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Every animal cell is filled with a cytoskeleton, a dynamic gel made of inextensible
fibers, such as microtubules, actin fibers, and intermediate filaments, all suspended in a
viscous fluid. Numerical simulation of this gel is challenging because the fiber aspect
ratios can be as large as 104. We describe a method for rapidly computing the dynamics
of inextensible slender filaments in periodically sheared Stokes flow. The dynamics of the
filaments is governed by a nonlocal slender body theory which we partially reformulate
in terms of the Rotne-Prager-Yamakawa hydrodynamic tensor. To enforce inextensibility,
we parametrize the space of inextensible fiber motions and strictly confine the dynamics
to the manifold of inextensible configurations. To do this, we introduce a set of Lagrange
multipliers for the tensile force densities on the filaments and impose the constraint of no
virtual work in an L2 weak sense. We augment this approach with a spectral discretization
of the local and nonlocal slender body theory operators which is linear in the number
of unknowns and gives improved spatial accuracy over approaches based on solving a
line-tension equation. For dynamics, we develop a second-order semi-implicit temporal
integrator which requires at most a few evaluations of nonlocal hydrodynamics and a few
block-diagonal linear solves per time step. After demonstrating the improved accuracy and
robustness of our approach through numerical examples, we apply our formulation to a
permanently cross-linked actin mesh in a background oscillatory shear flow. We observe a
characteristic frequency at which the network transitions from quasistatic, primarily elastic
behavior to dynamic, primarily viscous behavior. We find that nonlocal hydrodynamics
increases the viscous modulus by as much as 25%. Most of this increase, in contrast to
the smaller (about 10%) increase in the elastic modulus, is due to short-ranged intrafiber
interactions.

DOI: 10.1103/PhysRevFluids.6.014102

I. INTRODUCTION

Interactions of long, thin, inextensible filaments with a viscous fluid abound in biology, engi-
neering, physics, and medicine. In biology, the swimming mechanisms of flagellated organisms
have been of interest for decades, with an initial cluster of studies on how force and torque balances
lead to swimming [1–4], and a more recent focus on flagellar bundling and propulsion [5–7]. In
physics and engineering, suspensions of high-aspect-ratio fibers have been observed to display
non-Newtonian, viscoelastic behavior both experimentally [8] and computationally [9,10].

Our particular area of interest is the simulation of semiflexible filaments that make up the cell cy-
toskeleton. These inextensible filaments, which include microtubules and actin filaments, maintain
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the cell’s structure, control the mechanics of the cell division process, and have aspect ratios from
102 to 104 [11]. In vivo, actin filaments are generally bound together into networks by cross-linking
proteins, the properties of which determine the viscoelastic behavior of the cytoskeleton [12–14].
While there has been much work recently on microtubule systems [15,16], there has yet to be, to
our knowledge, a systematic study of the influence of hydrodynamic interactions on the mechanics
and rheology of cross-linked actin networks. One of the goals of this paper is to develop an efficient
numerical technique that can simulate a cross-linked network of thousands of inextensible actin
filaments and take into account the filament interactions with a viscous solvent at zero Reynolds
number. Our method not only handles the inextensibility and stiffness of the fibers robustly and
efficiently, but also accounts for, in near-linear time with respect to the number of fibers, the
long-ranged hydrodynamic interactions between and along fibers, which we show can increase the
viscous modulus of the network by as much as 25%. We will not consider thermal fluctuations or
elastic twisting of the filaments in this work.

Prior to the year 2000, tools for analytical analysis and numerical simulation of filaments in
Stokes flow were developed in parallel by several authors. For slender filaments, a useful approach
for both analysis and computation is to reduce the problem from three dimensions to one by
assuming a certain distribution of singularities along the filament centerline. This approach, referred
to as “slender body theory” (SBT), was first introduced by Hancock [17] and later expanded upon
by Batchelor [18]. By using the method of matched asymptotics, Keller and Rubinow were the first
to derive an SBT that is uniformly accurate in the fiber slenderness ratio ε = radius/length [19].
Johnson further developed the theory by adding higher-order corrections and correctly treating a
fiber with free ends [20], and Götz rederived the SBT of Keller and Rubinow in a more general
context, allowing him to apply the theory to Oseen’s and Poisson’s equations [21].

Because the SBTs of Keller and Rubinow, Johnson, and Götz are uniformly accurate in powers
of ε, they have formed the basis of most of the more recent analysis. To this end, Mori et al.
recently showed that these singularity solutions solve a well-posed Stokes problem with nonstandard
boundary conditions on the filament surface [22,23]. Koens and Lauga also showed that the SBT
singularity solution can be recovered by matched asymptotic expansion of the full surface boundary
integral formulation of Stokes flow [24].

On the numerical side, non-SBT-based techniques for the simulation of fibers in Stokes flow
have been in use for many decades. The most prevalent among these are regularized singularity
methods, in which the fibers are discretized by a series of marker points, each of which is assigned
a force according to the fiber physics. The force on each marker is then regularized, and the
Stokes equations are solved to obtain a fluid velocity on the marker points due to the collection
of regularized forces. The type of regularization determines the particular numerical method.
For example, in the immersed boundary (IB) method of Peskin and collaborators, the force is
regularized by smearing it onto a background grid on which the fluid equations are solved, and
this velocity field is then interpolated back onto the marker points [25,26]. In the special case when
the spreading and interpolation are done with a Gaussian kernel, the method is referred to as a force
coupling method (FCM) [27,28]. For regularization and interpolation over the surface of a sphere,
the force-to-velocity relationship (mobility matrix) can be computed analytically and is known as
the Rotne-Prager-Yamakawa (RPY) tensor [29–31]. Finally, the method of regularized Stokeslets
describes the case when the Stokes equations are solved analytically for a given regularization
function, and the resulting velocity field is evaluated directly on the marker points without an
interpolation kernel1 [32,33].

All of these regularization methods have been used to model immersed rods, but generally with
penalty terms to enforce inextensibility [34,35]. To our knowledge, only the recent approaches of
Schoeller et al. [31] and Jabbarzadeh and Fu [36] enforce inextensibility rigorously with Lagrange

1This destroys the symmetry of hydrodynamic interactions, which is otherwise preserved in the IB, FCM,
and RPY approaches.
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multipliers. In the case of [36], the fiber is broken up into segments of regularized point forces, and
each segment is updated via a rotation that preserves inextensibility exactly. Yet, both [31] and [36]
suffer from the same pitfall as all regularization methods: when modeling slender fibers, the width
and radius of the regularization function must be on the order of the fiber radius [37]. Since the
regularization width is also tied to the fiber discretization spacing (and, in the IB method, the fluid
grid spacing), semiflexible slender fibers must be discretized with many more points than would
be necessary in a continuum, SBT-based approach. While this limitation can be partially overcome
with adaptive mesh refinement [38], grid coarsening with local velocity correction [39], and kernel-
independent fast multipole methods (to accelerate many-body sums) [40], the fact remains that
to achieve controlled accuracy for dilute suspensions of many fibers, discretizing the fiber by a
collection of marker points is much less efficient than treating it as a continuum with SBT. This is
especially true for semiflexible or stiff fibers, where the smooth fiber shapes are well represented in
a spectral basis with rapidly decaying coefficients.

Despite their limitations, regularized singularities are sometimes convenient to work with since
they are nonsingular on the fiber centerline, and can therefore be easily evaluated there. A natural
workaround to the regularization length-scale issue is to take a continuum limit of many regularized
point forces along the fiber [41] or along segments of a fiber [42–44]. For example, Walker et al.
recently derived an SBT that uses regularized singularities along the fiber centerline and can be
used for fibers of nonuniform cross section [45]. In still more recent work [44], they combined
this theory with the regularized Stokeslet segments approach of Cortez [42] to yield a numerical
method which is more efficient than that of regularized point forces, but still quadratic complexity
in the total number of segments. Since the shapes of biological filaments are smooth, a better
approach is to represent the entire shape using an interpolating polynomial, rather than breaking into
segments, and take a continuum limit of regularized singularities along the entire fiber. We show in
Appendix A that applying this procedure to the RPY tensor yields a formula for the fiber velocity
that is identical to SBT away from the fiber end points. For the reasons just listed, efficient simula-
tion of many slender fibers requires a numerical method that can handle an SBT-type formulation
for the fiber velocity.

To our knowledge, Shelley and Ueda were the first to derive such a method and use it to simulate
immersed slender fibers. By designing a numerical method around the analytical results of slender
body theory, they reduced the complexity of the numerical computations from three dimensions to
one [46,47]. Their formulation, however, relies on the filament being a closed loop, thus excluding
many problems from biology, engineering, and physics where the filament ends are free.

Tornberg and Shelley treated inextensible filaments with free ends using an SBT-based nu-
merical method [48]. In their approach, inextensibility is preserved by deriving an auxiliary
(integro)differential equation for the line tension in the filament, which acts as a Lagrange multiplier
to preserve inextensibility. This method has since been used in applications with flexible (and
sometimes fluctuating) filaments [49,50], and was also extended to simulate falling rigid fibers,
the novelty there being that many of the SBT-related integrals can be done analytically [51]. More
recently, Nazockdast et al. modified the approach of Tornberg and Shelley to make it feasible to
simulate many-body cellular fiber assemblies. By replacing the second-order spatial discretization
of Tornberg and Shelley with a spectral spatial discretization and utilizing a kernel-independent fast
multipole method (FMM) to accelerate sums, Nazockdast et al. developed a parallel algorithm that
makes it possible to simulate O(1000) fibers in linear time [15].

Despite these recent advances, imposing inextensibility via a tension boundary value problem
(BVP) leads to a number of drawbacks which are present in all of the prior SBT-based numerical
methods. To begin, the line-tension equation of [48] involves multiplications of high-order (as high
as four) derivatives of the fiber position function. This leads to severe aliasing problems and a loss of
spatial accuracy in the spectral formulation [15]. In addition, the “inextensibility” of the filaments is
still subject to discretization error and requires inserting a penalty term into the line-tension equation
that reduces the discrete extensibility [48]. For fibers tugged by cross linkers or strong extensional
flows, this penalty parameter will be large, introducing artificial stiffness into the problem.
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The primary focus of this paper is on a modified formulation for inextensible filaments. In our
approach, the fibers are evolved via a rotation of the tangent vector on the unit sphere, and the
fiber positions are then obtained by integration. This approach is similar to that of [36], but unique
because we consider the fiber as a continuum, rather than a collection of discrete line segments. In
this way, we maintain strict inextensibility of the fibers without introducing a penalty parameter. To
close our formulation, we treat the force due to tension as a Lagrange multiplier and enforce the
principle that the constraint forces do no work [52]. We couple this advance with recent techniques
[53,54] for efficient evaluation of nonlocal integrals appearing in SBT to develop a method that is
both accurate and robust.

In our spectrally accurate numerical method, we use, as in [15], Chebyshev polynomials of
relatively low degree (16–32) to represent the fiber centerlines and the force densities acting on
them. This assumes that all of these quantities are smooth enough to be represented in the spectral
basis. This assumption fails for truly cylindrical fibers near the end points, and also when the
fibers experience localized forces such as those due to steric repulsion, electrostatics, friction, and
molecular motors. In our concluding Sec. VII, we discuss some possible ways to extend our method
to account for these important biophysical forces and fiber shapes.

The rest of this paper is laid out as follows. We begin in Sec. II by introducing the necessary SBT
equations for both local and nonlocal hydrodynamics. We modify the classical SBT formulation
[19–21] to regularize the local drag coefficient for cylindrical fibers and account for interfiber
interactions through the RPY tensor. In Sec. III, we parametrize inextensible motions of the fiber
as rotations of the unit tangent vector, thus strictly enforcing inextensibility. We then discuss how
to determine the Lagrange multiplier forces for inextensibility by imposing the principle of virtual
work in a weak L2 sense. Section IV is devoted to numerical methods. We show how to incorporate
a fast method for evaluating far-field hydrodynamic interactions (positively split Ewald summation
[29]), and how to use specialized quadrature schemes for accurate evaluation of finite part and
near-fiber integrals. In Sec. IV E, we design a semi-implicit, second-order temporal integrator that
treats bending elasticity implicitly, yet for dilute systems only requires solving a block-diagonal
linear system with a single evaluation of the nonlocal hydrodynamics per time step. For more
concentrated systems, we use the generalized minimal residual method (GMRES) to solve a dense
linear system, but show in Sec. V B that at most a few iterations are needed per time step to
maintain stability. In the other numerical tests of Sec. V, we also show how our “weak formulation”
of inextensibility gives improved spatial accuracy over the traditional “strong formulation” of
inextensibility in [15,48]. In Sec. VI, we study the rheology of a cross-linked network of filaments
in oscillatory shear by introducing cross linkers into the SBT formulation. Section VII gives our
conclusions and discusses future work.

II. SLENDER BODY THEORY

We begin here by summarizing the slender body theories of [19–21], here following in particular
Johnson [20] and Götz [21]. These SBTs derive a global fluid velocity due to a single slender fiber,
then evaluate this velocity asymptotically on the fiber surface to obtain a fiber evolution equation. It
remains an open question, however, how to efficiently evaluate the fluid velocity generated by one
filament on another filament. Here we formulate a modified treatment of these fiber-fiber interactions
that is more physical and motivated by our observation in Appendix A that classical SBT can be
formulated in terms of a line integral involving the RPY kernel. In this section we will not consider
any time dependence and look at the velocity of the filament and the Stokes fluid at a specific instant
in time. We therefore omit explicit time dependence in our notation for simplicity.

A. Single filament

We denote with X (s) the position of the centerline of a filament, parametrized by arclength
s ∈ [0, L], where L is the fiber length. The tangent vector is τ(s) = ∂X/∂s and has unit length. The
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fiber has physical radius a(s) = rρ(s), where 0 � ρ(s) � 1, and slenderness ratio ε = r/L. Let the
force per unit length on the fiber centerline be denoted by f (s) and the background flow (e.g., shear
flow) at an arbitrary point in the fluid be denoted by u0(x).

We recall the Stokeslet and doublet (Laplacian of the Stokeslet) kernels, which are the funda-
mental solutions to the Stokes equations for a point force and mass source dipole, respectively. If
we center the kernels at x0, take x to be an arbitrary point in the fluid, and introduce R = x − x0

with R̂ = R/‖R‖, we have that

S(x, x0) = I + R̂R̂
‖R‖ and D(x, x0) = I − 3R̂R̂

‖R‖3 . (1)

The idea of SBT is to introduce an ansatz for the flow field away from the fiber centerline of the
form

u(x) − u0(x) = 1

8πμ

∫ L

0
[S(x, X (s)) + β(s)D(x, X (s))] f (s) ds (2)

:= 1

8πμ

∫ L

0
SD(x, X (s); β(s)) f (s) ds, (3)

where μ is the fluid viscosity. In Eq. (3), we have defined a kernel SD(x, x0; β(s)) that is a
combination of a Stokeslet and a doublet with strength β. Using the method of matched asymptotic
expansions, the velocity integral (2) can be computed analytically on the surface of the fiber to
O(ε) (see [21,24] for details on these integrals). The value of β comes from imposing the boundary
condition that the velocity on the fiber surface be constant to O(ε); Mori et al. [22,23] refer to this
as the “fiber integrity condition.” For cylindrical [21] or ellipsoidally tapered [20] filaments, this
yields the solution for the velocity in the fluid as

u(x) − u0(x) = 1

8πμ

∫ L

0
SD

(
x, X (s);

(εL)2

2

)
f (s) ds. (4)

The fluid velocity u(x) in (4) does not apply inside of the fiber volume; in fact, the kernel SD

in (4) is not even defined on the fiber centerline. Physically, however, the velocity of the fiber
centerline, which we denote with U (s), should be equal to the average of u(x) around a ring
cross section of the fiber with radius a(s). Equivalently, since the function u(x) is constant on the
cross-section surface to O(ε), averaging u(x) is equivalent to throwing out all terms in its expansion
of O(ε) or higher. Still another approach, which is based on the Rotne-Prager-Yamakawa (RPY)
kernel and matched asymptotics, is presented in Appendix A. The RPY tensor approximates the
hydrodynamic interaction between two spheres of radius b centered at x and y with the kernel
[29,30,55]

8πμSRPY(x, y; b) =
{

SD(x, y; 2b2/3), r > 2b(
4
3b − 3r

8b2

)
I + 1

8b2r rr, r < 2b
(5)

where r = x − y, r = ‖r‖, and we set the sphere radius [see (A27)] to

b = εL
e3/2

4
≈ 1.12εL. (6)

We express the velocity U (s) on the fiber as a line integral of the RPY kernel

U (s) − u0(X (s)) := 1

8πμ

∫ L

0
SRPY(X (s), X (s′); 2b2/3) f (s′) ds′. (7)

Using matched asymptotics to approximate (7) for slender fibers (see Appendix A), we obtain the
same result as classical SBT [21]:

U (s) − u0(X (s)) = ML(τ(s); c(s)) f (s) + (MFP[X (·)] f (·))(s), where (8)
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ML(τ; c) = 1

8πμ
[c(I + ττ ) + (I − 3ττ )], and (9)

(MFP[X ] f )(s) = 1

8πμ

∫ L

0

[
S(X (s), X (s′)) f (s′) −

(
I + τ(s)τ(s)

|s − s′|
)

f (s)

]
ds′. (10)

Here, ML is a 3 × 3 local drag matrix that gives the velocity contribution from the force density f at
points O(ε) away from X (s). The integral operator MFP[X ] gives the contribution from the rest of
the fiber in the form of a finite part integral. The first term in the integrand is the Stokeslet, and the
second term is the “common” part in the matched asymptotic expansion that comes from expansion
of the Stokeslet around s′ = s. Physically, the finite part integral gives the velocity contribution from
forcing at points O(1) away from X (s). Thus, while both terms in the integrand are singular, their
difference is finite [48] (see also Sec. IV B 1).

In the local drag matrix (9), the leading-order local drag coefficient is given by [21]

c(s) = ln

(
4s(L − s)

a(s)2

)
(11)

and is singular without proper decay of a(s) at s = 0 and L. Clearly, if a(s) decays near the fiber
end points as 2ε

√
s(L − s), then the leading-order coefficient (11) is finite at the fiber end points

[20]. This fact is the basis for a general assumption across the SBT literature that the filaments have
ellipsoidal shape, so that in most studies c(s) = − ln(ε2) is constant for all s [15,48,56].

Actin filaments are best modeled as cylinders with constant radius, so that a(s) = r = εL on
s ∈ [0, L]. In this case, the coefficient (11) becomes singular at the filament ends, and so we modify
the local drag coefficient by effectively tapering the fiber radius over a distance ∼δL near the end
points. Specifically, to regularize c(s), we set η = 2s/L − 1, so that η ∈ [−1, 1], and compute a
weight function

w(s; δ) = tanh

(
η(s) + 1

δ

)
− tanh

(
η(s) − 1

δ

)
− 1, (12)

which is 1 near the fiber center (η = 0) and zero at the fiber ends (η = ±1). We then assign to each
s a regularized fiber centerline coordinate by

s̄(s; δ) = w(s; δ)s + [1 − w(s; δ)2]δL

2
(13)

on 0 � s � L/2, with the corresponding reflection for s > L/2. The regularized coefficient for a
given δ is then given by

c̄(s; δ) := c(s̄(s; δ)) = ln

(
4s̄(L − s̄)

(εL)2

)
:= ln

(
4s(L − s)

ā(s; δ)2

)
. (14)

Figure 1 shows how the choice of δ impacts the local drag coefficient c̄(s) and effective radius
function ā(s). We see that the fibers are cylindrical [ā(s) = εL] for s/L � δ, while for s/L � δ the
effective radius smoothly decays to zero, as it would for an ellipsoidal fiber. Larger values of δ yield
smoother radius functions and smoother local drag coefficients. Throughout this paper, we will use
δ = 0.1, unless otherwise stated.

