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Abstract

Cross-linked actin networks are the primary component of the cell cytoskeleton and have

been the subject of numerous experimental and modeling studies. While these studies have

demonstrated that the networks are viscoelastic materials, evolving from elastic solids on

short timescales to viscous fluids on long ones, questions remain about the duration of each

asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on

intermediate timescales. Here we perform detailed simulations of passively cross-linked

non-Brownian actin networks to quantify the principal timescales involved in the elastovis-

cous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize con-

tinuum models from discrete stochastic simulations. To do this, we extend our recent

computational framework for semiflexible filament suspensions, which is based on nonlocal

slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime.

We introduce a model where the cross linkers are elastic springs with sticky ends stochasti-

cally binding to and unbinding from the elastic filaments, which randomly turn over at a char-

acteristic rate. We show that, depending on the parameters, the network evolves to a steady

state morphology that is either an isotropic actin mesh or a mesh with embedded actin bun-

dles. For different degrees of bundling, we numerically apply small-amplitude oscillatory

shear deformation to extract three timescales from networks of hundreds of filaments and

cross linkers. We analyze the dependence of these timescales, which range from the order

of hundredths of a second to the actin turnover time of several seconds, on the dynamic

nature of the links, solvent viscosity, and filament bending stiffness. We show that the net-

work is mostly elastic on the short time scale, with the elasticity coming mainly from the

cross links, and viscous on the long time scale, with the effective viscosity originating primar-

ily from stretching and breaking of the cross links. We show that the influence of nonlocal

hydrodynamic interactions depends on the network morphology: for homogeneous mesh-

works, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for

bundled networks it both hinders the formation of bundles and significantly lowers the resis-

tance to shear once bundles are formed. We use our results to construct three-timescale

generalized Maxwell models of the networks.
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Author summary

The cytoskeleton is composed of semiflexible, inextensible actin filaments, dynamic cross

linkers, and molecular motors, and makes the primary contribution to the structural

properties of the cell. Despite its being so fundamental to cell biology, the biological com-

plexity of the cytoskeleton hinders our ability to understand its mechanical properties

through in vitro experiments. In this paper, we perform microscopic simulations of actin

fibers and transient cross linkers to quantify the principle timescales involved in the net-

work, study how these timescales influence the morphology and rheology of the system,

and examine the role of hydrodynamic interactions in cytoskeletal networks. We find

three principle timescales which we associate with fiber flexibility, cross linker detach-

ment, and network remodeling, respectively. We show that the morphology of the net-

work is more important on longer timescales, where the viscosity of links inside of fiber

bundles is enhanced. We also show that hydrodynamic interactions reduce the stress

inside of bundles because of entrainment flows. Finally, we propose a continuum model

which can be used to coarse-grain our agent-based simulations and enable modeling of

larger systems.

Introduction

In most cells, as much as 10% of all protein is actin [1]. The majority of actin is the F-actin

cytoskeleton − a gel made of rapidly-turning-over (assembling and disassembling) actin fila-

ments (which we will call fibers), which are dynamically cross linked by a vast host of actin

binding proteins (which we will call cross linkers or CLs). The actin cytoskeleton is largely

responsible for the cell’s shape, movements, division, and mechanical response to its external

environment [2]. Thus, understanding the mechanical and rheological properties of dynami-

cally cross-linked cytoskeletal networks is the first step to understanding the mechanical prop-

erties of the cell at large.

Several in vitro experimental techniques, including active poking, parallel plate shearing,

and embedded-microbead tracking, have characterized the mechano-rheological behavior of

cross-linked actin gels [1]. Depending on the experimental conditions, these studies report vis-

coelastic moduli in a wide range, from 0.1 to hundreds of Pascals [3–6]. The mixed viscoelastic

mechanical response of the densely cross-linked gel is expected: simply speaking, at short time

scales the network of elastic fibers and CLs can be considered permanently interconnected and

deform elastically, while at long time scales dynamic CLs are expected to connect fibers only

transiently, enabling the brief storage of elastic energy of deformations. This elastic energy is

dissipated after the CLs detach, which causes effective viscous behavior on long timescales.

Often, the measured elastic modulus for actin gels is about an order of magnitude greater than

the viscous one [3, 4, 6]; however, some studies measure elastic and viscous moduli of similar

magnitude [7], and in some cases the elastic modulus is smaller than the viscous one [8]. Both

moduli are increasing functions of actin and CL concentrations [9, 10]; see especially [10] for

master curves over a wide range of CL and actin concentrations.

To understand the intrinsic timescales in the gel, many experimental studies examine the

dependence of the loss and storage moduli on the frequency of oscillatory shear deformation

ω. All experimental studies agree that the behavior of transiently cross-linked networks on

long timescales (low frequencies) is qualitatively viscous both in vitro [11, 12] and in vivo [7],

with many studies reporting a decay rate of ω1/2 for both moduli at low frequencies in the

PLOS COMPUTATIONAL BIOLOGY Computational rheology of cross-linked actin networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009240 December 6, 2021 2 / 38

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009240


absence of actin turnover [11, 13, 14]. As the frequency increases, some studies report a mono-

tonically-increasing viscous modulus [10], while others display a curious local maximum and

minimum in the viscous modulus data [13, 15, 16]. Proceeding to the high-frequency limit,

there are again contradictions, as some studies report a viscous modulus that scales as ω0.75

[10] (consistent with the thermal fluctuations of a single semiflexible filament [6, 17]), while

others observe a viscous-fluid-like scaling of ω1 [18, 19], and still others yield a scaling of ω1/2

[11, 12, 20], which is characteristic of the Rouse model of polymer physics (fluctuating beads

joined by harmonic springs) [21]. Thus the short and intermediate timescale behavior, and its

dependence on microscopic parameters, is still an open question, as is the exact meaning of

“long” and “short” timescales (i.e., when these observed scalings begin to dominate).

Part of the reason for the variations in experimental data is that each actin binding protein

produces a unique change in network morphology [22], which in turn uniquely affects the vis-

coelastic moduli. For compliant CLs such as filamin, Kasza et al. observe a strong frequency-

dependence of ω0.7 for the viscous modulus and a weak power law scaling of the elastic modu-

lus, with both taking values in the range 0.1–1 Pa [23]. As the CLs get shorter and stiffer, the

frequency-dependence in the elastic [8, 10, 23, 24] and sometimes even viscous modulus disap-

pears [23], which suggests a change in the network morphology with the type of cross-linker.

It is shown in [11] that changes in the moduli with chemical cross linking are only relevant

when the cross-linker length is shorter than the mesh size, because these kind of CLs group the

fibers into bundles, thereby changing the macroscopic structure of the network.

Wachsstock et al. [5] study the relationship between mechanical response and morphology

using actin filaments with α-actinin cross linkers. Their experiments and modeling show a

transition from elastic, solid-like behavior to viscous, fluid-like behavior as the α-actinin and

actin concentrations increase, which corresponds to the formation of bundles within the net-

work. These bundles are no longer entangled in a complex network and are free to slide past

each other, which leads to viscous behavior. This observation is compatible with the work of

Tseng et al. [25], which shows that more homogeneous networks are more elastic in nature,

and suggests that the cell makes the strongest elastic structures by combining bundling and

cross-linking proteins to form a cross-linked network of bundles [26].

In view of this experimental complexity, many modeling studies address scaling of the

cross-linked actin gel’s mechanical moduli with kinetic and microscopic mechanical parame-

ters. Some of the rheological behavior of pure actin networks can be explained with semiflexi-

ble polymer theory [27, 28]. For instance, strain-stiffening behavior in filament networks can

be accounted for by an entropic model, in which each thermally fluctuating polymer resists

affine (stretching) deformations, or an enthalpic model, in which the filaments bend before

they stretch, allowing them to reorganize along the direction of shear [29]. Semiflexible fila-

ment theories of this nature have recently been extended to transiently cross-linked networks

[16, 30, 31], and it has been shown that a broad spectrum of relaxation times appears for a

cross linker with a single unbinding rate, because larger and larger wavelength bending modes

are able to relax as cross linkers unbind [14, 30]. These theories may explain the soft glassy rhe-

ology observed in living cells [14] and the low-frequency regime where the moduli scale with

the square root of frequency [16, 30].

Speaking more broadly, the existing models of cross-linked networks fall into two catego-

ries: continuum and agent-based (discrete) models. There are a number of continuum models

available for the cell cytoskeleton, and in fact there has been a lot of work in recent years on

extending the immersed boundary method [32] to cytoskeleton-like fluids. For example,

Karcher et al. employ a continuum finite element model to measure the stress induced by mag-

netic-bead-forcing [33] (a similar model was also used in [34]). They model the cytoskeleton

as either a Maxwell (spring and dashpot in series) or Kelvin-Voigt (spring and dashpot in
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parallel) material and report a large sensitivity of the mechanical behavior on the choice of

model. Other studies have approximated the cell cytoskeleton as a poroelastic [35], porous vis-

coelastic [36], or Brinkmann [37] fluid. In either case, as discussed in [1, 33], continuum mod-

els are only as good as their fits to the data, and they in general have difficulty relating

macroscopic parameters (such as porosities, discrete timescales, and stiffnesses) to microscopic

parameters. In fact, it has been suggested that the cell possesses a continuum of relaxation

timescales [14, 38], which would invalidate any continuum model with a discrete number of

elements.

Discrete models tend to suffer the opposite problem in that they are detailed and realistic,

but are harder to analyze and do not readily extrapolate to macroscopic systems. Most of these

models have focused on simulating the steady state structure of actin networks, which presum-

ably could help explain some of the observed rheological behavior. Head et al. [39], for

instance, solve an energy minimization problem for straight filaments in two dimensions and

use their results to characterize the transition from affine (stretching-dominated) to non-affine

(bending-dominated) deformation in cross-linked networks. In a more detailed approach,

Kim et al. [40] use Brownian dynamics simulations on a bead-spring model of actin to show

that bundling is reduced when CLs are forced to bind in the perpendicular direction (as they

do when fascin is the cross-linker). They propose that the ability of a network to flow on long

timescales is due to the breaking of CLs with shear, followed by their reformation on a time-

scale determined by network reorganization and not individual CL binding. There have also

been a number of computational studies on the structure and contractile behavior of actomyo-
sin networks, which show that a critical concentration of α-actinin cross-linkers can combine

with myosin motors to form ordered bundles of actin filaments with varying polarity [41, 42].

Two recent studies [31, 43] combine computational rheology with microscopic Brownian

dynamics simulations to measure the rheological properties of transiently cross-linked actin

networks without filament turnover and without hydrodynamic interactions between the fila-

ments. In these studies, a local maximum in the viscous modulus is observed [15], which was

shown to correspond to a maximum in CL binding and unbinding events [43]. However, the

networks considered in these studies are either homogeneous [43](Fig. 2) or highly bundled

[31](Fig. 1), and we know of no detailed simulations that have reported the rheological proper-

ties over a range of structures and microscopic parameters. Furthermore, due to the absence of

turnover, in both of these studies the structure being simulated is not in equilibrium and

evolves significantly with the imposed flow, and so the measured low-frequency viscous and

elastic moduli depend on history and how the measurement is performed, and are conse-

quently not well-defined.

Despite, and maybe even because of, the large volume of experimental and theoretical stud-

ies on cross-linked actin gel mechanics, a number of questions still remain open. We focus on

three of them: What role does the morphology of the network play in the mechanical response?

Could there be a significant contribution from nonlocal hydrodynamic interactions? And can

we inform a simple and practical spring-and-dashpot model by detailed microscopic

simulations?

