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In this paper, we consider local and non-local spatially explicit mathematical models for
biological phenomena. We show that, when rate differences between fast and slow local
dynamics are great enough, non-local models are adequate simplifications of local models.
Non-local models thus avoid describing fast processes in mechanistic detail, instead describing
the effects of fast processes on slower ones. As a consequence, non-local models are helpful to
biologists because they describe biological systems on scales that are convenient to observa-
tion, data collection, and insight. We illustrate these arguments by comparing local and
non-local models for the aggregation of hypothetical organisms, and we support theoretical
ideas with concrete examples from cell biology and animal behavior.

1. Introduction

Biological interactions occur at specific locations
and frequently involve the redistribution of or-
ganisms or molecules in space. Even from ini-
tially homogeneous states, striking patterns can
form that make space heterogeneous (Levin
& Segel, 1985; Levin, 1992; Mackas & Boyd,
1979; Steele, 1974, 1976, 1978). Recognizing the
importance of space, biologists have struggled
with the difficulties of collecting data over numer-
ous spatial scales. Models can facilitate biological
explorations by allowing researchers to make
predictions and explore questions difficult to ad-
dress with field or lab studies. Over the past seven
decades, researchers have developed a variety of
ways of modeling spatial interactions in biology,
starting with Fisher’s (1937) seminal work on
gene spread. This paper examines the ways in
which spatially explicit non-local models help
biologists to capture essential features of spatial
phenomena.
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We begin our investigation by briefly describ-
ing several different approaches to modeling
biological systems. Because our discussion en-
compasses widely different biological disciplines
including ecology, genetics, physiology, and cell
biology, the language of this initial summary is
intentionally general. For the purposes of this
paper, for instance, we consider biological sys-
tems to be collections of interacting individuals
that coexist on a spatial landscape. These “indi-
viduals” can represent cells, molecules, or organ-
isms. In order for individuals to interact, they
may move across space themselves or some agent
related to them may move. Keeping the possibi-
lity of related agents in mind, however, we will
refer only to “interacting individuals”. Mean-
while, modelers may capture individual move-
ment by following the individuals themselves or
by following their densities. For the present, we
restrict our attention to models that consider
density as a response variable.

© 2001 Academic Press
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One approach to modeling spatial biological
interactions is to treat space implicitly. Implicitly
spatial “mean-field” models, which do not distin-
guish between different locations in space, in-
volve the simplifying assumption that individuals
are well mixed and that each is therefore equally
likely to interact with individuals at any other
location (Durrett & Levin, 1994). This assump-
tion, analogous to the mass action approxima-
tion of chemistry, requires the spatial movement
scale of individuals to be large compared to the
spatial scale on which interactions occur and,
conversely, the temporal scale of movement to be
smaller than that of interactions. Most non-spa-
tial models of biological systems that are systems
of ordinary differential or difference equations
fall into this category. Many of these models take
the general form

df(t)

= = R, (1)

where f and R are vector functions. The elements
of f quantify the total densities of different classes
of individuals as functions of time, while elements
of R represent corresponding rates of reactions.
Familiar models of this sort describe Michaelis-
Menten enzyme kinetics, Lotka—Volterra popula-
tion dynamics, and neural activity (Murray, 1989).

Another major approach to modeling bio-
logical systems is to treat space explicitly. By
distinguishing among different locations in space,
spatially explicit models can address situations in
which the mass action approximation fails. Inter-
actions in spatially explicit models are often local,
with individuals interacting only between adjac-
ent locations in space. This limitation implies
that the spatial and temporal scales of movement
and interaction are comparable. Reaction—-diffu-
sion equations are examples of local models that
are continuous in space and in time. These famil-
iar models typically take the form

of(x, 1)
ot

0*(x, 1)
ox? ’

=R(f(x,t) + D" (2

where x is a spatial coordinate, and f and R are
defined as in the spatially implicit case except
for an additional explicit dependence on spatial

coordinates. The second term in this equation
describes dispersal of different classes of indi-
viduals, where D is a vector whose elements
represent corresponding constant dispersal mag-
nitudes. Reaction-diffusion-type models have
a rich history in biology. Fisher (1937), Skellam
(1951), and Andow et al. (1990) examined rates of
gene and population spread using simple reac-
tion-diffusion equations. Following Turing’s
(1952) initial investigation of the reaction and
diffusion of chemicals important in morpho-
genesis, researchers have used similar equations
to explain diverse examples of biological pattern
formation, ranging from neurological mapping
(Ermentrout & Cowan, 1979), cell alignment
(Murray et al., 1983; Odell et al., 1981), and leaf
vein formation (Mitchison, 1980) to morphologi-
cal development (Murray, 1981). Mathematical
biologists have applied the same types of reac-
tion—diffusion mathematical formulations to the
aggregating behavior of cells (Grindrod et al.,
1989; Oster & Murray, 1989) and multicellular
organisms (Grindrod, 1988; Keller & Segel, 1970;
Kierstead & Slobodkin, 1953; Levin & Segel,
1985; Okubo, 1980).

Non-local spatially explicit models are the
focus of this paper. These are models in which
interactions occur between non-adjacent loca-
tions. The presence of non-local interactions indi-
cates that the spatial scale of movement is large
and the temporal scale is small in comparison to
other processes that are modeled explicitly, but
not so much as for different locations to become
indistinguishable. We examine the relationship
between model framework and differences in pro-
cesses’ rates in detail in the next section. For now,
we simply note that in continuous space, many
non-local models take the partial integro-differ-
ential form

of(x, 1)
ot

= jm W(x, x')-R(f(x', ) dx’

— R(f(x, 1) J W(x', x)dx’ (3)
or the difference form

f(x, 1+ 1) = f T Wk, x)-REG ) dy. (@)
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The definitions of x, f, and R are unchanged in
these equations, and W and W are vector func-
tions, which are linear dispersal kernels, that
gives probabilities of rates of motion from point
x' to point x. Examples of non-local models are
becoming more common in biology (Mollison,
1977; Kot & Schaffer, 1986; Lewis, 1994; Neubert
et al., 1995; Mogilner & Edelstein-Keshet, 1999).

Models that express non-local interactions are
useful to biologists for several reasons. Most im-
portantly, non-local models lend themselves to
the types of data biologists frequently collect.
Although many biological variables of interest
may be affected by processes that occur on small
spatial or temporal scales, collecting sufficient
data to characterize these processes may be pro-
hibitively difficult. For example, substantial
movement of seeds or of animals may take place
on a time-scale of several minutes. Biologists
interested in measuring individual movement,
however, may collect data on the scale of hours
or days by setting seed traps at given distances
from individual plants, or marking animals re-
leased at one location and attempting to recap-
ture them at varying distances from that location.
Because non-local models describe the effects of
small-scale processes on larger spatial scales and
longer temporal scales, they provide a theoretical
framework that naturally corresponds to the data
that empiricists collect. Other advantages, to be
explained as we develop the mathematical frame-
work of non-local models in the next section,
include an intuitive description of slower-scale
processes and efficiency in numerical solution.

In the next section, we examine the scales of
biological interactions, formalize scaling argu-
ments and cover the mathematical relationship
between non-local and local models. In Section 3,
we apply the concepts developed in Section 2 to
two concrete examples, demonstrating non-local
models’ potential to facilitate understanding of
complex processes and to accommodate biologi-
cal data. We conclude with a general discussion on
non-local models’ utility for biological problems.

