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Abstract 

We investigate theoretically a novel mechanism of transducing chemical energy into a directed force. A hypothetical 
motor protein is considered such that conformational changes induced by nucleotide binding and/or hydrolysis lead to 
asymmetric internal velocity fluctuations. We demonstrate that these fluctuations result in unidirectional motion if rectified 
by protein friction. The motor protein force-velocity relationship and other characteristics are computed based on analogy 

with known molecular motors. @ 1998 Elsevier Science B.V. 

PACS: 05.40; 82.20.M 
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1. Introduction 

Kinesin, myosin and RNA polymerase, moving 
along microtubules, actin filaments and DNA, respec- 

tively, are examples of biologically important families 
of molecular motors. In each example, proteins move 

unidirectionally along the track (i.e. protein or nucleic 
acid) [ l-41. The central question concerning these 
motor proteins is to characterize the mechanochemi- 

cal transduction mechanism that generates a directed 
force and results in motor movement. Thermal ratchet 
models of molecular motors are based on rectify- 
ing Brownian diffusion by either periodic potentials 

asymmetric in space (which can be generated by peri- 
odic array of dipoles) or by a force with a zero mean 

’ Corresponding author. E-mail: mogilner@math.ucdavis.edu. 

value asymmetric in time [ 5-71. Power stroke models 
ascribe the motion of the motor to the conformational 

change in the motor induced by nucleotide binding 
and/or hydrolysis or to binding to the track [ 8,9]. 
Current models usually combine some features of 
both of these mechanisms [ 10,111. 

In all such models the existence of an effective po- 
tential, periodic in space, in which the motors move, 
is necessary. Such potential, if asymmetric, rectifies 
stochastic motion and causes unidirectional propul- 
sion. Atoms creating such a potential profile constantly 
fluctuate, causing dynamic changes of the potential 

shape. Then, in order for a model to be plausible, small 
changes in the potential shape must not lead to signifi- 
cant changes in the behavior of the motor. Some of the 
existing models do not have this feature. Besides the 
plausibility, from a purely theoretical point of view, it 
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Fig. 1. The cycle of the “walk with a limp”. During a slow step 

forward the long working foot stays on the floor, and the body 

moves forward. During a fast idle step the long leg slips, and the 

body does not move. 

would be interesting to find a heuristic mechanism of 
directed molecular motion not requiring any effective 
potential. Here we describe a novel (we are not aware 
of any other such model) mechanism having this fea- 
ture. 

This goal can be achieved if we first understand the 
following way of considering a one-legged man walk- 

ing on a slippery floor. Let us consider a macroscopic 
“walker with a limp” having one “leg” slightly shorter 

than another (Fig. 1) . We will denote the position of 
the longer leg ahead as “idle” (I), and that with the 
longer leg behind as “forward”(F). We will consider 

the transitions F + I and I --f F as the “idle step” 
and “step forward”, respectively. We assume that be- 
cause of the “limp” the idle step is quick, and the step 
forward is slow. Let us assume, first, that the walk 

takes place at slow rates in highly viscous liquid, at 
very low Reynolds numbers. Then, as explained in 
Ref. [ 121, the center-of-mass of the walker will not 
move. This conclusion depends drastically on two as- 
sumptions: (i) inertial forces can be neglected, and 
(ii) the friction is linear, i.e. the viscous resistance 
force is linearly proportional to the velocity. 

