic bundles,
diffusion term and drift term depending on the bundle thickness gradient are not
negligible and predict smoothing of the motor distribution and motor accumulation
in thicker parts of the bundle, respectively. The model makes testable predictions
on how motor density per bundle segment scales with the number of filaments per
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cross-section in isotropic bundles of varying thickness. Finally, the third drift term
gives a higher order drift caused by variations of the fiber polarity which is always
small in magnitude.
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