2. Mathematical Formulation of
Non-local Dynamics

To demonstrate how the relative scales of im-
portant processes can determine the appropriate

form for spatial models, we develop a simple
model to describe the changes in population den-
sity of a hypothetical organism. We treat indi-
vidual density as the response variable of interest
and individual movement as the process coupling
locations across space. Individual movement is in
turn mediated by a signal that is produced by the
organisms themselves. Such situations are com-
mon in biology. For example, the bird cherry-oat
aphid, Rhopalosiphum padi, forms aggregations
on its winter host, Prunus padus, in patterns that
suggest that R. padi individuals secrete and re-
spond to an aggregation pheromone (Pettersson,
1993). In a similar situation, individual myxobac-
teria glide randomly within colonies (Dworkin
& Kaiser, 1985) but begin to aggregate when
starved. One proposed mechanism that can ex-
plain this behavior is that the bacteria commun-
icate by secreting and responding to diffusing
chemoattractants (Shi & Zusman, 1994). The es-
sential feature of both the aphid system and the
myxobacteria system is that changes in densities
of moving individuals are mediated by signals
that the individuals produce themselves. Since
aggregations of aphids may enjoy greater access
to plant resources (Way & Cammell, 1970) or
reduced risk of predation (Turchin & Kareiva,
1989) and since aggregated myxobacteria may
share some important enzymes, a model that
could reliably describe aggregation in these two
systems would help to elucidate important as-
pects of their biology. We develop a simple model
for aggregation and examine the effects of separ-
ations of scale among the response, coupling, and
signalling processes.

We begin with general, local, and nonlinear
equations to describe changes in the density of
organisms due to movement and changes in the
density of signalling chemicals due to secretion
and decay. Scaling analysis demonstrates that,
given appropriate separations between impor-
tant processes, a non-local formulation can ap-
proximate the local model. The non-local model
describes changes in individual density without
explicit reference to signal dynamics or detailed
descriptions of individual movement. We argue
that, although the two-model formulations yield
the same biological predictions, non-local de-
scriptions may provide more insight into biolo-
gical systems and can be more efficient to solve
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numerically. We support our qualitative argu-
ments with numerical results and linear stability
analysis.

2.1. SIMPLE MODEL OF SELF-AGGREGATION

We begin with some basic modeling approxi-
mations that are appropriate to R. padi and
myxobacteria aggregation. Space in our model is
a one-dimensional domain of length L, and both
space and time are continuous. We also consider
the population to be closed, with no births or
deaths so that spatial changes in density are due
to movement alone. We describe the population
with a density function, f(x, t), with dimensions
numbers of individuals per unit length. This con-
tinuous description is valid when (i) the total
number of organisms N > 1, and (ii) the average
distance between neighbor organisms is much
less than relevant spatial scales of the system (Lin
& Segel, 1974). Both of these conditions are satis-
fied in the above-mentioned biological situations.
We consider individuals to move by biased diffu-
sion, which is a combination of random motion
and drift:

of ety 0*f(x, 1) 0
o — P57 Vsl 6

Here D is the diffusion coefficient in dimensions
length squared per time, and V is the drift velocity
in length per time. Others have investigated in
great detail how this continuous model can be
derived from microscopic processes such as mov-
ing and turning (Alt, 1980; Othmer et al., 1988;
Othmer & Stevens, 1997). Here we do not con-
cern ourselves with detailed mechanisms, and we
focus instead on modifying the basic advec-
tion—diffusion model to capture the relevant fea-
tures of aphid or myxobacteria biology.

The rates at which individuals move in nature
depend upon biological information obtained
from the environment. We assume that indi-
viduals move in response to a pheromone or
chemoattractant signal field s(x, t) and that their
movement depends on the gradient of the signal
rather than on the signal’s local value. This rule
approximates the movement of insects or cells in
the direction of higher chemical concentrations
regardless of local concentration. To capture this

rule, we write that the rate of deterministic drift
is proportional to the spatial gradient of the
signal,

V(x, t) = kds/ox. (6)

Here k is a proportionality coefficient, in dimen-
sions length squared per signal density per time,
which measures the sensitivity of the drift rate to
the signal gradient. Meanwhile, we assume that
individual movement due to stimuli other than
the signal of interest is random, and represent it
by a signal- and density-independent diffusion
coefficient, D = const.

To capture the situation in which individuals
produce the signal field themselves, we assume
that each individual aphid or bacterial cell can
produce the pheromone or chemoattractant that
triggers aggregation. We postulate that the pro-
duction of such a signal must therefore be pro-
portional to the individual’s density. If we assume
that the signal chemical diffuses through space
and decays exponentially with time, we may
write the following equation to describe the
change in the concentration of signal with respect
to time and space:

s(x, t)
ot

0%s(x, )
ox*

=D, +of(x,t) — Bs(x,0). (7)

Here o and f are rate constants of production
and decay in dimensions signal density per indi-
vidual density per time and per time, respectively,
and D; is the diffusion coefficient for the signal.

Together, eqns (5-7) provide a general, closed
system of nonlinear partial differential equations
for a model of aggregation. We consider this
model to be local because the two reaction—-diffu-
sion-type equations imply a mechanistic know-
ledge of how individuals and signal molecules
move at every point in time and space. Biolo-
gically, realistic boundary conditions on these
equations specify no flux of organisms or signal
at the edges of the spatial domain, which for
aphids may be a single leaf (Pettersson, 1993) and
for myxobacteria in vitro may be a Petri dish.
This model is similar to the Keller-Segel model
for bacterial chemotaxis, whose solutions and
properties have been extensively studied
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(Childress & Percus, 1981; Mimura et al., 1993;
Nanjundiah, 1973; Othmer & Stevens, 1997).

2.2. LINEAR STABILITY ANALYSIS

To determine when aggregation occurs in our
model, we conduct a linear stability analysis of its
spatially homogeneous steady state. One may
verify that homogeneous distributions of organ-
isms and signal molecules across the spatial
domain:

flx,0)=f=

N aN
=, ®)

s(x,t)=s_=ﬁ—L

constitute a steady-state solution of model equa-
tions (5-7). Indeed, when the spatial derivatives
of both distributions are equal to zero, the rate of
drift of the organisms is equal to zero (6), and
density changes due to diffusion stop as well.
Also, at the level of the signal given by eqn (8) the
rate of signal secretion is equal to the rate of
decay.

Linear stability analysis answers the question
of how fast small-amplitude, harmonic density
profile perturbations to the homogeneous steady
state grow or decay. Representing the densities in
the form

fx, ) =f+f(x, 1), s(x,t)+ 5+ 8(x, 1),
where f(x, t) and $(x, t) are small perturbations,
we substitute these expressions into eqns (5-7)
and keep only terms that are linear with respect
to small perturbations. We obtain the following
system of linear equations:

of  f 0%
a- Pa Mo ©)
oS 02§ ~ .
&=Dsw+ocf—ﬁs. (10)

The model’s temporal invariance suggests the
following form for the perturbations:
§(x, 1) = soe*g(x).

fx, 1) = foe*g(x),

Substituting these expressions into eqns (9 and
10), we find that the following harmonics satisfy

eqns (9 and 10) and no-flux boundary conditions:
o
glx)=cosgx), 0<x< L g=7j=12...