Let us consider now a more difficult case when the 
walker moves on the floor, and the viscous resistance 

is negligible in comparison with dry (sliding) friction 
between the longer foot and the track. Furthermore, 

let us assume that only the longer leg interacts with 
the track (the shorter one is just swinging in the air 

and needed as a “counterweight”), and that assump- 
tion (i) is valid (the inertial forces can be neglected). 
Now, when assumption (ii) is not valid (the dry fric- 
tion is not linear), the effective unidirectional motion 

forward can occur. Indeed, if during relatively quick 

idle steps, the force between the legs exceeds the static 

friction, the longer leg slips, and the idle step would 

not lead to the motion of the walker’s center-of-mass. 
The following step forward, if slow enough (the force 
between the legs does not exceed the static friction), 
would not disrupt the cohesion between the longer 
foot an the floor, and then the center-of-mass of the 

walker would move the distance between the “feet” 
forward. The repetition of this cycle is equivalent to 
the effective unidirectional motion that is due to the 
left-to-right/right-to-left asymmetry of the speed of 

oscillations and friction non-linearity. 

We will demonstrate in this Letter how a micro- 
scopic power stroke model vaguely similar to the de- 
scribed imaginary walk can explain qualitatively the 
unidirectional motion of the heuristic motor protein 
without postulating an effective periodic potential. 
Moreover, it will be shown that at model parameters 

analogous to those of some known molecular motors, 
the heuristic protein displays behavior quantitatively 
similar to the one experimentally observed. We will 
discuss biological implications of these conclusions 

in the last section. Here we want to stress that regard- 
less of these conclusions the suggested mechanism 
is not a model of existing, known molecular mo- 

tors (most notably kinesin in which the “two-legged 

walking” cycle may be confused with the imaginary 
walk described above). 

2. Protein friction 

From the description of the imaginary walker above 
it is clear that the source of some non-linear friction 
has to be introduced on the molecular scale to achieve 
a unidirectional motion driven by internal fluctuations 
at low Reynolds numbers. We suggest that protein fric- 
tion caused by weak-binding interactions between a 
“motor” protein and “track” protein can play the role 
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of such force. The protein friction was introduced by 
Tawada and Sekimoto [ 131 (see also Ref. [ 111) to 
explain the fact that the motion of elastic dynein heads 
associated with a rigid microtubule was much slower 

than that expected from dynein heads undergoing un- 

restricted Brownian motion. In this section we will de- 
rive the force-velocity relation for the protein friction 

originally obtained in Refs. [ 11,131. 
Let us assume that the motor protein is sliding with 

the constant velocity, u, along the track protein and 
postulate that the “head” of the motor alternates be- 

tween an attached state in which it is weakly bound 
to the track and a detached state. We introduce the av- 
erage times the protein spends in the bound state, td, 

and in the detached state, t,. (Parameters td and t, 

are the inverted rates of detachment and attachment, 
respectively kd = t;’ , k, = t;l .) We assume that the 
bounds between the protein and track are elastic and 
obey Hooke’s law with the effective linear spring co- 
efficient kb, and that the elastic energy stored in the 
deformed spring is dissipated if the motor protein dis- 

sociates form the track spontaneously. 
The effective average protein friction force, Fp, re- 

sisting the motion of the motor can be estimated as 
the associated rate of energy dissipation, W, divided 
by the average speed, U. Furthermore, the rate of en- 

ergy dissipation can be computed as the average elas- 
tic energy lost after single detachment times the av- 
erage frequency of detachments. If at the moment 

of attachment the bond between the motor and track 
is not overstretched, and the detachment occurs after 
time fd, then the bound will be stretched on the dis- 

tance &@, and the energy lost in the detachment w = 
kb(tdu)*/2. The frequency of detachments, fd, can 
be found as the fraction of time the protein is bound, 

td/( td -I- t, ) multiplied by the rate of detachment, 

kd: fd = k&j/( td + to) = (td + ta) -‘. ThUS, 

(1) 

where lp is the protein friction drag coefficient. 
In this derivation we neglected the viscous resis- 

tance to the motor’s motion from the solvent, which 
is justified if the effective protein friction drag coeffi- 
cient is much greater than the corresponding viscous 
friction drag coefficient, lU N 67r77r (see also Ref. 
[ 131) . Here we assume that the viscous friction drag 
coefficient can be estimated roughly with Stokes’s for- 

mula; 7 is the viscosity of water, and r is the size of 
the motor protein head. It will be shown below that for 

reasonable choice of parameters the inequality cp >> 
cJ~> is valid. 