This paper is built around answering these questions. To do so, we first review our formula-

tion for inextensible, semiflexible filaments [44] and extend it to the case of transient cross-

linking. We model filament polymerization dynamics by turning over filaments with a charac-

teristic time τf and introduce an operator splitting scheme to update the system by turning

over the filaments, updating the cross-linked network, and moving the filaments in a sequen-

tial order. Since previous experimental and modeling studies show that the mechanical behav-

ior of actin networks is most affected by the presence of short, stiff CLs which induce

morphological changes in the network, we will focus our analysis on CLs with spring stiffness
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10 pN/μm and a 50 nm rest length, thereby mimicking α-actinin. We show that changing the

turnover time τf with all other parameters fixed gives two model systems: an isotropically

cross-linked network, or homogeneous meshwork, and a composite network of bundles

embedded in the meshwork (here we follow the classification scheme of [45]). Unlike previous

simulation studies [31, 43], the networks that we consider here are in a dynamic steady state,

which allows us to precisely quantify their steady-state mechanical properties. In particular, we

use small amplitude oscillatory shear (SAOS) rheology over a range of biologically-relevant fre-

quencies (0.01 Hz to 100 Hz) to show that the networks have three characteristic timescales on

which the links go from rigid to flexible, permanent to dynamic, and viscoelastic to purely vis-

cous. It is on this last timescale that remodeling of the network occurs. Here by “biologically

relevant,” we mean timescales from *0.1 sec (the fastest relevant microscopic changes in the

network structure, like unbinding of a CL [7]) to tens of seconds (turnover time, [46, 47]).

Because of this, in vivo rheological experiments often focus on the range from 0.1 to 100 s [7]

—we follow their example.

This paper is, to our knowledge, the first to incorporate many-body hydrodynamic interac-

tions (HIs) in the study of transiently cross-linked actin networks. Here we once again find

results that depend on the timescale under consideration. At high frequency, we show that the

viscous modulus scales linearly with ω, and that accounting for nonlocal hydrodynamics sim-

ply changes this coefficient by a fixed percentage. In contrast, at low frequency, we show that

nonlocal hydrodynamic interactions lead to a significant decrease in the moduli for structures

with a significant degree of bundling, and that the decrease can be explained by the distur-

bance flows inside a bundle. We conclude this paper by using our knowledge of the timescales

and role of nonlocal hydrodynamic interactions to suggest coarse-grained continuum models

for the transiently cross-linked actin gel.

Materials and methods

We first introduce our simulation method for passively cross-linked actin gels. This begins

with a brief review of our recently-developed spectral method for semiflexible, inextensible

fibers in the presence of cross linkers [44]. We next introduce our models of dynamic cross-

linking and actin turnover, both of which are based on the next reaction stochastic simulation

algorithm. We then discuss the three approximations to the mobility (force-velocity) relation-

ship: (non-isotropic) local drag, intra-fiber hydrodynamics, and full nonlocal hydrodynamics,

as well as how we evaluate them. Most of the details of this can be found in [44]; here we only

elaborate on the modifications we have made for efficient simulation of a bundled many-fiber

gel. We conclude this section with our temporal integration (network evolution) strategy,

which uses operator splitting to turn over the fiber positions, update the cross-linked network,

and update the fiber positions in a sequential order.

Semiflexible, inextensible fibers

Since actin fibers are slender and semiflexible, we can represent them by smooth Chebyshev

interpolants X(s), where s 2 [0, L] is an arclength parameterization of the fiber centerline and

L is the fiber length. We denote the tangent vector by τ(s) = Xs(s). For inextensible filaments

such as actin, we have the constraint

τðs; tÞ � τðs; tÞ ¼ 1; ð1Þ

for all s and t. To enforce the constraint, we introduce a Lagrange multiplier force density λ(s,
t) on each fiber.
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At every instant in time, each fiber resists bending with bending force density (per unit

length)

f k½X� ¼ � kXssss ≔ FX; ð2Þ

where the constant linear operator F gives fκ with the “free fiber” boundary conditions [48]

Xssðs ¼ 0; tÞ ¼ Xsssðs ¼ 0; tÞ ¼ 0;

Xssðs ¼ L; tÞ ¼ Xsssðs ¼ L; tÞ ¼ 0:
ð3Þ

In [44](Sec. 4.1.3), we discuss how to discretize the operator F to spectral accuracy in a

manner consistent with the boundary conditions Eq (3) using a method called rectangular

spectral collocation [49, 50].

Beginning with a single fiber, let us introduce the mobility operator M½X� and a spatially

and temporally varying background flow u0(x, t). Then, accounting for the constraint force,

bending force, and any other external forces f (CL) (e.g., those coming from attached CLs), the

evolution equation on the fiber is given by

U ¼
@X
@t
� u0 X; tð Þ ¼M X½ � f k X½ � þ λþ f ðCLÞ

� �
: ð4Þ

subject to the boundary conditions Eq (3) and inextensibility constraint Eq (1). In [44], we

show how to obtain λ and enforce inextensibility via the principle of virtual work. We discuss

different approximations to M½X� in a later section.

Dynamic cross-linking model

We now specify a method to compute the external or cross-linking force density f (CL) in Eq

(4). Here we extend [44] to account for transient cross linking, where the links can come on

and off through the course of a simulation. To model this, we assume that the density of cross-

links is sufficiently high that CLs do not get locally depleted by binding, and that the links dif-

fuse rapidly. By “rapid” diffusion, we mean that the Brownian motion of the links is fast rela-

tive to the residence time of a single link, which is on the order of one second (see Table 1). To

justify this, we consider the translational diffusion of a rod of length ℓ = 50 nm and radius

a = 4 nm. The translational diffusion coefficient of the rigid rod can be approximated by

Broersma’s relations as [51]

Dt ¼
kT

3pm‘
z �

1

2
gk þ g?

� �� �

where z ¼ ln
‘

a

� �

; gk ¼ 1:27 � 7:4ðz
� 1
� 0:34Þ

2
; g? ¼ 0:19 � 4:2ðz

� 1
� 0:39Þ

2

ð5Þ

For our parameters in Table 1, we obtain z = 2.53, γk = 1.25, γ? = 0.19, and Dt = 0.15 μm2/s.

This implies a center of mass displacement of hr2i = 6Dtt� 0.9t. Thus the time for a CL to

travel a mesh size of r = 0.2 μm is about 0.04 seconds, which is much faster than the one second

lifetime of each link. These assumptions considerably simplify our simulations, as we do not
have to keep track of explicit CLs, but only the number of links bound to each fiber, which can

be tuned by setting the ratio of the binding and unbinding rates.

There are four reactions in the model (parameters are summarized in Table 1):
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1. The attachment of one end of a free CL to a fiber, which occurs with rate kon (units 1/

(length × time)). Here kon accounts for the rate of diffusion of the CL until one end gets suf-

ficiently close to a fiber, and then the reaction for the CL to bind to the site.

2. The detachment of a singly-bound CL end to become a free-floating CL, which occurs with

rate koff (1/time). This is the reverse of reaction 1.

3. The attachment of the second end of a singly-bound CL to another (distinct) fiber, which

occurs with rate kon,s (units 1/(length × time)). This necessarily follows after reaction 1. The

rate kon,s accounts for the diffusion of the second end to find a fiber within a sufficient dis-

tance, and then the binding reaction for the end to latch on to the fiber. We model the ther-

mal fluctuations in the CL length by allowing a singly-bound CL to bind its free end to

another attachment site on a different fiber that is within a distance interval

‘ � dl; ‘þ dlð Þ; where d‘ ¼

ffiffiffiffiffiffi
kT
Kc

s

ð6Þ

and kT� 4 × 10−3 pN � μm. In this paper, we will fix Kc = 10 pN/μm [58], so that the dis-

tance a link can stretch is δℓ = 0.02 μm. This is 40% of the rest length of ℓ = 0.05 μm.

4. The detachment of a single end of the doubly-bound CL, so that it becomes singly-bound,

which occurs with rate koff,s (1/time). This is the reverse of reaction 2.

A schematic of the four reactions is shown in Fig 1a. In our model, we do not account for

any dependence of the binding/unbinding rates on the CL stretch.

Table 1. Simulation parameters.

Parameter Definition Value Unit Notes

a Fiber radius 0.004 μm 4 nm [52]

L Fiber length 1 μm [4, 53]

Ld Periodic unit cell length 2, 3 μm

F=L3
d Fiber density 25 μm−3 Isotropic mesh size = 0.2 μm [54, 55]

μ Fluid viscosity 0.1 Pa � s 100× water (cytoplasm) [56]

κ Fiber bending stiffness 0.07 pN � μm2 17 μm persistence length [57]

Kc CL spring stiffness 10 pN/μm [58]

ℓ CL rest length 50 nm [59]

kon CL first end binding 5 1/(μm � s) 1–10 CL ends per filament�

kon,s CL second end binding 50 1/(μm � s) kon,s� kon, not measured

koff CL first end unbinding 1 1/s [60, 61]

koff,s CL second end unbinding 1 1/s koff,s = koff

δℓ CL stretch amount 0.02 μm Binding in (0.03, 0.07) μm

τf Fiber turnover time 5–15 s [46, 47] (order 10 seconds)

N Number of Chebyshev points 16 [44](Sec. 6.3.1)

Δsu Binding site spacing 0.026 μm Need Dsu ≲ dl for accuracy

Δt Time step size 10−3 μ s Limited by Kc

With the exception of the changes described in Table 2, we keep these parameters constant in all simulations.

�In experimental studies, what is measured is a macroscopic binding rate of the order 1 μM−1 s−1, which cannot easily be converted to the effective microscopic rate we

need. To find a suitable on rate, we make the observation from [5] that 10–50% of a 1 μm long filament is decorated with α-actinin [5], which corresponds to about 1–10

CLs per filament of length 1 μm; we find that kon = 5/(μm × s) is of the correct order of magnitude to give about 5 CL ends attached to each filament.

https://doi.org/10.1371/journal.pcbi.1009240.t001
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To simulate these reactions stochastically, we employ a variant of the Stochastic simulation/

Gillespie algorithm [62, 63]. To advance the system by a time step Δt, we calculate the rate of

each reaction and use the rate to sample an exponentially-distributed time for each reaction to

occur. We choose the minimum of these times, advance the system to that time, and then

recalculate the rates for the reactions that were affected by the previous step. We organize the

event queue efficiently using a heap data structure [64], so that we can compute the next reac-

tion in OðlognÞ time.

We break each filament into Ns possible uniformly-spaced binding sites, where each of the

sites represents a binding region of size L/(Ns − 1) = Δsu. To properly resolve the possible con-

nections between fibers, we require Dsu≲ d‘. We then compute the rates of each reaction in

the following way:

1. Single end binding: the rate of a single end binding to one of the Ns attachment points on

one of the F fibers is konΔsu. We implement this as a single event with rate NsFkonΔsu, where

the specific site is chosen uniformly at random once the event is selected. Multiple CLs are

allowed to bind to a site, since each site represents a fiber segment of length Δsu that is typi-

cally longer than the minimal possible distance between two CLs.

2. Single end unbinding: we keep track of the number of bound ends on each of the NsF sites.

If a site has b ends bound to it, we schedule a single end unbinding event from that site with

rate koffb. We do this for each site separately, so that this reaction contributes NsF events to

the event queue.

3. Second end binding: we first construct a neighbor list of all possible pairs of sites (i, j) that

are on distinct fibers and separated by a distance ℓ + δℓ or less, using a linked list cell data

Fig 1. Dynamic of model and resulting bundling behavior. (a) Our model of dynamic cross-linking with fiber turnover. We coarse-grain the

dynamics of individual CLs into a rate for each end to bind to a fiber. The first end (purple) can bind to one fiber at any binding site. Once bound, we

account for thermal fluctuations of the CL length by allowing the second end (red) to bind to any other fiber within a distance ‘�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=Kc

p
of the first

end, where ℓ is the CL rest length and Kc is the CL stiffness. To model actin turnover, we allow each fiber to disassemble with rate 1/τf and for a new

(straight) fiber to assemble in a random place (nascent fiber is shown in green) at the same time. (b) Consecutive simulation snapshots illustrate how

the model reproduces the bundling behavior characteristic of an actin mesh cross-linked with α-actinin. A pair of fibers that are close enough to be

crosslinked by a thermally stretched CL are pulled together when this CL relaxes to its rest length. This brings the fibers closer together, promoting

binding of additional CLs. When multiple CLs along the inter-fiber overlap relax to their rest length, cross-linked pairs of fibers align and stay close

together, making a bundle.

https://doi.org/10.1371/journal.pcbi.1009240.g001
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structure [65]. If site i has b free ends bound to it, we schedule a binding event for that pair

of sites with rate bkon,sΔsu. Notice that this naturally implies a zero binding rate if there are

no free ends bound to site i. We treat the (j, i) connection separate from the (i, j) one for

simplicity at the cost of increasing the number of events in the queue.

