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On the edge: modeling protrusion

Alex Mogilner

Actin-based protrusion is the first step in cell crawling. In the
last two decades, the studies of actin networks in the
lamellipodium and Listeria’s comet tail advanced so far that the
last goal of the reductionist agenda — reconstitution of
protrusion from purified components in vitro and in silico —
became viable. Earlier models dealt with growth of and force
generation by a single actin filament. Modern models of
tethered ratchet, autocatalytic branching, end-tracking motor
action and elastic- and nano- propulsion have recently helped
to elucidate dynamics and forces in complex actin networks.
By considering these models, their limitations and their
relationships to recent biophysical data, progress is being
made toward a unified model of protrusion.
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Introduction

Cell crawling begins with protrusion — the process of
actin-based extension of the cell’s leading edge [1]. Cell
migration involving a flat lamellipodium [2] and intracel-
lular motility of Listeria [3] are two model systems that in
the past two decades have added considerably to our
understanding of how actin polymerization contributes
to protrusion. These 77 vivo systems are now comple-
mented by iz vitro assays using plastic beads and lipid
vesicles that, when coated with either ActA or WASP
proteins, move much the same way as the pathogens.
These systems have several advantages: the number of
essential proteins is small; their structures, concentrations
and localizations are known; the reaction rates of the actin
dynamics have been measured [4]; the actin-based moti-
lity can be reconstituted from purified components
in vitro [5]; and the force generated by the actin comet
has just been measured [6°%,7°°]. Moreover, a ‘dendritic
nucleation’/‘array treadmilling’ hypothesis has outlined a
qualitative scenario describing how steady protrusion
might occur [2].

Thus, we have a rare opportunity to make the final step in
the ‘reductionist agenda’ [2] and to test our understanding
by reconstitution of the protrusion z silico. Here we
review recent protrusion models and their relations to
the data. Various aspects of protrusion have been
reviewed recently in [2,3,8,9].

Early protrusion modeling

The process of protrusion is based on the polymerization
of actin into a two-stranded polar helix with barbed and
pointed ends having fast and slow dynamics, respectively
[4]. The monomers bind A TP, and A'TP hydrolysis results
in the filaments’ dynamic asymmetry and ‘treadmilling’
(net depolymerization from the pointed end balanced by
net polymerization onto the barbed end with monomers
simply being recycled by diffusion). Protrusion is based
on the treadmilling of the polar (barbed ends are directed
forward) actin arrays, rather than of the individual fila-
ments. What determines the fast rate of treadmilling of
these arrays and how do they self-organize? What is the
nature of the protrusive force?

Mathematical modeling was used to quantify equilibrium
polymerization [10] and to predict treadmilling [11].
Then, T L Hill intuited several ideas, the most important
of which was using thermodynamics to demonstrate that a
polymerizing filament can generate a force in the pico-
newton range [12]. A ‘Brownian ratchet’ theory [13]
explained how such force can be generated: even when
a resisting force is applied to the object in front of the
filament’s tip, the object can still diffuse away, creating a
gap sufficient for monomers to intercalate and assemble
onto the tip, thereby inhibiting the object from diffusing
backward. Next, on the basis of observations that the
actin filaments are flexible rather than rigid, an ‘elastic
ratchet’ model suggested that a filament’s own thermal
undulations can create a gap between its tip and the load
[14]. Subsequent monomer assembly increases the fiber’s
length so that when the tip contacts the load the polymer
is bent; the resulting elastic force pushes on the load. In
these models, the actin binding energy drives protrusion.
ATP hydrolysis is not utilized in the force generation but
is necessary for treadmilling.

Modern models: from tethered ratchet to
elastic propulsion

As often happens, experiments soon revealed earlier
models’ limitations. First, actin filaments responsible
for protrusion are not independent, but are rather parts
of the ‘dendritic’ network [2]. Second, one-filament
models cannot adequately describe the complex geome-
try of the actin network leading edge impinging on the
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curved cell membrane or bacterial surface. Third, direct
[15] and indirect [16] data indicated that the filaments are
attached to the surface they push.

How can ratchet models work if the filaments are attached
to the surface? The ‘tethered ratchet’ model answered
this question by assuming that the filaments attach to the
surface transiently [17]: nascent filaments are associated
with protein complexes on the surface. However, they
soon dissociate and grow until they lose contact with the
surface after capping. The attached fibers are in tension
and resist the protrusion, whereas the dissociated fibers
are in compression and generate the force of propulsion
(Figure 1a).