The fundamental difference between the protein 

friction and the viscous friction is that the latter is 
linear, while the former is not, despite the formal 
appearance of Eq. ( 1). This equation is valid under 

the condition that the time scale associated with pro- 
tein motion is much longer than that associated with 
processes leading to the protein friction. On the other 

hand, if the time scale associated with protein motion 
is much shorter than that associated with processes 
leading to the protein friction, the protein-track bond 

does not have time to develop, and the protein fric- 
tion can be neglected in comparison with the viscous 

friction. 
This non-viscous, non-linear character of protein 

friction is the key factor in the mechanism of directed 
molecular motion. In the low Reynolds numbers limit 

(which is valid in molecular biological applications) 
the internal cyclic motion does not lead to unidirec- 
tional motion in the viscous liquid [ 121. The necessary 

rectifying mechanism can be provided by the visco- 
elastic binding of the molecular motor to the track. In 
the next section we demonstrate how protein friction 

can rectify, unidirectionally, the internal velocity fluc- 

tuations. 

3. Description of the model 

We assume that the hypothetic motor protein con- 
sists of two globular domains (Fig. 2)) which by anal- 
ogy with two-headed motors (e.g. kinesin) we will 

call “heads”, and a flexible domain, which we will 

call the “spring”. One of the heads (“working head”, 
the analog of the longer leg of the imaginary walker) 
will be assumed to interact with the track in the way 
described in the previous section, while another one 
(“idle head”, the analog of the shorter leg) and the 
spring do not interact with the track. We will agree 

that the head interacting with the track is at the left, 
thus introducing left-to-right/right-to-left asymmetry 
without loss of generality. The realistic assumption 
which can explain why the hypothetic motor does not 
fall off the track is that either (i) there is a topolog- 
ical constraint of the motor having a “groove” inside 
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Slow relaxatm, the wo,k,ng head does no, move. 

o,rect,on Of Movement - 

Fig. 2. The mechanochemicat cycle of the motor protein. During 

slow spring relaxation the motion of the working head is stopped by 

the protein friction. At the same time, the idle head not interacting 

with the track and resisted by much smaller viscous friction moves 

to the right. Next, when an act of hydrolysis takes place, the spring 

contraction occurs so fast that there is no protein friction, and 

the heads converge symmetrically to the motor’s center-of-mass. 

Repeated, this cycle causes the unidirectional motion. 

which the track protein passes through the motor pro- 

tein (analogously to RNA polymerase and DNA), or 

(ii) many such motors are connected loosely into a 
bundle and interact with a single-track protein (anal- 

ogously to muscle myosin and actin). 
We consider the spring existing in two states: 

strained (S) and relaxed (R). The spring in states 
S and R is characterized by the rest lengths L, and 
L, and by the effective elastic coefficients k, and k,, 
respectively. The spring in the strained state is shorter 

and stiffer: L, < L,, k, > k,. We assume that the 
power stroke conformational transition R --+ S in- 
volves ATP hydrolysis which takes place with the rate 
gh. The relaxation conformational transition S + R 
happens spontaneously with the rate g,. Hydrolysis 
can not take place in the strained state. 

We can now describe the mechanochemical cycle of 

the motor protein as follows (Fig. 2). We start from 
the state S where the spring assumes its rest length 
L,. The next event is the slow, spontaneous relaxation 
of the spring, which is analogous to the slow step 
forward of the macroscopic imaginary walker. When 
this happens, the spring becomes less stiff, but its rest 
length is increased, so initially, there is some weak 
internal force stretching the spring. This force moves 
the working head to the left and the idle head to the 

right. Because the internal force is weak, the motion 
is slow, the adhesion of the working head to the track 
is firm, and the protein friction resisting the motion 

of the working head is much greater than the viscous 
friction resisting the motion of the idle head. As a 
result, the working head is almost intact, while the idle 
head slowly shifts a distance L = L, - L, to the right. 