4. Second end unbinding: if a link exists between sites i and j, it can unbind from one of the

sites with rate koff,s. Letting β be the number of links in the system, the total rate for which

bound links unbind from one end is 2βkoff,s. We therefore schedule a single event with rate

2βkoff,s, and, once it is chosen, select the link and end to unbind randomly and uniformly.

In the rest of this paper, we will denote the connectivity of the network (number of single

ends bound to each site, list of sites connected by CLs) as Y(t). The CL force in Eq (4) is then a

function of the fiber positions and network configuration, which we denote as f (CL)(X;Y).

We use our previous work [44](Sec. 6.1) to define the cross-linking force density between

two fibers X(i) and X(j) in a manner that can preserve the problem smoothness and therefore

the spectral accuracy of our numerical method. Suppose that a CL connects two fibers by

attaching to arclength coordinate s�i on fiber i and s�j on fiber j. Then the force density on fiber

i due to the CL is

f ðCLÞi ðsÞ ¼ � Kc 1 �
‘

k XðiÞðs�i Þ � XðjÞðs�j Þ k

 !

dhðs � s�i Þ
R L

0
XðiÞ sð Þ � XðjÞðs0Þ
� �

dhðs0 � s�j Þds
0 ð7Þ

where Kc is the spring constant for the CL (units force/length), ℓ is the rest length, and δh is a

Gaussian density with standard deviation σ. As discussed in [44](Sec. 6.1), the Gaussian width

σ depends on how many points are used to discretize the fibers. In this paper, we use N = 16

points in the fiber discretization, and so we also use the required σ/L = 0.1 to preserve smooth-

ness. In the limit σ! 0, the Gaussian density becomes a Dirac delta function, and the force

density Eq (7) becomes the expected expression for a linear spring connecting the points

XðiÞðs�i Þ and XðjÞðs�j Þ. This model is of course an approximation; as shown in [58], the stress-

strain relationship for α-actinin, which is the model CL we consider here, is nonlinear and

exhibits hysteresis for loading and unloading. We follow a number of other modeling studies

[43, 66] in approximating α-actinin as a linear spring, although we do not include an angular

stiffness, since recent experimental results [67] indicate that the dynamics of the α-actinin-

actin bond are insensitive to rotation.

Fiber turnover

We account for the turnover of actin filaments by removing a filament (and all of its attached

links) from the system and rebirthing a new, straight filament with a random location and ori-

entation elsewhere in the system (see schematic in Fig 1a). Our reasoning for this is two-fold:

first, it is simple to implement, and second, our simplifying assumptions are supported by

experimental data. Experiments have shown that pointed-end depolymerization from one end

of an actin filament is too slow to explain the observed rates of filament turnover in vivo [68],

and that depolymerization actually occurs in bursts as filaments abruptly sever into smaller

pieces [69]. In this sense, our model of depolymerization as an instantaneous event is supported

by the data. For polymerization, the process is normally linear, with monomers being added at

the plus end until it is capped. It has been shown experimentally [70], however, that the com-

bined time of growth, capping, and disassembly is still significantly smaller than the time in

which the filament is at a finite length, so we assume the former to be instantaneous relative to

the latter. We refer to [71](Sec. 2.5) for a mathematical treatment of linear polymerization.
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Having chosen this model, fiber turnover can be added as another reaction in our stochastic

simulation algorithm. Defining the mean turnover time of each fiber as τf, we add a fiber turn-

over reaction to our reaction list with rate F/τf. If this reaction is chosen, we select the fiber to

turnover randomly and uniformly. We emphasize that our time steps are at most 10−3 seconds

while the turnover times are of the order seconds, so we almost always see zero or one fiber

turnover events per time step.

Mobility evaluation

We complete our description of the evolution equation Eq (4) by specifying the mobility oper-

ator M½X�. Our approach is fully described in [44](Sec. 2, Appendix A) and is based on an

improved version of the traditional slender body theory for Stokes flow [48, 72, 73]. For a sin-

gle fiber, the self-mobility gives the fiber velocity in Eq (4) as

ULðsÞ ¼ u0 X sð Þð Þ þ
1

8pm

 

cðsÞðI þ τðsÞτTðsÞÞ þ ðI � 3τðsÞτTðsÞÞð Þf ðsÞ

þ

Z L

0

I þ r̂ðs; s0Þr̂Tðs; s0Þ
rðs; s0Þ

� �

f ðs0Þ �
I þ τðsÞτTðsÞ
js � s0j

� �

f ðsÞ
� �

ds0
!

;

ð8Þ

where r(s, s0) = X(s) − X(s0), r = krk, and r̂ ¼ r=r. Thus the velocity on the fiber can be written

as a leading order local drag term (the first line), which accounts for forcing localized around

X(s), plus a “finite part” integral remainder term (the second line), which accounts for the

intra-fiber nonlocal hydrodynamic interactions. In Eq (8), c(s) is a local drag coefficient which

has a logarithmic dependence on the fiber radius a as

cðsÞ ¼ ln
4ðL � sÞs

a2

� �

; ð9Þ

away from the fiber endpoints. Near the endpoints, Eq (9) as written is singular, and we regu-

larize it over a distance δ = 0.1L as discussed in [44](Sec. 2.1). Throughout this paper, we will

fix a = 4 nm [52].

When there are multiple fibers, the velocity Eq (8) has to be modified to account for the

flows induced by fibers j 6¼ i on fiber i. Denoting this flow by UNL and indexing the ith fiber

with a superscript (i), we use a line integral of the Rotne-Prager-Yamakawa (RPY) hydrody-

namic tensor over all other fibers to obtain the total disturbance flow

U ðiÞNLðsÞ ¼
1

8pm

X

j6¼i

Z L

0

SRPY XðiÞðsÞ;XðjÞ s0ð Þ; 2a�=3
� �

f ðjÞ s0ð Þ ds0: ð10Þ

The RPY tensor SRPY, which involves the Stokeslet and doublet singularities of Stokes flow,

is a specific form of a symmetrically regularized Stokeslet, as explained in more detail in [44]

(Sec. 2) and [74]. The constant a� is proportional to the fiber radius a, and is chosen to match

the slender body theory Eq (8) with the RPY integral for a single fiber [44](Eq (15), note that

in that equation a = 2L).

Our strategy for evaluating the total velocity U ðiÞL þ U ðiÞNL on each fiber is documented in [44]

(Sec. 4). The most computationally intensive part of this calculation is the evaluation of the

nonlocal integrals Eq (10). These integrals present challenges because they naively cost OðF2Þ

operations to evaluate, where F is the number of fibers, and because they can be nearly singular

when fibers are close together. For triply periodic systems, which we consider in this paper, we

reduce the cost to OðFÞ using the positively split Ewald method of [75, 76]. For a summary of

how this method is adapted to sheared domains, see [44](Sec. 4.3).
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In our previous work, we dealt with the nearly singular nature of the integrals for nearly

contacting fibers by correcting the result from Ewald splitting with the special quadrature

method of [77]. While this is the most accurate way to evaluate Eq (10), our recent experiments

show that the fastest way to compute the integrals Eq (10) with sufficient accuracy is via over-

sampled direct quadrature on a GPU. Specifically, we discretize all integrals for j 6¼ i using

Clenshaw-Curtis quadrature with weights w,

Z L

0

SRPYðX
ðiÞðsÞ;XðjÞðs0Þ; 2a�=3Þf ðjÞðs0Þds0

�
XNu

p¼1

SRPYðX
ðiÞðsÞ;XðjÞðs0pÞ; 2a�=3Þf ðjÞðs0pÞwp:

ð11Þ

We then perform the summation with periodic boundary conditions using the positively

split Ewald method [44, 75, 76], which we implement on a GPU in the UAMMD library [78],

with Nu sufficiently large to resolve all of the integrals in Eq (10).

Following [44], to investigate the role of nonlocal hydrodynamic interactions, we vary the

model used to compute the fluid velocity on the fibers. Our first option, which we refer to as

the local drag model, is to include only the first line of Eq (8). Note that this mobility is non-

isotropic, since the c(s) term in Eq (8) gives approximately twice the velocity for a force in the

tangential direction, so even the local drag model we use is a significant improvement over for-

mulations based on an isotropic local drag coefficient [43, 79], which are also missing the loga-

rithmic dependence in Eq (9). Another option is to include only the UL term in each fiber’s

velocity so that (nonlocal) hydrodynamic interactions between a fiber and itself (which for

dilute suspensions are the most important) are accounted for, but not interactions between a

fiber and the others. We term this the intra-fiber mobility. Finally, when all terms UL + UNL

are included on each fiber, we refer to the mobility as the full (nonlocal) hydrodynamic

mobility.

SAOS rheology

To quantify the viscoelastic behavior of the network, we measure the linear elastic (also

called storage) modulus G0 and viscous (loss) modulus G00. We employ small-amplitude

oscillatory shear (SAOS) rheology to do this [44, 80], so that we impose a shear flow of the

form

u0ðx; tÞ ¼ _g0 cosð2potÞðy; 0; 0Þ: ð12Þ

The nonzero component of the rate of strain tensor for this flow is given by

_g21ðtÞ ¼
@ux

0

@y
¼ _g0 cosð2potÞ; ð13Þ

while the nonzero component of the strain tensor is

g21ðtÞ ¼
R t

0
_g21ðt0Þ dt0 ¼

_g0

2po
sinð2potÞ ≔ g0sinð2potÞ; ð14Þ

where g0 ¼ _g0=ð2poÞ is the maximum strain in the system. The bulk elastic (G0) and viscous

modulus (G0 0) relate the stress to the strain (for the elastic modulus G0) and rate of strain (vis-

cous modulus G0 0) [80] via

s21

g0

¼ G0sinð2potÞ þ G00cosð2potÞ: ð15Þ
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As discussed in [44](Sec. 6.2), the stress tensor for our system can be decomposed into a

part coming from the background fluid and a part coming from the internal fiber stresses,

s21 ¼ s
ðmÞ

21 þ s
ðf Þ
21 ¼ m

@ux
0

@y
þ s

ðf Þ
21 : ð16Þ

Substituting the background flow Eq (12), we obtain the stress for the background (pure

viscous) fluid

s
ðmÞ

21

g0

¼ 2pom cosð2potÞ: ð17Þ

A pure viscous fluid therefore has viscous modulus scaling linearly with ω as G00(ω) = 2πωμ.

This will be useful to us when we examine the behavior of the viscous modulus of the actin gel.

The contribution of the fibers to the stress tensor is the integral
R
X(s)f(s) ds, where f is the

total force density on the fibers [48, 81], including the elastic forces exerted by the cross-link-

ers. This must be handled carefully in periodic boundary conditions, as the correct periodic

copy of the fiber must be used to ensure the stress is symmetric. The formula we use is given in

[44](Eqs. (124,125)).

Temporal integration and splitting

We have three different events to process at each time step: fiber turnover, link turnover, and

fiber movement. We will treat them sequentially using a first order Lie splitting scheme [82].

For each time step n of duration Δt, from time nΔt to (n + 1)Δt, we

1. Turnover filaments to update configuration Xn ! X�n.

2. Process binding/unbinding events to evolve Yn! Yn+1.

3. Use the method of [44] to evolve X�n ! Xnþ1.

The evolution of the fiber network in step 3 is performed using the method of [44](Sec.

4.5). This method obtains second-order accuracy and unconditional stability for fibers with

permanent CLs using a combination of a linearly-implicit trapezoidal discretization for the

fiber bending force and extrapolations for arguments of nonlinear terms (e.g., we use Xn+1/2,�

= 3/2Xn − 1/2Xn−1 as the argument for the mobility and apply the nonlocal part of the mobility

to an extrapolated constraint force λn+1/2,� = 2λn−1/2 − λn−3/2). We use this temporal discretiza-

tion wherever it applies and is sufficiently stable.