B. Multiple filaments

It remains to include in the fiber centerline velocity (8) the perturbed flow due to other filaments,
i.e., to account for hydrodynamic interactions between fibers. We require more involved notation in
this case to distinguish between fibers. In general, we use the symbol X in an equation whenever
it is localized to a single fiber and is the same on all fibers. For example, H[X ] = 0 implies that
H is a functional of a single fiber’s position and is zero on every fiber individually. When multiple
fibers are involved, we index the ith fiber by the superscript X (i). For example, H[X (i), X ( j)] f (i)

014102-6



INTEGRAL-BASED SPECTRAL METHOD FOR …

0 0.1 0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

FIG. 1. Regularized drag coefficients and effective radius functions. (Left) The regularized local drag
coefficients c̄(s; δ) for various δ. (Right) The effective fiber radius ā(s; δ) as defined in (14). We show only
one side of the fiber, with the other being the former’s mirror image about s/L = 0.5.

implies that H is a functional of a pair of fiber positions which acts on the force density on fiber
i. Whenever an equation applies to one fiber, but involves all other fibers, we will use the notation
X (i) for the single fiber and X to refer to the collection of all fibers. Our use of X to refer to both a
general fiber and collection of fibers is a slight abuse of notation, but the meaning should be clear
from the context, specifically whether an equation involves a single fiber or multiple fibers.

The simplest approach for including hydrodynamic interactions in SBT is the one taken by
Tornberg and Shelley [48], in which the fluid velocity due to one fiber (4) is simply evaluated
on the centerline of the other fibers. Nazockdast et al. also adopted this, except they dropped
the doublet term completely and included only the Stokeslet term. Inspired by the fact that the
classical SBT for a single fiber (8) can be reformulated as a regularized singularity method using
the RPY line integral (7), we use the same line integral for interaction with other fibers. In (A28), we
substitute the choice of RPY radius (6) into the RPY kernel (5) to obtain the interfiber interaction
velocity

v( j)(X (i)(s)) := 1

8πμ

∫ L

0
SD

(
X (i)(s), X ( j)(s′),

e3

24
(εL)2

)
f ( j)(s′) ds′

:= (Mc[X ( j)(·)] f ( j)(·))(X (i)(s)). (15)

Here, we have again defined a linear integral operator Mc which acts on f ( j) to give the velocity
on the centerline of filament i solely due to filament j. More generally, we will denote by v( j)(x) the
velocity induced by filament j at any point x on the centerline of any other filament. This “filament
interaction velocity” differs from the slender body fluid velocity (4) in that the coefficient of the
dipole term is e3/24 ≈ 0.84 instead of 1

2 [see (A28)]. Since v( j)(x) can be evaluated everywhere in
the fluid, we use a lowercase letter to denote it and distinguish it from the fluid velocity u( j) induced
by fiber j, which is given in (4).

We have used a constant radius b when defining the interfiber mobility (15) using the RPY kernel.
While our use of the regularized local drag coefficient (14) implies that the fibers are tapered at the
end points, and therefore that b decays to zero at the end points, we will use a constant radius for
nonlocal hydrodynamics. This assumption, together with the assumption that all of the fibers have
the same maximum radius εL, can both be relaxed, as the RPY kernels derived in [57] and associated
fast methods [58] can be used to generalize (15) to tapered filaments or fibers with different
radii.
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Summing the interaction kernel (15) over filaments j �= i and adding the terms from local drag,
we get a slender body theory for the velocity U (i)(s) at position s on filament i:

U (i)(s) − u0(X (i)(s)) = ML(τ (i)(s); c(s)) f (i)(s)

+ (MFP[X (i)(·)] f (i)(·))(s) +
∑
j �=i

(Mc[X ( j)(·)] f ( j)(·))(X (i)(s)), (16)

where ML is defined in Eq. (9), MFP is defined in Eq. (10), and Mc is defined in Eq. (15). Because
U (i) is only defined on the centerline of filament i (and not everywhere in the fluid), we denote it
with a capital letter.

For a single fiber i, we will write the mobility (16) abstractly as

U (i)(s) − u0(X (i)(s)) =
∑

j

(Mi j[X ] f ( j) )(s), (17)

where the mobility operator M[X ] is a functional of the positions of all fibers. We will compactly
write the velocity (17) for the entire collection of fibers as

U − u0(X ) := M[X ] f . (18)

This mobility equation can be closed by defining a constitutive equation for the fiber force densities
f , which we do next.

III. INEXTENSIBLE FILAMENTS

In this paper, we consider inextensible filaments X (i)(s, t ) which can bend, but not stretch, as they
evolve in time. We assume the fibers are in a constant twist-free equilibrium since in the absence of
externally applied or internally generated torques the timescale of twist relaxation is O(ε−2) faster
than bending [59].

At every instant in time, each fiber resists bending with bending force density (per unit length)
f κ [X ]. Inextensibility can be enforced by introducing Lagrange multiplier force densities on each
fiber λ(i)(s, t ), where we will again write λ = {λ(i)} whenever we refer to the collection of Lagrange
multipliers on all fibers. Thus, the PDE that we need to solve on every fiber is given by [using the
abstract notation of (18)]

∂X
∂t

− u0(X , t ) = M[X ]( f κ [X ] + λ), (19)

where the mobility operator M is defined in (16) and the background flow function u0 can in
general vary in time. The fibers are also constrained to be inextensible, so that for every fiber

τ(s, t ) · τ(s, t ) = 1, (20)

for all s and t . We still need to specify boundary conditions for the evolution equation (19) and
additional conditions on λ to make the solution unique, as we explain shortly.

A. Bending elasticity

For fiber mechanics, we use the Euler beam model, in which the bending-force density on every
fiber is given by

f κ [X ] = −κX ssss := FX , (21)

where the constant linear operator F gives f κ taking into account the “free-fiber” boundary
conditions [48]

X ss(s = 0, t ) = X sss(s = 0, t ) = 0, X ss(s = L, t ) = X sss(s = L, t ) = 0. (22)
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Again, because the boundary conditions (22) apply to every fiber without dependence on other
fibers, we use the notations X ss and X sss to refer to the arclength derivatives along the fiber and drop
the superscript (i).

It is easy to see that the boundary conditions (22) cause the total force and torque on every fiber
due to f κ to be zero: ∫ L

0
f κ ds = −κX sss|L0 = 0, and (23)(∫ L

0
f κ × X ds

)


= −κ

∫ L

0

(
X jX k

ssss − X kX j
ssss

)
ds = −κ

∫ L

0

(
X j

ssX
k
ss − X k

ssX
j

ss

) = 0. (24)

Here, the set of superscripts ( j, k, 
) denote vector components and are a cyclic permutation of
(1,2,3). In the torque equation, the free fiber boundary conditions lead to the cancellation of
boundary terms that arise in integration by parts.

B. Traditional formulation of inextensibility

In the traditional formulation of inextensibility [48], the inextensibility constraint (20) is differ-
entiated with respect to time. Then, s and t derivatives are interchanged to yield(

∂X
∂t

)
s

· τ = 0. (25)

In [48], the system was closed by substituting the mobility equation (19) into the differentiated in-
extensibility constraint (25). On each fiber, Tornberg and Shelley then assume that λ(i) = (T (i)τ (i) )s,
where T (i)(s, t ) is an unknown scalar tension [48]. This results in the line-tension equation

∂

∂s

(
u0(X (i) ) +

∑
j

Mi j[X ]
[
FX ( j) + (T ( j)τ ( j) )s

]) · τ (i) = 0, (26)

which holds for each fiber i [48]. While the second-order BVP (26) is linear in T , it is highly
nonlinear in X since the operation FX gives fourth derivatives of X . Even in the absence of any
nonlocal hydrodynamic interactions (i.e., if M = ML) and zero background flow (u0 = 0), the
line-tension equation still has terms of the form X sss · X sss (see [48, Eq. (13)]), which lead to aliasing
errors in spectral numerical methods. Because the line-tension equation (26) enforces inextensibility
pointwise along the fiber, we refer to it as a strong formulation of inextensibility.

C. Kinematics of inextensible fibers

In our approach, we evolve the tangent vector τ(s, t ), rather than X (s, t ) = X (0, t ) +∫ s
0 τ(s′, t ) ds′. Considering the evolution of τ(s, t ), the differentiated inextensibility constraint (25)

implies that, for every fiber,

∂τ

∂t
(s, t ) = �(s, t ) × τ(s, t ), (27)

i.e., that the fiber evolution can be thought of as rotations of τ on the unit sphere.
At each fiber point, we uniquely define an orthonormal coordinate system using spherical angles

θ (s, t ) and φ(s, t ). We represent the unit tangent vector τ(s, t ) as

τ(s, t ) =
⎛⎝cos θ cos φ

sin θ cos φ

sin φ

⎞⎠, (28)
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where we define θ to be single valued at φ = π/2 by setting θ (φ = ±π/2) = 0. A choice of normal
vectors that are always orthonormal to τ on the unit sphere is

n1 =
⎛⎝− sin θ

cos θ

0

⎞⎠, n2 =
⎛⎝− cos θ sin φ

− sin θ sin φ

cos φ

⎞⎠. (29)

Because n1 and n2 can be determined uniquely from τ, we denote them henceforth with n j (τ(s, t )),
for j = 1, 2. Since θ is single valued at φ = π/2, each component of the orthonormal coordinate
system (τ, n1, n2) is a smooth function of X when τ is smooth. Importantly, our method does not
depend on the particular choice of normal vectors (29); any choice that gives smooth n1 and n2 for
a smooth X is equally acceptable. For example, the Frenet or Bishop frames could be used [60].

Because τ × τ = 0, and since we are not considering twist, �(s, t ) can be restricted to linear
combinations of n1 and n2. We let

�(s, t ) := �(τ(s, t ), g(s, t )) := g1(s, t )n2(τ(s, t )) − g2(s, t )n1(τ(s, t )), (30)

where g1(s, t ) and g2(s, t ) are two specific unknown functions and g = {g1, g2}. Equation (30)
implies that, by the right handedness of the coordinate system (τ, n1, n2),

∂τ

∂t
= � × τ = g1n1 + g2n2. (31)

Any inextensible velocity of the fiber centerline can now be written in the form

U (s, t ) = ∂X
∂t

(s, t ) = Ū (t ) +
∫ s

0

2∑
j=1

g j (s
′, t )n j (τ(s′, t )) ds′, (32)

where Ū (t ) = ∂X/∂t (s = 0, t ) is a rigid body translation.

D. Principle of virtual work

The kinematic formulation of Sec. III C can still be used to solve for the line tensions and fiber
velocities. In particular, by substituting the inextensible velocity (32) into the left-hand side of
the evolution equation (19) and setting λ = (T τ)s, a partial differentiation equation (PDE) results
with unknowns g1, g2, Ū , and T . We choose to close our formulation differently, in the process
eliminating the need to solve for tension explicitly.

On every fiber, the principle of virtual work states that the constraint forces λ do no work for any
choice of g1, g2, and Ū [52]. Because this constraint holds for all time, for simplicity we drop for
the moment the explicit dependence on t in the notation. To impose the principle of virtual work,
we use the L2 inner product to compute the total power dissipated in the fluid from λ:

P =
〈
λ,

∂X
∂t

〉
=
∫ L

0
ds′
(

Ū +
∫ s′

0
[g1(s)n1(τ(s)) + g2(s)n2(τ(s))] ds

)
· λ(s′). (33)

Changing integration variables, we can rewrite this as

P = Ū ·
∫ L

0
λ(s′) ds′ +

∫ L

0
ds
∫ L

s
[g1(s)n1(τ(s)) + g2(s)n2(τ(s))] · λ(s′) ds′ (34)

= Ū ·
∫ L

0
λ(s′) ds′ +

∫ L

0
[g1(s)n1(τ(s)) + g2(s)n2(τ(s))] ·

(∫ L

s
λ(s′) ds′

)
ds = 0. (35)
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1. Pointwise formulation

Since the principle of virtual work (35) must hold for any inextensible motion, it must hold for
all Ū and all sufficiently smooth g1 and g2. Therefore, we must have, for all s,⎛⎜⎝

(∫ L
s λ(s′) ds′) · n1(τ(s))(∫ L
s λ(s′) ds′) · n2(τ(s))∫ L

0 λ(s′)ds′

⎞⎟⎠ =
⎛⎝0

0
0

⎞⎠. (36)

The first and second components of the constraints (36) taken together tell us that
∫ L

s λ(s′) ds′ is

orthogonal to both normal vectors. Therefore,
∫ L

s λ(s′) ds′ is in the direction of τ(s) and can be
written as ∫ L

s
λ(s′) ds′ = −T (s)τ(s), (37)

for some scalar function T (s) with T (s = L) = 0. This gives

λ(s) = (T (s)τ(s))s, (38)

which is the form assumed in Tornberg and Shelley [48]. Thus, our derivation shows that the form
of λ taken in [48] is equivalent to the principle that the constraint forces perform no virtual work, if
the work is given by the standard L2 inner product [52].

Now, returning to the third of the constraints (36),
∫ L

0 λ(s) ds = 0, and substituting the derived
form of λ in (38), we obtain

T (L)τ(L) − T (0)τ(0) = 0. (39)

Since T (L) = 0, Eq. (39) implies that T (0) = 0 as well since neither of the tangent vectors is
identically 0. So, we obtain T (0) = T (L) = 0, which is exactly the boundary condition for the
line-tension equation in [48]. The form of λ = (T τ )s and the tension boundary conditions imply
that the total torque induced by the constraint forces is zero in continuum,

∫ L
0 X (s) × λ(s) ds = 0.

In this sense, the constraint equation (33) is equivalent to the line-tension equation used in prior
work [48]. Because we showed the equivalence by enforcing constraint (33) for every choice of g1(s)
and g2(s), we refer to the inextensibility constraint (33) as a weak formulation of inextensibility. In
the next section, we choose a suitable basis for g1(s) and g2(s) to obtain a linear system of equations
instead of the pointwise constraint (36).

2. L2 weak formulation

In this section, we introduce an L2 weak formulation that is suitable for a numerical discretization
of the weak inextensibility constraint (33). The key idea is to expand the unknown functions g1(s)
and g2(s) as

g j (s) =
∑

k

α jkTk (s) for j = 1, 2, (40)

where Tk (s) are sufficiently smooth scalar-valued basis functions for L2 : [0, L]. Substituting the
basis function expansion (40) into the inextensible velocity (32), we obtain

U (s) = ∂X
∂t

(s) = Ū +
∫ s

0

2∑
j=1

∑
k

α jkTk (s′)n j (τ(s′)) ds′ := (K[X (·)]α)(s), (41)

where we have defined a linear operator K[X ] on every fiber that acts on α = (α jk, Ū ) to give an
inextensible velocity on the filament centerline (i.e., α parametrizes the space of inextensible fiber
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motions). Note the functional dependence of K on X since K involves the normal vectors n1 and
n2. Substituting the inextensible velocity (41) into the dynamical equation (19), we obtain

K[X ]α = u0(X ) + M[X ](FX + λ). (42)

This constrained dynamical equation is supplemented by enforcing the principle of virtual work
(36) in an L2 weak sense. We begin by substituting the representation of gj in (40) into the power
equation (33) to obtain, for every fiber,

P = 〈λ,K[X ]α〉 := 〈K∗[X ]λ,α〉

= Ū ·
∫ L

0
λ(s) ds +

∫ L

0

(∫ s

0

2∑
j=1

∑
k

α jkTk (s′)n j (τ(s′)) ds′
)

· λ(s) ds = 0, (43)

where we have defined K∗ as the L2 adjoint of K. Since the power from the constraint forces must
be zero for any inextensible motion (any α), each term of the constraint (43) must be zero. This
gives the set of constraints on every fiber

K∗[X ]λ :=

⎛⎜⎝
∫ L

0

[∫ s
0 Tk (s′)n1(τ(s′)) ds′] · λ(s) ds∫ L

0

[∫ s
0 Tk (s′)n2(τ(s′)) ds′] · λ(s) ds∫ L

0 λ(s) ds

⎞⎟⎠ =
⎛⎝0

0
0

⎞⎠, (44)

where the first two constraints hold for all k and the last constraint holds for each of the three
Cartesian directions.

E. Summary of dynamical equations

In our abstract notation, the evolution of the fiber system can be obtained by solving the following
system for α(t ) = {α(i)

jk (t ), Ū (i)(t )} and λ = {λ(i)(s, t )}:
∂X
∂t

= K[X ]α = u0(X , t ) + M[X ](FX + λ), (45)

K∗[X ]λ = 0. (46)

The first equation (45) is the mobility equation. The left-hand side is the velocity of a fiber centerline,
restricted to the space of inextensible motions via the operator K defined in (41). The right-hand side
involves all fiber positions and force densities because of hydrodynamic interactions. The second
equation (46) is the principle of virtual work and applies on each fiber separately, K∗[X (i)]λ(i) = 0.

On a single fiber i, the mobility equation (45) takes the explicit form

∂X (i)

∂t
(s, t ) = Ū (i)(t ) +

∫ s

0

2∑
j=1

∑
k

α
(i)
jk (t )Tk (s′)n j (τ(s′, t )) ds′ = u0(X (i)(s), t ) (47)

+ 1

8πμ

{
[c̄(s; δ)(I + τ (i)(s, t )τ (i)(s, t )) + (I − 3τ (i)(s, t )τ (i)(s, t ))] f (i)(s, t ) (48)

+
∫ L

0

[
S(X (i)(s, t ), X (i)(s′, t )) f (i)(s′, t ) −

(
I + τ (i)(s, t )τ (i)(s, t )

|s − s′|
)

f (i)(s, t )

]
ds′ (49)

+
∑
j �=i

∫ L

0

[
S(X (i)(s, t ), X ( j)(s′, t )) + e3

24
(εL)2D(X (i)(s, t ), X ( j)(s′, t ))

]
f ( j)(s′, t ) ds′

}
, (50)

with f (i)(s, t ) = FX (i)(s, t ) + λ(i)(s, t ). The Stokeslet and doublet kernels S and D are defined in
(1), and the local drag coefficient c̄ is regularized at the end points as defined in (14). The mobility
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equation for fiber i is supplemented by the principle of virtual work (46) which is localized to fiber
i and takes the explicit form∫ L

0

[∫ s

0
Tk (s′)n j (τ

(i)(s′, t )) ds′
]

· λ(i)(s, t ) ds = 0, ∀ k and j = 1, 2, (51)∫ L

0
λ(i)(s, t ) ds = 0. (52)

IV. NUMERICAL METHODS

Our goal in this section is to write the evolution equations (45) and (46) in the form of a block-
matrix saddle-point system. We will replace the operators with matrices and the position functions
X (i)(s) with discrete vectors of collocation points X (i). The fiber evolution is then given by

∂X (i)

∂t
(t ) = K(X (i) )α(i)(t ). (53)

The coefficients α = {α(i)} can be determined by solving a saddle-point system of the form(−M(X ) K(X )
K∗(X ) 0

)(
λ

α

)
=
(

u0(X , t ) + M(X )FX
0

)
, (54)

where as before X = {X (i)} and λ = {λ(i)}. In a slight abuse of notation, we will write K(X ) to
represent the block-diagonal matrix of kinematic operators for each fiber i, K(X ) = Diag{K(X (i) )},
and likewise for K∗(X ).

Since we expect the fiber shapes to be smooth, we use a spectral spatial discretization, described
in Sec. IV A. In Sec. IV B, we break the discretized mobility matrix M into three components: the
local drag mobility ML given in (48), the finite part mobility (49), and the cross-fiber mobilities (50).
The local drag matrix ML is the 3 × 3 matrix whose definition is the same as in continuum. The
finite part mobility and cross-fiber mobilities require more specialized quadrature schemes since
the integrals involved are near singular or singular and therefore too expensive or impossible to
evaluate with direct quadrature. The basic idea of the specialized schemes is to factor out the (near)
singularity, expand what remains in a monomial expansion, and compute the integrals involving
monomials times the singularity analytically. In Sec. IV B 1, we discuss this special quadrature
scheme for the singular integrals appearing in the finite part mobility (49).