Next, ATF’ is bound and/or hydrolyzed. Once this 
event occurs, the spring gets stiffer, its rest length is 
decreased, and the internal force contracts the spring. 

Because of the stiffer spring, this force may be great 

enough to contract the spring at such a speed that the 
contraction is completed in less time than the time as- 

sociated with processes leading to the protein friction, 
and the working head “slips”. Then, the motion of both 
heads is resisted by the viscous forces of the same 
magnitude, assuming a geometric left-right symmetry 
of the motor protein, and due to this symmetry this 

“fast idle step” leads to the working head’s shift for- 
ward and the idle head’s shift backward, respectively, 
both on the distance (L, - L,)/2. This ends the cy- 
cle; as a result the motor is in its initial state S again, 
and its center-of-mass is shifted to the right by about 

the distance (L, - L,) /2. 

If the rates of hydrolysis and relaxation are gh and 
g,, respectively, then, the average velocity, V, of the 

motor can be computed as the average step per cycle 
multiplied by the cycle’s rate, 

v = grgh Lr - Ls ______ 

gr + gh 2 . 

If a relatively small load force f is applied to the 

motor, then, to a first approximation, the protein would 
slow its drift (because of protein friction) by the speed 
f/lP, and the predicted force-velocity relation for the 
motor has the form 

grgh 
’ = 2(& + gh) 

(L,- L,) - ;. (2) 
P 

4. Analysis of the model 

4.1. Model parameters 

In the order for the suggested mechanism to be of in- 
terest in molecular biological applications, the model 
parameters have to be chosen that (i) these parame- 
ters are of the same order of magnitude as those for 
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Symbol Dimensional value Dimensionless value Meaning 

N IO’s_ 

103 s-1 

0.01 pN/nm 

0.5 pN/nm 

20 pN/nm 

40 nm 

20 nm 

10-5 s 

10-5 s 

50 nm 

N 4.1 pN nm 

E 25kBT 2: 100 pN nm 

1 OF9 pN s/nm* 

-ztl pN 

IO@ pN s/nm 

5 x IOe5 pN s/nm 

N 0.1 rate of hydrolysis 

0.1 relaxation rate 

0.04 effective spring coefficient in the relaxed state 

2 effective spring coefficient in the strained state 

80 effective spring coefficient of the bond between the motor protein and the track 

10 rest length of the effective spring in the relaxed state 

5 rest length of the effective spring in the strained state 

0.1 time in attached state 

0.1 time in detached state 

12.5 size of the protein’s head 

El thermal energy 

N 25 free energy of hydrolysis 

1.6 x 1O-4 viscosity of water 

N&l load force 

0.04 viscous friction drag coefficient 

2 protein friction drag coefficient 

the known motors, such as myosin, kinesin and RNA 
polymerase, and (ii) the temporal, spatial and ener- 

getic scales have to conform with the model conditions 
and assumptions. Here we demonstrate that the model 
parameters given in Table 1 satisfy these requirements: 

(i) We choose the size of the heads of the hypo- 
thetic motor r = 50 nm (slightly greater than that for 

the known motors [ l-31 > , and the rest lengths of the 
spring 15,~ = 20 nm and L, = 40 nm, of the same or- 
der of magnitude. Further, we take the effective spring 
coefficient in the strained state k, = -0.5 pN/nm, the 
same order of magnitude as the estimated stiffness of 

the effective spring in kinesin [ 91. We assume that in 
the relaxed state the spring is very flexible, and k, = 
0.01 pN/nm. 