However, extrapolations such as Xn+1/2,� are nonsensical for fibers that are turned over in

the previous time step. For those fibers, we set Xnþ1=2;� ¼ X�n and compute a guess constraint

force λn+1/2,� by solving Eq (4) with the local drag mobility on each fiber that is respawned.

Additionally, in our temporal discretization [44](Eq. (102)), the forcing inside the nonlocal

mobility is treated entirely explicitly, since there we assume that the local drag part dominates

the fiber motion. There are two ways this could go wrong: first, if a uniform, isotopic suspen-

sion is sufficiently concentrated, the temporal integrator becomes unstable. This was the case

we already dealt with in [44], where we switched to implicit treatment of the bending force in

all parts of the mobility and used an iterative solver. When the fibers are in bundles, however,

we find that the approach of [44] is prohibitively expensive due to the ill-conditioning of

the elastic force operator F (which involves fourth derivatives) combined with the extrapola-

tions for Xn+1/2,� and λn+1/2,�. For this reason, we switch to a first-order backward Euler discre-

tization of fiber elasticity, where Xn+1/2,� is replaced by X�n and the elastic force is computed on
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Xn+1. The backward Euler discretization is our preferred one for simulations with significant
bundling and full hydrodynamics.

Finally, we discretize the stress tensor in a manner consistent with the numerical method,

either as σðf Þnþ1=2 ¼ σðf ÞðXnþ1=2;�;Ynþ1Þ or as σðf Þn ¼ σðf ÞðXn;Ynþ1Þ. The moduli G0 and G0 0 are

then evaluated by integrating the stress against the orthogonal sine and cosine functions [44]

(Eq. (126)).

Results and discussion

This section presents our results for the viscoelasticity of dynamically cross-linked actin net-

works. We use the parameters in Table 1 to perform the simulations, and show that changing

the fiber turnover time gives a pair of dynamic steady states with varied degrees of bundling.

We then use a stress relaxation test to show that the networks relax to a state of zero stress on a

timescale of a few seconds. This is quantified more precisely with our rheological data, where

we establish three discrete relaxation timescales and discuss the behavior on short, long, and

intermediate timescales in more detail. Our discussion of the role of nonlocal hydrodynamic

interactions (HIs) necessarily follows this, as the role of HIs is more significant on long time-

scales than short ones. We conclude this section by developing a continuum Maxwell-type

model that is informed by our knowledge of the three timescales.

Our simulations use a background fluid with viscosity μ = 0.1 Pa � s, mimicking the larger

viscosity of the cytoplasm [56]. We will, however, assume the background fluid is Newtonian,

in contrast to actual cytoplasm, so that we can isolate the contribution of the fibers to the visco-

elastic moduli.

Fiber turnover creates dynamic steady states with varied degrees of

bundling

We first show that varying the turnover time τf of the F fibers creates a set of dynamic steady

states with varying degrees of bundling. We also verify that the statistics are independent of

the system size by considering three possible cubic periodic unit cells of different edge length

Ld, all with the same mesh size (computed assuming that the fibers are distributed isotropi-

cally) ‘m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3
d=ðFLÞ

p
� 0:2 μm. The fibers have length L = 1 μm throughout, so we will con-

sider domains of size Ld = 2 μm (F = 200 fibers), Ld = 3 μm (F = 675 fibers), and Ld = 4 μm

(F = 1600 fibers). We will show that simulations of a homogeneous meshwork (τf = 5 seconds)

are suitably carried out in the smallest of the three systems, while runs where bundling is more

considerable require the next-largest system (Ld = 3 μm).

As shown in Fig 1b, dynamic cross-linking leads to bundling of fibers, a phenomenon that

is well documented experimentally for a variety of CL types [9, 83, 84]. To define a bundle, we

use the network Y to map the fibers to a connected graph [85]. Unlike [85], we say that two

fibers are connected by an edge if they are connected by two links a distance L/4 apart, the idea

being that the fibers are sufficiently aligned in that case for the links to constrain their orienta-

tions. “Bundles” are then the connected components of this graph (two or more fibers per bun-

dle). To better understand the network morphology, we define a bundle density �B ¼ B=L3
d

(units bundles/μm3), where B is the total number of bundles, and also quantify the percentage

of fibers in bundles. We define �C as the average number of links bound to each fiber (the total

number of links is F�C=2).

Homogeneous meshwork morphology. Beginning with turnover time τf = 5 s, we per-

form a steady state run to 10τf = 50 s using the three domain sizes. As shown in Fig 2a and S1

Video, the network is made primarily of fibers oriented isotropically (as can be verified by
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computing an order parameter of the type [85](Eq. (21))), with a few bundles of at most two to

three aligned fibers. We quantify this more precisely in Table 2, where we see that there is on

average one bundle per μm3, and that less than 10% of the fibers are in bundles. Because there

are only a small number of bundles and no permanent structures over long timescales in this

system, we classify this system as a homogeneous meshwork. We will report results for it using a

domain size of Ld = 2 μm (we have verified that using Ld = 3 μm does not change the results

significantly; see S1 Fig).

Bundles embedded in meshwork morphology (B-In-M). In Fig 2b, we show snapshots

from the dynamic steady state with a (doubled) turnover time of τf = 10 s. We observe signifi-

cantly more bundling and fiber alignment, as well as bundles with several (four to six) fibers in

them. In Table 2, we see that the steady-state link density has more than doubled from the 5 s

turnover case, and that the percentage of fibers in bundles has gone from about 10% for τf = 5

Fig 2. Morphology of the dynamic steady states. The actin gel for (a) τf = 5 seconds and (b) τf = 10 seconds, both shown on a domain with edge length

Ld = 3 μm. Fibers in the same bundle are colored with the same color. In (a), we observe a more homogeneous mesh. In this case, we use Ld = 2 μm in

most simulations. In (b), we observe multiple bundles embedded into a mesh, and we use Ld = 3 μm in most simulations.

https://doi.org/10.1371/journal.pcbi.1009240.g002

Table 2. Systems considered and their mean link and bundle densities.

System τf (s) Varied params �C �B (μm−3) % in B

Meshwork 5 − 5.8 1.0 8.5

Meshwork, κ/10 5 κ = 0.007 5.6 0.93 8.1

B-In-M 10 − 12.5 2.2 23

B-In-M, 2k 5.7 kon = 10, kon,s = 100, koff = koff,s = 2 12.5 2.1 21

B-In-M, 10μ 16 μ = 1 12.2 1.8 17

These data are from rheology simulations using ω = 1 Hz. Here �C is the average number of links attached to each fiber, �B is the bundle density in bundles per μm3, and

“% in B” is the percentage of the fibers that are in a bundle in the dynamic steady state.

https://doi.org/10.1371/journal.pcbi.1009240.t002
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s to 25% for τf = 10 s. The fluctuations of link density in the smaller system (Ld = 2) are quite

large (about 20%, see S2 Fig), which makes averaging too inaccurate. For this reason, for τf =

10 seconds we run a larger system with Ld = 3 μm, which we show in Fig 2b and S2 Video. We

use the Ld = 4 system with 1600 fibers to verify that the finite system size has little effect; see,

for example, Table 3.

Because this system has a significant number, but not more than half, of the fibers in bun-

dles, and because the maximum bundle size is still at most ten fibers, we refer to this system as

a bundles embedded in meshwork (B-In-M) morphology, where there are small bundles of a

few fibers embedded in an otherwise homogeneous mesh.

Other systems (parameter variations). In addition to varying the morphology through

the turnover time, we also look at systems with the same morphologies, but different micro-

scopic parameters. Table 2 gives our description of these systems. For a homogeneous mesh-

work, we consider τf = 5 s again, but this time with ten times smaller bending stiffness, so that

κ = 0.007 pN � μm2. Table 2 shows that the morphology in this case is the same as the homoge-

neous meshwork with κ = 0.07 pN � μm2, so changing the bending stiffness has a minimal

impact on the morphology. Indeed, the fibers remain relatively straight even with the smaller

bending stiffness (see S3 Fig), just as they are straight in both the B-In-M and homogeneous

meshwork systems in Fig 2. This implies that the degree of cross-linking/network connected-

ness is insufficient to induce filament bending, even in B-In-M geometries.

We also consider B-In-M systems with larger viscosity, μ = 1 Pa � s instead of 0.1, and

another system where we double the rates of link binding and unbinding. Table 2 shows how

we vary the turnover time in these systems to obtain a B-In-M morphology. When the viscosity

is increased by a factor of 10, we only need to increase the turnover time by a factor of 1.5 to

obtain a similar morphology (match �C as closely as possible). Meanwhile, doubling the rates

forces us to cut the turnover time almost in half to obtain the same morphology. This provides

our first indication that the morphology, or the timescale on which the network organizes itself

into bundles, is strongly dependent on the link binding and unbinding rates and weakly

dependent on the underlying fluid viscosity. This combination of behavior suggests we are

operating in a regime where the CLs are attached for long enough to move the fibers into a

quasi-steady state (since using twice the link turnover rate speeds up the process by a factor of

two and making the dynamics slower by changing viscosity has little effect).

Table 3. Network structure statistics for the runs over 120 seconds for the B-In-M network with ω = 1 Hz.

Ld (μm) γ �C �B (μm−3) % in B G0 (Pa) G0 0 (Pa)

3 0 12.6 2.3 24.1

3 0.01 12.5 2.2 23.2 0.37 0.64

3 0.025 12.5 2.2 23.5 0.36 0.63

3 0.05 12.8 2.2 23.9 0.39 0.67

3 0.10 13.2 2.3 25.1 0.52 0.77

3 0.15 13.9 2.4 26.6 0.79 0.96

3 ± 0.4 0.1 0.8 0.04 0.03

4 0.025 12.7 2.2 23.8 0.37 0.66

4 0.05 12.8 2.2 24.0 0.42 0.70

4 ± 0.1 0.1 0.5 0.02 0.02

We give the mean for each statistic, with uncertainties on the measurements (± row) equal to two standard deviations across five trials. The uncertainties in the

viscoelastic moduli for γ = 0.15 are larger, G0 = 0.79±0.09 Pa and G0 0 = 0.96±0.12 Pa. The comparable values of the statistics and moduli for Ld = 3 μm and Ld = 4 μm

demonstrate that the finite-size errors are smaller than the statistical errors.

https://doi.org/10.1371/journal.pcbi.1009240.t003
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The linear response regime (LRR): Viscoelastic moduli and stress spectra. Our goal for

the rheology experiments is to measure the shear moduli of the network in its dynamic steady

state, and in the linear response regime (LRR). In this section we briefly demonstrate how to

find the LRR and what happens when we go beyond it, using the B-In-M geometry as an

example.

Table 3 shows the steady state statistics and mean viscoelastic moduli for the B-In-M system

with varying strains γ. In Table 3 and throughout this paper, we report the viscous modulus

G00 without the contribution from the viscosity of the Newtonian solvent G00bkgrnd ¼ 2pom. We

observe from the table that the LRR is γ≲ 0.05, since using γ> 0.05 leads to significantly larger

moduli. In particular, Table 3 shows that larger strains of γ� 0.10 induce higher bundle densi-

ties and the formation of more links. Furthermore, the links that do form in the larger-strain

systems are themselves more strained, as the mean square link strain at γ = 0.1 and γ = 0.15 is

10% and 25% higher, respectively, than in the linear regime. The combination of these two fac-

tors gives large increases in the moduli when we reach the nonlinear regime. The viscoelastic

moduli for larger strains are also subject to significantly larger uncertainties (e.g., the uncertai-

nity for γ = 0.15 is at least double the uncertainity for γ = 0.1). The larger uncertainties come

from fluctuations in the underlying microsctructure, as the fluctuations in the link density

increase by 50% from γ = 0.01 to γ = 0.15.

Another way we can confirm that we are in the LRR is by looking at the Fourier spectrum

of the stress. Specifically, we will write the stress as

sðtÞ ¼
X1

k¼� 1

ŝ ðkÞe2pikot ð18Þ

and use the discrete Fourier transform to look at the amplitude of the coefficients ŝðkÞ for vari-

ous γ. In S4 Fig, we show the spectrum jŝðkÞj for integer values of k with τf = 10 s, where we

observe a peak at the obvious location of k = 1. It is the emergence of higher harmonics for

larger strains, however, that tells when we leave the LRR. From S4 Fig, we see that γ = 0.1 is

definitely not in the linear regime for the B-In-M geometry, since it has a k = 3 Fourier coeffi-

cient that is only about ten times smaller than the one for k = 1. Increasing γ to 0.15, we see an

even stronger response from the k = 3 harmonic, and the emergence of the k = 2 harmonic as

well.