An alternative model proposed that all filaments are
attached to the surface: all pushing barbed ends are
clamped in an ATP-dependent fashion to an end-tracking

On the edge: modeling protrusion Mogilner 33

protein (see Box 1) associated with the surface [18,19°].
One of the versions of this model is shown in Figure 1b:
two protein subunits have a high affinity for ATP-F-actin,
and a low affinity for ADP-F-actin or ADP-Pi-F-actin.
Association of ATP-G-actin triggers hydrolysis of ATP on
the clamped penultimate actin subunit, causing shifting
of the end-tracking protein subunit forward and re-clamp-
ing on the terminal ATP-actin subunit. This model
suggests the existence of a peculiar ‘stepping motor’
coupling protrusion to ATP hydrolysis on the filament
whose end the motor tracks. Because in this scenario
hydrolysis energy is utilized, this model would be able to
explain large forces in the range of tens of pN per filament
if such forces are ever observed.

"These microscopic models did not address the problem of
the surface curvature. A macroscopic ‘elastic propulsion’
model suggested that the curved surface is not merely
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Models of protrusion force generation. (a) Tethered ratchet model [17]: actin filaments are nucleated in the attached state, and then detach and
push the surface according to the elastic polymerization ratchet mechanism until capped. The pushing (solid red arrow; compressed filaments)
and pulling (dashed red arrow; filaments under tension) forces are balanced. The model predicts the biphasic force-velocity relation: the velocity
decreases rapidly at low loads and slowly at greater loads. (b) End-tracking motor model [19°]: in one of the implementations of this model,

two end-tracking motor subunits associate with the filament’s tip (shown schematically as two parallel strands). Assembly of ATP-actin monomer
onto the tip triggers hydrolysis on the clamped penultimate actin subunit, causing shifting of the motor subunit forward. The forces at the surface
are illustrated with solid and dashed red arrows. The end-tracking motor theory has many free parameters and predicts a few possible
force—velocity relations (dashed). (c) Elastic propulsion model [6°°] explains the curved objects’ propulsion as the balance between the elastic
stress ‘squeezing’ the object forward (solid red arrows) and the effective actin—surface friction (dashed red arrows). The elastic stress is
generated by the actin polymerization near the surface and subsequent pushing of the actin shell radially outward. The model predicts a convex

force-velocity curve.
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34 Cell structure and dynamics

Box 1 Can formin be the ‘end-stepping motor’?

The end-stepping motor remains but an interesting hypothesis until a
protein complex playing this role is identified. Recently, formin — a
‘leaky capper’ that stays on a barbed end during growth protecting the
filament from capping — attracted much attention in this respect.
Elegant experiments with growing and buckling filaments tethered to
a cover slip at their pointed ends and attached to immobile formin
molecules at their barbed ends demonstrated that these filaments
generated forces in the pN range [47°]. An interesting theory [48°]
explains this formin action by a stair-stepping mechanism, assuming
that elastic deformations of forming F-actin complex are coupled to
actin monomers’ assembly onto the tips of the actin helical strands.
One still has to explain how the filaments can grow with their ends
attached to the immobile formin’s subunits: helical pitch of the fila-
ments, in principle, has to super-coil them, but the filaments do not
even twist [47°]. One possible explanation is that from time to time the
formin dimer rotates with respect to the filament in the direction
opposite to the rotation generated by the stair-stepping mode, pre-
venting persistent torsion strain accumulation [49]. Curiously, rotation
of Listeria around its long axis during propulsion was observed [50],
and the only published quantitative explanation relies on the end-
stepping motor translating the single filament twisting into the right-
handed rotation of the actin comet [51].

Recent experimental study of formin-coated beads propelled by the
actin comet attached to the bead argued that the profilin-actin ATP
hydrolysis cycle is coupled to the release of the formin subunit [52],
much like in the end-tracking motor model. This opens a tantalizing
possibility that in filopodial protrusion based on growth of a tight
filament bundle, which is hard to explain with the ratchet models [53],
formin (implicated in the filopodial protrusion [54]) is the end-tracking
motor. Thus, it is possible that all existent theories are not mutually
exclusive, but rather complement each other by describing redundant
diverse protrusion mechanisms.

pushed, but is rather ‘squeezed’ forward by an elastic stress
[3,20,21°]. This model treats the actin network as an
isotropic elastic continuum and does not consider explicitly
the microscopic mechanism of force generation at the
surface. The squeezing stress develops when the growth
of actin at the surface pushes the actin gel outward,
stretching it and generating tangential tension balanced
by radial compression at the surface (Figure 1c¢). This
model takes into account the actin—surface attachment
by assuming an effective friction between the gel and
surface. Similar to the microscopic models, the elastic
propulsion model predicts a balance between the pushing
elastic and pulling friction forces on the surface.