The free energy released from an ATP hydrolysis is 
Q N 100 pN nm. The minimal energy needed by the 
mechanochemical cycle described above E = (k, + 

k,)(L, - Ld2/2 is from ATP hydrolysis, and with 
our choice of the parameters the approximate equality 

E N Q is satisfied. 
(ii) We choose the stiffness of the bond kb = 

20 pN/nm, comparable to that of hydrogen bonds, 

and the times of attachment and detachment t, = rd = 
lop5 s, comparable to that of myosin [ I]. Then, from 
formula ( 1) we compute lP = 5 x 10e5 pN s/nm. 
From the Stokes’s formula we estimate the viscous 
friction drag coefficient lP = low6 pN s/nm, and the 

inequality lP >> JLs is valid. 
(iii) The characteristic time of the contraction phase 

can be estimated as the time of the spring relaxation 

T, N cJL>/ks = 2 x 1O-6 rms < t,, td. Thus, the protein 
friction can be neglected during the contraction phase 

of the cycle. 
(iv) During spring relaxation, the biased drift of 

the idle head can be neglected in comparison with its 
diffusion (with effective diffusion coefficient D,. = 
kBT/l,,, where kBT is the thermal energy), because 
the spring is very loose. The corresponding relax- 
ation time scale can be estimated as T, - (Li - 
L,)2&;lkBT = 10-4s > t,, td. 

(v) We choose the rate of hydrolysis similarly to 

the known rates for kinesin and myosin, to be gh - 
lo3 s- ’ , and equal relaxation rate g, N lo3 SC’. These 
rates are an order of magnitude slower than the rate 
of spring relaxation, so the motor’s mechanochemical 

cycle can be completed. 

4.2. Dimensional analysis 

The conventional unit of force on the molecular 
scale is P = 1 pN. Also, it is convenient to measure 
distances in nm and have the thermal energy kBT N 
4.1 pN nm comparable to one, so we use the unit of 
length i; = 4 nm. We choose the unit of time to be 
equal to the time scale of the spring relaxation: ?= = 
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T,. = 10e4 s. Using these units we non-dimensionlized 
the model parameters. The corresponding dimension- 

lized values are listed in Table I. 

3.3. Numerical studies 

The dynamics of the working and idle heads are 
described with the following system of the Langevin- 
type equations: 

&++$-.;-L + N,(t), 

+ N!.(t). 

(3) 

(4) 

Here x(t) and y(f) are the coordinates of the working 
and idle heads. respectively. The terms N,.?.(t) are 
modeled in the usual way as Gaussian white noises 

with the properties [ 141 

(N,,?.(t)) = 0, 

(N,,?.(t), N.,.,.(r’)) = 2kBTJ,,,&t - t’) 

The parameter f is the external load force which we 
consider applied to the working head. 

The pair of variables (k(t) , L(t) ) is the two-state 

continuous time Markov process: in the strained state 
(k(t),L(t)) = (k,,L,), and in the relaxed state 
(k(t), L(r)) = (k,, L,). The transitions (Jc,~, L,y) + 
(k,, L,) and (k,, L, 1 + ( ks, L,y) occur with the rates 
gr and gh, respectively. 

The initial conditions used were x = 0, y = &, 

(k(t), L(t)) = (k,, L,). To avoid time-consuming 
calculations with the time step less than the contrac- 
tion phase time scale, we substituted the detailed de- 
scription of the contraction phase with the following 
stochastic process. If at time t, the transition R + 
S takes place, then the center-of-mass of the mo- 
tor does not move, while the distance between the 
heads abruptly changes to L,: x,,+I = (I,, + y,, - 

L.s)/2,Y,,+l = (.r,, + Yn + L&)/2. 
Eqs. (3), (4) in the non-dimensionalized form were 

integrated using Euler’s method and the standard nu- 
merical procedure for taking into account the addi- 
tive white noise terms [ 141. The time step used was 
lop6 s (0.01 time unit). This time step provides a 
good qualitative description of the system and avoids 
instabilities. 