Timescales of stress relaxation

We first seek to gain some understanding of the timescales in the system with a stress relaxa-

tion test, snapshots from which are shown in Fig 3, with full movies shown in S3 Video (for

the homogeneous meshwork) and S4 Video (for the B-In-M geometry). We simulate for 0.25

seconds using ω = 1 Hz, so that the system ends at its maximum strain γ (the results are largely

independent of both the strain and shear rate used to obtain it). In Fig 4, we show the decay of

the stress, with t = 0 denoting the point at which the system reaches the maximum strain. In

addition to our dynamic network geometries, for which we average over 30 trials, we consider

permanently linked, interconnected networks of the type considered in [44], where �C ¼ 25

ensures the network is well above the rigidity percolation threshold (over 95% of the fibers are

in one connected component, where two fibers are connected if they are linked by at least one

CL). These networks, for which we do not include fiber turnover, give smoother stress profiles,

and so we only average over 5 trials.

Fig 4 gives us two pieces of information that are important for our analysis going forward.

First, we observe that statically-linked networks can store elastic energy, since g0 ≔ σ21(t!
1)> 0, while all of the energy dissipates in transiently-linked networks. Second, both
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permanent and dynamic networks have multiple relaxation timescales, as most of the stress

(� 80% for dynamic networks) relaxes over the first 0.2 s or so, with the remaining part taking

seconds to relax. In Fig 4, we show a two-timescale decay curve that approximately, but not

exactly, matches the decay of the stress in both statically- and transiently-linked networks.

Given that one of the time constants is on the order 0.1 s and the other is on the order 1 s,

Fig 4 demonstrates that both slow and fast timescales exist in cross-linked networks. Our rheo-

logical experiments will give more precise estimates for the individual timescales, but it is

worth noting that the dissipation of all of the stress over a Oð1Þ s timescale implies that the

longest timescale in the system cannot be much longer than five seconds. This is not surprising

since the filament turnover time is of this order, but is in sharp contrast to modeling studies

without turnover, where stress takes hundreds of seconds to dissipate [31](Fig. 4).

One observation we can make from Fig 4 is that the long-time behavior is similar for all

dynamic networks, so the long timescale behavior is roughly independent of viscosity. We

made this latter observation once before when we saw that a similar turnover time can be used

Fig 3. Snapshots from the stress relaxation test in a homogeneous meshwork (top) and B-In-M geometry (bottom). We begin with an unsheared

unit cell at left, then shear the network until it reaches a maximum strain (20% in this case, shown at right), after which we turn off the shear and

measure the relaxation of the stress. As in Fig 2, the colored fibers are in bundles, and the CLs are shown in black. For the B-In-M geometry, these

snapshots are from a smaller domain (Ld = 2 μm) than we typically use so that we can also see the CLs.

https://doi.org/10.1371/journal.pcbi.1009240.g003
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to generate a B-In-M morphology for larger viscosity systems. We will look at the short-time-

scale behavior more closely in our rheological tests, which we discuss next.

Viscoelastic moduli

In S5 and S6 Videos, we show animations of the oscillatory shear experiment for the homoge-

neous meshwork and B-In-M geometries, respectively. In Fig 5, we plot the elastic and viscous

moduli as a function of frequency for the five different systems defined in Table 2. We also

include the data for a permanent, interconnected network of the type considered in [44],

which we show with and without the constant elastic element g0 = G0(ω! 0) determined in

Fig 4. For the system with ten times larger viscosity, we show the data with time/frequency

rescaled by a factor of ten, so that the value for ω = 1 Hz is mapped to ω = 10 Hz. These data

are for the local drag model, since it is faster to simulate; we will consider the effect of nonlocal

hydrodynamics in a later section.

Examining the data, we make the following observations:

• On very short timescales (shorter than 0.05 s, or frequencies larger than 20 Hz), the viscous

moduli all approach the viscous-fluid scaling of� (0.13 Pa � s) ω. The timescale on which

this occurs is directly proportional to the viscosity, as the rescaled G00 curve for the larger vis-

cosity system makes the transition at the same time as the other B-In-M curves. In addition,

the elastic moduli for B-In-M networks are about twice as large as those of homogeneous

meshwork curves at high frequency, so the elastic modulus at short times is proportional to

the link density.

• On very long timescales (several seconds, low frequencies), the viscous modulus again scales

linearly with frequency, but with a larger slope (G00 � (0.3 Pa � s) ω), which indicates that the

links have become viscous on those timescales. The elastic modulus is much smaller than the

Fig 4. Normalized stress profiles over time in the stress relaxation test. We consider four different systems: a

permanent network (blue), for which the stress relaxes to a nonzero value (g0� 0.07 Pa after accounting for

normalization), and three dynamic networks, for which the stress relaxes to a value of zero (orange is the

homogeneous meshwork, yellow the B-In-M morphology, and purple the B-In-M morphology with ten times larger

viscosity). To illustrate the point that there are multiple intrinsic relaxation timescales in the system, we show a double-

exponential curve which approximately matches the decay of stress for both permanent and transient CLs.

https://doi.org/10.1371/journal.pcbi.1009240.g004
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viscous modulus on these timescales, and both of the moduli scale nonlinearly with the link

density, as B-In-M morphologies have moduli about 4 times as large as homogeneous

meshworks.

• There is an intermediate timescale of about 1 second on which the moduli for the B-In-M

meshwork (yellow) diverge from those for the system with twice the binding/unbinding rate

(purple), and on which both of these curves diverge from the light blue permanent network

curve. In particular, for ω� 2 Hz the elastic and viscous modulus are both smaller for the

system with faster link turnover. This timescale is related to (in fact, it is exactly equal to) 1/

koff, the timescale on which individual links bind and unbind. The rescaled curve with larger

viscosity also diverges from the other B-In-M curves on this intermediate timescale, which

indicates that a timescale has been introduced (by the dynamic linking) that does not scale

with viscosity.

We will explore each of these fast, slow, and intermediate timescales in subsequent sections.

The picture we sketch is of a rigid network for timescales shorter than the fastest intrinsic time-

scale τ1 * 0.1 s; on these timescales the links are predominantly elastic and the viscous modu-

lus is the same as if the fibers were in a fluid without CLs. On timescales longer than τ1 but

shorter than the intermediate timescale τ2 * 1 s, the links still appear permanent, but they

provide additional viscosity by deforming the network to its steady state in response to flow

deformations. On timescales longer than τ2, but shorter than the longest timescale τ3 * 5 s,

the links come off before they are able to fully respond to the deformations induced by the

background flow, and the slope of the elastic and viscous modulus changes relative to the one

observed in permanent networks. Finally, on timescales longer than τ3, the network is almost

completely viscous, and the viscosity is controlled by the morphology.

Fig 5. Elastic (left) and viscous (right) modulus for the five systems we study. The system parameters are described in Tables 1 and 2 (see Table 2 for what

parameters are varied in each system). For the B-In-M morphology with ten times the viscosity (μ = 1 Pa � s), we show the data with time rescaled by a factor of

ten. We also show the results for permanently-cross-linked networks, and for the elastic modulus the dashed light blue curve is the remaining elastic modulus

when g0� 0.07 Pa (measured in Fig 4) is subtracted off.

https://doi.org/10.1371/journal.pcbi.1009240.g005
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Short timescales: Elastic links and viscous fibers

Our hypothesis is that the shortest timescale in the system, τ1, dictates when the links make a

negligible contribution to the viscous modulus. For timescales τ< τ1, the network is essentially

frozen: the fibers are rigid, the links are static, and the fibers and links contribute exclusively to

the viscous and elastic modulus, respectively. Specifically, as ω!1, we expect that the links

will make a constant contribution to G0 and that G00 will scale like η0 ω, i.e., as a viscous fluid,

with the viscous coefficient η0 independent of the number of links in the system. In Fig 5, we

show that η0� 0.13 Pa � s if ω is given in Hz. We have confirmed that this scaling continues

for frequencies all the way up to 1000 Hz.

To verify that the viscous modulus at short timescales is dominated by the fibers only (inde-

pendent of the number and nature of the links), we compare to the theoretical shear viscosity

enhancement Z�
0

for an isotropic suspension of rigid cylindrical fibers, where the mobility is

computed by the local drag approximation (first line in Eq (8)). For dilute suspensions, the

enhanced viscosity is given to order (log �)−2 in terms of the fiber density f and aspect ratio � as

[86–88]

Z�
0

m
¼
pf
45
�

1

2 ln �
� ln �þ 0:640

� ln � � 0:5

� �� �

: ð19Þ

For our parameters (� = 0.004, f ¼ FL=L3
d ¼ 25), we obtain Z�

0
=m � 0:194 for cylindrical

fibers. Recalling that G00 = 2πωη0 for a viscous fluid, our scaling in Fig 5 shows that we obtain a

similar value of η0/μ = 0.13/(2π × 0.1)� 0.21. Note that, to obtain Eq (19), we dropped the

finite part integral in [86](Eq. (7.1)), which gives 1/2 instead of 3/2 in the denominator of [86]

(Eq. (8.13)). If we include intra-fiber hydrodynamics in the mobility, the 0.5 in Eq (19) changes

back to 1.5. Substituting our parameters and recomputing, we get Z�
0
=m ¼ 0:242 with intra-

fiber hydrodynamics, which means the local drag approximation gives only 80% of the correct

viscosity.

It is important to separate the viscous contribution from the links, which approaches zero at

short timescales, from that due to the fibers, which is infinite as ω!1. For this reason, we

define

G00F ¼ 2pZ0o ð20Þ

as the viscous modulus coming from the fibers. In Fig 6a, we examine the behavior of the mod-

uli due to the links, G0 and G00 � G00F , rescaled by the average number of links in the system �C.

After rescaling time in the system with larger viscosity, we see that the data for ω> 10 Hz can

be collapsed onto a single curve for both the elastic and viscous modulus. Thus on timescales

shorter than τ1 * 0.1 s, each link behaves as an elastic element with strength independent of

morphology. Note that the elastic modulus is more than 2–3 times larger than the viscous

modulus (coming from the links) at high frequencies.

Long timescales: Viscosity depends on morphology and link unbinding rate

Let us now transition to the opposite limit of long timescales. At long timescales, Fig 6a shows

that each system is about five times more viscous than elastic (e.g., compare the values at ω =

0.2 Hz), and that normalizing by �C does not place the curves on top of each other. We say that

these “long timescales” are longer than τ3, the longest intrinsic timescale in the system, or the

timescale on which the network totally “remodels” itself. Our goal in this section is two-fold:

first, we would like to find a new rescaling that better matches the curves at low frequencies,
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and second, we would like to estimate τ3, which we do by finding the regime in which G00 is a

linear function of ω for each system.

Fig 6b shows our attempt to accomplish both of these goals. For both the viscous and elastic

modulus, we rescale by the mean link density �C multiplied by the mean number of bundles �B,

the idea being that bundles make a stronger contribution to the moduli at low frequency. We

see a better match at low frequencies than in Fig 6a, which implies that bundles have a stronger

effect on the mechanical behavior at long timescales than at short ones. In particular, the

homogeneous meshworks (blue and orange) and B-In-M (yellow) curves all scale onto the

same curve for frequencies ω� ω3� 0.2 Hz = 1/τ3, but the curves with larger viscosity (green)

Fig 6. Renormalizing the elastic and viscous modulus on short and long timescles. We show the elastic (left) and viscous (right) modulus due to the
CLs for the five systems we study. Systems are described in Tables 1 and 2 (see Table 2 for what parameters are varied in each system). To obtain a

viscous modulus due to the links alone, we subtract the component due to the fibers G00F defined in Eq (20). (a) We normalize by the link density �C and

see that the curves all match at short timescales on the order τ1� 0.02 s (after we also rescale time by viscosity). (b) We normalize by the link density

multiplied by the bundle density. For the system with ten times larger viscosity, we also include the raw data (not rescaled) as a dotted green line. In the

viscous modulus plot on the right, we show a linear slope as a dashed black line and define τ3� 5 s as the end of the low-frequency linear regime in G0 0.
This timescale is roughly independent of viscosity.

https://doi.org/10.1371/journal.pcbi.1009240.g006
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and faster link (un)binding (purple) do not scale as well. In both of these cases, there is a

change in a timescale shorter than τ3, as we discuss in the next section.