In Sec. IV B 2, we write a quadratic complexity discretization which uses direct quadrature to
compute the SBT interaction kernels (15). In Sec. IV C, we then discuss how to make the complexity
linear over a triply periodic, sheared domain using a spectral Ewald method. Since we reformulated
the interfiber hydrodynamics in terms of the RPY tensor (see Sec. II B), our Ewald splitting method
is exactly the positively split Ewald method of [29], with some modifications for a nonorthogonal
coordinate system [61]. In Sec. IV D we return to the case when the direct quadrature is insufficiently
accurate and corrections are required, for which we use a recently developed monomial-expansion-
based special quadrature scheme [53] similar to that used for the finite part integral.

Finally, in Sec. IV E, we present a semi-implicit second-order temporal discretization that avoids
nonlinear solves and requires a minimum number of evaluations of the nonlocal hydrodynamics for
each time step. For dilute suspensions, our temporal integration strategy is essentially to treat the
local drag part of the mobility MLFX implicitly using an implicit trapezoidal method. We treat all
of the terms involving the finite part and cross-fiber mobilities explicitly. This leaves a linear system
to be solved on each fiber separately. When the suspension becomes more concentrated, this scheme
breaks down as the nonlocal hydrodynamics adds stiffness to the problem. When this occurs, we
treat the nonlocal and local hydrodynamics implicitly using an implicit trapezoidal method and
use GMRES to solve for α and λ. By converting to a residual form based on the solutions of the
block-diagonal system for dilute suspensions, we are able to use only the minimum number of
GMRES iterations necessary to achieve stability without altering accuracy.
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A. Spectral spatial discretization

Because the fibers are semiflexible, their shapes are relatively smooth and can be well represented
by a finite number of basis functions. This makes a spectral spatial discretization the logical choice.2

We therefore use a first-kind Chebyshev grid for the collocation points on each fiber and Chebyshev
polynomials for the basis functions Tk (s), as described in Sec. IV A 1. For indefinite integration,
we use the pseudoinverse of the Chebyshev differentiation matrix, and for definite integration we
use Clenshaw-Curtis quadrature. Once these choices are made, the discretization of the kinematic
operators K and K∗ follows naturally in Sec. IV A 2. The discretization of the elastic force operator
F is more subtle as the boundary conditions must be treated correctly; for this we use the rectangular
spectral collocation approach of [62,63] that is described in Sec. IV A 3. Throughout this section,
we consider the discretization on a single fiber.

1. Collocation discretization

Because we use a collocation discretization, each fiber is discretized as a collection of nodes sp,
p = 1, . . . N , where sp is a node on a type-1 Chebyshev grid (i.e., a grid that does not include the end
points). Our notation will shift slightly here to reflect the change from continuous to discrete. We use
X to refer to the N × 3 matrix of fiber positions at the collocation points. The pth row of this matrix
will be denoted by X p = X (sp). Likewise, τ refers to the N × 3 matrix of tangent vectors at the
collocation points with τ p = τ(sp), and f refers to a matrix of force densities evaluated at the nodes
with rows f p = f (sp). Meanwhile, X (s) refers to the Chebyshev interpolant for X (this is actually
three interpolants, one for each direction), and likewise for τ(s). We will not try to distinguish
between the unknown “true” fiber shape (which could have more than N Chebyshev modes) and its
Chebyshev approximation X (s).

The tools we use for differentiation and integration are standard [64]. For differentiation, we
use the Chebyshev differentiation matrix DN . By DN X , we mean the linear operation that takes X ,
computes the N − 1 degree Chebyshev polynomial representation X (s), differentiates it, and returns
τ(s). We also define D†

N , the pseudoinverse of the Chebyshev differentiation matrix, which gives the
values of the indefinite integral of a function f (s) modulo an unknown constant,

(D†
N f )p ≈

∫ sp

0
f (s′) ds′ + C. (55)

For definite integration, we use Clenshaw-Curtis quadrature with weight wp associated with each
collocation point ∫ L

0
f (s′) ds′ ≈ wT f :=

N∑
p=1

fpwp. (56)

2. Discretization of K and K∗

To construct a discretization of the kinematic operator K defined in (41), we first need to choose
the basis functions Tk in the representation formula (40). We choose Tk (s) to be the Chebyshev
polynomial of the first kind of degree k on [0, L]. We truncate the sum at N − 2 basis functions:

g j (s) =
N−2∑
k=0

α jkTk (s). (57)

2Implicit in our choice of spectral discretization is the assumption that the fiber constraint forces λ(s) and
tangent vector rotation rates �(s) are also smooth, which is the case for sufficiently large δ in the local drag
regularization (14). If δ  1, λ and � can become nonsmooth and oscillatory at the fiber end points, and a
small number of Chebyshev modes can no longer resolve them.
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The choice of N − 2 for the maximum summation index is a necessary condition to make the
representation U = Kα unique on an N-point Chebyshev grid. Increasing the number of basis
functions introduces degeneracy without improving the fiber representation. In particular, if the
maximum index in the sum were N − 1, integration of gj (s) in the inextensible velocity (41) could
cause U to be zero at all N Chebyshev nodes without α being zero.

Since the kinematic operators K and K∗ act linearly on α and λ, respectively, they can each
be discretized as matrices. Because we use a spectral discretization, however, care must be taken
to avoid aliasing errors. The key step in doing this is to compute, for each k = 0, . . . , N − 2 and
j = 1, 2, the integrals that describe the inextensible motions of the fiber

J (k, j)
q ≈

∫ sq

0
Tk (s′)n j (τ(s′)) ds′ (58)

on a grid of size 2N (q = 1, . . . , 2N). To do so, we determine the Chebyshev polynomial represen-
tation of τ(s) on the N-point grid and upsample it to a type-1 Chebyshev grid of 2N points. We
then compute the normal vectors on the 2N grid using the polar angle representations (28) and (29),
and multiply the normal vectors pointwise by Tk evaluated on the 2N grid. This gives the integrand
in (58) on the 2N grid. To integrate, we apply the matrix D†

2N to approximate the integrals (58)
(modulo a constant) on the 2N grid. Since both Tk and n j are Chebyshev polynomials of degree at
most N − 1, these integrals are exact on the grid of size 2N , modulo a constant.

Once J (k, j)
p has been computed, the discretization of K∗ is straightforward. The discrete form

of the principle of virtual work (44) is given by inner products of λ with J (k, j), where λ has been
upsampled to a grid of size 2N to avoid aliasing errors:

K∗(X )λ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2N
p=1

(
J (0,1)

p · (Uλ)p

)
wp

...∑2N
p=1

(
J (N−2,1)

p · (Uλ)p

)
wp∑2N

p=1

(
J (0,2)

p · (Uλ)p

)
wp

...∑2N
p=1

(
J (N−2,2)

p · (Uλ)p

)
wp

wT λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (59)

This defines K∗(X ) as a (2N + 1) × 3N matrix acting on a 3N vector λ, which has been upsampled
to (i.e., evaluated on) the grid of size 2N by applying the upsampling matrix U . Because λ discretely
integrates to zero (wT λ = 0), adding a constant to J (k, j)

p does not change the first two rows of
K∗(X )λ. Thus, the fact that J (k, j)

p gives the integrals modulo a constant is not relevant in the
formation of K∗.

The discretization of K is less straightforward. The main issue is that the integrals J (k, j)
p are exact

on the grid of size 2N , but the fiber velocity is defined on a grid of size N . One way around this is to
simply double the grid size, i.e., define Kα on a grid of size 2N . This would, however, necessitate
computing M f on a grid of size 2N as well, which is unnecessarily expensive. Instead, we incur
some aliasing error and downsample the velocity J (k, j)

p to an N-point grid. Specifically, we discretize
the matrix K as

(K(X )α)p = Ū +
2∑

j=1

N−2∑
k=0

α jk (RJ (k, j) )p (60)

so that K = RJ is a 3N × (2N + 1) matrix which acts on the 2N + 1 vector α = (α jk, Ū ) to give the
three components of the velocity at N points on the Chebyshev grid. The matrix R is a downsampling
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matrix which gives a reduced-order representation of J (k, j) on the N point grid (the unknown
constant in J (k, j) can be folded into the constant velocity Ū ). If we concisely write K∗λ as defined
in (59) as K∗λ = JT W 2NUλ, where W 2N is the diagonal matrix of Clenshaw-Curtis quadrature
weights on the 2N grid, and discretize the inner products in (43) as

〈α, K∗λ〉 = αT JT W 2NUλ = 〈Kα,λ〉 = (UKα)T W 2NUλ, (61)

we obtain the weighted least-squares downsampling matrix

R = (UT W 2NU )−1UT W 2N . (62)

3. Discretization of F
We use rectangular spectral collocation [62,63] to discretize the bending force operator F with

the boundary conditions (22). We recall that the matrix X gives the positions of the fiber on
an N-point type-1 Chebyshev grid that does not include the boundaries. In rectangular spectral
collocation, we compute an upsampled representation X̃ of X . Since there are four boundary
conditions (BCs), the upsampled representation is on a Ñ = N + 4 point type-2 Chebyshev grid
that includes the end points. The unique configuration X̃ can be obtained by solving(

A
B

)
X̃ =

(
X
0

)
, (63)

where A is an N × Ñ resampling matrix and B is a 4 × Ñ matrix that encodes the boundary
conditions. The linear operation AX̃ has the effect of computing the Chebyshev interpolant of X̃
on the Ñ = N + 4 point grid and evaluating it at the N original grid points. The first block equation
simply states that the downsampled X̃ has to be the original X . In the next block, the product
BX̃ is a vector with four entries. The first two entries are the Chebyshev interpolant approxima-
tion to ∂2

s X̃ (s = 0, L), respectively, and the second two entries are likewise an approximation to
∂3

s X̃ (s = 0, L). Thus, the second block equation simply states that the BCs are satisfied on the
type-2 grid, and any modifications to the BCs would modify B in this formulation.

The use of a type-1 grid for X and a type-2 grid for X̃ is a sufficient condition for the left-hand
side of system (63) to be invertible (see [63] for details). We can therefore write

X̃ =
(

A
B

)−1(
X
0

)
:= EX . (64)

In summary, X̃ is the unique upsampled configuration that satisfies the problem boundary conditions
and gives X when downsampled. This is similar to “ghost cells” in finite-difference schemes which
take on unique values so that the boundary stencils satisfy the BCs to some order. The rectangular
spectral collocation method can therefore be thought of as a generalization of ghost-cell techniques
for finite-difference methods to collocation-based spectral methods.

Once the configuration X̃ is known, the elastic force density can be computed on it as f̃
κ =

−κD4
Ñ

X̃ . The elastic force density f̃
κ

is then downsampled to the original N-point type-1 grid to
give the final result

f κ = A f̃
κ = −κ

(
AD4

Ñ E
)
X := FX , (65)

which defines F, the discrete analog of F . In a slight abuse of notation, we will use the notation
FX to refer to the bending-force calculation on either a single fiber [where F is as defined in (65)],
or a collection of fibers [where F is a diagonal block matrix composed of smaller matrices that are
defined in (65)]; the meaning should be clear from the context.
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B. Discretization of M
We discretize the mobility operator defined in (16) by computing the relative velocity of point p

on fiber i as

(M f )(i)
p = ML

(
τ (i)

p ; cp
)

f (i)
p + (MFP(X (i) ) f (i) )p +

∑
j �=i

Mc
(
X (i)

p , X ( j)
)

f ( j). (66)

The 3 × 3 matrix ML given in (9) is unchanged from the continuum, and cp = c̄(sp; δ). The
matrix MFP computes an approximation to the finite part integral (10) (see Sec. IV B 1), and
Mc(X (i)

p , X ( j) ) f ( j) is the velocity at point X (i)
p induced by fiber j (see Sec. IV B 2).

We will need notation to separate the local part of the discrete mobility (66), which is easy to
invert, from the nonlocal part, which is not. For this we write

(M f )(i)
p = ML(τ (i)

p ; cp
)

f (i)
p + (MNL(X ) f )

(i)
p , (67)

where the nonlocal part of the mobility matrix MNL(X ) is a function of the collection of fibers X
and acts on the collection of force densities f . For the collection of fibers, we will simply write the
splitting (67) as

M(X ) = MLD(X ) + MNL(X ), (68)

where the block-diagonal matrix MLD is composed of a collection of 3 × 3 local drag matrices on
the diagonal.

1. Discretization of MFP

Here, we discretize the finite part integral (10). Since the finite part integral involves only a
single fiber, we use X here to denote a matrix of N × 3 positions for a single fiber. Substituting the
definition of the Stokeslet (1), we have

(MFP[X ] f )(s) = 1

8πμ

∫ L

0

[(
I + (R̂R̂)(X (s), X (s′))

‖R(X (s), X (s′))‖
)

f (s′) −
(

I + τ(s)τ(s)

|s − s′|
)

f (s)

]
ds′ (69)

for any coordinate on the fiber s. We seek to evaluate the finite part integral (69) at s = sp on a given
fiber. Because each term in the integrand is singular, the integral (69) cannot directly be evaluated
with Clenshaw-Curtis quadrature. One way around this difficulty is to simply skip the singular
point in the quadrature, which results in a second-order accurate scheme. Because this destroys the
spectral accuracy of our formulation, we seek an improved quadrature that handles the singularity
analytically.

In [48], the integrand was regularized to make it nonsingular, and a product integration scheme
was used to compute the resulting regularized integral [48, Sec. 3.1]. The justification for the
regularization is that the self-mobility operator M is actually not invertible since its null space
contains force densities f with frequencies higher than 1/ε. Götz [21] and Tornberg and Shelley
[48, Appendix B] show this analytically by considering a straight fiber and expanding f as a sum
of Legendre polynomials (which diagonalize MFP). They show that the centerline velocity U for
a single fiber (8) uniquely gives the Stokeslet strength f (s) via U = M f if the maximum number
of polynomials that contribute to f is less than O(1/ε). Intuitively, adding polynomials of degree
larger than 1/ε introduces length scales into f which are less than ε and cannot be accounted for
by SBT. In the discretization of [48], the number of points can exceed 1/ε for ε = 10−2, and so
regularization of the integrand is required.

Because we use a spectral basis with smooth fiber shapes, we never exceed the O(1/ε) threshold
for the number of Chebyshev polynomials. Indeed, having less than O(1/ε) Chebyshev points
(polynomials) is a sensible restriction on the numerics. After all, using such a large number of points
(spectral modes) is antithetical to the philosophy of SBT, which, unlike IB methods, eliminates the
need to resolve the length scale ε. Mori and Ohm analyze this “spectral truncation” approach for
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infinite (periodic) fibers and find that it yields errors of order at worst ε with respect to the true
solution for a “slender body” PDE on the fiber surface [65, Eq. (20)]. This accuracy is asymptotically
equivalent to that obtained using the regularization of Tornberg and Shelley [65, Eq. (22)].

With this in mind, we do not modify the integrand of the finite part integral (69). Rather, we
use a spectrally accurate method developed in [54] to compute the action of the finite part integral
on the fiber force density. The key idea is to isolate the singularity by writing the integrand in (69)
as g(s′, s)(s′ − s)/|s′ − s| for some function g(s′, s). In particular, we observe that the finite part
integral (69) can be written as

(MFP[X ] f )(s) =
∫ L

0
g(s, s′)

s′ − s

|s′ − s| ds′ = L

2

∫ 1

−1
g(η, η′)

η′ − η

|η′ − η| dη′, (70)

where η = −1 + 2s/L is a rescaled arclength coordinate on [−1, 1] and

g(s, s′) = 1

8πμ

[
[I + (R̂R̂)(X (s), X (s′))]

|s′ − s|
‖R(X (s), X (s′))‖ f (s′) − [I + τ(s)τ(s)] f (s)

]
1

s′ − s
. (71)

The computation is now tractable since g has a limit as s′ → s. The limit is easily computed by
adding and subtracting [I + τ(s)τ(s)] f (s′) inside the large square brackets, and Taylor expanding
around s′ = s, to obtain

lim
s′→s

g(s, s′) = 1

8πμ

(
1

2
[τ(s)X ss(s) + X ss(s)τ(s)] f (s) + [I + τ(s)τ(s)] f s(s)

)
. (72)

Since g is smooth, we can approximate it by a polynomial expressed in a monomial basis on [−1, 1],

L

2
g(η, η′) ≈

N−1∑
k=0

ck (η)(η′)k, (73)

where ck is a vector of three coefficients for each η.
We are now ready to discretize MFP[X ] with the matrix representation MFP(X ). Substituting the

monomial expansion (73) into the finite part integrand (70) and computing the integrals involving
monomials and the singularity analytically, we get

(MFP(X ) f )p =
N−1∑
k=0

ck (ηp)
∫ 1

−1
(η′)k η′ − ηp

|η′ − ηp| dη′ =
N−1∑
k=0

ck (ηp)qk (ηp), (74)

where qk (ηp) =
∫ 1

−1
(η′)k η′ − ηp

|η′ − ηp| dη′ = 1 + (−1)k+1 − 2ηk+1
p

k + 1
. (75)

An adjoint method can be used to accelerate our computation of the product (74). Let us introduce
the Vandermonde matrix V with entries Vpq = η

q
p. Let gp(X ) be the N × 3 matrix with rows

gp
q = g(ηp, ηq), with g defined in (71). The N × 3 matrix c of coefficients of the three polynomial

interpolants of the columns of gp is c = V −1gp. If q is an N vector with elements qk = qk (ηp) as
given in (75), then the product (74) can be computed efficiently as

(MFP(X ) f )p = cT q = (V −1gp(X ))T q = (gp(X ))T (V −T q) := (gp(X ))T b. (76)

Since b = V −T q does not depend on the fiber configuration, it can be precomputed using pivoted
LU factorization for each p = 1, 2, . . . , N at the beginning of the simulation. The Vandermonde
matrix must be sufficiently well conditioned to do this calculation accurately; specifically, the fiber
discretization can have at least ∼40 points in double precision. If higher accuracy is needed, then
the fiber must be split into multiple panels or higher precision arithmetic must be used to compute
b in (76).
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2. Discretization of Mc

In this section, we describe the simplest discretization of interfiber hydrodynamic interactions.
We recall the definition of the velocity induced by fiber j at point s on fiber i from (15):

v( j)(X (i)(s)) = (Mc[X ( j)(·)] f ( j)(·))(X (i)(s))

= 1

8πμ

∫ L

0
SD

(
X (i)(s), X ( j)(s′),

e3

24
(εL)2

)
f ( j)(s′) ds′. (77)

Given a discrete Chebyshev node on fiber i, X (i)
p , the total disturbance velocity is a sum of the

flows generated by all other fibers j �= i. We can therefore restrict our attention to the calcu-
lation of the velocity induced by a single “source” fiber at a single “target” point on another
fiber.

The simplest approach is to discretize the interaction velocity (77) by Clenshaw-Curtis quadra-
ture

v( j)
(
X (i)

p

) ≈ 1

8πμ

N∑
q=1

wqSD

(
X (i)

p , X ( j)
q ;

e3

24
(εL)2

)
f ( j)

q := Mc
(
X (i)

p , X ( j)
)

f ( j). (78)

The key challenge in evaluating (78) is the quadratic complexity; for each Chebyshev point X (i)
p we

must sum over all others. We address this in Sec. IV C using the positively split Ewald method [29].
While the direct quadrature (78) represents the simplest way to discretize Mc, it becomes

inadequate when fibers i and j approach each other. In fact, the Stokeslet-doublet combination
kernel SD defined in (3) becomes singular if the Chebyshev interpolant X ( j)(s) of fiber j approaches
the target X (i)

p for some value of s. This singularity occurs because the velocity of one fiber due
to another (15) only makes sense physically if the two fiber cross sections are not overlapping [for
overlapping fibers the RPY kernel is different, see the second line of (5)].