5. Results 

The numerical solution of Eqs. (3)) (4) is shown in 
Fig. 3 for the case of absence of the external load. The 
displacement of the working head (in nm) is shown 

by the lower curve. The upper curve illustrates the 
displacement of the idle head. On the horizontal line 
below, (vertical) upward marks illustrate R + S tran- 
sitions while downward marks correspond to S 4 R 
transitions. The calculations were for 5 x lo-” s. It 

can be seen that when events of hydrolysis occur at pv 

5 x lop4 sand 3.7 x lo-” s, the working head jumps to 
the right, while the idle head jumps the same distance 

to the left. While the spring is strained and stiff, the 
amplitude of the idle head fluctuations is low. When 

the spring spontaneously relaxes, the average position 
of the working head does not move visibly, and the 
idle head’s average position shifts to the right. While 
the spring is relaxed and very flexible, the amplitude 
of the idle head fluctuations is great. 

The sample trajectory of the working head of the 
motor is shown in Fig. 4A The mean displacement of 
the working head together with the expected standard 
deviation are plotted in Fig. 4B. 

The average velocity of the motor was computed for 
different values of load force and rate of hydrolysis. 
The resulting force-velocity relation (Fig. 5) is al- 

most linear, similar to experimental and theoretical re- 
sults for kinesin motors [ 9,10,15-171. For the values 

of parameters chosen, the free average velocity is of 
the order of 4000 rim/s (5 ,um/s), and the stall force 
is of the order of 0.25 pN. Such a value of the veloc- 

ity is characteristic of myosin and greater than that of 
kinesin [ 4,151. The value of the stall force is l-2 or- 
ders of magnitude less than that of the known motors. 

The computed velocity is 15-20% smaller than that 
given by the analytical result (2). The source of this 
difference is the variance in the periods of time from 
relaxation to hydrolysis. Generally, when this time is 
equal or greater than the relaxation time, then the av- 
erage step of the motor is equal to (L, - L,y) /2. On the 
other hand, if this time is less than the relaxation time, 
the spring does not have time to relax before another 
act of hydrolysis occurs, which effectively decreases 
the average step of the motor. 

The dependence of the motor velocity on the ATP 
hydrolysis rate in our model is shown in Fig. 6. The 
velocity grows at slow hydrolysis rates, when the re- 
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Distance, nm 

I 
d hydrolysis i 
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I 

of SF ontaneyus rekation 

Time, ms 

Fig. 3. The numerical run of the model (3), (4). The values of the model parameters are given in Table 1; gh = lo3 s-l, f = 0. The 

upper and lower trajectories correspond to the displacements of the idle and working heads. respectively. On the horizontal line below, 

tiny vertical upward marks illustrate R -+ S transitions, while downward marks correspond to S -+ R transitions. 

laxation time is shorter than the duration of the cycle. 
The velocity decreases at greater rates when the dura- 
tion of the motor mechanical cycle becomes the rate- 
limiting factor, and frequent acts of hydrolysis effec- 
tively diminish the motor’s step. 

6. Conclusions and discussion 

The suggested mechanism of motility is based on 
the following assumptions: (i) ATP hydrolysis sup- 

plies the energy and regulates the asymmetric internal 
protein velocity fluctuations caused by the cyclic pro- 

tein conformational changes, and (ii) protein friction 
rectifies these fluctuations. 

This novel mechanism does not depend on an ef- 
fective potential and has an interesting feature of be- 

ing a velocity ratchet as compared to the usual posi- 
tional ratchet models relying on the existence of the 
asymmetric periodic potential. The internal velocity 
fluctuations are not just thermal Brownian fluctua- 
tions, in which case the direction of velocity would 
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Distance, nm 

Time, ms 

Distance, nm 

Time, ms 

Fig. 4. (A) The sample trajectory of the working head interacting with the track computed numerically (for a period of 5 x IO-* s) 
using the values of the model parameters given in Table I ; g,, = 1000 s-l, f = 0. (B) The mean displacement and displacement variance, 
averaged over 25 separate runs, are shown. Data are plotted as mean f expected standard deviation. 

be changing too often (approximately every 10-l * s) 
for any reasonable rectifying mechanism to be viable. 
Instead, these fluctuations are regulated by relatively 
slow stochastic cycles of hydrolysis/relaxation which 
allows the non-linear (with respect to velocity) pro- 
tein friction to be an effective velocity ratchet. 