Since perturbations are characterized by their
linear growth rate, /4, and wavelength, 2L/j,
where j represents the wavenumber, we rewrite
differential equations (9 and 10) as linear alge-
braic equations for the amplitudes of the per-
turbations:

Mo = — Da*fo + kfg*so,
Ao = — Dyq*so + ofy — Pso.

These equations have non-trivial solutions if and
only if the following relation between the linear
growth rate and the wavenumber is satisfied:

2pi2 2p, 2 222
Q+WLJ>@+ﬁ+nLX>—ka%%=Q
(11)

Simple analysis shows that if the inequality

kof n?D;
— <1
8D <1+ ﬁLz

holds, then at each wavenumber the linear
growth rate is negative, perturbations decay, and
the homogeneous steady state is stable. If the
left-hand side of the inequality becomes greater
than the right-hand side, however, then at small
wavenumbers the linear growth rate becomes
positive, perturbations start to grow, and the
stability is broken. Specifically, if

pL*> = D

472D,

1 s
+ BLZ

<1+

then the only unstable mode of perturbation
corresponds to the wavenumber j=1 and
wavelength 2L. In other words, under the above
inequality we expect perturbations of only this
mode to grow.

These results of the stability analysis lend
themselves to biological interpretation. The ratio
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ko.f/D = ks/D is the ratio of the magnitude of
individuals® signal-dependent drift, k3, to their
diffusion via random motion. Because the quanti-
ty k§ determines the magnitude of drift and car-
ries the same dimensions length squared per time
as diffusion coefficients, we consider it a measure
of the “aggregation strength” of the system. The
first inequality in the preceding paragraph thus
indicates that when the aggregation strength
overcomes diffusion, perturbations of the homo-
geneous steady-state result in aggregation. As the
ratio becomes greater, we expect denser and
more compact aggregations to evolve. When, as
indicated by the second inequality, the aggrega-
tion strength is only slightly greater than the
diffusion coefficient, we expect the resulting ag-
gregation of individuals to be of a spatial scale
comparable to the size of the finite domain, L.
Thus, in the case of weak to moderate aggrega-
tion, the size of the domain is a meaningful length
scale of the biological system.

2.3. SCALING ANALYSIS AND PERTURBATION THEORY

To reveal important relationships between the
scales of processes relevant to aggregation, we
perform a non-dimensionalization of our local
model. The first step in the non-dimensionaliz-
ation is to choose an appropriate unit of time.
Since the purpose of our modeling effort is to
understand the grouping behavior of individuals,
the chosen unit should be relevant to changes in
individual density rather than to changes in sig-
nal density. The two processes that directly affect
individual density are random diffusion and sig-
nal-dependent advection. We restrict our atten-
tion to the case in which the rates of these
two processes are comparable, with aggregative
drift only slightly greater than diffusion. In this
case, as we showed in the preceding section, the
size of the aggregation that results is on the scale
of the domain size L. Thus, an appropriate choice
of temporal unit for the development of aggrega-
tion is the characteristic time for an individual to
drift or diffuse across the spatial domain:
T = L?/D.

The constant steady-state densities of the or-
ganisms and the signal, fand s, are natural choi-
ces for their characteristic densities. Given these
choices and the temporal unit T, we introduce

the non-dimensional quantities:

, X t,_t_Dt

YT Tty
, _f _Lf , s PLs
f:::—’ S:—_:—,
f N § oaN

which enable us to re-write nonlinear model
equations (5-7) in the non-dimensional form:

U [ s 6s’} WILCT

o oxr Cox|? ox ~BD’
0s’ 0%s’ ., D Dy
81825282W+(f —5), 81258, SZZﬁLz-
(13)

Equations (12 and 13) show that the values of
the dimensionless parameters k', ¢;, and &, com-
pletely determine the behavior of the model.
Since each of these three ratios represents a com-
parison between the rates of two processes, an
investigation of their magnitudes sheds light on
the relative scales of those processes. The para-
meter k' coincides with the ratio of the aggrega-
tion strength to diffusion that appeared in the
linear stability analysis, so under conditions of
moderate aggregation k'~ 1. To determine rea-
sonable values of ¢; and ¢,, we return to our two
illustrative examples.

The parameter ¢; is a dimensionless quantity
that compares the rate of organisms’ diffusion
with the rate of the signal’s diffusion. In the case
of myxobacteria, the effective diffusion coefficient
of the cells is of the order of magnitude
D~10"%cm?s™! (estimated using data from
(Spormann & Kaiser, 1995)), while the diffusion
coefficient of chemoattractants in an aqueous
environment is typically on the order of Dy~
107° cm?s™ ! (Weast et al., 1983, p. F-46). A rea-
sonable effective diffusion coefficient characteriz-
ing the random motion of aphids is D~
1 cm?s™ ! (estimated using data from Pettersson,
1993), while the estimated diffusion coefficient of
pheromones in the air is Dy~ 0.1 cm?s~ ! (Weast
et al., 1983, p. F-46). Thus, in both of our biolo-
gical examples, ¢; < 1 (¢4 ~0.0001 for bacteria,
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and &; ~ 0.1 for aphids). In biological terms, the
smallness of ¢; indicates that the motion of the
signal is much faster than the motion of individuals.

If we write the dimensionless parameter &, in
the form: ¢, = B~ 1/(L?/D,), its meaning as the
ratio of the signal chemical’s half-life time to
the characteristic time for the chemical to diffuse
across the spatial domain is clear. The latter time
is of the same order of magnitude for both biolo-
gical systems: in the experiments with myxobac-
teria, L~1cm and L?/D,~10°s, and in the
aphid case, L ~ 100 cm and L?/D; ~ 10° s. Thus, if
the value of B~ ! < 10°s ~ 1 day, which is reason-
able to assume in both cases, then ¢, < 1. The
interpretation of this inequality is that the signal
decays well before it can diffuse across the spatial
domain, so boundary conditions have little influ-
ence on the dynamics of the signal.

With knowledge of the magnitudes of para-
meters ¢; and ¢, in hand, we identify a quantitat-
ive hierarchy of the three terms in eqn (13). If our
choices for the characteristic temporal and spa-
tial scales were appropriate, which can only be
justified a posteriori, then the last term on the
right-hand side is on the order of unity. The first
term on the right-hand side is much smaller, on
the order of ¢, < 1. Finally, the left-hand term is
smaller still, on the order of ¢;¢, < ¢,. Because
this term is so small, we can neglect it according
to “naive” perturbation theory (Lin & Segel,
1974), thereby simplifying the model consider-
ably. Biologically, such a simplification is justi-
fied because the smallness of the left-hand term in
eqn (13) means that the dynamics of the signal
are very fast. After brief signal transients de-
crease, therefore, dynamic changes in the signal
are negligible.

Using this reasoning, can we simplify our
model further by also neglecting the small diffu-
sion term in eqn (13)? Doing so implies that very
little of the information about signal dynamics is
relevant, and that signal density simply reflects
the density of the organisms without any appreci-
able difference in the rates of the two processes:
s'=f". We would then obtain the following
closed, local equation for the density of the
organisms:

o ox? ox'|’ ox

o o K 0 [f,af’}

This equation, however, is ill-posed mathemat-
ically, which becomes clear from the linear stabil-
ity analysis. Substituting a perturbed density of
the form f'(x, ') = 1 + foe*" cos(njx’) into this
equation and linearizing with respect to the small
perturbation amplitude f,,, we obtain the disper-
sion relation: A’ = (k' — 1)(nj)>. In the biolo-
gically interesting situation when aggregation
takes place, k' > 1, so A'—>o0 as j —oo, or
(L/j) = 0. This calculation means that small-
wavelength perturbations grow infinitely fast,
which is biologically unrealistic.