While it makes little physical sense for fiber cross sections to overlap, it is numerically possible.
In this case, we set the velocity at the target point on fiber i to be equal to the centerline velocity
at the closest point on fiber j. Let us denote the minimum distance from X (i)

p to3 X ( j)(s) by d and
denote the closest point on fiber j to X (i) as X ( j)(s∗). Then, if the two cross sections are (almost)
overlapping, we set

v( j)
(
X (i)

p

) = ML(τ ( j)(s∗); c̄(s∗; δ)) f ( j)(s∗) + (MFP(X ( j) ) f ( j))(s∗) for d � 2b, (79)

so that the influence of fiber j on the target (which is inside the cross section of fiber j) is the same
as if the target were actually on the centerline of fiber j, with the radius b ≈ 1.12εL given in (6). By
τ ( j)(s∗), we mean the Chebyshev polynomial τ ( j)(s) evaluated at s∗, and likewise for the remaining
terms.

For nonoverlapping cross sections (d > 2b), the expression for the interaction velocity (15) has
to be changed because evaluating (15) at d = 2b may not be exactly equal to the centerline velocity
on fiber j (79) because of the slenderness approximation used in SBT. We therefore set the velocity
to be the interaction velocity (15) only if d � 4b. Between 2b � d � 4b, we linearly interpolate
between the interaction velocity (15) and centerline velocity (79). This interpolation procedure is
almost identical to that of [48], except we use a different integral kernel SD for the interaction
velocity (15), and we estimate s∗ using a more robust procedure described in Sec. IV D.

Despite our modifications to the interaction velocity for contacting cross sections, the kernel in
(15) is still nearly singular, and some quadrature scheme other than direct quadrature (78) is required
to accurately determine the interaction velocity for d > 2b, as we discuss in Sec. IV D.

3Recall that we cannot and do not distinguish between the unknown “true” fiber shape and its Chebyshev
interpolant and denote both with X ( j)(s).
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C. Fast summation

Putting off for the moment the possible near-singular nature of the interaction integrals (15),
suppose that we discretize every integral using direct quadrature (78). If F is the number of fibers,
each of which is discretized using N Chebyshev points, then the direct evaluation of nonlocal
hydrodynamics using (78) requires O[(NF )2] operations. In this section, we discuss our choice of
fast algorithm to accelerate the evaluation of these many-body sums under triply periodic boundary
conditions. We recall that the kernel SD in (78) is the RPY kernel for nonoverlapping spheres
of radius b = εLe3/2/4. Thus, (78) reduces to summing the RPY kernel over all pairs of points
(X (i)

p , X ( j)
q ), which is a well-studied problem that can be treated with a number of fast algorithms

[29,66–68]. Alternatively, the kernel SD can be viewed as a linear combination of Stokes singu-
larities, and fast algorithms for the individual singularities can be applied [69–71]. In Sec. IV C 2
we describe the positively split Ewald (PSE) approach of [29,61], which assumes a constant value
of b (and therefore εL), across all of the fibers; this assumption can be relaxed [58]. Because we are
interested in rheological applications, we use the method of [61] to extend the fast Ewald summation
technique of [29] to a parallelepiped sheared unit cell (see Sec. IV C 1).

For overlapping spheres the RPY kernel SRPY differs from the SBT kernel SD in (78), and is
given by [55]

SRPY(x, y; b) = 1

8πμ

[(
4

3b
− 3‖R‖

8b2

)
I + ‖R‖

8b2
R̂R̂
]

if ‖R‖ < 2b, (80)

where R = x − y. This means that the PSE method mistakenly computes the RPY kernel (80)
between a pair of points separated by a distance less than 2b instead of the desired SBT kernel. We
need not worry about this, however, since points that are a distance less than 2b yield a target-fiber
pair for which we set the velocity at the target to the fiber centerline velocity (79). More generally,
even for points farther apart than 2b there will be some number of target-fiber pairs for which
the direct quadrature (78) fails. Our approach to this is to rely on Ewald splitting to periodize
and accelerate the many-body summation, then subtract the free-space RPY kernel between the
problematic fiber and target from the result. Subtracting the free-space kernel leaves the periodic
images of the sum, which have been correctly accounted for by Ewald splitting (since they are
distant). We then handle the free-space kernel SD for problematic pairs of fibers and targets using
the special quadrature algorithm described in Sec. IV D.

1. Sheared coordinate system

In order to implement a shear flow in periodic boundary conditions, a strained coordinate system
is necessary. The PSE method was extended to sheared cells in [61], but here we give a more detailed
description for completeness. We assume (without loss of generality) that x is the flow direction, y
is the gradient direction, and z is the vorticity direction. Let the total nondimensional strain be g(t ).
In Fig. 2 we define a strained coordinate system with axes

ex′ = ex, ey′ = ey + g(t )ex, ez′ = ez, (81)

and strained wave numbers

k′
x = kx, k′

y = ky + g(t )kx, k′
z = kz. (82)

Here, kx, ky, and kz are the wave numbers when the periodicity is over the x, y, and z directions,
while k′

x, k′
y, and k′

z are the wave numbers when the periodicity is over the x′, y′, and z′ directions.
The transformation between the two coordinate systems is given by

x′ :=
⎛⎝x′

y′
z′

⎞⎠ =
⎛⎝1 −g(t ) 0

0 1 0
0 0 1

⎞⎠⎛⎝x
y
z

⎞⎠ := Lx. (83)
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FIG. 2. The sheared and parallelepiped periodic simulation cell. We denote the dimensionless shear by g.
The green area shows the periodic cell (2D projection) when g = 0, and the blue area is the periodic cell for
nonzero g.

In the unsheared to sheared transformation (83), the sheared coordinates x′, y′, and z′ are all periodic
on [0, L]3 (the blue simulation cell in Fig. 2).

Now, we use the transformation (83) to transform the derivative operators in the unsheared
coordinate system to the sheared one,

∂

∂x
= ∂

∂x′ ,
∂

∂y
= ∂

∂y′ − g(t )
∂

∂x′ ,
∂

∂z
= ∂

∂z′ . (84)

We therefore have the Laplacian in the transformed space as [72]

� =
[

∂2

∂x′2 +
(

∂

∂y′ − g(t )
∂

∂x′

)2

+ ∂2

∂z′2

]
. (85)

In Fourier space, �̂ = k′ · k′, where

k′ = [k′
x, k′

y − g(t )k′
x, k′

z]. (86)

Using the sheared to unsheared transformation in (82), it is easy to see that k′ := ‖k′‖ =
‖(kx, ky, kz )‖ := k. It follows that we can simply replace k in any isotropic Fourier calculations
by k′ to use a Fourier method in the sheared coordinate system [72,73]. In Appendix B, we verify
this formulation by considering a set of particles that can be viewed periodically in two ways. This
Appendix verifies our correct treatment of the sheared periodic boundary conditions.

2. Ewald splitting for direct quadratures

Let x be a target point on the centerline of a fiber. To evaluate the direct quadrature (78) with
periodic boundary conditions, we first compute

U (PSE)(x) :=
∑

P

∑
i

SRPY
(
x, y(P)

i ; b
)
F i :=

∑
i

S(P)
RPY(x, yi; b)F i, (87)

where F i is a force (force density × weight) assigned to the point yi. For each target point x = y j
for some j, the sum is over all discrete fiber points yi (including y j) and over triply periodic images

of the points yi in the sheared coordinate system P. The periodized RPY kernel is denoted by S(P)
RPY.

We use the Ewald splitting of [29,61] to accelerate the computation of the many-body sum (87)
on a periodic domain. The idea of Ewald splitting or Ewald summation is to split the RPY kernel
into a smooth long-ranged part and a remaining short-ranged part. The smooth “far-field” part has
an exponential decay in Fourier space and can be done by standard Fourier methods [namely, the
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nonuniform fast Fourier transform (NUFFT)], and the “near-field” part decays exponentially in real
space and can be truncated so that it is nonzero for O(1) neighboring points (sources) per target.

Let x′ and y′ be the coordinates of the points x and y in the sheared domain using the coordinate
transformation (83). The periodic RPY tensor for a sphere with radius b can then be written on the
sheared domain as

S(P)
RPY(x′, y′; b) = 1

V μ

∑
k′ �=0

eik′ ·(x′−y′ ) 1

k′2
(
I − k̂′k̂′T )sinc2(k′b), (88)

where V is the domain volume and k′ = 2πm/Ld , where m is a vector of three integers and Ld is
the periodic domain length. Using the screening function of Hasimoto [74],

H (k′, ξ ) =
(

1 + k′2

4ξ 2

)
e−k′2/4ξ 2

, (89)

we split the periodic kernel S(P)
RPY into a far-field and near-field component, S(P)

RPY = S(FF)
RPY + S(NF)

RPY,
where the far field is given in Fourier space by

S(FF)
RPY(x′, y′; b) = 1

V μ

∑
k′ �=0

eik′ ·(x′−y′ ) 1

k′2 (I − k̂′k̂′T )sinc2(k′b)H (k′, ξ ). (90)

Here, ξ is a splitting parameter that controls the decay of the far-field kernel in Fourier space and
of the near-field kernel in real space, and is chosen to optimize performance. The total far-field
sum is obtained by summing the far-field kernel (90) over all points y′, with the k′ = 0 mode set to
zero since in continuum the total force on the system is zero. We use standard NUFFT algorithms
(in particular the Flatiron NUFFT library [75]) to compute these sums at all points x′ in log-linear
time in the number of points (see [29,61] for more details). The Flatiron NUFFT relies on a new
“exponential of a semicircle” kernel to do spreading and interpolation [75], which is more efficient
than the traditional Gaussian featured in [29,61]. See [76, Eq. (31)] for error estimates using the
exponential of a semicircle kernel, although these have yet to be extended to sheared domains in the
manner of [61, Eq. (55)].

Assuming that the near field decays rapidly enough that Fourier series can be replaced by Fourier
integrals, the near-field mobility can be computed in real space by inverse transforming its Fourier
space representation

S(NF)
RPY(x, y; b) = F (r, ξ , b)(I − r̂r̂T ) + G(r, ξ , b)r̂r̂T , (91)

where r = (x − y)∗, r = ‖r‖, and the asterisk denotes the nearest periodic image in the sheared
domain (blue in Fig. 2). The exact forms of F and G are given in [29, Appendix A]. The total
near-field sum is computed at x by summing the near-field kernel (91) over neighboring points
whose minimum image distance from x is less than a precomputed value r∗. We choose r∗ so that
the velocities are computed to a relative tolerance of 10−3, and set ξ such that r∗ is small enough
that only the nearest periodic image contributes to the near-field sum for each pair of points.

While the nearest image for near-field calculations is over the sheared domain, r and r are
computed using the Euclidean metric. We search for pairs of points closer than r∗ apart in log-linear
time using a kD tree implemented in SCIPY for a rectangular periodic cell. To adjust for the fact that
the x′ coordinates are given on a nonorthogonal coordinate system, we bound the Euclidean distance
between points in the unsheared coordinates by their “distance” in sheared coordinates

‖r‖ =
√

rT r =
√

(r′)T L−T L−1r′ �
[
1 + 1

2 (g2 +
√

g2(g2 + 4))
]−1‖r′‖ := 1

ψ
‖r′‖, (92)

where we have used the maximum eigenvalue of L−T L−1 to bound the norm [61]. The factor ψ

defined in (92) can be thought of as a “safety factor” in the sense that points that are ψr∗ apart using
the Euclidean metric in primed coordinates are at least r∗ apart in physical space.
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For multiple interacting fibers, the velocity U (RPY)(X (i)
p ) is obtained by summing both the far field

and near field over fibers j and points q. One inconvenience is that the PSE sum (87) is over all pairs
of points, including a point with itself (yi = x is automatically included in the sum). Specifically, the
PSE sum (87) will include interactions of a fiber with itself using the RPY kernel; this is not correct
since those interactions should be computed by the SBT formula (8). Since we know a priori that
the velocity at target X (i)

p incorrectly includes the direct quadrature sum due to fiber i, we subtract
the free-space RPY kernel, defined in (5), from the RPY sum U (PSE)(X (i)

p ) defined in (87) to obtain
the final Ewald sum

U (RPY)
(
X (i)

p

) = U (PSE)
(
X (i)

p

)−
∑

q

SRPY
(
X (i)

p , X (i)
q ; b

)
f (i)

q wq. (93)

D. Near fiber quadrature

The Ewald splitting scheme (93) gives the velocity at all points X (i)
p due to all other points X ( j)

q ,
including target-fiber pairs where the direct quadrature scheme (78) is inaccurate. If the box size
is sufficiently large, these inaccuracies only happen for the periodic image of the target X (i)

p that is
closest to the fiber X ( j). The other periodic images are handled correctly using the Ewald splitting
scheme (93) since they are sufficiently far from the fiber. In this section, we describe the special
quadrature scheme we use to correct the velocity for fibers j �= i that are close to target X (i)

p .
We need to compute the interaction velocity

v(x) = 1

8πμ

∫ L

0
SD

(
x, X (s),

e3

24
(εL)2

)
f (s) ds, (94)

where x is a target point and X (s) is the Chebyshev interpolant of the centerline of a fiber. There
are several components in our scheme to compute the interaction velocities v(x) to a guaranteed
tolerance regardless of how close the target point x is to the centerline of fiber X (s). We need to do
the following:

(1) Understand how far x can be from X (s) for the direct quadrature (78) to remain sufficiently
accurate.

(2) Obtain a reliable metric to compute or bound the minimum distance between the target x and
fiber X (s),

d := min
s

‖x − X (s)‖. (95)

Our procedure to compute d will be different for d/L = O(1), when fibers are far apart and
minimizing over a discrete set of nodes is sufficiently accurate, than for d/L = O(ε), where it is
more efficient to actually solve the continuous minimization problem.

(3) Use a special quadrature scheme to compute the integral for d = O(ε). The special quadra-
ture scheme will of course be more expensive than direct quadrature (78), but less expensive than
actually using the requisite number of direct quadrature points required to get the same accuracy.
The scheme we use here is taken directly from [53] and is based on extending the ideas used for the
finite part integration in Sec. IV B 1 to near-singular quadrature.

(4) If d < 4b, compute the closest point on fiber X (s) to the target x and denote it by X (s∗). Use
the distance metric for small d to correctly blend the interaction velocity (94) with the centerline
velocity (79) of the fiber at X (s∗).

To begin, we define an acceptable tolerance for the integrals. Since slender body theory itself
is only accurate to O(ε), it does not make sense to set a tolerance less than ε. For actin filaments
ε ≈ 10−3, so we define the tolerance as 10−3 and set ε = 10−3 in our accuracy tests. That is, our goal
is to compute the interaction velocities v(x) to three digits of accuracy regardless of the distance
between a target x and fiber X (s). Algorithm I gives the schematic flowchart of our method, the
details of which are discussed next. While this method cannot guarantee three digits of accuracy, it
does so for most target-fiber pairs of interest to us; see Appendix C for numerical results.
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Algorithm I: The discrete operation v(x) = Mc(x, X ) f for a fiber X (s) and target x. Beginning with a
target x and N Chebyshev points on the fiber centerline X (s), we first estimate the distance d/L by d̃/L, where
d̃ is computed from the discrete minimization over 16 uniform points. This determines whether the result from
direct quadrature with N (assumed to be at least 16) points is sufficiently accurate. If direct quadrature is not
sufficiently accurate, we subtract the free-space RPY kernel (96) from the velocity (93) and, if N < 32, redo the
calculation with direct quadrature with Np = 32 points or special quadrature. If special quadrature is needed,
we calculate the complex root η∗ of ‖x − X (η)‖ = 0, use the projection (99) to find the closest point on the
fiber, and compute the nondimensional distance d̂/(εL) in (100). The distance d̂/(εL) determines whether to
use special quadrature with 1 or 2 panels of 32 points each, and whether to use a linear combination with the
fiber centerline velocity at s∗, given in (79). The algorithm is designed to ensure the calculation of v(x) to three
digits of accuracy most of the time, and is specific to ε ≈ 10−3.

1. Distance where direct quadrature breaks down

Our first goal is to determine when direct quadrature breaks down. To do this, we simply
measured the accuracy of direct quadrature (78) with N = 16 and 32 Chebyshev nodes for ran-
domly generated pairs of fibers and targets. Specifically (more detail is given in Appendix C), we
generated 100 inextensible fibers with 16 nonzero Chebyshev coefficients decaying exponentially
(in expectation) by four orders of magnitude. We placed 100 targets around each fiber a distance d
in the normal direction and computed the quadratures (78). Measuring error with respect to a refined
direct quadrature, we found that N = 16 gives three digits of accuracy for all test cases when the
nondimensional distance d/L � 0.15. Likewise, direct quadrature with N = 32 points gives three
digits of accuracy when d/L � 0.06.

2. Estimating d for d/L = O(1)

Since direct quadrature breaks down for d/L < 0.15 when N = 16, we need to determine
whether a target x is indeed a distance less than d/L = 0.15 from the fiber centerline X (s) (the
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analogous statement holds for d/L = 0.06, N = 32). To do this quickly, we resample the fiber
centerline at Nu = 16 uniformly spaced points (in the arclength coordinate s) and perform a discrete
minimization over the uniform fiber points to estimate the distance d . We denote this approximation
by d̃ . Using the same random set of fibers and targets as in Sec. IV D 1, we found the estimate of
d by d̃ has a relative error in the distance |d̃ − d|/d of at most 5% for d/L = 0.15 and 20% for
d/L = 0.06.

Since direct quadrature breaks down at d/L = 0.15 for N = 16, after accounting for the error in
estimating d , we have that if d̃/L � 0.15 × 1.05, direct quadrature with N = 16 gives the integral
to three digits. If d̃/L < 0.15 × 1.05, it is possible that the direct quadrature (78) is not accurate to
three digits, and so the many-body Ewald sum (93) contains a direct quadrature between x and X
that is not accurate enough. We therefore subtract, for the target point x, this incorrect part of the
sum, specifically the free-space RPY kernel between the fiber X (s) and target x:

v(RPY)(x) =
N∑

p=1

SRPY(x, X ; b) wp. (96)

We then recompute the integral (94) to three digits using some other method.
For N = 16, our first resort to compute the integral (94) is to sample the Chebyshev polynomial

X (s) at 32 points and use direct quadrature (78) with 32 points. Since direct quadrature with 32
points gives 3 digits of accuracy when d/L � 0.06, including the error bounds we have that if
d̃/L � 0.06 × 1.20, the direct quadrature gives the integral (94) to 3 digits. For d̃/L < 0.06 × 1.20,
we abandon direct quadrature and use a special quadrature routine.

This initial step to upsample and integrate directly is designed to take care of most of the near
target and fiber pairs without incurring a significant computational cost. Our empirical correlation
between the distance d̃ and the direct quadrature error is less rigorous than the direct quadrature
error estimates of [53,99]. These estimates require information about the near singularity which, as
discussed in the next section, must be computed using more expensive root finding.

3. Special quadrature

The special quadrature routine is taken directly from [53]. As in Sec. IV B 1, the underlying idea
is to find the near singularity in the integrand, factor it out, expand what remains in a monomial
basis, and compute integrals with the singularity and monomials analytically. This time, however,
the integrand is not actually singular on the fiber centerline. By expanding the fiber representation to
the complex plane, the nearby singularity can be found in the complex plane and the entire procedure
of Sec. IV B 1 can be repeated.