To estimate τ3, we determine the regime where the viscous modulus G00 scales linearly with

ω and equate τ3 with the end of the linear region. From Fig 6b, we see that τ3� 5 seconds, and

that the linear regime endures longer for homogeneous meshworks, which implies that they

start becoming purely viscous at shorter timescales than systems with bundles (or, equiva-

lently, these networks “remodel” themselves faster).

To understand exactly how much viscosity is being provided by the links and bundles in

the different systems, we use the slope in Fig 6b to obtain

G00CL ≔ G00 � G00F � 0:04�C�Bo for t > t3: ð21Þ

Since �C has units links per fiber and �B has units bundles per μm3, 0.04 in this equation has

units Pa � s/μm3. To extract a viscosity, we write G00CL ¼ 2pmCLo, so that in the B-In-M system

with �C ¼ 12:5 and �B ¼ 2 μm−3 we obtain μCL/μ = (0.04 × 12.5 × 2)/(2π × 0.1) = 1.6. This is

eight times more viscosity than the fibers alone (0.2) and 1.6 times the background fluid vis-

cosity. For the homogeneous meshwork with �C ¼ 5:75 and �B ¼ 1 μm−3, the additional viscos-

ity is μCL/μ = (0.04 × 5.75 × 1)/(2π × 0.1) = 0.4. This is twice the viscosity of the fibers but 2.5

times smaller than that of the background fluid. Comparing the two morphologies confirms

some of the prior intuition that bundles embedded in meshworks provide stronger resistance

to flow than homogeneous meshworks [26].

Intermediate timescales

So far, we have addressed the two extreme limits of the suspension behavior. Over short time-

scales, τ< τ1, the entire network is rigid, the CLs are purely elastic, and the additional viscosity

is the same as that due to the fibers alone. Over long timescales, τ> τ3, all of the energy in the

network is dissipated. Bundles break up, there is no elastic modulus, and the morphology of

the network, and the amount by which links can deform it, determines the viscous behavior.

There is also an intermediate timescale τ2 at which some of the links, but not the entire net-

work, start to behave viscously. While we expect τ2 * 1/koff, this could change based on the

network parameters, as the same value of koff acts differently depending on the speed of net-

work deformation. To better understand the timescale τ2, we compare the elastic modulus

with dynamic links to the one for statically-linked networks (by starting from the same equilib-

rium structure and keeping the links fixed). Similar to [44], we do this for five seconds or five

cycles, and measure the modulus over the last three cycles.

Fig 7a shows the results for our B-In-M structures. The solid lines show the elastic modulus

with dynamic linking, and the dotted lines show the elastic modulus with permanent linking.

The timescale τ2 is when the dynamic linking elastic modulus diverges significantly from the

permanent link modulus, so that the links come off before they can provide their maximum

elastic response. From Fig 7a, we see that τ2 is obviously smaller when we increase the rate of

link turnover (the purple curve diverges from the dotted yellow one faster than the solid yellow

one does); this is expected from τ2 * 1/koff, which is 1 s for the yellow curve and 0.5 s for the

purple one.

Morphology has no impact on the timescale τ2, as we obtain the same characteristic time τ2

� 1 s for the homogeneous meshwork (not shown, because the results are indistinguishable)

as the B-In-M morphology. Thus the morphology only appears to have a strong influence on

the longest timescale τ3.

It is harder to determine the effect of viscosity on τ2. On the one hand, Fig 7a shows the

true data for G0 vs. ω (without scaling time by μ), so it appears that the dynamic curve diverges
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from the permanent one at about the same timescale regardless of viscosity. On the other

hand, for a fixed koff the difference between the solid and dashed curves at ω = 1 Hz is larger

for larger viscosity (green). Thus the timescale τ2 depends on the interaction of dynamic link-

ing and deformation in a nontrivial way.

To illustrate this complicated dependency, we show that different rescalings are required

when the viscosity (dynamics) or link turnover rates change from the base parameters. We

recall from Fig 6b that the larger viscosity (green) and faster link turnover (purple) B-In-M sys-

tems do not follow the same normalization as the other systems. Fig 7b shows that scaling time

by a factor of 4 (and not the expected 10) puts the green larger viscosity curve onto the rest of

the curves at low frequencies, while scaling time by a factor of 1.5 (and not the expected 2)

puts the curve with twice the link turnover rate on top of the others as well. The reason for

these particular scalings is not obvious to us, other than that they fall somewhere between the

expected scaling and unity.

Role of nonlocal hydrodynamic interactions

We have seen that the network behaves very differently on short timescales, where each link

behaves elastically independent of the network morphology, than on long timescales, where

the system is purely viscous and the morphology exerts a significant influence on the resistance

to flow. In this section, we show that nonlocal hydrodynamic interactions significantly

decrease the elastic and viscous moduli in B-In-M morphologies. We show that the decrease is

most significant at low frequencies, i.e., the frequencies where we already know morphology

has a strong influence on the behavior. We explain the decrease in two ways: first, nonlocal

Fig 7. Viscoelastic behavior on medium timescales. (a) Elastic modulus at medium frequencies. For each network type (indicated in the legend), we

compare the solid line, which has the elastic modulus with dynamic links, to the dotted line, which is the elastic modulus with permanent links. The

intermediate timescale τ2� 0.5 s is the inverse of the frequency where the data start to diverge. We consider only bundle-in-mesh morphologies using

our standard parameters (yellow), twice the link turnover rate (purple, but the static link reference is still the dotted yellow), and ten times the viscosity

(green). (b) Rescaling time to get all of the viscous modulus curves on the same plot. This is the same plot as Fig 6b (right panel), but now we rescale the

time for the larger viscosity green curve by a factor of 4 instead of 10 (ω! 4ω), and we rescale the time for the faster link turnover purple curve by 1.5

(ω! ω/1.5). This demonstrates that the data do not scale simply with the parameters at medium and low frequencies, when multiple timescales are

involved.

https://doi.org/10.1371/journal.pcbi.1009240.g007
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hydrodynamic interactions slow down the bundling process, causing less bundles to form for a

fixed turnover time, and second, they create entrainment flows that reduce the stress inside of

the bundles that do form.

We consider only the two characteristic morphologies in this section without varying any

other parameters from those given in Table 1. For each of the morphologies, we compute the

viscoelastic moduli with nonlocal hydrodynamics, then compute them again using local drag

and intra-fiber hydrodynamics. In Fig 8, we plot the error/fraction of the moduli recovered

with the various mobility operators. For a homogeneous meshwork system (blue lines), we see

that the elastic modulus is the same within 10–20% whether we use local drag, intra-fiber, or

full hydrodynamics. At low frequencies, the viscous modulus is also the same within 10%

regardless of the hydrodynamic model used, but there is an obvious error in the viscous modu-

lus when the local drag model is used at high frequencies. This discrepancy of about 20% is

also present in permanent networks [44](Fig. 9(b)) and in B-In-M morphologies, and in all

cases it can be mostly recovered by adding only intra-fiber hydrodynamics to the mobility. The

20% difference between local drag and intra-fiber hydrodynamics is similar to the theoretical

estimate discussed after Eq (19). There appears to be a small increase (at most 5%) in the vis-

cous modulus when we switch from intra-fiber hydrodynamics to fully nonlocal hydrodynam-

ics, which would be more significant at smaller mesh sizes [87].

The more interesting changes with nonlocal hydrodynamics come at low frequencies in the

B-In-M geometries. Unlike with the homogeneous meshwork, the local drag model makes

about a 50% overestimation in the elastic modulus and a 30% overshoot in the viscous modu-

lus at low frequencies for B-In-M morphologies, with the largest change coming at ω = 0.5 Hz,

or a timescale of 2 seconds. We have previously seen that morphology has a strong influence

on the moduli at these timescales, so we explore the impact of nonlocal hydrodynamics on

morphology next.

Fig 8. Proportion of the (left) elastic and (right) viscous modulus that is recovered using various mobility approximations. We compute the

modulus using full hydrodynamics, then plot the fraction of it recovered using local drag or intra-fiber hydrodynamics. We show the results for the

homogeneous meshwork in blue and the B-In-M morphology in orange. For each line color, a solid line shows the results for local drag and a dotted

line shows the results for intra-fiber hydrodynamics. Intra-fiber hydrodynamics cannot explain the deviations in the elastic and viscous modulus at low

frequency for the B-In-M geometry.

https://doi.org/10.1371/journal.pcbi.1009240.g008
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Rescaling of time cannot explain long-timescale moduli. The first possible explanation

for the decrease in G0 and G00 with nonlocal hydrodynamics at low frequencies is a change in

the network structure. In this section, we show that, while there are less bundles and links in

the dynamic steady state with full (intra- and inter-fiber) hydrodynamics for a given turnover

time, this by itself cannot entirely explain the decrease in the moduli.

To do this, we focus on the frequency where full hydrodynamics matters the most as a per-

centage. For ω = 0.5 Hz, we measure the moduli with intra-fiber hydrodynamics as G0IF ¼
0:18� 0:02 Pa, G00IF ¼ 0:42� 0:01 Pa, while the moduli with full hydrodynamics are G0H ¼
0:127� 0:004 Pa, G00H ¼ 0:35� 0:01 Pa. As shown in Table 4, the steady state link and bundle

density are 12.3 and 2.2 μm−3, respectively, with intra-fiber hydrodynamics, while with full

hydrodynamics they are are 11.7 and 2.0 μm−3. Thus at its dynamic steady state, the network

has on average fewer links and fewer bundles when we simulate with full hydrodynamics than

when we simulate with intra-fiber hydrodynamics. This is because disturbance flows in bun-

dling fibers (fibers moving towards each other) oppose the direction of motion, which slows

down the bundling process. Thus when we fix a turnover time, there are on average fewer bun-

dles (and fewer links) when the bundling process is slower.

To compensate for the changes in structure, we drop the turnover time or increase the vis-

cosity for intra-fiber hydrodynamics simulations so that the steady state morphology matches

the morphology with hydrodynamics as closely as possible. We then measure the moduli for

these new steady states. In Table 4, we show our attempt to match the statistics for intra-fiber

hydrodynamics with smaller turnover times with those for hydrodynamics with τf = 10 s.

Comparing τf = 10 s with full hydrodynamics with τf = 9.3 s with intra-fiber (IF) hydrodynam-

ics, we see the IF simulations have larger moduli, even when we closely match the steady state

link density �C and bundle density �B. The same is true when we attempt to rescale time by

increasing the background fluid viscosity (second to last line in Table 4), as in that case the

larger values of G0 and G0 0 persist despite a decrease in link and bundle density. So nonlocal

hydrodynamics must both change the bundle morphology and lower the stress for a fixed

morphology.

Bundled fibers: When flow reduces stress. The reason for the decrease in moduli with

inter-fiber hydrodynamics for a fixed morphology has to do with the flows inside a bundle. If

the fibers are packed tightly within a bundle, then we expect their disturbance flows to have a

strong influence on each other. When a fiber in a bundle moves with the bulk fluid, the distur-

bance flow it creates is in the same direction as the bulk motion, so the other fibers in the bun-

dle will naturally move as well. This effect, which is not present when we use local drag or

intra-fiber mobility, explains the reduction in stress for a fixed rate of strain.

Table 4. Statistics for system with ω = 0.5 Hz and varying turnover times and mobility models.