To understand why neglecting the signal’s dif-
fusion term invalidates the model, consider a
signal inhomogeneity of spatial scale 6. This in-
homogeneity generates local organismal drift
with a rate on the order of V ~ ks§/d. This drift
causes an inhomogeneity in the distribution of
the organisms of spatial scale D/V ~ (D/ks)
0 = o/k'. In cases when aggregation takes place
and k' > 1, this result means that the spatial scale
of perturbations to the density of the organisms,
o/k’, is less than that of perturbations to the
signal, 6. Without signal diffusion, the signal dy-
namics lose their spatial dimension, which for-
mally means that their spatial scale becomes
equal to zero. To be consistent, the spatial scale
of the organism’s density must also be equal to
zero, which implies that a spatially explicit model
is inappropriate for this system.

Mathematically, this phenomenon indicates
that a small signal diffusion term is a singular,
rather than regular, perturbation of the signal
kinetics (Lin & Segel, 1974). Indeed, one may
verify that the regular perturbation series
s =f" + Y%, ey (d*f'/dx'?"), which can be ob-
tained from the equation &,(d%s/dx'?) +
(f" — s") =0, is not asymptotic, meaning that the
corresponding local approximation is not valid.
One of the ways to solve this singular perturba-
tion problem is to attempt a non-local approxima-
tion of the local nonlinear model (12 and 13).

2.4. NON-LOCAL APPROXIMATION

Returning to the full non-dimensional model
(12 and 13), we examine the validity of retaining
the signal’s diffusion term but neglecting the
much smaller term on the left-hand side of
eqn (13). As explained in the previous section,
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this simplification is justified biologically by the
fact that signal movement is much faster than
individual movement. After taking advantage of
this separation of scales between the two move-
ment processes, we can solve the simplified linear
ordinary differential equation for the signal’s spa-
tial distribution, ¢, (d?s'/dx'?) — s’ = f*, on an infi-
nite domain using the Green’s functions technique
(Morse & Feshbach, 1953, Chapter 7):

W) =[O - S

G(d) =

! 14l

Since we are concerned with a finite domain, we
must use a different Green’s function G than this
one for an infinite domain. In the case when
&, < 1, however, which means that the domain’s
boundaries have little effect on the signal’s distri-
bution, we can consider the desired finite-domain
Green’s function to be a small perturbation of the
function given for the infinite domain (Morse
& Feshbach, 1953). We can then approximate the
signal distribution as follows:

|x/ _ x//

1 1
/ ’ ~ d 17
09 z@fo ¥ eXp( Ve

The model equation for the motion of the organ-
isms assumes the closed non-local form:

o ef o, o8
at/ - ax/z - 6x/ |:V (x ) ax/:|’ (15)

>f (X"

_ k/ 1 )
V'(x') ~ 2% f dx" sign(x" — x")
’ 0

|x/ _ x//
X €Xp <— T)f’(x”)- (16)
&2

This spatially non-local model describes density
changes as a result of direct, long-distance inter-
actions between individuals without reference to
the signal. We have used a separation of scales
between the rates of signal movement and

individual movement to eliminate information
that is unimportant to the larger-scale processes
of interest.

The linear stability analysis of the spatially
non-local model (15 and 16) is difficult on the
finite domain, but is much simpler on an infinite
domain. The infinite-domain result is relevant to
the finite domain because the boundary condi-
tions should not affect the aggregation behavior
strongly. Substituting a density of the form
f(x,t) =1+ foe*" cos(gx’) into eqns (15 and
16), where ¢q is a continuous wave vector playing
the role of a discrete wave number and where the
limits of integration are infinite, we discard terms
not linear with respect to the small perturbation
amplitude f, to obtain the dispersion relation,

r 2

k'q
g+ 1

M) =—q* +

This relation gives approximately the same insta-
bility criterion as the original model: k' > 1. At
such values of k', the linear growth rate is positive
for small values of the wave vector, so aggrega-
tion should occur on large spatial scales.
Therefore, system (15 and 16) is an adequate
approximation for the original system (12 and
13). Furthermore, as in the original local model,
at large values of the wave number the linear
growth rate is negative and proportional to the
square of the wave number. This demonstrates
the quick decay of small-wavelength perturba-
tions, which indicates that the non-local approxi-
mation is well posed: small-scale fluctuations in
the density become insignificant, rather than
growing so large as to dominate the models’
behavior.

The simplified non-local system (15 and 16)
offers an advantage over the local system (12 and
13) in the form of a clear picture of apparently
direct interactions between individuals. Avoiding
explicit reference to the very fast dynamics of the
signal that mediates interactions allows eqns (15
and 16) to provide an intuitively satisfying ex-
pression of interactions on a slower scale. For
example, expression (16) explicitly demonstrates
the attraction, or convergence, between indi-
viduals at locations x" and x”. The only factor
that influences the sign of the velocity of the
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individual at x’ is the sign of (x" — x"'), so that if
x" > x"”, then the velocity is negative and x’ de-
creases. On the other hand, if x’ < x”, then the
velocity is positive and x’ increases. In both cases,
the distance |x" — x’| diminishes, indicating con-
vergence between individuals. Because of the
negative exponential term in eqn (16), the rate of
this convergence realistically decreases exponen-
tially with increasing distances between loca-
tions. This information is more difficult to obtain
from the local system of equations (12 and 13),
making the non-local system (15 and 16) a
natural choice for describing the biology of
aggregation.

A second advantage of non-local equations is
that they may be easier to solve numerically
because they take advantage of separations of
scale. To demonstrate this point, we solved the
dimensionless non-local equation (15) numer-
ically, with no-flux boundary conditions and us-
ing the explicit forward-time centered-space finite
difference scheme (Garcia, 1994). We discretized
the domain of unit length with 20 grid points, and
used parameter values k' =13 and ¢, =0.1.
At each time step we computed the convolution
integral (16) numerically using the composite
trapezoidal rule. The density profile illustrated in
Fig. 1 evolved within 0.5 time units under various
initial conditions. The profile shows that indi-
viduals aggregate at the center of the domain,
forming a group of a size comparable to the size
of the domain. These results are in agreement
with the predictions of the stability and scaling
analyses. The numerical procedure used to solve
the non-local equation was stable at time steps as
large as 0.005 time units. Meanwhile, a numerical
solution of the corresponding local system of
equations (12 and 13) using the same finite differ-
ence scheme and ¢; = 0.1 gave similar results
only with time steps that were one to two orders
of magnitude smaller. This difference in stability
results from the fact that the signal changes on
much faster time-scale than the density of the
individuals, so a smaller time step is required to
solve a model that explicitly includes signal dy-
namics. Since the computation of the convolu-
tion integral (16) in the non-local model can be
programmed in a vector form that does not in-
crease total computational time, the non-local
model provides an order-of-magnitude improve-
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F1G. 1. The solid line shows the steady-state density of
individuals in the non-local self-aggregation model that
evolves from random initial conditions. We used the conser-
ved average initial density as the unit of density, and the
length of the spatial domain as the unit of distance.

ment in total computational time over the local
model.