In more detail, the interaction velocity integral (15) can be written so that the numerator is smooth
as x approaches the centerline of X (s). Starting from

v(x) = 1

8πμ

∫ L

0

(
f (s)

‖R‖ +
(
(RR) + e3

24 (εL)2I
)

f (s)

‖R‖3 − 3
e3

24
(εL)2 (RR) f (s)

‖R‖5

)
ds, (97)

where R = x − X (s), we rescale s by η = −1 + 2s/L. Then each of the terms in the integral (97)
can be written in the form ∫ 1

−1

hm(x, η)

‖x − X (η)‖m dη, (98)

where m = 1, 3, 5. For each m, hm(x, η) is a density that depends on the target point x and varies
smoothly along the fiber j arclength coordinate η.

Now, the idea of [53] is to extend the representation of X (η) from η ∈ [−1, 1] ⊂ R to the
complex plane C and compute the complex root of ‖x − X (η)‖ = 0. Because the centerline rep-
resentation X (η) is available as a Chebyshev series, it is simple to solve for the root via Newton
iteration. We denote this root by η∗, i.e., ‖x − X (η∗)‖ = 0 with η∗ ∈ C.
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Once the root is known, the algorithm of [53] finds the radius of the Bernstein ellipse associated
with η∗. This radius then bounds the direct quadrature error for the integral (97). If the upper
bound on the direct quadrature error with N = 32 points is less than 10−3, we proceed with direct
quadrature. Otherwise, we use the special quadrature scheme of [53], which is the same as in the
finite part integration in Sec. IV B 1. The complex singularity is factored out of the integrand, leaving
a “smooth” function which can be expanded in a monomial basis. Integrals involving monomials
multipled by the singularity are computed analytically, and an inner product of the monomial
coefficients with the analytical integrands yields the approximation to v(x).

The only difference from Sec. IV B 1 is that the location of the singularity (complex root η∗)
now depends on the fiber position X . This means that the roots and monomial coefficients must
be computed at every time step using an LU factorization of the Vandermonde matrix. Since the
Vandermone matrix is a function of the nodes sp on the fiber, its LU factorization is the same for all
fibers and can be precomputed once at the start of a dynamic simulation. We refer the reader to [53,
Sec. 3] for more details on this quadrature scheme.

While error bounds exist for direct quadrature, the special quadrature scheme of [53] does not
provide error bounds or a method for selecting the fiber discretization (number of panels, points per
panel, etc.). Because of this, we performed an empirical study on the same set of 100 fibers and
targets as in Sec. IV D 1. The randomized testing described in Appendix C showed that, for most
fiber configurations of interest to us, 1 panel of 32 points is sufficient to compute the integral to 3
digits using special quadrature as long as the nondimensional distance between the target and fiber
is d/(εL) > 8. Otherwise, 2 panels of 32 points are required. Fibers with high curvature typically
give the largest errors for a given discretization.

4. Estimating d for d/L = O(ε)

We still require a robust numerical procedure to determine when the the target point is too close
to the cross section of the fiber (i.e., when d < 4b = e3/2εL). Our idea is to use the real part of
the root η∗ as the closest arclength coordinate on the fiber to the target. We know the root η∗
solves ‖x − X (η∗)‖ = 0. It seems sensible, therefore, for the real part of the root to approximately
minimize (over real η) ‖x − X (η)‖ when the root is close to the real line. We therefore define s∗,
the closest point on the fiber to the target, from the complex root η∗ by removing the imaginary part
of the root and rescaling:

s∗ =
⎧⎨⎩

L
2 [Re(η∗) + 1], −1 � Re(η∗) � 1
0, Re(η∗) < −1
L, Re(η∗) > 1.

(99)

The shortest distance from x to the fiber can then be estimated as

d̂ := ‖x − X (s∗)‖, (100)

where the position X (s∗) is computed by evaluating the Chebyshev interpolant at s∗. Our ran-
domized tests showed that this estimate gives an error of at most 10% for d/(εL) � 8, which is
sufficiently accurate for our purpose. Because we use a point s∗ on the fiber centerline to estimate d̂ ,
this 10% error is always an overestimation. For this reason we use two panels for special quadrature
when d̂/(εL) � 8.8.

Combining all of our steps, we obtain an algorithm to compute v(x) for all targets and fibers
that is presented as a flowchart in Algorithm I. In Appendix C we show that this quadrature scheme
gives three digits of accuracy in the integrals (94) with high probability.

E. Temporal discretization

In this section, we discuss how we discretize the evolution equation (45) in time. We use the
notation of (68) to split the mobility M into an O(log ε) local part MLD and O(1) nonlocal part

014102-26



INTEGRAL-BASED SPECTRAL METHOD FOR …

MNL. Our goal in this section is to develop a second-order temporal integrator with the following
properties:

(1) A minimum number of evaluations of the nonlocal hydrodynamics are needed per time step.
(2) Bending elasticity is treated implicitly.
(3) Any linear solves are block diagonal, or fiber by fiber, so that the complexity of solving

evolution equation (45) scales linearly with the number of fibers and can be trivially parallelized.
Since we have separated the mobility matrix into the dominant O(log ε) block-diagonal local

drag matrix MLD and the O(1) term that remains, we will begin by treating terms associated with
MLD implicitly, thereby alleviating some of the stability restrictions associated with the bending
force FX . This kind of approach gives almost unconditional stability as long as the density of fibers
is small enough for the local drag term to dominate the fiber’s motion. When the density of fibers is
larger, we will treat the bending force implicitly in the MNL term as well; the resulting linear system
can be solved approximately by a few iterations of GMRES [77].

To avoid nonlinear solves and still achieve second-order accuracy, we extrapolate values from
previous time steps to the midpoint of the next time step and use these extrapolated values as
the arguments for nonlinear functions [e.g., M(X ) and K(X )]. More precisely, we define the
extrapolated midpoint fiber positions as

X n+1/2,∗ = 3
2 X n − 1

2 X n−1, (101)

where we have used the notation X n to denote the fiber positions X at the nth time step. As is our
usual convention, we have not used fiber indices in the extrapolation (101) since it applies to every
fiber independent of the others.

1. Semi-implicit method for dilute suspensions

To discretize the evolution equation (45) and principle of virtual work (46) in time, we split
the mobility matrix into M = MLD + MNL. Since the elastic force density FX involves fourth
derivatives, it must be treated implicitly to maintain stability as the number of Chebyshev grid
points N increases. For dilute suspensions, we assume that, since MLD is the dominant O(log ε)
contribution at each point, only treating the term MLDFX implicitly will still give improved stability.

A second-order4, semi-implicit discretization of the evolution equation (45) begins by solving
the saddle-point system

MLD
n+1/2,∗

(
λn+1/2 + 1

2 F(X n + X n+1,∗)
)+ MNL

n+1/2,∗(λn+1/2,∗ + FX n+1/2,∗)

+ u0(X n+1/2,∗) = Kn+1/2,∗αn+1/2, K∗
n+1/2,∗λn+1/2 = 0 (102)

for λn+1/2 and αn+1/2, where the notation MLD
n+1/2,∗ means MLD(X n+1/2,∗) (and likewise for MNL, K,

and K∗). To obtain a second-order block-diagonal system, we extrapolate previous λ values to the
midpoint of the next time step,

λn+1/2,∗ = 2λn−1/2 − λn−3/2. (103)

When the nonlocal mobility in the block-diagonal discretization (102) is applied to λn+1/2,∗ and
FX n+1/2,∗, the total force might be nonzero because of discretization errors in F. In this case,
we manually set the total force to zero in the PSE method of Sec. IV C. We also introduce the
approximation

X n+1,∗ = X n + �tKn+1/2,∗αn+1/2 (104)

4For relatively curved fibers, we find a first-order backward-forward Euler discretization to be more robust
and recommend it over the second-order method used here for relatively straighter fibers.
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to make (102) a linear system in αn+1/2 and λn+1/2. Since X n+1 will actually be computed by rotating
the tangent vectors and integrating the result (see Sec. IV E 3), the update (104) is a second-order
approximation to the actual X n+1. Nevertheless, it is a sufficient approximation to give the same
stability properties as if the actual X n+1 were included in a nonlinear saddle-point system.

By substituting the approximation X n+1,∗ in (104) into saddle-point system (102), we obtain the
following saddle-point linear system to solve at every time step(−MLD K − �t

2 MLDFK
K∗ 0

)
n+1/2,∗

(
λn+1/2

αn+1/2

)
=
(

MLD
n+1/2,∗FX n + MNL

n+1/2,∗(λn+1/2,∗ + FX n+1/2,∗) + u0(X n+1/2,∗)
0

)
. (105)

This system can be solved fiber by fiber since all of the matrices MLD, K, and K∗ on the left-hand
side of (105) are block diagonal. System (105) is not invertible in general because the representation
Kα is not necessarily unique. To see this, suppose that n j is a degree N − 1 polynomial. Then,
the inextensible velocity (41) could be zero at all the nodes without α being identically zero. We
therefore use the least-squares solution for α while emphasizing that α itself has no significance;
only Kα has physical meaning.

2. Implicit method for denser suspensions

In the case when the fibers are packed densely enough to make the temporal discretization (105)
unstable, we treat the bending force in the nonlocal hydrodynamics implicitly and use GMRES to
solve for λn+1/2 and αn+1/2. The new linear system of equations is

MLD
n+1/2,∗

(
λn+1/2 + 1

2 F(X n + X n+1,∗)
)+ MNL

n+1/2,∗
(
λn+1/2 + 1

2 F(X n + X n+1,∗)
)

+ u0(X n+1/2,∗) = Kn+1/2,∗αn+1/2, K∗
n+1/2,∗λn+1/2 = 0. (106)

Now, let us denote the solutions of the block-diagonal system (105) by λ̃n+1/2 and α̃n+1/2. By
subtracting the fully implicit system (106) from the locally implicit system (102), we obtain the
residual form of the saddle-point system(−(MLD + MNL) K − �t

2 (MLD + MNL)FK
K∗ 0

)
n+1/2,∗

(
�λn+1/2

�αn+1/2

)
=
(

MNL
n+1/2,∗

[
F
(
X n + �t

2 Kn+1/2,∗α̃n+1/2 − X n+1/2,∗
)+ λ̃n+1/2 − λn+1/2,∗

]
0

)
(107)

to be solved using GMRES for the perturbations

�λn+1/2 = λn+1/2 − λ̃n+1/2 and �αn+1/2 = αn+1/2 − α̃n+1/2. (108)

The right-hand side of system (107) is zero to second order in �t . We therefore expect the
perturbations to be O(�t2). While these perturbations have no impact on the temporal accuracy
of our scheme, obtaining a good approximation to them is vital for stability. In Sec. V B, we quan-
tify empirically (for ε = 10−3) how many GMRES iterations are enough to obtain unconditional
stability. Note that smaller values of ε require fewer GMRES iterations for stability since local drag
is more dominant for smaller ε, and vice versa for larger ε.

To solve system (107) rapidly with GMRES, we use the block-diagonal preconditioner

Pn+1/2 =
(−MLD K − �t

2 MLDFK
K∗ 0

)−1

n+1/2,∗
(109)

that appears in (105). Since MLD dominates over MNL, this preconditioner is effective, with
increased effectiveness for smaller ε.
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Our overall scheme to solve for λn+1/2 and αn+1/2 can be summarized as follows:
(1) Solve the block-diagonal system (105) for λn+1/2 and αn+1/2. If the fiber suspension is

sufficiently dilute (see Sec. V B), continue to the next time step.
(2) Otherwise, set λ̃n+1/2 and α̃n+1/2 to be the solutions of the block-diagonal system (105), run

a few iterations of GMRES to solve the residual system (107), and update λn+1/2 and αn+1/2 using
(108).

To initialize, in the first and second time steps (for n = 0, 1), we solve system (106) by converg-
ing GMRES with a relative residual tolerance of 10−6. When n = 0, we set X n+1/2,∗ = X n.

3. Updating τ and X

Once we have computed αn+1/2, we use a discrete form of the tangent vector rotation (27) to
update the tangent vectors. This is done fiber by fiber, and so here we use X to stand for a single
fiber, rather than the entire collection of positions. To avoid double subscripts, in a slight abuse of
notation we superscript the time-step index n in this section.

Our goal is to rotate the set of tangent vectors τn on the unit sphere by the (axis-angle) rotations
�n+1/2 = �(τn+1/2,∗,αn+1/2). To do this in a stable way, we cannot use αn+1/2 directly in the
computation since the kinematic coefficients αn+1/2 do not have physical meaning and take values
which are sensitive to discretization and ill conditioning. Since the velocity Kn+1/2αn+1/2 has a
physical meaning and is less sensitive to numerical artifacts, we compute

�n+1/2 = τn+1/2,∗ × DN Kn+1/2,∗αn+1/2 (110)

on an upsampled grid, where DN is the Chebyshev differentiation matrix on the N-point grid. To do
this, we upsample τn+1/2,∗ and the derivative DN Kn+1/2,∗αn+1/2 to a grid of size 2N and do the cross
product. We then downsample the result to obtain �n+1/2

p for p = 1, . . . , N .
Once �n+1/2 is known, we use the Rodrigues rotation formula [78] to compute the rotated tangent

vectors. Letting � = ‖�‖ and �̂ = �/�, we compute the rotated tangent τ at each node p by

τn+1
p = τn

p cos
(
�n+1/2

p �t
)+ (�̂n+1/2

p × τn
p

)
sin
(
�n+1/2

p �t
)

+ �̂
n+1/2
p

(
�̂

n+1/2
p · τn

p

)[
1 − cos

(
�n+1/2

p �t
)]

. (111)

We then compute X n+1 from τn+1 via Chebyshev integration. Specifically, we compute the Cheby-
shev series coefficients of τn+1, apply the spectral integration matrix [79] to compute the Chebyshev
series of X n+1, then evaluate this series at the nodes on the N-point grid. To fix the integration
constant, on each fiber we set the position at the first node

X n+1
1 = X n+1,∗

1 , (112)

where X n+1,∗ is defined in (104).

V. NUMERICAL TESTS

In this section, we validate each component of our method and demonstrate the method’s spatial
and temporal accuracy. We study spatiotemporal accuracy in Sec. V A with simple examples of
four falling fibers in free space and three fibers in periodic shear flow. Section V B gives our most
important result for computational complexity: the number of hydrodynamic evaluations per time
step required to stably evolve the dynamics of a fiber suspension is at most five. By varying the
fiber number density and bending modulus, we show that one block-diagonal solve combined with
at most three iterations of GMRES per time step are needed to maintain stability.5

5The extra hydrodynamic evaluation to give a total of five comes in the conversion to residual form (107).
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In general, we will use an L2 function norm to compute the differences between configurations
throughout this section. Given two fiber configurations, we evaluate the Chebyshev interpolant of
each on a 1000-point type-2 Chebyshev grid and calculate the discrete L2 error using Clenshaw-
Curtis quadrature. Whenever there are multiple fibers, we compute the error on the first fiber X (1)

unless otherwise specified.
Since fibers in shear flow are our primary interest, some of our examples will use shear flows.

The general form of a time-oscillatory shear flow is given by

u0(x, t ) = γ̇0 cos (ωt )(y, 0, 0). (113)

The corresponding strain is given by g(t ) = (γ̇0/ω) sin (ωt ) for ω > 0 and g(t ) = γ̇0t for ω = 0.

A. Spatiotemporal accuracy

In this section, we study spatiotemporal convergence for two examples where nonlocal hydro-
dynamics has a nontrivial impact on the fiber trajectories. We first verify our method for fibers
in gravity by comparing the results to those obtained using the method prescribed in [15] and in
the process show improved robustness and temporal accuracy. We then demonstrate second-order
temporal convergence and spectral spatial accuracy for a periodic three-fiber system in shear flow.
We also show that, if stable, our block-diagonal solver (105) with one hydrodynamic evaluation per
time step is the most efficient way to resolve the dynamics to a given tolerance.

1. Comparison to strong formulation

Our first goal is to validate our weak formulation of inextensibility by numerically comparing to
the strong formulation. To do this, we consider four fibers centered around a circle of radius d = 0.2.
The fibers have initial tangent vector τ(t = 0) = (0, 0, 1) (they are aligned in the z direction) and po-
sitions X (1)(t = 0) = (d, 0, s − 1), X (2)(t = 0) = (0, d, s − 1), X (3)(t = 0) = (−d, 0, s − 1), and
X (4)(t = 0) = (0,−d, s − 1), where 0 � s � L = 2. For simplicity, we set μ = κ = 1, and ε =
10−3. For this test only, we use fibers with ellipsoidal cross sections and set the local drag coefficient
c(s) = − ln (ε2). We simulate until t = 0.25.

Each fiber has a uniform gravitational force density f g = (0, 0,−5) placed on it. In the absence
of nonlocal interactions (i.e., if M = MLD), the fibers fall straight downward. When the interactions
between fibers are included, however, the fibers influence each other and have an x and y direction to
their motion. Figure 3(a) shows the initial and final (t = 0.25) configurations of the fibers in this test.

Our goal here is to verify our results by comparing to results obtained using the method of [15].
Because the method of [15] uses regularization for the finite part integral (and we do not), we drop
the finite part integral in this calculation and only include local drag and cross-fiber interactions in
the mobility. The fibers are sufficiently far from each other that the dipole term in the kernel SD,
which has coefficient of 0 in [15], has a very small effect on the result (two orders of magnitude
less than our smallest spatiotemporal error). We use free-space boundary conditions (no periodicity)
and compute all nonlocal integrals by direct quadrature (78), without any upsampling. We use the
block-diagonal solves (105) for temporal integration and do not perform any GMRES iterations.

We first verify that our results match those of the strong formulation [15] when the spatial
and temporal discretizations are well refined. Considering N = 24 and �t = 5 × 10−4 in both
algorithms, we obtain a maximal L2 difference of 1.8 × 10−4 in the position of the first fiber, which,
as we show in Fig. 3(b), is on the order of magnitude of the discretization error.

It is instructive to compare the spatiotemporal error between the two algorithms. We define the
“exact” solution for both algorithms to be a trajectory with N = 24 and �t = 5 × 10−4. Figure 3(b)
shows the maximum L2 errors over the time interval [0,0.25] for both algorithms with different
spatial and temporal discretizations. For small �t , the spatial error dominates and the spatiotemporal
error saturates. We observe that our weak formulation outperforms the strong formulation of [15]
in two ways. First, for coarse discretizations [e.g., N = 12, dashed lines in Fig. 3(b)], our saturated
spatial error is more than an order of magnitude lower than the saturated spatial error of [15].
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(a) Trajectory
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FIG. 3. Four fibers in gravity. (a) Initial (filled orange) and final (light blue) configurations of the fibers.
There are N = 16 points on each fiber. (b) Spatiotemporal convergence of our weak formulation (circles)
compared to the strong formulation of [15] (squares). In both cases, the exact solution is a trajectory with
N = 24, �t = 5 × 10−4. For small �t , the spatial error dominates and the spatiotemporal error saturates.

This is likely because the line-tension equation of [15] has larger aliasing errors for coarser spatial
discretizations, and because of our improved treatment of the free-fiber boundary conditions using
rectangular spectral collocation. Second, our errors saturate at a much larger time-step size than
those of [15]. For example, when N = 16 our error saturates for �t = 5 × 10−3, whereas the error
from [15] does not saturate until �t = 1 × 10−3. This occurs because our temporal integrator is
second-order accurate. This simple example demonstrates the improved spatial accuracy of our new
weak formulation over the strong one, and the improved accuracy of our temporal discretization,
even in the absence of GMRES iterations.

2. Spatiotemporal convergence

We next verify the temporal convergence of our algorithm for periodic sheared domains by
choosing an example where interactions between the fibers contribute significantly to the dynam-
ics. We consider three sheared fibers with L = 2 and X (1)(s) = (s − 1,−0.6,−0.04), X (2)(s) =
(0, s − 1, 0), and X (3)(s) = (s − 1, 0.6, 0.06). As shown in Fig. 4(a), this corresponds to an “I”
shaped initial configuration of the fibers, with the fibers stacked in the z direction.