Calculations using realistic model parameters give 
velocity and force-velocity relations similar to those 
of known molecular motors, and stall force less than 

that of the known motors. We also calculated the en- 
ergetic efficiency of the motor as the ratio of the work 
against friction forces during forward motion to the 

energy of ATP consumed. At different model param- 
eters the efficiency varies between 3% and 6%, which 
makes this motor apparently less efficient than known 
molecular motors. This low efficiency is due to alter- 

nating forward and backward steps of the motor, and 
the uncorrelated binding and conformational transi- 
tions mentioned above. The numerical computations 
demonstrated (see Fig. 4) that the mean variance of 
the protein displacement is a linear function of time, 
and that the motor is not a Poissonic stepper [ 181 (not 
shown). The fluctuations in displacement of the mo- 
tor derive both from randomness in the step interval, 
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O\ 
-0.25 -0.125 0 0125 0.25 

Force, pN 

Fig. 5. The approximate force-velocity relation obtained from 

computing numerically the working head displacements for a pe- 
riod of IO- ’ s, and averaging over 25 separate runs. The values of 

the model parameters given in Table I were used; gh = IO3 s-l. 

The velocity was computed at the values of the load force from 

-0.25 pN to 0.25 pN with an increment of f pN, and then the 

linear fit was obtained (the deviations of data from the linear fit 

arc very small). 

44 

4 

36 

3.2 

0.5 I 1.5 2 2.5 3 3.5 

Rate of hydrolisis, llms 

Fig. 6. The approximate dependence of the motor’s average ve- 

locity on the ATP hydrolysis rate computed numerically using the 

values of the model parameters given in Table 1; f = 0. The 

velocity was computed at the values of the hydrolysis rate from 
0.2 x IO3 s-l to 4 x lo3 s-’ with an increment of 0.2 x lo3 s-’ 
and then the polynomial fit was obtained. 

and irregularities in the step size. 

Our postulated motor may be a primitive version 

of existing (linear) molecular motors. The actions of 
myosin and kinesin also depend on ATP hydrolysis 
and protein conformational changes; however, this ac- 

tion is more highly regulated. In these motors, bind- 
ing to the track proteins, unlike in our model, is pre- 

sumably correlated with conformational transitions. 
There is not enough information known on the dynein- 
tubulin interaction to compare with the present model. 

The force-velocity relation for RNA polymerase be- 
haves differently from the linear decrease. 

Because of these reasons the suggested mechanism 
may not explain the action of known molecular mo- 
tors, Nevertheless, this model can be relevant to some 
aspects of the behavior of motor proteins moving along 

track proteins. For example, perhaps the inchworm- 
ing mode of the RNA polymerase propulsion can be 
explained with the protein friction coupled to inter- 

nal elastic fluctuations [ 191. Furthermore, the relevant 
mechanism works in vivo on a macroscopic level: gas- 
tropods move on surfaces generating muscular waves 
which are rectified by visco-elastic friction of pedal 
mucus covering the surface [ 201. A “series elastic” 
component [ 211, clearly present in myosin motors, is 

an inherent and required part of our postulated mo- 
tor. Perhaps elasticity is a required component of the 
myosin motor and is not incidental to its structure. An- 
other interesting feature of this model is the require- 

ment for two model heads, both to develop force, and 

one of them to be the source of the protein friction 
necessary to rectify movement. (Both heads are not 

required to be on the same motor molecule.) 
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