In this section, we showed that a simplified,
non-local model adequately captures the behav-
ior of a full, local model when some process is
sufficiently fast compared to the process of pri-
mary biological interest. Thus, whereas a local
model specifies mechanistic detail about all pro-
cesses that interact in a given system, a non-local
model represents only the effects of fast processes
on the scale of a slower one. In the next section,
we show how this encapsulation of fast processes
helps non-local models to accommodate biolo-
gical data.

3. The Relationship between Mathematical
Formulations and Biological Data

We use two concrete examples, one from cellu-
lar biology and one from animal behavior, to
demonstrate that non-local models are a parti-
cularly convenient theoretical framework for the
types of data that biologists often collect and the
kinds of questions they often ask.

3.1. SELF-ORGANIZATION OF THE CYTOSKELETON

Microtubules are long protein fibers found in
all eukaryotic cells (Bray, 1994). An important
part of the cytoskeleton, microtubules provide
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lines of transport, communication, and control in
the cell and also organize cell movements. In
a typical animal cell, for instance, microtubules
radiate from a position close to the nucleus to the
cell periphery. In association with a cytoplasmic
protein called dynein, these microtubule asters
help move organelles from the cell’s periphery to
its center. In an aster, microtubules are arranged
with their negatively charged “minus” ends em-
bedded in a centrosome and their positively
charged “plus” ends stabilized at the cell mem-
brane. The organelle-carrying dynein molecules
contain a “head” of ATPase that uses the energy
of hydrolysis to move along microtubules toward
the minus ends, resulting in organelle motion
toward the cell’s center (Bray, 1994).

A very fine microsurgical procedure recently
demonstrated that the presence of dynein mol-
ecules may also contribute to the organization of
microtubule structures. Researchers cut an ob-
long fragment from the periphery of a fish
melanophore cell (Rodionov & Borisy, 1997).
The fragment contained microtubules and pig-
ment-containing granules that are associated
with dynein molecules. To rule out the competing
hypothesis that the centrosome organizes aster
formation, however, the fragment contained no
centrosomal material. Although the pigment
granules associated with dynein motors were ori-
ginally distributed in the fragment with uniform
density, they gradually aggregated at the edge of
the fragment that had been closer to the nucleus
before the microsurgical procedure. Similarly, the
microtubules’ minus ends did not remain distrib-
uted throughout the fragment but instead accu-
mulated at the same edge of the fragment as the
granules. Later, the aggregate of the granules
started to move slowly to the center of the frag-
ment, but here we do not attempt to model or
explain this slow self-centering process.

This example of in vitro self-organization sug-
gests a hypothesis for the formation of in vivo
cytoskeletal structure. Dynein motors aggregate
towards microtubules’ minus ends. Microtubules
cannot move because they are crosslinked into
a meshwork of actin. Apparent motion occurs,
however, as the asymmetric globular subunits of
the polymer assemble to and disassemble from
the plus and minus ends of the microtubule. This
process causes microtubules’ plus ends to grow

and minus ends to shrink, so that the fibers tread-
mill with an overall appearance of translational
movement toward the plus ends (Bray, 1994). In
the presence of dynein motors, minus ends disas-
semble more slowly than plus ends assemble,
with rate V,, < V,. If, as in the experiment with
fish melanocytes, the polymers are initially
oriented with their minus ends to the left and
their plus ends to the right, the movement of the
dynein molecules slows the disassembly of minus
ends at the left and increases their concentration
there. This, in turn, causes even greater aggrega-
tion of the dynein molecules, further increasing
the concentration of the minus ends. If dynein
molecules can also initiate the assembly of new
microtubule fibers, the described positive feed-
back loop could provide a qualitative explana-
tion for minus-end anchoring near the nucleus.
Using the techniques outlined in the previous
section, we develop a non-local model to explore
this hypothesis in more detail. We demonstrate
that a model that takes advantage of separations
of scale between important processes yields valu-
able biological predictions.

3.1.1. Local Model of Dynein-mediated
Microtubule Organization

We describe the cell-fragment system on the
one-dimensional domain 0 < x < L by the dens-
ities of the dyneins and microtubule plus and
minus ends, d(x, t), p(x, t) and m(x, t), respectively.
The equations for plus and minus end densities
have the form:

op op

r__pyr 1
o V, o + nd, (17)
om 0

where the first term describes the drift of the plus
and minus ends due to assembly and disas-
sembly, respectively. The second term describes
nucleation of plus and minus ends. Since the
nucleation of a fiber is a simultancous appear-
ance of plus and minus ends in the same place,
the rates of change of the two kinds of ends due to
nucleation are equal. Because we assume that
dyneins cause nucleation, the nucleation rate is
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proportional to the dynein density with corre-
sponding proportionality coefficient n. We de-
scribe the dynamics of dynein density with the
advection-diffusion equation:

od 0 0%d
EZ&(VM)-FDW, (19)

where 1V, is the rate of directional drift of the
motors to the left, toward microtubule minus
ends, and D is the constant diffusion coefficient
characterizing the effectively random motion of
the pigment particles associated with the dynein
molecules.

To complete the model, we need constitutive
relations for the non-constant velocities V; and
V.. The effective net disassembly rate of the
minus ends decreases monotonically as the den-
sity of the dynein molecules increases:

V,, = V,exp(— d/d). (20)

This rate is equal to V, at d = 0, decreases signifi-
cantly with decreases in dynein density on the
order of d, where d is a parameter for this charac-
teristic dynein density, and approaches zero at
d — oo. Meanwhile, a reasonable assumption
about the velocity of the dynein motors V; is that
it depends on the local length density of micro-
tubules, [(x, t). When microtubules are abundant,
dynein’s velocity saturates to its maximal value,
V,. When microtubules are absent, there are no
“tracks” for motors to move on, and the motors’
drift velocity drops to zero. The phenomenologi-
cal expression:

V = V(1 —exp(=I/T)) (21)

where [ is the parameter for a characteristic
microtubule length density, accounts for these
features of the dynein motion.

Having introduced the new dynamic variable
l(x,t), we must now derive an equation for its
changes with time. Over the time interval dt,
p plus ends moving to the right with speed V,
“deposit” new total microtubule length V,dt. At
the same time, m minus ends moving to the right
with speed V,, “annihilate” a previously existing
length V,,dt. Then, the rate of change of the

microtubule’s length density is simply

dl
5= Vob = V. (22)

Equations (17-22), together with initial and
boundary conditions specifying no plus or minus
ends at the left edge of the fragment and no flux of
dynein density across either edge:

p(0.1) =0, m0, 1) =0, (23)
V@ﬁﬂan+DM£”
=V@ﬁﬂLU+Dwiﬁ=Q (24)

complete the mathematical description of the
microtubule-dynein system.