We set the periodic domain length Ld = 2.4, the Ewald parameter ξ = 3, and set μ = 1,
ε = 10−3, and κ = 0.01. We use a constant shear flow (113) with γ0 = 1 and ω = 0. Because
of the small bending rigidity, the fibers deform from their straight configurations in a shear flow.
In this example, two of the fibers are initially aligned with the x direction. Without nonlocal
hydrodynamics, they would stay aligned with the x direction and simply translate. When nonlocal
interactions are included, the flows generated by the middle fiber X (2) induce deformations of the
top and bottom fibers. This is evident in Fig. 4(a), which shows the final fiber positions at t = 2.4.

To quantify the temporal convergence, we fix N = 16 and simulate from t = 0 to 2.4 with �t =
0.4, 0.2, 0.1, 0.05, and 0.025 using the block-diagonal solver (105) (no GMRES iterations) and
successive refinements to measure the error. Figure 4(b) shows that we obtain second-order temporal
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FIG. 4. Three fibers in shear flow. (a) Fiber configurations at t = 0 and 2.4. (b) Second-order temporal
convergence. We measure the maximum L2 error over time in the first fiber position using successive refine-
ments and observe second-order temporal convergence for block-diagonal solves with N = 16 (blue circles)
and N = 24 (purple diamonds). We also see second-order convergence, and reduced temporal errors, for both
one (red squares) and three (yellow triangles) GMRES iterations. (c) The spatiotemporal errors (measured
against a more accurate solution with N = 32, �t = 0.001 25) are shown for N = 16 and 24.

convergence for the block-diagonal solver (105) (blue circles) and for the GMRES system (107)
with one iteration (red squares) and three iterations (yellow triangles). The temporal error is about
an order of magnitude smaller when we perform one GMRES iteration in addition to the block-
diagonal solve. Note, however, that this comes at the cost of two additional nonlocal hydrodynamic
evaluations (one to convert to residual form, one in the GMRES iteration).

For spatiotemporal convergence, we simulate a refined trajectory with N = 32 and �t =
0.001 25 and compute the maximum L2 errors in trajectories with N = 16 and 24. As shown in
Fig. 4(c), increasing the number of points by 8 decreases the spatiotemporal error by a factor of 4
(compare blue circles with purple diamonds), which is consistent with spectral spatial accuracy.

Performing one GMRES iteration with �t = 0.2 approximately matches the spatial and temporal
errors and costs a total of three hydrodynamic evaluations per 0.2 units of time. Running the
block-diagonal solver with �t = 0.1 matches the temporal error with the spatial error and costs
two hydrodynamic evaluations per 0.2 units of time. We therefore conclude from Fig. 4(c) that
the most efficient way to obtain the maximum accuracy for a given spatial resolution is to run the
block-diagonal solver with the smaller time-step size, assuming it is stable.
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FIG. 5. Number of hydrodynamic evaluations needed for stability, indicated by color. We consider a system
of F = 1000 fibers of length L = 2, vary the periodic domain length Ld and fiber stiffness κ , and show
the number of hydrodynamic evaluations needed for stability for each set of parameters. One hydrodynamic
evaluation occurs in the block-diagonal solver (105), another in the conversion to residual form (107), and one
evaluation occurs per GMRES iteration. We report fiber density in units of f L3 = FL3/L3

d on the x axis and
fiber stiffness in units of �t/(1.72τ ) on the y axis, where the elastic timescale τ = 8πμL4/[ln (ε−2)κ].

B. Stability

Because our block-diagonal semi-implicit temporal discretization (BDSI) described in
Sec. IV E 1 treats the bending force explicitly in the nonlocal term, it will become unstable when the
fiber suspension is too concentrated and the cumulative effect of nonlocal hydrodynamics is com-
parable to that of local drag. In this case, we switch to the GMRES solver described in Sec. IV E 2.
As discussed there, since the block-diagonal solver is already second-order accurate, the perturba-
tions to α and λ that come from the residual GMRES solve (107) do not impact the overall temporal
accuracy (see Fig. 4), but do impact stability. For this reason, we run only a fixed number of GMRES
iterations until we obtain stability. Our goal in this section is to determine an upper bound on the
number of required GMRES iterations.

To do this, we consider a suspension of F = 1000 fibers and vary the density of fibers by
changing the periodic domain length Ld . If f = F/L3

d is the number density of fibers and L is the
length of a fiber, a dimensionless density f L3 < 1 is considered a dilute fiber suspension, while a
semidilute suspension is one with r f L2 = ε f L3  1, and a semiconcentrated one has ε f L3 = O(1)
[10]. Here, we explore the semidilute and semiconcentrated regimes and derive empirical bounds
on how many GMRES iterations are required to maintain stability for a variety of bending moduli.
Our conclusion is that at most five nonlocal hydrodynamic evaluations are sufficient to maintain
stability, even for semiconcentrated suspensions.

We simulate F = 1000 initially straight fibers of length L = 2 and radius r = 2 × 10−3 (so that
ε = 1 × 10−3), and use N = 16 points per fiber. In the oscillatory shear flow (113), we set ω = 2π

and γ̇0 = ω/10, so that the maximum strain is g = 0.1 and the time for one cycle is 1. We expect to
need at least 20 time steps per cycle to obtain reasonable accuracy, so we set �t = 0.05, although in
reality we find that smaller time-step sizes are needed to accurately resolve the dynamics of dense
suspensions. Since we find that changing the frequency ω has a negligible impact on the results, we
nondimensionalize �t by the bending timescale τ = 8πμL4/[ln (ε−2)κ], where here we use μ = 1.

We simulate five cycles of motion, until t = 5. Figure 5 shows the number of hydrodynamic
evaluations required for stability for a given bending modulus and fiber density. The fiber-number
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density f L3 is reported on the bottom x axis and on the top x axis we give ε f L3. For semidilute
suspensions (ε f L3 ≈ 0.01), we see that BDSI is stable, i.e., only a single hydrodynamic evaluation
is needed for stability (red squares in Fig. 5). For a fixed number density, we first see instabilities
for BDSI for smaller τ , so that stiffer fibers require more GMRES iterations for stability. As
the fiber suspension becomes semiconcentrated (ε f L3 � 0.1), we see that we need at least three
hydrodynamic evaluations regardless of the fiber stiffness. For our stiffest and densest suspensions
(ε f L3 ≈ 0.5), we need at most five hydrodynamic evaluations per time step to obtain stable
dynamics. For comparison, Nazockdast et al. report 9 to 16 GMRES iterations for a system with a
similar number of fibers [15, Table 1].

We caution that these evaluation counts are the minimum number needed for stability. For dense
fiber suspensions, �t = 0.05 might be too large to obtain reasonable accuracy since fibers that are
in close contact are subject to nearly nonsmooth velocity fields that come from the near-singular
velocity kernel (77) and the possible combination with the fiber centerline velocity (79). In practice,
we find this causes fibers that are in close contact to oscillate around each other when �t is too
large. A smaller �t can resolve these issues, and we know from Fig. 5 that the number of iterations
required for stability drops with the time-step size.

VI. APPLICATION: CROSS-LINKED ACTIN MESH

The cell cytoskeleton is a dynamic network of cross-linked actin filaments and myosin motors
that allows cells to migrate, divide, and adapt to new environments [11,12]. A number of exper-
imental [80–83] and computational [13,84] studies have shown that the viscoelastic rheology of
actin networks comes from specialized cross-linking proteins dynamically binding and unbinding
to actin fibers, with the rates of binding and unbinding determining the ratio of viscous to elastic
behavior. When the cross linkers (CLs) are permanently attached, the network has traditionally been
viewed as purely elastic, while instant unbinding of CLs has been seen as pure viscous behavior
[12]. The reality is more nuanced than this since the network is embedded in an underlying fluid
which contributes to the viscous modulus of the network and affects the movement of the filaments
between binding and unbinding events.

To our knowledge, there has been no systematic study of the contribution of the underlying fluid
to the dynamics and viscoelastic properties of cross-linked actin networks. We defer a full study of
this for the future; here we develop the cross-linking model and provide some initial results. In par-
ticular, we will leave transient cross-linker dynamics for a future study and consider the special case
of a permanently cross-linked network, which could model, for example, a network of actin fibers
cross linked by scruin proteins [81]. Since our fibers are represented by Chebyshev interpolants
X (s), we seek a continuum force density on the fiber due to cross linking. This force density must
be smooth relative to the discretization to preserve the spectral accuracy of our algorithm.

We begin in Sec. VI A by presenting our model of a cross linker as an elastic spring between the
fibers. Although an elastic spring model might not be appropriate for some cross-linking proteins,
for example, short and stiff rods like α-actinin [85], it can model longer and more flexible CLs
like filamin [86]. In Sec. VI B, we then discuss how we compute rheological information from our
model to facilitate comparison with experiments. In Sec. VI C, we also report the sensitivity of
this information to the number of collocation points N , width σ of the CL Gaussian smoothing
function, and local drag regularization length scale δL. We conclude this section with our results for
a permanently cross-linked actin network. We consider a fixed ratio of 12 CLs per fiber and study the
viscous and elastic behavior of the network using both local drag and fully nonlocal hydrodynamics
to evolve the system. Our conclusion is that there exists a critical timescale τc on which the network
relaxes to a dynamic steady state under oscillatory shear flow. For shear frequencies ω  τ−1

c , the
behavior is primarily elastic and dominated by the quasisteady state of the network. For ω � τ−1

c ,
dynamics, including hydrodynamics, matter and we see more viscous behavior.
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A. Cross-linker model

Suppose we have two fibers X (i) and X ( j) and that a CL connects two fibers by attaching to
arclength coordinate s∗

i on fiber i and s∗
j on fiber j, where these coordinates are not necessarily

Chebyshev points. We define the force density due to the CL at arclength coordinate sp on fiber i as

f (CL,i)
p (X ) = −Kc

(
1 − 


‖X (i)(s∗
i ) − X ( j)(s∗

j )‖

)
δh(sp − s∗

i )
N∑

q=1

(X (i)(sp) − X ( j)(sq))δh(sq − s∗
j )wq,

(114)
where Kc is the spring constant for the CL (units force/length), 
 is the rest length, and δh is a
Gaussian smoothing function replacing a Dirac delta function. The CL force density (114) links the
point sp on fiber i to every point on fiber j, with a weight related to the distance on fiber j between
the anchor coordinate s∗

j and Chebsyshev point sq by the Gaussian function δh. The prefactor outside
of the sum is zero when the anchor points are exactly length 
 apart. If the two anchor points are
farther than 
 apart, the force between them is attractive; otherwise, it is repulsive.

The force density (114) exerts no net force or torque on the system both in continuum [replace
the sum in (114) by an integral] and discretely. Specifically,

N∑
p=1

f (i,CL)
p wp +

N∑
q=1

f ( j,CL)
q wq = 0, (115)

N∑
p=1

(
X (i)

p × f (i,CL)
p

)
wp +

N∑
q=1

(
X ( j)

q × f ( j,CL)
q

)
wq = 0. (116)

These identities, which imply that each pair of cross-linked fibers is force-and-torque free, hold
regardless of the form of δh.

For a given fiber discretization, we choose δh so that the forcing is smooth in the Chebyshev
basis. We consider δh to be a Gaussian density of the form

δh(r) = 1

Z
exp

(
− r2

2σ 2

)
, (117)

where σ is a parameter that controls the smoothness and spread of δh. The factor Z is a normalization
factor that ensures δh discretely integrates to 1 along the fiber length, i.e.,

∑
p δh(sp − s∗

i )wp = 1.

Far from the end points, Z = √
2πσ 2, but if the CL is bound to the end of the fiber some of the

Gaussian weight might be truncated. For a given N , we choose σ to be the minimum value that
gives three digits of accuracy in f , where the error is measured relative to a refined f computed
on a 1000-point Chebyshev grid. Note that small values of σ lead to instabilities if N is not large
enough to resolve δh. For N = 16, we use σ/L = 0.1; we will study the influence of σ on physical
observables numerically in Sec. VI C 1.

We modify the BDSI temporal integrator (102) to treat the cross-linker forces in an explicit
second-order fashion:

MLD
n+1/2,∗

(
λn+1/2 + 1

2 F(X n + X n+1,∗) + f (CL)
n+1/2,∗

)
+ MNL

n+1/2,∗
(
λn+1/2,∗ + FX n+1/2,∗ + f (CL)

n+1/2,∗
)+ u0(X n+1/2,∗) = Kn+1/2,∗αn+1/2, (118)

where f (CL)
n+1/2,∗ = f (CL)(X n+1/2,∗) and X n+1/2,∗ is the extrapolation (101). As before, when the

block-diagonal semi-implicit temporal integrator (105) is unstable, we switch to the residual system
for GMRES (107), which is unchanged by the CLs. The time-step size �t for the CL discretization
(118) is limited by stability for cases when the fibers are more flexible than the CLs; we leave
implicit treatment of CLs for future work.
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B. Rheological experiments

Experimental studies on actin networks [80,82] typically report the viscous and elastic moduli.
These quantities can be computed from the system stress tensor σ, which in turn can be computed
from the force densities on each fiber’s centerline. In this section, we briefly lay out the minimum
details needed for the calculation of the viscous and elastic moduli.

Recalling the time-oscillatory shear flow (113), the only nonzero component of the rate of strain
tensor is constant in space and is given by

γ̇21(t ) = ∂ux
0

∂y
= γ̇0 cos (ωt ), (119)

and the relevant component of the strain tensor is therefore

γ21(t ) =
∫ t

0
γ̇21(t ′) dt ′ = γ̇0

ω
sin (ωt ) := γ0 sin (ωt ), (120)

where we have defined γ0 as the maximum strain in the system. We define the bulk elastic (G′) and
viscous modulus (G′′) from γ0 by [87]

σ21

γ0
= G′ sin (ωt ) + G′′ cos (ωt ). (121)

Notice that the elastic modulus G′ gives the part of the stress that is in phase with the strain, and the
viscous modulus G′′ gives the part of the stress that is in phase with the rate of strain.

The stress tensor itself can be decomposed into a part coming from the background fluid and a
part coming from the internal fiber stresses:

σ21 = σ
(μ)
21 + σ

( f )
21 = μ

∂ux
0

∂y
+ σ

( f )
21 . (122)

For pure viscous fluid, the fiber contribution to the stress is zero and the stress is given entirely by
the viscous stress tensor

σ
(μ)
21

γ0
= ωμ

γ̇0
[γ̇0 cos (ωt )] = ωμ cos (ωt ). (123)

Thus, the viscous modulus due to the fluid is G′′ = ωμ.
The stress due to the fibers depends on the force the fibers exert on the fluid. Because (115)

shows that the total force exerted by the cross linker on the pair of fibers it connects is zero, we use
Batchelor’s formula [88] for the volume-averaged stress due to the fibers and CLs. In the slender
limit (i.e., the case when the surface area force density is constant on fiber cross sections), the bulk
stress due to the fibers and CLs in a volume V is given by σ ( f ) = σ (i) + σ(CL), where

σ (i) = − 1

V

(
F∑

i=1

N∑
p=1

[
X (i)

p

(
λ(i)

p + (FX (i)
)

p

)
wp
])

, (124)

σ(CL) = − 1

V

(
C∑

c=1

N∑
p=1

(
X (c1 )

p f (CL,c1 )
p wp + X (c2 )

p f (CL,c2 )
p wp

))
, (125)

where the double sum for σ (i) is over points on fibers and the double sum for σ(CL) is over points on
pairs of cross-linked fibers. In the cross-linker stress, C is the number of CLs and the notations c1

and c2 mean that cross linker c links fibers c1 and c2. The sums must be separated since different
periodic images of X (i) could be involved for different cross linkers. In σ (CL), the positions X (c1 )

p

and X (c2 )
p must be the periodic images of the two fibers that are connected by the CL. Because (116)

shows that the total torque exerted by the cross linker on the pair of fibers it connects is zero, we
expect the stress tensor (124) to be symmetric to spectral accuracy since the constraint force λ and
elastic forces FX exert exactly zero torque in continuum but not discretely [88].
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We discretize the stress tensor at the midpoint of each time step. Specifically, we substitute
X n+1/2,∗ for X and λn+1/2 for λ in the internal fiber stress σ (i), and evaluate the cross-linking forces
at the extrapolated midpoint X n+1/2,∗ in σ(CL). Assuming that the final time T is an integer multiple
of the period 2π/ω, we then compute the bulk moduli by discretizing the integrals

G′ = 2

γ0T

∫ T

0
σ21 sin (ωt ) dt, G′′ = 2

γ0T

∫ T

0
σ21 cos (ωt ) dt (126)

by the midpoint rule.

C. Results

We now consider a permanently cross-linked network of F filaments, fix the physical param-
eters of the network, and analyze how the viscoelastic behavior depends on the frequency of
oscillations. We set the fiber length L = 2 μm with aspect ratio ε = 10−3 and bending stiffness
κ = 0.01 pN μm2, and use a box of size Ld = 4 μm. For the fluid viscosity, we use μ = 1 Pa s. The
CLs have rest length 
 = 0.5 μm and spring constant Kc = 1 pN/μm. To bind the CLs, at t = 0
we resample each fiber centerline to 16 uniformly separated points. We then randomly select a pair
of these points, X (i)(s∗

i ) on filament i and X ( j)(s∗
j ) on filament j, where i �= j. If the two selected

points are initially separated by a distance less than 
, we bind a CL connecting fibers i and j, with
one end centered on X (i)(s∗

i ) and the other end centered on X (i)(s∗
j ). We continue this process until

12F CLs have been attached.6 Our use of such a large number of CLs effectively makes the network
into a single interconnected cluster, so that our periodic domain can be viewed as a sample of a bulk
interconnected fiber gel.

1. Effect of changing N, σ, and δ

For our experiments in the rest of this section, we will typically use N = 16 Chebyshev points per
fiber, cross-linker standard deviation σ/L = 0.1, and local drag regularization parameter δ = 0.1.
Here we test the effect of changing N , σ , and δ from these baseline parameters by considering
a set of F = 100 straight fibers and 1200 CLs. In this section, we are concerned only with the
spatiotemporal accuracy of our CL formulation, and not necessarily the actual values of the viscous
and elastic moduli, and so for this test we start measuring stress at t = 0, despite the fact that the
network could be far from a steady state. Since we have already tested the spatiotemporal accuracy
of our hydrodynamics in Sec. V, we run here with local drag only. We use ω = 2π and γ̇0 = 0.2π

and run until T = 6 s (6 periods). To obtain a set of refined trajectories, we use �t = 0.005 for
N = 16, �t = 0.0025 for N = 24, and �t = 0.001 for N = 32. In addition to σ/L = 0.10 for all
discretizations, we also measure stress for N = 24 with σ/L = 0.07 and N = 32 with σ/L = 0.05.

We first study the spatiotemporal convergence of stress by fixing σ/L = 0.10. The errors in the
stress under spatiotemporal refinement are shown in Fig. 6(a), where we observe rapid convergence
consistent with second-order convergence in time. The errors in the stress near t = 0, immediately
after the flow is turned on, are more chaotic since the straight fibers are initially pulled by CLs into
a curved shape, and our time-step sizes are too large to accurately capture these dynamics.

Perhaps a more important question is the influence of the Gaussian regularization parameter
σ . In Fig. 6(b), we measure the differences in stress for N = 16, σ/L = 0.1 and N = 24, σ/L =
0.07 relative to our (most resolved) reference solution with N = 32, σ/L = 0.05. We see a relative
difference of at most 10% in the stress tensor for σ/L = 0.1 and 5% for σ/L = 0.07.

We also study the impact of the regularization parameter δ in the local drag coefficient (14) on the
stress tensor. In Fig. 6(c), we plot the relative errors in stress using δ = 0.05 as a reference solution.