τf (s) Mobility �C �B (μm−3) % in B G0 (Pa) G0 0 − η0 ω (Pa)

10 H 11.7±0.3 2.03±0.04 20.9±0.6 0.127±0.004 0.27±0.01

9.3 IF 11.5±0.4 2.07±0.07 21.2±1.1 0.17±0.01 0.33±0.03

10 IF, μ = 0.14 11.5±0.3 2.01±0.07 20.1±0.8 0.19±0.02 0.38±0.03

10 IF 12.3±0.2 2.15±0.05 22.6±0.7 0.18±0.02 0.34±0.01

Here IF stands for intra-fiber hydrodynamics, where from Table 5 we obtain η0/μ = 1.6, and H stands for full, nonlocal hydrodynamics, where η0/μ = 1.7. In the second

and third row, we attempt to tune the turnover time or viscosity so that the steady state morphology with intra-fiber hydrodynamics matches the steady state

morphology with hydrodynamics and τf = 10 s. Even after doing this, the elastic and viscous modulus are still significantly higher with the intra-fiber mobility.

https://doi.org/10.1371/journal.pcbi.1009240.t004
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Fig 9 establishes this more rigorously. We consider a set of nine fibers with L = 1 μm with-
out cross-links. The fibers are arranged in a regular octagon with side length ℓ with another

fiber centered at the origin. We apply a constant straining flow with strength _g ¼ 0:1 s−1 and

measure the stress over the first second in Fig 9. The solid orange line shows the stress with full

hydrodynamics and the simulation parameter of ℓ = 0.05 μm, so that the fibers are very close.

In this case, we see that the stress with full hydrodynamics is slightly more than half of that

with local drag (which is independent of ℓ). Similar to our simulation result for cross-linked

gels, the stress decrease is not explained by intra-fiber hydrodynamics, which increases the

stress from local drag by the theoretically predicted 20–25%. In fact, as discussed in below

Eq (19) and in [44](Sec. 6.3.2), disturbance flows from intra-fiber hydrodynamics (which try

to stretch the fiber) make the constraint forces on each fiber larger, which causes an increase

in stress. Thus the decrease in stress with nonlocal hydrodynamics comes from the nonlocal

flows induced by the fibers on each other. We demonstrate this in Fig 9 by spacing the fibers

farther apart (ℓ = 0.2 μm) and showing that the stress with full hydrodynamics increases

towards the intra-fiber curve.

A continuum framework: The generalized Maxwell model

In order to enable whole-cell modeling, it is important to introduce a continuum model for

the passively cross-linked actin gel. We are motivated by the behavior of the network: at short

timescales, it scales as a viscous fluid with a constant elastic modulus (a dashpot in parallel

with a spring), while at long timescales it is purely viscous. Combining these two, we introduce

a generalized Maxwell model of the type shown in Fig 10. We have the viscous dashpot of

strength η0 in parallel with three Maxwell elements, each of which has a strength gi and an

Fig 9. Reduction of stress in bundles explains smaller moduli with hydrodynamics. (Left) We manufacture a bundle geometry

without CLs by placing nine fibers of length L = 1 μm (red) in and around an octagon with side length ℓ and straining with constant

rate _g ¼ 0:1 s−1 until t = 1 s (blue). (Right) The resulting stress evolution for different hydrodynamic models. The local drag (blue)

and intra-fiber (yellow) results are independent of ℓ, while the stress for full hydrodynamics (orange) depends strongly on ℓ. For ℓ =

0.05 μm (solid orange, the simulation parameters), there is a significant decrease in stress which comes from the entrainment of the

fibers in each other’s flow fields. For ℓ = 0.20 μm (dashed orange), the decrease is minimal; note that for full hydrodynamics with ℓ
� L we would recover the “intra-fiber” curve.

https://doi.org/10.1371/journal.pcbi.1009240.g009
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associated relaxation timescale τi, on which the element goes from elastic (for timescales

shorter than τi) to viscous (longer than τi). The total elastic and viscous (in excess of the solvent

viscosity) modulus are given by sums of the viscous dashpot and each Maxwell element [80]

G0GMðo; pÞ ¼
X3

i¼1

gi
ðotiÞ

2

1þ o2t2
i

; G00GMðo; pÞ ¼ Z0oþ
X3

i¼1

gi
oti

1þ o2t2
i

; ð22Þ

where we have denoted the 7 parameters by a vector p. As discussed in [89, 90], we can obtain

the fitting parameters (gi, τi, η0) by maximizing the log-likelihood function
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where d
0

k and d
00

k are the uncertainties in G0(ωk) and G0 0(ωk), respectively, and K is the number

of frequencies studied. Weighting the observations by uncertainty will cause the fit to give

more weight to more certain measurements. The uncertainty in the fit p̂ is estimated by the

square root of the diagonal entries of the inverse of the Fisher information matrix,

dpi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
F� 1

ii ðp̂
p

Þ; where FijðpÞ ¼ �
@

2L
@pi@pj

ðp̂Þ: ð24Þ

so that pi±δpi is a 95% confidence interval for pi.
In S5 Fig, we verify that using three (as opposed to two or four) Maxwell elements is indeed

the best choice for the bundle-embedded meshwork with τf = 10 s and full hydrodynamics (the

other systems are similar). As detailed in [90, 91], we determine this by increasing the number

of Maxwell elements until the fit stops improving substantially and we start to overfit the data,

leading to ill-conditioning. In addition to comparing the fit with three timescales to that with

Fig 10. Our continuum model, informed by the timescales discussed in previous sections. We use three Maxwell elements with timescales τ1, τ2, and

τ3, all in parallel with a viscous dashpot to describe the network. The viscous dashpot η0 represents the high frequency viscosity of the permanently

cross-linked fiber suspension. The first Maxwell element has timescale τ1� 0.02 seconds associated with it, and represents the relaxation of the fibers to

a transient elastic equilibrium (the networks before and after relaxation are shown to the left and right of this Maxwell element; the relaxing fibers are

shown in blue); on this timescale, the links are effectively static. The second Maxwell element, with timescale τ2� 0.5 s, represents the unbinding of

some links (shown more transparent than the others) and the appearance of new links (orange) − compare the networks to the left and right of this

Maxwell element. The third Maxwell element with timescale τ3� 5 s represents network remodeling (compare the networks to the left and right of this

element); for timescales larger than τ3, some of the fibers (shown in green) and links (orange) turn over and the network completely remodels from the

initial state.

https://doi.org/10.1371/journal.pcbi.1009240.g010
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two or four, in S5 Fig we also compare to a fit using a continuum of timescales, which is sug-

gested by physical theories [14, 30] and used in prior studies [7]. In this approach, the discrete

values of gi in Eq (22) are replaced by a continuous function g(τ), which is integrated (instead

of summed) on 0� τ� τmax. If we take the common choice of g(τ) = g0τ−α [92], we obtain

G0CMðo; pÞ ¼
Z tmax

0

g0t
� a ðotÞ

2

1þ o2t2
dt; G00CMðo; pÞ ¼ Z0oþ

Z tmax

0

g0t
� a ot

1þ o2t2
dt; ð25Þ

where (g0, α, τmax, η0) are the fitting parameters. In S5 Fig, we show that the fit to the data with

this continuum spectrum of timescales is not substantially better than the three timescale gen-

eralized Maxwell fit. Our preference is the three timescale fit, since in this case we can assign

physical to meaning to each of the timescales, as we did in earlier sections. Given that adding

more discrete timescales leads to ill-conditioning, the continuum approach, where there are

infinitely many timescales (and in fact infinitely many for choices g(τ)), is even more poorly

conditioned, and in that case it is difficult to assign a physical meaning to the fitting

parameters.

The three-timescale fit that we obtain for the B-In-M system with full hydrodynamics,

along with the contribution of each of the separate Maxwell elements, is shown in Fig 11.

Admittedly, the elastic modulus data G0(ω) at small frequencies do not fit the generalized Max-

well model since they do not decay as ω2. This suggests that the material response is likely

more complicated than just three Maxwell elements. At the same time, we have already shown

that G00(ω) scales linearly with ω at small frequencies, and thus that the viscous modulus,

which dominates the elastic modulus at low frequencies, does fit the generalized Maxwell

assumption. Our choice is therefore to fit only G00, and not G0, for frequencies less than 0.1 Hz

(10 s timescales).

Table 5 gives the fitting parameters for all of the systems we have considered with multiple

options for the mobility. For almost all systems, we have τ1� 0.03 s, τ2� 0.3 s, and τ3� 3 s,

Fig 11. Fitting the model of Fig 10 (the moduli from Eq (22)) to the data from the B-In-M system. The data are shown in blue, with the total fit shown in red. The

dotted lines show the contribution of each element in Fig 10 to the total fit. Here τ1 = 0.04 s is the fastest timescale shown in purple, τ2 = 0.41 s is the intermediate

timescale shown in green, τ3 = 4.5 s is the longest timescale shown in light blue. The yellow dotted line shows the contribution of the pure viscous element.

https://doi.org/10.1371/journal.pcbi.1009240.g011
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which is in line with our estimates of these timescales in Figs 6 and 7a. The only exception is

the system with higher viscosity; in this case we have already shown that the timescale τ1 scales

with viscosity to become about 0.3 s, while the timescale τ2 remains about 0.5 s. The result is

that τ1 and τ2 blend into a single timescale, and a two-timescale model is the best choice for

the data, as we show in S6 Fig. Comparing B-In-M and meshwork geometries, we observe that

the long timescale τ3 is either longer (comparing B-In-M and meshwork with full hydrody-

namics) or its contribution in Eq (22) is stronger (comparing B-In-M and meshwork with

local drag), which is consistent with our observation that B-In-M geometries have longer

remodeling times and a higher resistance to deformation. Finally, we notice how the viscosity

η0 scales directly with μ and increases by� 30% when we account for intra-fiber or nonlocal

hydrodynamics, in accordance with our observations in previous sections.

Conclusion

We experimented numerically with dynamic actin gels made of micron-long actin fibers at

concentrations characteristic of in vitro experiments. In the simulations, the fibers turned over

rapidly on a 5 to 10 second scale, similar to some experimental measurements [46, 47]. The gel

was crosslinked dynamically with flexible spring-like cross linkers (CLs) characterized by

mechanical and kinetic parameters similar to those for α-actinin, a ubiquitous actin CL. We

observed that gels with faster fiber turnover evolved into relatively homogeneous meshworks,

while gels with slower turnovers morphed into bundle-in-mesh (B-in-M) networks with small

actin bundles immersed into cross-linked meshworks. This result agrees with experimental

observations [93].

Our simulations revealed three principal time scales characterizing the mechanics of

dynamic cross-linked actin gels. On the fastest time scale,*0.03 seconds, actin fibers relax vis-

cously, locally, and rapidly to the transient elastic equilibrium generated by the network con-

figuration. On intermediate timescales, *0.5 seconds, the CLs turn over, generating new

transient elastic equilibria, and finally on the slow time scale,*3–5 seconds, the network

undergoes global remodeling through a combination of filament and CL turnover. One of the

most useful practical results of the simulations is that very complex cross-linked gel mechanics

can be approximated with the generalized Maxwell mechanical circuit shown in Fig 10, in

which three Maxwell elements in parallel correspond to elastoviscous gel deformations on the

Table 5. Parameters in the three-timescale generalized Maxwell model shown in Fig 10.

System Mobility (τ1, τ2, τ3) (s) (g1, g2, g3) (Pa) η0 (Pa � s)

Meshwork LD (0.032, 0.31, 4.2) (1.56, 0.44, 0.03) 0.13

Meshwork, κ/10 LD (0.024, 0.15, 1.5) (1.34, 0.45, 0.07) 0.13

Meshwork Intra-fiber (0.022, 0.17, 1.4) (1.49, 0.59, 0.10) 0.16

Meshwork Full hydro (0.025, 0.21, 2.1) (1.42, 0.54, 0.05) 0.17

B-In-M LD (0.026, 0.28, 2.7) (2.91, 1.26, 0.30) 0.13

B-In-M Intra-fiber (0.030, 0.28, 2.4) (2.77, 1.17, 0.29) 0.16

B-In-M Full hydro (0.039, 0.41, 4.5) (2.26, 0.84, 0.11) 0.18

B-In-M, 2k LD (0.034, 0.31, 2.7) (2.54, 1.10, 0.17) 0.13

B-In-M, 10μ LD (0.49, −, 4.3) (3.13, −, 0.38) 1.33

Refer to Table 2 for a detailed description of each system. The uncertainty in each measurement is about 25%, with the exception of η0, which has an uncertainty of

about 5%.

https://doi.org/10.1371/journal.pcbi.1009240.t005
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three characteristic time scales, in addition to the effective viscosity of the actin fiber suspen-

sion in the background fluid.