3.1.2. Scaling Analysis and Non-local Model

The purpose of modeling the microtubule—
dynein system is to try to understand cytoskeletal
dynamics, which occur on a much slower tem-
poral scale than the motion of the dynein motors:
Vi~1pms™'> V,~0.1 ums™'. Thus, to focus
on microtubule organization, we non-dimen-
sionalize equations (17-22) by choosing charac-
teristic length and time units to correspond to the
relatively slower rate. For instance, we choose
the size of the fragment, L, as the natural unit
of length, with corresponding temporal unit
T = L/V, being the time needed for a fiber to
treadmill across the fragment. Since the density of
the dynein molecules was initially constant in the
fish melanophore experiment, we choose a con-
stant density, d(0,t) = d, for the characteristic
density of dynein. To obtain characteristic plus
and minus end densities, we balance the total
nucleation rate, which is of order ndL, with plus
and minus end fluxes out of the right edge of the
fragment of order V,p and V,m, respectively.
While the ends of the immobile microtubules do
not actually move across the boundaries of the
fragment, an effective flux of plus ends occurs as
polymerization-inhibiting proteins stabilize plus
ends at the cell membrane. Similarly, an apparent
flux of minus ends occurs when fibers’ minus ends
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approach the membrane and the entire fiber dis-
appears. We balance these processes with the
creation of new fibers to obtain the characteristic
densities p = i = ndL/V,. Finally, the scale of the
microtubule’s length density can be estimated as
the scale of the rate of the length density change,
V,p, times the characteristic time scale:
['=ndL?/V,.
Introducing the non-dimensional variables

X'=x/L, ¢ =t/T, d=d/d, p=pp

m =m/m, I =I/I

assuming for simplicity that [ =l and d = d, and
dropping prime signs for convenience, we arrive
at the non-dimensionalized system of equations:

3% =%(vd)+agixczl, v=1—e}
a:%£,8:%<L (25)
PPy (26)
o L am +d m=e (@)
%=p_%m (28)

We focus on the case where the dimensionless
parameter a ~ 1, meaning that the rate of random
dynein movement is of the same order of magni-
tude as the maximum motor speed. As in Section
2, the smallness of the parameter ¢ in front of the
time derivative of the dynein density suggests
that we may use arguments of perturbation the-
ory to neglect the dynein dynamics. Biologically,
this neglect is justified because the distribution of
dynein is expected to reach a quasi-steady state
on the fast time-scale, L/V,;. The quasi-steady
state is determined implicitly by the micro-
tubule’s length density, which changes on the
slow time-scale, L/V,. We can find the quasi-

steady dynein distribution from the equation:

d . d _
d_[(l —e )d—i—ad—(d)]—O

X X

Integrating this equation once, taking into ac-
count the fact that the flux of the dynein molecu-
les has to be equal to zero in an equlibrium, and
integrating a second time, we obtain the quasi-
steady dynein density in the dimensionless form:

sy = SXP(= alidy(1 =)
[ dx{exp(— a[jydy(1 — e~ ']}

(29)

The denominator in expression (29) is a normal-
ization constant. The numerator contains the
non-local expression for the quasi-steady dynein
distribution in terms of slow-scale changes in
microtubule length density. Together with
eqns (26-28), this equation for the dynein density
constitutes a non-local formulation for the
original local model (25-28).

The non-local system (26—29) is more helpful
from a biological point of view than the original
local model because it expresses dynamics in
terms of readily measurable quantities. For
example, dynein dynamics occur on what may be
an unmeasurably fast time-scale. Using the separ-
ation of scale between dynein dynamics and
microtubule movement; however, we avoid de-
tailed descriptions of fast, complex-behavior and
obtain eqn (29), which gives us a qualitative un-
derstanding of the motors’ behavior. Because the
exponential factor in the integrand is less than
one, the dynein density is a decreasing function of
distance from the left end. This decrease indicates
aggregation of the dynein molecules at the left,
which agrees with observations of the slow-scale
distribution of dynein. Moreover, as the dynein
density is low everywhere except at the very left
edge of the fragment, the effective minus end drift
rate v,, ~ 1, and according to eqn (28), | ~ const
across the domain. This indicates an exponential
decay of the dynein density away from the left
edge of the fragment. Thus, the non-local model
provides helpful analytical information about the
dynein distribution that we can easily compare to
experimental results.
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Besides this useful qualitative information, the
non-local model

op  0p om 0
E——a‘l' N E——a(e m)—l—d,
di

_:p_e_dm’ p(o’ t):m(oa I)ZO,

m (30

where d is given by eqn (29), offers a computa-
tional advantage because we can concentrate on
the microtubule’s dynamics on the slow time-
scale. We solved the dimensionless system of
equations (30) numerically on the unit-length do-
main discretized into 20 intervals. We used the
downwind finite difference scheme for the hyper-
bolic equations, and the forward Euler method of
integration for all equations (Garcia, 1994). The
integrals in eqn (29) were computed at each step
of integration with the composite trapezoidal
rule. We used the initial conditions p(x,0) =
m(x, 0) = l(x, 0) = 0. The density profiles shown
in Fig. 2 evolved within 10 time units. These
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FIG. 2. Symbols indicate the asymptotically stationary
concentrations of dynein molecules (O) and minus (—) and
plus (+) ends of microtubules computed from the non-local
cellular model. Minus ends and dynein motors aggregate at
the left edge of the domain. Units of density are introduced
in the text. The length of the spatial domain was used as the
unit of distance: (—) density of minus ends; (+) density of
plus ends; (O) density of dynein molecules.

numerical results agree with experimental obser-
vations of the aggregation of the dynein molecu-
les and microtubule’s minus ends at the left edge
of the fragment. The numerical procedure was
stable with time steps as large as 0.01 time units.
Similar numerical analysis of the original local
model (25-28) gave similar results only with time
steps of an order of magnitude less, significantly
increasing the time needed for computation.

Having shown how the techniques we de-
veloped in Section 2 help us to derive a non-local
model that conveniently describes microtubule
organization, we now show how non-local mod-
els can help us understand a complex problem in
animal behavior.

3.2. COORDINATION OF PRIMATE GROUPS USING
CONTACT CALLS

Some species of social primates emit quiet,
frequent vocal calls during the course of daily
activities. Early researchers conjectured that
these “contact calls” promote group cohesion
and coordination (Gautier & Gautier, 1977,
Lindburg, 1971). More recently, researchers have
explicitly addressed the question of whether or
not primates use contact calls to regulate intra-
group spacing (Robinson, 1982; Palombit, 1992).
Robinson (1982) investigated the effects of three
acoustically intergrading types of spacing-depen-
dent calls in wedge-capped capuchins, Cebus nig-
rivittatus. He found that the capuchins emit heh
calls when crowded, arrawh calls when separated,
and huh calls at intermediate spacing. Following
hehs, neighboring individuals generally move
away from the calling individual; following
arrawhs, they move toward it. Meanwhile,
Robinson found that huhs have no statistically
significant effect on group spacing unless they are
unusually frequent, in which case neighbors tend
to move toward the focal animal. Robinson
(1982) concluded that vocal communication does
help to maintain intragroup spacing.

Detailed information about how primates
gather, process, and respond to auditory cues is
scarce because it is difficult to obtain. Since ex-
perimentally establishing the importance of vocal
communication in maintaining group spacing is
likewise difficult, a simple model that demon-
strates whether auditory cues alone can plausibly
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mediate group cohesion would be a useful tool in
understanding primate behavior. Such a model
would treat contact calls as the signal that organ-
izes individual movement. Acoustic information
about the calls suggests that they propagate
through space much faster than animals can
move, since the sound of a call covers tens of
meters in a tenth of a second. Meanwhile, al-
though Robinson (1982) does not explicitly spec-
ify the scale of the capuchins’ movement, the way
in which he scores changes in group spacing
clearly indicates that they move on the spatial
scale of meters and temporal scale of seconds.
Since we can therefore safely assume that the
signal propagates quickly relative to animal
movement, the maintenance of group cohesion
via vocal communication is a promising candi-
date for non-local modeling.