6Since there are only 16 sites on each fiber and one CL takes up two sites, this requires that we allow more
than one CL to bind to a specific site.

014102-37



MAXIAN, MOGILNER, AND DONEV

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3
10-4

(a) Constant σ/L = 0.1 and constant δ = 0.1

0 1 2 3 4 5 6
-0.1

-0.05

0

0.05

0.1

(b) Varying σ/L, constant δ = 0.1

0 1 2 3 4 5 6

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(c) Varying δ, constant σ/L = 0.1

FIG. 6. Differences in the fiber stress σ
( f )
21 in a suspension of F = 100 fibers and 1200 CLs with (a) constant

cross-linker standard deviation σ/L and local drag regularization parameter δ, (b) varying σ/L, and (c) varying
δ. Normalization is the maximum absolute value of the stress for the reference solution in all cases. (a) For a
reference solution with N = 32 and σ/L = 0.1, we see (after initial transients) rapid convergence of the stress
consistent with second-order convergence in time. (b) For a reference solution with N = 32 and σ/L = 0.05,
we see a 10% difference in stress using N = 16 and σ/L = 0.1, and an approximately 3% difference for
N = 24 and σ/L = 0.07. (c) For a reference solution with N = 16, σ/L = 0.1, and δ = 0.05 in the regularized
local drag coefficient (14), we see a 5% difference in stress using ellipsoidal fibers and a difference of 1% and
2% for δ = 0.1 and 0.2, respectively.

We observe differences of about 5% in the stress tensor when we use ellipsoidal fibers instead of
δ = 0.05, and we see the differences in stress decrease as δ decreases, with a difference of only
about 1% between δ = 0.1 and 0.05. This shows that the precise value of δ has a small effect on the
macroscopic rheology.

2. Viscoelastic behavior

We now turn to the measurement of the viscous and elastic moduli for a network of F = 700
fibers and 8400 CLs. In order to avoid transient behavior, we first find a steady-state configuration
of the network by initializing straight fibers with CLs and running the system forward in time using
local drag and �t = 0.005 without any background flow. After t = 2500 s, the maximum L2 norm
of the fiber velocity is approximately 4 × 10−6 μm/s, which indicates a near steady state.
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FIG. 7. Decay of the mean fiber velocity to a steady state after being sheared for one cycle with ω = 0.2π .
We plot the mean fiber velocity, given by (127) and normalized by v̄(t = 0), over 5 s and compare the result to
the double-exponential fit 0.64e−t/0.36 + 0.36e−t/2.39 to estimate the network relaxation timescale τc.

In order to measure the steady-state viscous and elastic moduli, we must wait for some intrinsic
time on which the network reaches a new steady state in the shear flow. This relaxation timescale,
which we denote by τc, combines the cross-linker and fiber relaxation timescales. For cross linkers,
a characteristic timescale of link relaxation is τCL = μ
/Kc = 0.5 s for our parameters. For fibers,
we assume that the network is sufficiently constrained that the length scale on which the fibers
can relax is the mesh size 
m, or characteristic distance between filaments.7 We estimate 
m by
assuming that Ld/L filaments can fit in one direction while Ld/
m can fit in the other two, so that

m ∼

√
L3

d/(FL) ≈ 0.21 μm, and a characteristic timescale of fiber relaxation is τF = μ
4
m/κ ≈

0.2 s. Thus, our expectation is for τc to be on the order 0.1–1 s.
To measure the timescale τc more precisely, we start with the steady-state configurations, turn on

a shear flow (113) with ω = 0.2π rad/s and γ̇0 = 0.02π 1/s, and run for one cycle (until T = 10 s)
with �t = 0.005 s. We then turn off the shear flow and measure the velocity of the fibers for another
5 s. We track the mean L2 fiber velocity, given by

v̄(t ) = 1

F

F∑
i=1

v(i)(t ), where v(i)(t ) =
(

N∑
p=1

∥∥X (i)
p (t ) − X (i)

p (t + 0.05)
∥∥2

wp

)1/2

, (127)

and normalize by v̄(0) to obtain the exponential-like decay shown in Fig. 7. The timescale of
relaxation to steady state is τc ≈ 0.5–2 s, with the best fit being a sum of two exponentials τ1 = 0.4 s
and τ2 = 2.4 s. These relaxation timescales are in line with our physical estimates of τF = 0.2 s and
τCL = 0.5 s.

Thus, in order to measure the steady-state moduli, we wait one second or one cycle (whichever
is longer) prior to measuring the stress (and moduli) over three cycles of shear flow. We use
a maximum strain γ0 = γ̇0/ω = 0.1 to stay in the linear regime (data not shown), and we give
frequencies in Hz. To initialize for a given ω, we use the final network configuration from the

7Another possibility is to assume that the fiber relaxation length scale is governed by the distance between
two CLs on each fiber. Since there are an average of 24 CL connections on each fiber (12F CLs, each of which
binds to 2 fibers), this gives a distance 
c = 2/24 ≈ 0.08 μm, and a timescale μ
4

c/κ of about 0.005 s, which is
much faster than that measured in our numerical experiments. We thank an anonymous referee for suggesting
these timescale estimates.
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FIG. 8. Steady-state fiber configurations for the network of 700 fibers and 8400 CLs with ω = 1 Hz and
g = 0.1. We show (left) a three-dimensional snapshot of all the fibers in the unit cell, (middle) a view along
the z axis, and (right) a snapshot of all the fibers (white/blue) and links (black) bound to a single fiber (orange)
located near the center of the simulation cell.

previous (next smallest) frequency. A sample configuration of the fibers in the network, taken with
ω = 1 Hz at the point of maximum strain, is shown in Fig. 8. Dynamic movies of the simulations
are included in the Supplemental Material [89].

Figure 9(a) shows the steady-state elastic and viscous moduli when the dynamics of the network
are computed with fully nonlocal hydrodynamics. Figure 9(a) also shows separately the contribution
to the moduli of the CL stress (125), which is 5–10 times more elastic than viscous. There is a clear
transition in both of the moduli for ω ≈ 0.5–1 Hz which can be understood using the characteristic
timescales in the problem. Since the characteristic relaxation timescale τc ≈ 0.5–2 s, the behavior of
the moduli can be divided into three regimes: low frequency (background flow timescale τω � τc),
medium frequency (τω ≈ τc), and high frequency (τω  τc), where τω = ω−1.

(1) In the low-frequency regime (ω < 0.1 Hz), τω is the longest timescale and the system is
in a constant quasistatic state. If the frequency is small enough, the network has the opportunity to
relax at every instant, and it therefore behaves more like an elastic solid where the links constrain
the network. As in an elastic solid, the elastic modulus is unchanged with frequency and changes
very little [less than 10%, as shown in Fig. 9(b)] when nonlocal hydrodynamics is dropped. In this
regime, the viscous modulus scales like G′′ = ω0.59; the reason for this particular scaling is not
obvious to us.

(2) In the mid-frequency regime (0.1 � ω � 1), fibers and CLs can deform and relax on the
timescale of the background flow, and the dynamics involves both an elastic and viscous response.
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FIG. 9. Elastic and viscous moduli for the network of 700 fibers and 8400 CLs. (a) Values of the elastic
modulus G′ (blue circles) and viscous modulus G′′ [orange squares, this excludes the piece due to the
background fluid stress σ

(μ)
21 defined in (122)] for a gel of 700 fibers and 8400 CLs. We use fully nonlocal

hydrodynamics to compute the dynamics and moduli. We show the contribution of the CL stress (125) to the
moduli as dotted lines. (b) Fraction of G′ (blue circles) and G′′ (orange squares) that can be recovered when the
dynamics are computed using local drag (solid lines) and short-ranged hydrodynamics only (i.e., only intrafiber
but no interfiber hydrodynamics). We also show the scaling of the stress for a single fiber in a shear flow as a
dotted orange line.

In this regime, G′′ ≈ G′, as shown in Fig. 9(a), and the change in the elastic modulus G′ due to both
changes in frequency [Fig. 9(a)] and the inclusion of hydrodynamics [Fig. 9(b)] is maximal.

(3) In the high-frequency regime (ω > 1), the background flow dominates the dynamics, the
network is essentially fixed on the timescale of the shear flow, and it oscillates back and forth as a
viscous fluid would. Figure 9(a) shows that for ω � 1/τc, the viscous modulus scales linearly with
ω, as would happen for a pure viscous fluid. In this regime, the viscous modulus decreases by as
much as 25% when nonlocal hydrodynamics is not included, with higher frequencies giving larger
decreases. The larger the frequency, the farther the network is from its quasisteady state and the
more important dynamics are for determining the viscous modulus.

Generally speaking, the changes in the viscous modulus when hydrodynamics is switched off
are attributable to a reduction in stress on each fiber individually. The changes in the viscous
modulus at most frequencies can in fact be explained by considering an isolated straight fiber that
makes an angle θ with the x axis, τ(s) = (cos θ, sin θ, 0). We put a background shear flow on the
fiber u0(x, y, z) = (y, 0, 0) and compute the resulting constraint force density λ on the fiber using
both local drag and nonlocal hydrodynamics. Averaging over θ , we obtain a mean difference in
the corresponding stress of ∼17%, which is plotted as a dotted line in Fig. 9(b), and matches the
change in the network’s viscous modulus when nonlocal hydrodynamics is dropped, except at the
largest frequencies. This implies that the change in the network’s viscous modulus comes primarily
from an increase in the stress on each fiber individually when the intrafiber, but not necessarily
interfiber, nonlocal hydrodynamics is included in the mobility calculation. We confirm this in
Fig. 10, which shows that including nonlocal hydrodynamics causes the magnitude of the constraint
forces λ on the fibers in the network to increase without changing their positions substantially.
While Fig. 9(b) shows that there is a change in the viscous modulus of as much as 25% when
the dynamics is computed by local drag, it also shows that including short-ranged hydrodynamics
only, i.e., including intrafiber but not interfiber hydrodynamics, gives a viscous modulus that is at
least 90% of the one computed with interfiber hydrodynamics. The changes in the elastic modulus
when nonlocal hydrodynamics is dropped are smaller (at most 10%), but not explainable simply by
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FIG. 10. Subset of fibers inside the unit cell, colored by the L2 norm of the constraint forces λ(i) for ω =
1 Hz at t = 3.5 s (g = 0). Normalization is the maximum L2 norm of λ(i) in the system, which is on the fiber
indicated by the arrow. We show the case of local drag at left and nonlocal hydrodynamics at right, noting that
the inclusion of nonlocal hydrodynamics increases the norm of the constraint forces (which is the dominant
cause of the increase in stress), without changing the fiber positions significantly.

adding only intrafiber hydrodynamics. Indeed, for ω = 0.5, when the change in the elastic modulus
due to hydrodynamics is near maximal, we find that the short-ranged finite part integral (10) explains
only one third of the change, with the rest coming from interfiber hydrodynamics. Physically, the
elastic modulus is related to the interactions of the fibers with CLs, and the network is sufficiently
connected that the CLs transmit stress across multiple links in the network, and so long-ranged
hydrodynamics plays a role.

Our main findings here can be summarized as follows: there exists a critical timescale τc, which
is on the order of a second for our parameters. On timescales longer than τc, the CLs are constantly
in a steady state, as they would be in an elastic solid, and the network is more elastic than viscous
(G′ > G′′). On timescales shorter than τc, the network does not have time to respond to (penalize)
strain deformations, and the network is more viscous than elastic (G′′ > G′). On timescales compa-
rable to τc, the network is equally viscous and elastic. The more viscous the network behavior and
the farther the network is from a quasisteady state, the more nonlocal hydrodynamics impacts the
moduli. Indeed, if a modulus G′ or G′′ changes substantially with changes in frequency, then we
expect dynamics, including whether they are computed with nonlocal or local hydrodynamics, to
matter. Interestingly, we find that intrafiber nonlocal hydrodynamics dominates the contributions of
nonlocal hydrodynamics to the viscous, but not the elastic, modulus.

VII. CONCLUSION

In this paper, we have developed a method for the simulation of slender filaments, such as
actin filaments and microtubules, in the viscous environment of live cells. The key contribution
is our reformulation of the continuum fiber centerline evolution in terms of tangent vector rotations
∂τ/∂t = � × τ, where � is an unknown rotation rate. We introduced constraint forces λ and closed
the system by requiring that the constraint forces perform no work. This virtual work constraint
supplements the evolution equation to give a closed saddle-point system for the unknown rotation
rates and constraint forces. Here we used slender body theory to obtain the mobility operator M for
cytoskeletal filaments in the zero Reynolds number regime; however, our continuum formulation
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could be used with other mobility relationships. In fact, we show in Appendix A that the fiber
evolution equation takes the same form regardless of whether we represent the fiber as a cylinder
using SBT or a continuum chain of regularized point forces (using the RPY tensor).

We have also shown that our formulation of inextensibility lends itself more naturally to nu-
merical calculations than formulations involving an auxiliary line-tension equation [48]. The two
main issues with the line-tension equation are that it is highly nonlinear in X , which can create
aliasing issues when using spectral methods, and that it does not naturally preserve inextensibility
after discretization, thereby requiring additional penalty forces to do so. We were able to obtain the
discrete tangent vector rotation rates � directly from the discretized saddle-point system, rotate the
fiber tangent vectors, and obtain the positions by integration, thus preserving discrete inextensibility
without penalty parameters.

While we developed an efficient spectral discretization for each fiber’s centerline, the numerical
method as described here breaks down when the fibers become cylindrical. In that case, which
corresponds to δ → 0 in our local drag regularization (14), the contribution of the finite part integral
might exceed that of local drag at the fiber end points. This causes the SBT mobility matrix to
become ill conditioned, and the force required to produce even a uniform velocity becomes highly
oscillatory near the fiber end points. The corresponding lack of smoothness in � and λ at the end
points makes the global Chebyshev method used here inaccurate and unstable. One way to address
this might be to couple a spectral discretization, such as the one developed here, for the fiber interior
with a lower-order finite-difference discretization near the end points. This would allow the smooth
part of the forcing in the fiber interior to be represented efficiently using a global interpolant, while
the oscillatory parts of the forcing would be represented using a more robust local representation.

In addition to our contributions for a single fiber, we have also contributed key numerical devel-
opments in nonlocal slender body hydrodynamics. By observing that slender body theory can be
interpreted as asymptotic evaluation of a line integral of regularized singularities, we reformulated
the nonlocal hydrodynamics in terms of the Rotne-Prager-Yamakawa mobility tensor. We then used
an Ewald splitting scheme for the RPY kernel to evaluate the hydrodynamic interactions on a triply
periodic sheared domain in linear time with respect to the number of fibers. For nearby fibers, we
supplemented Ewald splitting with a special quadrature scheme which is based on factoring out the
near singularity and expanding what remains in a monomial series [53]. This special quadrature
method allowed us to develop an algorithm to efficiently compute interfiber interactions to three
digits of accuracy most of the time, while avoiding calls to the special quadrature scheme when
direct quadrature is sufficiently accurate.

Despite our improved treatment of near fiber interactions, there are still several issues with our
treatment of nearly contacting fibers to be explored in future work. Foremost among these is our use
of slender body theory itself. Indeed, SBT is designed to avoid the length scale εL, which is the same
length scale on which the fibers contact each other. While we made some adjustments to the nonlocal
hydrodynamics that make it less likely for fibers to cross, these adjustments require too small of a
time step to resolve the near contacts. Nearly contacting fibers also reduce the effectiveness of our
GMRES preconditioner for more concentrated suspensions, which is based on the assumption that
the dynamics of a single filament are dominated by local drag. Our adjustments to nonlocal SBT
also did not account for lubrication and friction (contact) forces or steric repulsion between nearby
fibers. These forces, which might be a function of the local orientation, twist, and microscopic
shape of the filaments, play a role on length scales εL and cannot be resolved by slenderness
approximations. Our work has therefore left unanswered what contribution these localized forces
make to the macroscopic rheology of a cross-linked fiber suspension. A possible extension to this
work is to use a collision-tracking algorithm [90,91] to preserve larger time-step sizes and prevent
fibers from crossing, thereby enabling future studies to determine the role of lubrication, sterics, and
friction.

Since the nonlocal hydrodynamics is the most expensive to compute, we designed a temporal
integrator that minimizes the number of nonlocal evaluations. For dilute suspensions, we split
the velocity into a local and nonlocal part. The local part, which is the leading-order term in ε,
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was treated implicitly, while the subleading nonlocal part was treated explicitly. This scheme is
stable for any value of the fiber stiffness κ , as long as the local dynamics dominates the nonlocal
hydrodynamics. For semidilute and semiconcentrated fiber suspensions, our strategy was to use
GMRES to solve for the second-order perturbations in the kinematic coefficients α and constraint
forces λ that give unconditional stability. Since the perturbations are needed for stability and not
accuracy, we simply run GMRES for a fixed number of iterations until we get stability. Our tests
showed that at most five total evaluations of the nonlocal hydrodynamics are needed per time step
to ensure stability, even for semiconcentrated fiber suspensions.

Our preliminary results on cross-linked actin networks in Sec. VI showed that the behavior of the
network revolves around a timescale τc on which the network relaxes to a dynamic steady state. On
timescales longer than τc, the network is in a quasistatic state and is more elastic in nature, while on
timescales shorter than τc, the elastic part of the network has no time to respond to the deformations
exerted on it by a background flow, and the network as a whole shows viscous behavior. On
timescales shorter than τc including nonlocal hydrodynamics in the mobility changes the viscous
modulus by as much as 25% in the system we considered. However, the increases in the viscous
modulus come primarily from an increase in stress on each filament separately rather than truly long-
ranged hydrodynamic interactions (i.e., the increases due to hydrodynamics are reproducible when
each fiber only interacts with itself through the fluid). This behavior differs from that of the elastic
modulus, where the more modest increase of 10% due to hydrodynamic interactions is only present
with long-ranged hydrodynamics. While these numbers are within the error bounds of most rheology
experiments, without our numerical method it would not have been possible to determine them in
the first place since we were able to perform reference simulations and evaluate the errors made
by various approximations such as dropping interfiber or even intrafiber nonlocal hydrodynamics
(as is often done for simplicity). Omitting long-ranged interfiber hydrodynamic interactions, when
sufficiently accurate, can speed up our calculations considerably since the more-expensive parts of
our algorithm such as Ewald summation and nearly singular quadratures are no longer part of the
mobility calculation8 (this will allow for rapid scanning of parameter regimes in future work). At
the same time, in a number of examples in biology, especially when activity is included, the flows
generated by individual fibers add constructively to create large-scale macroscopic flows [92,93].
In these systems, far-field hydrodynamics is necessary to capture large-scale fiber-generated flows,
and the numerical method we developed here is a necessary tool for such simulations.

Our findings for cross-linked actin networks are supported by a number of experimental studies.
For example, Gardel et al. also observed G′ and G′′ to be on the same order of magnitude for an actin
gel of similar density [81], and several studies have demonstrated a weak dependence of the elastic
modulus G′ on frequency [80–82]. Janmey et al. found an elastic modulus G′ ≈ 1 Pa for an actin
gel with filaments of mean length L ≈ 2 μm. They also obtained linear scaling of G′′ with ω at high
frequencies and sublinear scaling at low frequencies, with a transition occurring at a frequency near
1 rad/s [80]. Our agreement with only some of the existing experimental results is natural since we
used only one set of parameters, while in vivo or in vitro experimental parameters can vary based
on the system. For example, the CL α-actinin is about an order of magnitude shorter (≈40 nm) [94]
than filamin (150–200 nm) [86], and most cross-linking proteins have been estimated to be an order
of magnitude stiffer [95] than the ones we use here. Another parameter mismatch manifests itself
in the viscous modulus, for which we obtained larger values than those reported experimentally
[80–82], because our underlying fluid viscosity μ was larger than estimated for living cells [96].
While improvements and extensions to our numerical scheme are required to reach the entire span of
biological parameters, the platform we have developed here can still be used to test the assumptions
behind some of the prior physical theories [80,81,83].