Our simulations predict that at small frequencies (time scales longer than a few seconds),

the effective elastic and viscous behaviors are controlled by the CL mechanics (as opposed to

fiber mechanics). In this regime, an effectively viscous mechanical response to deformation

dominates relatively weak elastic behavior. At low frequencies, the dominant viscous response

originates from the CLs stretching and deforming the fibers (in addition to the significant vis-

cosity of the background fluid); the fibers by themselves contribute little to the net viscosity.

The mechanical moduli scale nonlinearly with the CL density, because the CLs within actin

bundles respond to shear differently than the CLs in the actin mesh. Thus, the gel’s morphol-

ogy exerts a significant influence on the actin resistance to flow at long timescales.

At high frequencies, or timescales shorter than one tenth of a second, we found that the

effective elastic modulus of the network is higher than (but on the same order of magnitude

as) the effective viscous modulus (once we removed the viscous scaling generated by the

fibers). The elasticity simply originates from multiple elastic springs of CLs that can be consid-

ered static on the short time scale. The greatest contribution to the net viscosity is that of the

background fluid, with the fiber suspension contributing about 25% additional viscosity. At

moderate frequencies around 1 Hz (intermediate timescale, between 0.1 and 3 seconds), the

mechanical behavior of the crosslinked network is complex, combining comparable contribu-

tions of all mechanical factors described for low and high frequencies.

Our model allowed us, for the first time, to estimate quantitatively the role of nonlocal

inter-fiber hydrodynamic interactions on the actin gel rheology. We demonstrated that, while

these interactions have little effect in a homogeneous cross-linked actin meshwork, they signif-

icantly decrease the elastic and viscous moduli of heterogeneous B-In-M gels. We showed that

this decrease is most significant at low frequencies, i.e., on timescales of a few seconds, when

the network morphology has a strong influence on its mechanical behavior. At these frequen-

cies, in the presence of bundles, the hydrodynamic interactions cause 30–50% downward cor-

rections to the viscoelastic moduli. Two factors are responsible for this effect: first,

hydrodynamic interactions slow down the bundling process, so fewer bundles form, and sec-

ond, nonlocal hydrodynamics creates entrainment flows that reduce the stress inside of the

bundles that do form.

While almost all of our simulations fell in the linear viscoelastic regime, we did observe a

strain hardening effect, with the network resistance increasing beyond the linear response for

higher-amplitude deformations. This effect has been observed before experimentally [9],

which has prompted a variety of explanations and computational studies. Both Mulla et al.

[14] and Kim et al. [94], for instance, propose that strain hardening is due to the mechanics of

individual filaments, which stiffen nonlinearly in response to applied stress. Because our goal

was to measure the viscoelastic moduli of the networks in their dynamic steady state, we did

not systematically explore the viscoelastic behavior at large strains or perform measurements

at zero frequency. That said, our simulations do offer two interesting insights: first, the

mechanical behavior becomes nonlinear at just 10% or greater strains, which is a typical result

for in vitro networks [95], and second, there are more bundles (which are more resistive to

strain) at larger strain rates, and so at least one reason for the nonlinearity is the mechanosen-

sitive character of the actin gel morphology. Our conclusion is identical to the modeling study

[96], which found that strain combined with dynamic cross-linking induces signficant mor-

phological changes in the network, leading to strain hardening [96](Fig. 3). In fact, it was

recently shown that actin filament mobility is a necessary condition for strain hardening and

mechanical hysteresis [97].
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In the linear response regime, our results are in line with most of the prior experimental

and modeling studies. We found viscoelastic moduli on the order 0.1–10 Pa [10, 23], with the

links becoming viscous on long timescales and elastic on short ones [7]. Our measurements

showed that decreasing the fiber bending stiffness decreased the viscoelastic moduli, but by a

slower than linear rate [66] (in our study, decreasing κ by a factor of ten reduced the moduli

by at most 30%). We also found that the elastic stress in the gel (from the CLs exerting force on

the fibers) is much larger than the viscous drag stress over long times, which agrees with a pre-

vious computational study [94].

We failed, however, to observe a local maximum or minimum in the viscous modulus at

intermediate frequencies, as was reported in [15, 43]. One explanation for this is a difference

in parameters. In the computational study [43], the unloaded CL unbinding rate is 0.1 s−1, and

the CL stiffness is 10 pN/nm (10,000 pN/μm). In this parameter regime, the CLs always make

the most of their mechanical contribution to the network mechanics while bound, since they

cross-link the fibers for seconds and are extremely stiff. Indeed, [43](Fig. 6) shows that the

peak in G00, when the timescale of the driving frequency matches the link unbinding rate,

becomes less sharp and almost disappears when koff increases to the order of one second, as it

is in our study here. This suggests that the local maximum is only observed when the relaxation

of the network is many orders of magnitude faster than the link binding rate. This issue clearly

requires more investigation, and in the future we will explore how using a force-dependent

unbinding rate, as is done in [43], impacts the results, and whether this assumption is responsi-

ble for the peak.

What all modeling studies, including ours, suffer from is that only few features of the actin

gel are simulated, with many factors, forces, and processes either ignored or approximated

crudely. There is, of course, a good reason for this: even a very limited caricature of the gel

exhibits complex dynamics; the fact that many experimental studies paint very different pic-

tures of the gel mechanics likely stems from the same biological complexity. We propose that

to understand the full complexity, one has to keep adding dynamic processes to previous sim-

pler benchmark models and examine the changes that new dynamics bring. Thus, our next

step will be to add thermal forces responsible for random bending of the fibers. For a one

micron long fiber with persistence length close to 20 microns, the thermal bending causes lat-

eral fluctuations of no more than 30 to 40 nm, which is significantly less than the mesh size of

the networks we investigated, so we do not expect that our results will change drastically.

Indeed, a previous computational study in permanent networks showed that thermal fluctua-

tions only impact the mechanical moduli when the average distance between cross links is

greater than the persistence length of the fibers [66](Fig. 7(c)), which is a regime we are far out-

side of here.

Despite this speculation, the fact remains that our study was unable to reproduce a number

of experimental observations in transiently cross-linked actin networks that have been traced

to the underlying thermal fluctuations of the filaments. For instance, we report a viscous mod-

ulus that decays as for a viscous fluid (G00* ω at low frequencies), whereas a number of recent

experimental, modeling, and theoretical studies [13, 16, 30, 31] report an ω1/2 dependence of

both moduli at low frequencies. It is important to note, however, that fiber turnover, which

was not accounted for in these previous studies, changes the behavior on timescales larger

than the turnover time, as does our use of shorter filaments relative to [31]. In the high-fre-

quency range, our results show viscous-fluid scaling of G00 at large ω, but experiments [9] and

models [43] have shown an ω3/4 dependence at high frequencies. Now that we have performed

a benchmark study which shows that a non-Brownian cross-linked actin network exhibits this

behavior, it will be interesting to see if adding thermal bending modes [30, 31] reproduces the

scaling relations observed previously, and how these relations are affected by hydrodynamic
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interactions. In concert with this, we will consider more bundled morphologies, where the

flexibility of the filaments, and therefore their transverse bending fluctuations, may become

more important. Similarly, we will test how explicit simulation of translational and rotational

diffusion and (un)binding of individual CLs [31], as well as force dependence of CL kinetics,

affect these results.

Other mechanical features of actin that will be interesting to explore include elastic twisting

of actin filaments, which have been posited to contribute to elastic energy storage [85] and to

the emergence of chirality in cross-linked gels [98]. Last, but not least, in vivo, the gels are very

heterogeneous in the sense that there is a distribution of fiber lengths and turnover times, and

a diversity of CL types co-existing with myosin motors [70, 99, 100]. How network heterogene-

ity and active molecular force generation affect the gel mechanics is another important

question.

Supporting information

S1 Fig. Dynamic steady state for τf = 5 seconds. Number of links per fiber (top left), bundle

density (top right, number of bundles / L3
d), % of fibers in bundles (bottom left), and maximum

bundle size (bottom right) for simulations from an initialized isotropic state run to the

dynamic steady state for τf = 5 seconds using three different system sizes: Ld = 2 (200 fibers,

blue), Ld = 3 (675 fibers, red), and Ld = 4 (1600 fibers, yellow). Error bars are two standard

errors over five trials.

(EPS)

S2 Fig. Dynamic steady state for τf = 10 seconds. Number of links per fiber (top left), bundle

density (top right, number of bundles / L3
d), % of fibers in bundles (bottom left), and maximum

bundle size (bottom right) for simulations from an initialized isotropic state run to the

dynamic steady state for τf = 10 seconds using three different system sizes: Ld = 2 (200 fibers,

blue), Ld = 3 (675 fibers, red), and Ld = 4 (1600 fibers, yellow). Error bars are two standard

errors over five trials.

(EPS)

S3 Fig. Homogeneous meshwork for smaller bending stiffness κ. Side (left) and top (right)

view of the homogeneous meshwork with κ = 0.007 pN � μm2, which is 1/10 of the stiffness of

actin. Despite the smaller bending stiffness, the fibers still appear relatively straight, with the

exception of some of the fibers in bundles.

(TIFF)

S4 Fig. Spectrum of the stress for the B-In-M network. The coefficients ŝðkÞ are defined in

(18) in the main text. We consider various maximum strain values γ = 0.01 (green), 0.025 (pur-

ple), 0.05 (yellow), 0.1 (orange), and 0.15 (blue). We see the emergence of a k = 3 nonlinear

harmonic for larger strains, suggesting a nonlinear response.

(EPS)

S5 Fig. Maxwell model fit for the B-In-M system with full hydrodynamics and a varying

number of elements. We consider 1 (red), 2 (yellow), 3 (purple), and 4 (green) Maxwell

modes in parallel with a viscous dashpot. The elastic modulus is only fit for ω� 0.1 Hz. The

B-In-M system with μ = 0.1 Pa � s is best fit with three elements. The dashed line shows to a

continuous spectrum of timescales, (25) in the main text, with g0 = 0.22, α = 1.4, τmax = 3.5,

and η0 = 0.16, which is not a better fit than the 3 timescale generalized Maxwell model.

(EPS)
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S6 Fig. Maxwell model fit for the system with ten times larger viscosity and local drag

mobility. We consider 1 (red), 2 (yellow), 3 (purple), and 4 (green) Maxwell modes in parallel

with a viscous dashpot. The elastic modulus is only fit for ω� 0.1 Hz. This higher viscosity sys-

tem (μ = 1 Pa � s) is best fit with only two elements, since the three and four element Maxwell

models have a timescale larger than 100 seconds, indicating overfitting.

(EPS)

S1 Video. Homogeneous meshwork system with Ld = 2 μm in its dynamic steady state.

(MP4)

S2 Video. Bundle-in-mesh geometry with Ld = 3 μm in its dynamic steady state.

(MP4)

S3 Video. Stress relaxation test for the homogeneous meshwork geometry. This shows five

seconds of simulation time in a domain with Ld = 2 μm.

(MP4)

S4 Video. Stress relaxation test for the bundle-in-mesh geometry. This shows five seconds

of simulation time in a domain with Ld = 2 μm, which is smaller than the Ld = 3 μm domain

that we use for data collection in this paper.

(MP4)

S5 Video. Oscillatory shear rheology experiment for the homogeneous meshwork geome-

try. This shows 5 seconds of simulation time with frequency ω = 1 Hz on a domain of Ld = 2

μm microns with maximum strain γ = 0.2. This strain is well outside the linear regime, and is

used for visualization purposes only.

(MP4)

S6 Video. Oscillatory shear rheology experiment for the bundle-in-mesh geometry. This

shows 5 seconds of simulation time with frequency ω = 1 Hz on a domain of Ld = 2 μm

microns with maximum strain γ = 0.2. In addition to a larger strain, we also use a smaller

domain here for visualization purposes (typically we use Ld = 3 μm for the B-In-M geometry).

(MP4)
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