A discrete, individual-based modeling frame-
work is more appropriate to capuchin aggrega-
tion than a density-based approach because the
number of individuals in a primate troop does
not exceed 20 or 30 animals (Robinson, 1982).
Within the individual-based framework, we in-
troduce the simplest possible equation for the
motion of a group in one dimension:

dxi
dt

=V(x), i=1..,N, (31)

where t is the time, x; is the coordinate of the ith
animal, N is the number of primates under con-
sideration, and V (x;) is the rate of motion of the
ith animal at position x;. One of the assumptions
underlying eqn (31) is that the animals respond
to the signal by adjusting their rate of motion
rather than their acceleration, as is assumed in
many individual-based models (Warburton &
Lazarus, 1991). Secondly, the model formulation
implies that individual motion has a continuous
character. Although monkeys may move by tak-
ing discrete steps, this assumption is reasonable if
the average step size is much smaller than both
the average distance between animals and the
characteristic size of the whole group (Jager
& Segel, 1992).

Individual velocity depends on the signal, s,
which in turn depends on spatial location:
V(x;) = V(s(x;)). Since we lack information

about how individuals process the signal, we
avoid specifying any functional dependence of
movement on the variable s. We do assume, how-
ever, that movement is memoryless with respect
to the signal: current levels of signal, not
a weighted average of signals received prior to
a response, determine rates of motion. We also
assume that the time individuals require to pro-
cess the signal is negligible. We know, however,
that the signal propagates quickly relative to the
speed of capuchin’s motion: V < ¢, where c is the
velocity of sound and V is the order of magnitude
of the capuchins’ speed.

The natural length scale L in this situation is
the characteristic distance between the animals.
Given our assumptions that signal processing is
instantaneous and memory free, two character-
istic temporal scales emerge: one fast, L/c, which
is the time for the signal to propagate between
neighbors, and one slow, L/V, representing
the time needed for an animal to approach a
neighbor. When we choose the scale of animal
movement as the characteristic time-scale of the
system, we can ignore the term describing the
signal’s time derivative because its order of mag-
nitude is proportional to the small parameter
(V/c). Thus, we use a separation of scale to elim-
inate the temporal dynamics of the signal.

Having simplified the model, we no longer
concern ourselves with short-term changes in the
signal. Instead, we now consider the function
describing the effective signal “field” that indi-
viduals generate. As the form of the argument of
this function should reflect the translational in-
variance of the system, we introduce the function
S(x — x;j, x; — x;), which describes the amount of
signal produced by the jth individual. Because
the jth individual, located at position x;, pro-
duces signal in response to the presence of the ith
individual at position x;, the resulting amount of
signal at x depends on the distance x; — x; as well
as the distance x — x;. The signal produced by
the jth individual that is perceived by the ith
individual is therefore S(x; — x;, x; — X;) or sim-
ply S(x; — x;). Thus, the ith individual’s velocity,
which results as a response to this signal, depends
on the distance between the animals:
V(x:) = V(§(x; — x;)) = V(x; — x;). This reason-
ing shows clearly that the rate of motion of each
individual depends on the positions of other
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animals. Because we effectively eliminated the
signal from the model on the slow time-scale, the
equations of motion are now non-local

The non-local character of the equations for
call-dependent changes in velocity is a helpful
improvement over the original, local model. We
cannot specify a function for velocity because
mechanistic information about how vocaliz-
ations affect capuchin movement is unavailable.
Our elimination of signal dynamics, however,
reveals that on the time-scale of interest, each
individual’s velocity depends only on the posi-
tions of other individuals. This dependence
corresponds nicely to the kinds of observations
behavioral scientists make in the wild. Thus, we
can use qualitative observations from Robinson
(1982) to postulate the form of the function ¥V (x):

(1) The direction of the responding indi-
vidual’s motion depends on its direction
relative to the calling individual, while the
distance moved depends only on the dis-
tance between the two animals. In other
words, if the positions of the caller and the
respondent were exchanged, the respon-
dent would move the same distance as pre-
viously but in the opposite direction. This
situation requires that ¥ be odd, such that
V(x)=— V(- x).

(2) If the initial distance between animals is
small, then heh calls lead to the animals’
divergence. This condition requires that
V(x) > 0 when x is small and positive.

(3) If the initial distance between animals is
large, then arrawh or huh calls lead to con-
vergence, and the sign of ¥ (x) is negative at
sufficiently large positive x.

(4) When the distance between capuchins is
very large, individuals do not perceive the
sounds that others make. Interactions over
suffciently large distances are absent be-
cause individuals move a distance V(x) = 0
in response to calls they cannot hear.

One of the simplest functions ¥ (x) satisfying
requirements (1)—(4) is

Rsign(x), Ix| <,
V(x)={ — Asign(x), a; <|x|<as, (32
0, otherwise,

where r < a; < a,. The parameters R and 4 gov-
ern the amplitude of divergent and convergent
animal motion, respectively. The parameter r de-
scribes the range of distances over which repul-
sive interactions are significant. Between r and
a,, animals maintain “comfortable” distances
among themselves: when a caller is at such a dis-
tance from a respondent, the respondent’s
motions are too small to be detected. If indi-
viduals are farther apart than a,, they start to
converge. Beyond the distance a, there is no
response. We also allow a certain amount of
randomness in the distance that individuals move
in response to calls by adding a normally distrib-
uted random variable to the right-hand side of
eqn (31).

In order to translate this description of indi-
vidual behavior to a description of the move-
ments of a whole troop, we make an assumption
about how individuals respond to many calling
animals at different distances. The simplest such
assumption is that individuals add up the signals
they receive from different animals in a linear
fashion. This assumption is probably a gross
oversimplification of complex decision-making
processes on the part of the capuchins, but is
a reasonable first step given the absence of other
information. The assumption allows us to write
the following nonlinear, spatially non-local
model for the aggregations of capuchins:

+ random terms, i=1,...,N, (33)

where the function V is given by eqn (32).
Numerical analysis of this model yields some
interesting predictions about capuchin aggrega-
tion, such as the expected troop density and the
distribution of distances between animals. From
the data in Robinson (1982) we find that
r~10m, a; ~20m, and a,~ 100 m. Unfortu-
nately, however, information about the para-
meters R and A and the amplitude of random
terms is lacking. In our simulations, therefore, we
varied the parameters R and 4 and the amplitude
of random terms. We solved eqns (32 and 33)
using the forward Euler method. We assigned the
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initial positions of N = 20 individuals randomly,
and ran simulations until the average distance
between the animals and the sizes of groups stop-
ped changing. We found that the absolute values
of R and A4 do not affect the process of aggrega-
tion significantly as long as the value of the diver-
gence amplitude, R, is much greater than that of
convergence, 4. Otherwise, animals “collapse”
into a very dense group. The results of one of the
numerical runs of the model are shown in Fig. 3.
This figure shows that the initial size of the group,
about 400 m from end to end, decreased to only
225 m. The average distance between neighbors
in the group became stable at about 10 m. Two
individuals venturing away from the group (the
one initially at position 350 m, more than 60 m
away from the group, and the one left behind at
position — 50 m between 15 and 30 time units)
were attracted back to the group. On the other
hand, five individuals initially crowded between
—26 and 8 m, with average distance between
neighbors less than 7, quickly diverged from each
other.