8Our temporal integrator can also be simplified in this case and is stable without any additional GMRES
iterations.
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Our analysis here was also specific to a fixed τc since the CL stiffness Kc and fiber-bending
constant κ were fixed. This begs the following question: How does τc change with changes in κ ,
Kc, and fluid viscosity μ? How do the intrinsic timescales in the problem change when the CLs
are dynamically binding and unbinding to the fibers? To fully explore these questions, we need to
design an efficient temporal integrator for the CL forces. For stiff CLs, explicit treatment leads to a
reduction in the stable time-step size, so that O(105) time steps might be necessary to measure stress
for frequencies as small as 0.01 s−1. To alleviate this restriction, we will develop a (semi-)implicit
temporal integrator for cross-linked networks in future work. We will also investigate the utility of
our spring model for shorter, stiffer CLs, which might be better modeled as actual fibers or as rigid
connections between fibers.

In this work, we used Euler-Bernouilli beam theory to obtain the elastic force on a fiber due
to its curvature. We neglect twist elasticity on the assumption that those deformations are in
equilibrium on our timescales of interest [59]. While this assumption is reasonable for a system
of fibers in shear flow, it precludes modeling flagellar beating [5] and chains twisted by external
forces such as magnetic fields [97]. An extension of this work is to account for twist by using the
Kirchhoff rod model instead of the Euler beam. The Kirchhoff rod model has previously been used in
combination with the immersed boundary method [34], RPY tensor [31], and method of regularized
Stokeslets [35,36] to model a bent twisted fiber interacting with a fluid, with the methods of [31,36]
even preserving discrete inextensibility. As we have discussed at length, these regularization-based
models become impractical as the fiber becomes slender since 1/ε regularized points are required
to properly resolve the fiber thickness. Slender body theory is once again a natural choice, but it
is unclear how to account for rotation and torque on the fiber centerline. The most rigorous (and
difficult) solution is to use an SBT that accounts for twist, for example, the O(ε2) slender body
fluid velocity of Johnson [20] or the SBT of Keller and Rubinow [19, Sec. 10]. Another option is
to take a continuum limit of the RPY tensor for translation-rotation and rotation-rotation coupling
[31,55], as we have done in Appendix A for translation-translation, and use these continuum limits
in the grand mobility matrix. A still better approach would be to bridge the gap between the RPY
tensor and SBT by deriving an RPY-type tensor for rings which gives the average linear and angular
velocity on a ring (cross section of a fiber) due to the force or torque uniformly spread over another
ring (cross section).

Because the persistence length of actin is O(10) μm and actin filaments in vivo are hundreds of
nanometers of length, we have neglected thermal fluctuations in this work. For actin networks, some
studies [80,81] have estimated large elastic moduli even in the absence of CLs, which indicates
entropic effects. One of our goals for future work is to extend the method here to account for
thermal fluctuations of the filaments. There are many challenges in doing this. Most notably, the
loss of smoothness of the fiber centerline function X (s) when thermal noise is present [τ(s) has the
same Hölder continuity as Brownian motion] makes it difficult to even write a well-posed stochastic
equation of motion, let alone solve it accurately using a spectral method suited to smooth X (s), as
we assumed here.

While there are many improvements awaiting attention, our work has provided solutions to
several problems that have previously plagued numerical methods for inextensible slender fibers.
From a general framework to view the dynamics of inextensible fibers to specific numerical methods
for singular integrals, we have developed a platform for the efficient simulation of thousands of
filaments that can be used to gain insights into processes from sedimentation to cell division and
motility.

The code and input files for the examples of fibers in triply periodic shear flow presented here
are available for download at [98].

ACKNOWLEDGMENTS

We thank those in the numerical analysis community who provided advice on some aspects of
this work. F. B. Usabiaga provided results for the strong formulation that we use in Sec. V A 1.

014102-45



MAXIAN, MOGILNER, AND DONEV

A.-K. Tornberg privately shared a preprint of Ref. [54] with us, and L. af Klinteberg and A. Barnett
supplied us with code on the special quadrature schemes for nearly singular integration. N. Trefethen
and N. Hale pointed us to rectangular spectral collocation for the calculation of bending forces. Y.
Mori and L. Ohm provided help with the theory of SBT. Thanks also to M. Shelley, L. Greengard,
and W. Yan for helpful discussions on the numerical method and stress calculations. O. Maxian is
supported by the National Science Foundation via Grant No. GRFP/DGE-1342536 and A. Mogilner
is supported by U. S. Army Research Office Grant No. W911NF-17-1-0417. This work was also
supported by the NSF through Research Training Group in Modeling and Simulation under Award
No. RTG/DMS-1646339.

APPENDIX A: RELATIONSHIP BETWEEN REGULARIZED SINGULARITY
METHODS AND SBT

In this Appendix, we compare our SBT-based fiber representation with a line of regularized
pointlike forces. Previous studies have used the method of regularized Stokeslets [36] or RPY tensor
[31] to represent exactly inextensible fibers. An unresolved question is how regularized singularity
methods relate to an SBT-based approach for a single fiber. Bringley and Peskin [37] partially
answered this by numerically comparing results from a free-space immersed boundary method to
SBT. Cortez and Nicholas [41] gave a more complete answer by asymptotically evaluating the
velocity on a fiber made of regularized Stokeslets and doublets. They showed that the resulting
velocity is a regularized form of SBT with an arbitrary constant regularization parameter. In this
Appendix, we extend these prior results on regularized singularity methods by considering the fiber
to be a line of singularities regularized with the RPY tensor (5). We show that there is a unique
choice of sphere radius b that gives, to order ε, the same formula as SBT for the centerline velocity.
This is the sphere radius that we use in our interfiber mobility (15) to give a consistent formulation.

Consider a line of regularized point forces, where each of the point forces is regularized over the
surface of a sphere of radius b, and the centerline velocity at a point on the fiber is computed by
averaging the fluid velocity over the same sphere of radius b. This means that force can be related
to velocity via the RPY mobility tensor. The velocity at arclength coordinate s on the fiber is then
obtained by integrating the RPY kernel over the fiber length:

8πμU (s) =
∫

R>2b
SD(X (s), X (s′), 2b2/3) f (s′) ds′

+
∫

R�2b

[(
4

3b
− 3R(s′)

8b2

)
I + 1

8b2R(s′)
(RR)(s′)

]
f (s′) ds′. (A1)

Here, R(s′) = X (s′) − X (s) and R = ‖R‖. The separation of the integrals captures the change in the
RPY tensor (5) when R < 2b. Because the RPY tensor is nonsingular for R = 0, it can be evaluated
at any point on the centerline. This is in contrast to the asymptotics for SBT, which are based on
evaluating the Stokeslet or doublet kernel on the fiber surface (i.e., εL away from the centerline),
and then assigning this result to be the velocity of the centerline [21]. Although the kernel (A1) is
nonsingular, it is still nearly singular for s ≈ s′, and in the limit b  L it is more efficient to evaluate
(A1) asymptotically. In this Appendix we show that this results in an SBT-type formulation with a
local drag term and finite part integral. The local drag terms can be matched with a specific choice
of b, and the remainder is a finite part integral that is equivalent to that of SBT to O(ε).

Our strategy is standard matched asymptotics and similar to the approach of Gotz [21] for SBT.
We compute an outer expansion to the integral (A1) by considering the region where |s − s′| is
O(1). We then construct an inner expansion in the region where |s − s′| is O(b). This inner solution
must be constructed in two parts for |s − s′| > 2b and |s − s′| � 2b. We then add the inner and outer
solutions together and subtract the common part to obtain the final solution.
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1. Outer expansion

In the outer expansion, we consider the part of the integral (A1) where |s − s′| is O(1). In this
case, the doublet term in SD is insignificant and we obtain the outer velocity by integrating the
Stokeslet over the fiber centerline:

8πμU (outer)(s) =
∫

R>2b
S(X (s), X (s′)) f (s′) ds′. (A2)

The part of the kernel (A1) for R � 2b makes no contribution to the outer expansion since |s − s′|
is O(b) there.

2. Inner expansion

In the inner expansion, we consider the part of the integral (A1) where |s − s′| is O(b). In this
case, we follow [21] and introduce the rescaled variable

ξ = s′ − s

b
, (A3)

so that ξ is O(1). As in [21], we will assume that the region [−2, 2] is contained in the domain of
ξ , thereby ignoring the case when s is O(b) away from the fiber end points. While it is feasible to
directly evaluate the RPY integral (A1) at the fiber end points, our goal here is to show equivalence
with SBT, which is only valid away from the fiber end points.

We will need the following asymptotics around X (s):

R = X (s′) − X (s) = ξbτ(s) + O(b2), RR = ξ 2b2τ(s)τ(s) + O(b3), (A4)

R2 = R · R = ξ 2b2 + O(b3), R = |ξ |b + O(b2), (A5)

R−1 = 1

|ξ |b + O(1), R−3 = 1

|ξ |3b3
+ O(b−2), R−5 = 1

|ξ |5b5
+ O(b−4), (A6)

f (s′) = f (s) + O(b). (A7)

We begin with the part of the integral (A1) that uses the kernel SD in the region R > 2b. For this we
will need the expansion of the Stokeslet and doublet:

S(X (s), X (s′)) = I + τ(s)τ(s)

|ξ |b + O(1), (A8)

D(X (s), X (s′)) = I − 3τ(s)τ(s)

|ξ |3b3
+ O(b−2). (A9)

We now integrate the Stokeslet along the centerline region∫
R>2b

S(X (s), X (s′)) f (s′) ds′ =
∫

|ξ |>2

(
I + τ(s)τ(s)

|ξ |b
)

f (s)b dξ + O(b) (A10)

= [I + τ(s)τ(s)] f (s)

[∫ −2

−s/b
−1

ξ
dξ +

∫ (L−s)/b

2

1

ξ
dξ

]
+ O(b) (A11)

= ln

(
(L − s)s

4b2

)
[I + τ(s)τ(s)] f (s) + O(b). (A12)

Likewise for the doublet, we have
2b2

3

∫
R>2b

D(X (s), X (s′)) ds′ = 2b2

3

∫
|ξ |>2

(
I − 3τ(s)τ(s)

|ξ |3b3

)
f (s)b dξ + O(b) (A13)

= 2[I − 3τ(s)τ(s)] f (s)

3

[∫ −2

−s/b
− 1

ξ 3
dξ +

∫ (L−s)/b

2

1

ξ 3
dξ

]
+ O(b) (A14)
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= 2

12
[I − 3τ(s)τ(s)] f (s) + O(b). (A15)

Combining these results, we have, to O(b),∫
R>2b

SD(X (s), X (s′), 2b2/3) ds′ =
[

ln

(
(L − s)s

4b2

)
[I + τ(s)τ(s)] + 1

6
[I − 3τ(s)τ(s)]

]
f (s).

(A16)

It still remains to include in the inner expansion the term for R � 2b. For this we have the two
terms∫

R�2b

(
4

3b
− 3R(s′)

8b2

)
f (s′) ds′ = f (s)

∫ 2

−2

(
4

3
− 3|ξ |

8

)
dξ + O(b) = 23

6
f (s) + O(b), (A17)∫

R�2b

1

8b2R(s′)
(RR)(s′) f (s′) ds′ = 1

8

∫ 2

−2
τ(s)τ(s) f (s′)|ξ | dξ + O(b) = 1

2
τ(s)τ(s) f (s) + O(b),

(A18)

where we have used the fact that ξ ∈ [−2, 2] is on the fiber (s is away from the end points). We
therefore have, to O(b),∫

R�2b

[(
4

3b
− 3R(s′)

8b2

)
I + 1

8b2R(s′)
(RR)(s′)

]
ds′ =

(
23

6
I + 1

2
τ(s)τ(s)

)
f (s). (A19)

The inner expansion is therefore, adding the terms (A16) and (A19),

8πμU (inner)(s) =
[

ln

(
(L − s)s

4b2

)
[I + τ(s)τ(s)] + 4I

]
f (s). (A20)

By adding and subtracting ln(16)[I + τ(s)τ(s)], we obtain the same leading-order coefficient as
SBT:

8πμU (inner)(s) =
[

ln

(
4(L − s)s

b2

)
[I + τ(s)τ(s)] + (4 − ln 16)I − (ln 16)τ(s)τ(s)

]
f (s). (A21)

3. Common part

The common part is the outer velocity written in terms of the inner variables. That is, to O(b),

8πμU (common)(s) =
∫

R>2b

(
I + τ(s)τ(s)

|s − s′|
)

f (s) ds′. (A22)

4. Matched asymptotic expansion

The total velocity is the sum of the inner and outer expansions, with the common part subtracted,

U (s) = U (inner)(s) + U (outer)(s) − U (common)(s). (A23)

This can be written as

8πμU (s) =
[

ln

(
4(L − s)s

b2

)
[I + τ(s)τ(s)] + aI I + aττ(s)τ(s)

]
f (s)

+
∫

R>2b

[
S(X (s), X (s′)) f (s′) −

(
I + τ(s)τ(s)

|s − s′|
)

f (s)

]
ds′, (A24)

where aI = 4 − ln 16 and aτ = − ln 16. (A25)
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FIG. 11. The lattice for the sheared unit-cell test. The points are positioned on a lattice with a one-particle
(primitive) unit cell (shaded green) at (0,0,0) (red), (1,0,0) (black), (0.5,1,0) (orange), and (1.5,1,0) (blue). The
lattice can also be viewed as periodic on the larger two-particle rectangular unit cell shaded in gray. Colors
indicate the magnitude of the force placed on each set of points: +1 in all three directions on the red points,
−1 in each direction on the black points, +2 on the orange points, and −2 on the blue points.

We can now establish equivalence with SBT by observing that the integrand in (A24) is O(b) when
R < 2b, and so we can add that part of the integral back into the velocity without changing the
asymptotic accuracy of the velocity (A24). This gives a velocity of the exact same form as SBT:

8πμU (s) =
[

ln

(
4(L − s)s

b2

)
[I + τ(s)τ(s)] + aI I + aττ(s)τ(s)

]
f (s)

+
∫ L

0

[
S(X (s), X (s′)) f (s′) −

(
I + τ(s)τ(s)

|s − s′|
)

f (s)

]
ds′. (A26)

The velocity expression (A26) is the same as the SBT velocity (8) when aI = 1 and aτ = −3. This
equivalence is accomplished by the specific choice9 of b,

b = e3/2

4
εL, (A27)

which gives the RPY doublet coefficient

2b2

3
= e3

24
εL (A28)

that we use in Sec. II B for interfiber interactions. Because we used only the leading-order terms
in the asymptotics, we are guaranteed that (A26) approximates (A1) to O(b), although we observe
O(b2) accuracy a distance O(1) from the end points.

APPENDIX B: VERIFICATION FOR SHEARED UNIT CELL

To test our implementation of sheared periodic boundary conditions, we consider a packing of
points that is hexagonal in the xy plane. As shown in Fig. 11, the points are positioned on a (green)
periodic slanted cell at (0,0,0) (red blob), (1,0,0) (black), (0.5,1,0) (orange), and (1.5,1,0) (sky blue).
To form a periodic hexagonal packing in the xy plane, we set g = 0.5 with periodic domain length
Lx = Ly = Lz = 2. Using a coloring scheme (see Fig. 11), it is easy to see that this arrangement is

9Observe that we have two equations (aI and aτ ) for one variable b, so the existence of a solution is surprising.

014102-49



MAXIAN, MOGILNER, AND DONEV

13 11 9 7 5 3
0

0.05

0.1

0.15

0.2

0.25

(a) Short distances

13 11 9 7 5 3
0

0.05

0.1

0.15

0.2

(b) Long distances

FIG. 12. Errors in Algorithm I for near singular quadratures. We show a histogram of the number of digits
obtained in the velocity v(x), given in (C1), for 100 different fibers and 100 targets per fiber. Here, d is the
distance from the target point to the fiber centerline and we show histograms of the number of digits obtained
in the integral v(x). The number of digits is computed as −log10[maxi E i/‖v(x)‖∞], where the maximum is
over the direction i = 1, 2, 3 and E is the absolute difference between the approximate and reference values of
the velocity (C1). (a) Errors from short distances 2 � d/(εL) � 10. We see that we are overworking in most
cases since most of the time we obtain many more than three digits of accuracy, but there are some cases when
we only obtain three digits. (b) Long distances 0.04 < d/L < 0.20, where we obtain four–seven digits most of
the time.

equivalent to the same set of points on a (gray) rectangular unit cell, with additional points at (1,2,0),
(0,2,0), (1.5,3,0), (0.5,3,0), with the ordering of forces in the second set of points being the same
as the first and periodic length Ly = 4. We place a force of strength +1 in each direction (including
z) on the first (red) pair of points, −1 in each direction on the second (black) pair, +2 on the third
(orange), and −2 on the fourth (sky blue). Note that the z direction is also periodic in all cases with
length Lz = 2, so that we are actually considering a set of stacked copies of Fig. 11.

We solve for the RPY velocities induced by the forces at each point using the Ewald splitting
technique described in Sec. IV C. We set ξ = 5, sphere radius b = 10−2, and fluid viscosity μ = 3.
The maximum relative 2-norm error in the velocity of the four points is less than 10−5 for all
values of the NUFFT tolerance less than 10−2, with decay to 10−11 when the tolerance is 10−8.
We conclude that our modified Ewald splitting scheme of Sec. IV C properly treats the strain in the
periodic coordinate system.

APPENDIX C: NEAR FIBER ACCURACY

In this Appendix, we test the accuracy of Algorithm I for computing the slender body interaction
integrals (15). We generate 100 smooth inextensible fibers by initializing an unnormalized tangent
vector that is an exact Chebyshev series with 15 exponentially decaying terms. More precisely,
the kth coefficient of the series is a Gaussian random variable with mean 0 and standard deviation
e−10k/N , where k = 0, . . . , 15. We then normalize this tangent vector to obtain τ(s) and integrate to
obtain the fiber positions X (s). To make sure the resulting fiber is smooth after tangent vector nor-
malization, we compute the Chebyshev series of the fiber position X (s). Denoting the coefficients
of the position Chebyshev series by âk , we only accept fibers with Chebyshev series coefficients
|âk| � e−0.61k for k = 2, . . . , 15 (the constant and linear modes play no role in the fiber smoothness).
This means that the last coefficient â15 has value at most 10−4.
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We consider fibers with L = 2 and ε = 10−3 in a fluid of viscosity μ = 1/8π . Our goal is to
evaluate the velocity due to a fiber X (s) at a target x,

v(x) =
∫ L

0
SD

(
x, X (s);

e3

24
(εL)2

)
f (s). (C1)

We choose f (s) = τ(s), so that the force density is sufficiently smooth.
To measure the accuracy of Algorithm I, we place 100 targets a distance d away in a random

normal direction from each fiber’s centerline. To get a reference answer, we compute the integral
(C1) directly by upsampling the fiber to 6000 type-1 Chebyshev points. We then compute the
integral using Algorithm I. We show the maximum relative error E i/‖v(x)‖∞, where the maximum
is over the direction i = 1, 2, 3 and E is the absolute difference between the approximate and
reference values of the velocity (C1).

We separate our results into short distances, 2εL < d < 10εL, and long distances, 0.01L < d <

0.2L (there is overlap between the two regions since 10εL = 0.01L = 0.02 with our parameters).
Figure 12(a) shows the errors at short distances. We see that we obtain many more digits than
necessary in most cases. There are, however, a few cases where we obtain three digits. Since d
will rarely be O(εL), it is acceptable to expend extra computational effort to guarantee accuracy. In
Fig. 12(b), we show the errors for long distances. In particular, we see that we obtain four to five
digits most of the time, and that ≈5% of the time we obtain exactly three digits of accuracy.
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