Our simple model demonstrates that vocal
cues alone can mediate the spatial organization
of primate groups. Although mechanistic
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FIG. 3. Sample run of the stochastic, non-local, indi-
vidual-based model of primate aggregation. From an ini-
tially random uniform distribution of 20 animals over
a 400 m region, an aggregation forms so that the average
distance between the neighbors in the group becomes about
10 m. Curves represent trajectories of each individual. Ani-
mals that are initially far from the group converge to the rest
of the troop, while initially crowded subgroups diverge.
Time units are not specified in the model.

information about individuals’ responses to vocal
communication is difficult to obtain, the non-
local quality of our model allows us to use the
larger- and slower-scale observations that behav-
iorists commonly collect to construct a reason-
able characterization of the biological system.
As more data become available, of course, we
can revise our model to reflect new findings. As
a first step, however, this simple, non-local model
yields helpful qualitative results that are relevant
to the types of information readily available in
the field.

The two examples we have presented in this
section demonstrate that non-local models, by
focusing on the larger and slower scales that are
often of interest in biological systems, lend them-
selves more naturally to empirical observations
than do local models that specify small-scale de-
tail. Since a major goal of modeling biological
systems is to interpret available data and make
testable predictions, non-local models represent
a promising approach to understanding complex
phenomena.

4. Discussion

The types of models we discuss in this paper
have a rich history in theoretical biology.
Turing’s (1952) seminal paper on the role of diffu-
sion in pattern formation introduced spatially
explicit models to biology. In the early 1970s,
researchers added continuous, deterministic, di-
rected motion to random diffusive motion in the
framework of chemotaxis models (Keller & Segel,
1970). These advection—diffusion models im-
mediately found application in ecology (see re-
views in Levin & Segel, 1985; Holmes et al., 1994).
The familiar continuous description of diffusion
can be considered a limit of the random walk,
where individuals take random steps between
nearest-neighboring points. Thus, diffusion and
advection—diffusion equations are local in
a mathematical as well as a mechanistic sense.

The next step in modeling longer-distance in-
teractions is to allow movement between next-
nearest-neighboring points. Mathematically, this
kind of movement results in higher-derivative
terms in the continuous description. Cohen
& Murray (1981) took this initial step away
from local models of continuum transport by
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generalizing diffusion terms with a fourth-order
spatial derivative. This “semi-local” approxima-
tion successfully explained some long-range phe-
nomena that are impossible to represent in
a local model, including pattern formation in
mechanochemical systems (Murray, 1989), for
example. However, the semi-local approximation
eliminates certain non-local effects (Grunbaum
& Okubo, 1994). For example, semi-local ap-
proximations cannot account for abrupt changes
in individual density as can non-local models
(Mogilner & Edelstein-Keshet, 1999).

The first truly long-range transport effects ap-
peared in mathematical ecology in the early
1980s, most notably in Nagai & Mimura (1983).
As in later work (Lewis, 1994; Mogilner & Edel-
stein-Keshet, 1999), early papers considered the
rate of organims’ advection to be a non-local
function, weighted by an integral kernel, of the
density of organisms. Integrals over a spatial
domain where, in the integrand, a model-depen-
dent variable is weighted by a kernel, is the main
formal mathematical indicator of the non-local
character of such models. Using a similar tech-
nique, Turchin (1986) obtained a more satisfac-
tory description of insect dispersal by making
its diffusion coefficient a non-local weighted
function of density. In all these cases, poorly
understood and presumably fast processes of
information exchange between individuals
underlie the structure of the integral kernels. Sim-
ilar models are very popular in neurobiology
(Ermentrout & Cowan, 1979), where the local
dynamics of membrane potential governed by
neuron-generated spikes reduce to distance-
dependent strengths of recurrent excitatory
connections between neurons.

In ecology and epidemiology, a different type
of non-local model accomodates non-simulta-
neous reaction and transport for organisms that
breed and disperse in different seasons (Hardin
et al., 1988; Kot & Schaffer, 1986; Kot et al., 1996;
Van Kirk & Lewis, 1997). These models have
a form similar to eqn (4), which implicitly de-
pends on the assumption that dispersal occurs on
a much faster temporal scale than does popula-
tion growth. The non-local coupling implies that
the reduction of the dispersion of individuals to
a spatial distribution of organisms and, therefore,
to a dispersal kernel, is possible. Neubert et al.

(1995) show elegant derivations of some of these
kernels from reaction-diffusion equations.

In this paper, we restricted ourselves to ana-
lyses of interactions in real, physical space.
Researchers have applied very similar ideas
and mathematical techniques to the description
of non-local effects in angular space (Geigant
et al., 1998) and abstract “aspect” space such as
dominance space (Jager & Segel, 1992), shape
space (Segel & Perelson, 1988), group size space
(Gueron & Levin, 1995) and age space (Metz
& Diekmann, 1986). In all these models unknown
fast local processes, such as, for example, in-
formation exchange between bumble bees (Jager
& Segel, 1992) or the action of a host of align-
ment-mediating proteins (Geigant et al., 1998),
underlie non-local effects.

In conclusion, we have shown that non-local
models are simplifications of complex processes
that are fundamentally local. Non-local simplifi-
cation is valid given a sufficient separation of
scales between important processes. Although
less detailed than local models, non-local models
are valuable because they focus attention on the
variable of primary biological interest. Even
when underlying local processes are well under-
stood, as in the chemotaxis and cellular examples
in this paper, a non-local approximation may
provide important insight, such as an intuitive
description of distance dependence in the drift
rates of individuals.

When our understanding of underlying local
mechanisms is not complete, non-local models
are particularly useful. They provide phenom-
enological descriptions of these mechanisms that
may be adequate on the scale of the variable of
interest. Similarly, gathering data on spatial pat-
tern is often easier than gathering data on the
processes underlying the pattern. Consequently,
biological data for spatial systems are often insuf-
ficient to parameterize or test a mechanistic local
model but are suitable for a reduced non-local
model.

A further advantage of non-local models is that
they can accommodate discreteness in a biolo-
gical system far more easily than can local mod-
els. For instance, when the number of individuals
to be modeled is small, local models written in
terms of density functions become very awkward.
On the other hand, non-local models can be
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written in terms of individuals’ coordinates,
thereby accommodating discrete individuals. In
particular, Durrett & Levin (1994) have shown
that non-local discrete models may exhibit fun-
damentally different dynamics from local models,
in essence because of a separation of scales.

In addition to their suitability for biological
situations, non-local models are often no more
difficult to analyse than are local models. Linear
stability analysis (Levin & Segel, 1985), numerical
analysis (Bellomo & Preziosi, 1995) and singular
perturbation theory (Mogilner et al., 1996) are
equally applicable to both local and non-local
models. The extra cost of evaluating integrals at
each iteration in the non-local models is al-
leviated by the fact that non-local approxima-
tions effectively eliminate processes occurring at
fast temporal scales. Therefore, one may choose
large steps of numerical integration, vastly reduc-
ing the computational expense of the integro-
PDE. In all, we conclude that non-local modeling
is a powerful technique that can greatly facilitate
continuing efforts to use mathematics to under-
stand biology.
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