A few models examined the dynamics and self-organiza-
tion of the actin network [22-24]. The ‘autocatalytic
branching’ theory [23] (Figure 2a) assumed that the rate
of filament branching is proportional to the density of the
existing leading edge filaments. An unexpected predic-
tion of this model was that the protrusion rate should not
depend on the load (Figure 2a): effectively, greater load
force causes faster branching, and therefore greater actin
density, so the load per filament remains constant, leaving
the growth rate unchanged.

At the leading edge of the crawling cell, actin forms the
flat network in which the fibers subtend a ~55° angle to

the front edge of the cell (Figure 2b) [2]. This angular
order is important for effective protrusion, because fila-
ments at other angles do not generate either force or
movement [13]. The sterically precise branching
mediated by Arp2/3 complex imposes a 70° branching
angle between the mother and daughter filaments, but
does not explain the symmetric £55° orientation of the
filaments relative to the leading edge. The model [22]
explains this symmetry on the basis of the idea that the
capping rate is very fast everywhere in the cytoplasm
except at the leading edge (Figure 2b). Mathematical
arguments demonstrate that under this condition the
angularly symmetric mother—daughter filament pairs ‘sur-
vive’, whereas the asymmetric (relative to the leading
edge) pairs do not (Figure 2b). At the same time, this
model provides a plausible explanation for the actin
polarization: barbed ends growing away from the leading
edge are rapidly capped, whereas those growing forward
are not.

The mechanisms of F-actin self-organization and force
generation are only parts of the whole process of protru-
sion. Other important aspects are coupled cycles of F-
actin hydrolysis, array treadmilling and G-actin recycling
from the rear to the front. These processes have to be fast
to maintain rapid protrusion. T'wo recent models exam-
ined mathematically the conditions necessary to maintain
the fast, steady protrusion [25°,26]. By analyzing nucleo-
tide profiles within actin filaments [25°] and diffusion of
G-actin and its reactions with actin-binding proteins [26],
the models predicted that a combination of enhanced Pi
release, an increase in the ‘off rate’ of ADP-bound sub-
units at pointed ends, fast G-actin diffusion and optimal
levels of capping and profilin function is necessary to
accelerate the treadmilling to rates observed iz vivo.

The ‘nano-propulsion’ model [27°°] is the first in silico
reconstruction of Listeria’s movement (Figure 2¢). In this
model, the filaments propel the virtual bacterium by the
tethered ratchet mechanism, and a realistic geometry and
actin network architecture are also simulated stochasti-
cally. The model also takes into account the reaction—
diffusion process of actin recycling and vectorial hydrolysis
of actin subunits. The simulations result in a vivid and
realistic mimicking of Listeria’s propulsion. The nano-
propulsion model is a very promising step toward a com-
prehensive mesoscopic protrusion model. Some of the
assumptions used in the first generation of this model
are dubious: for example, the virtual filaments are rigid.
Introducing elasticity and judiciously combining large-
scale simulations with mathematical analysis will undoubt-
edly lead towards the ultimate model of protrusion.

Models versus data

Protrusion models can be tested by comparing predicted
force—velocity relations with those measured experimen-
tally. Two groups used methylcellulose as a viscous
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Figure 2
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Models of actin networks growing against a surface. (a) ‘Autocatalytic branching’ model [23] assumes that filaments branch off the sides or
ends of existent filaments with the rate proportional to the number of the existent filaments. This model predicts that the protrusion velocity is
independent of the load force. (b) Top: ‘mother and daughter’ filaments grow at 70° relative to each other as a result of the sterically precise
Arp2/3-mediated branching. Barbed ends of the pairs of filaments growing at approximately 35° relative to the protrusion direction stay close to the
cell membrane and are protected from capping. On the other hand, if the mother filament is almost normal to the membrane, then the daughter
filament growing almost normal to the protrusion direction lags behind the leading edge, is capped rapidly, and does not branch out the next
generation ‘mother’ filament. Bottom: mathematical arguments [22] demonstrate that these processes cause angular selection of the filaments
such that most of the filaments grow at ~ +35° relative to the protrusion direction (shadowed regions), while the mother-daughter filament pairs
growing in the unshaded angular regions lose the competition for growth to the symmetric filament pairs and go to extinction. (c) Detailed
computational model of Listeria propulsion [27°°] reconstitutes in silico a 3D treadmilling actin array. The growing filaments either attach
elastically to the Listeria’s surface (1) or collide with the surface generating pushing force (2), or become so close to the surface that their
assembly rate becomes inhibited (3). The model takes into account the reaction-diffusion process of actin recycling and vectorial hydrolysis

of actin subunits.

medium in which to measure Listeria’s force—velocity
relations [28,29]. The details of the results obtained were
different. The first experiment showed that the bacter-
ium’s velocity decreases rapidly at increasing load of tens
of pN and then more slowly at a greater load [28], in
agreement with the tethered ratchet model (Figure 1a).
However, the second experiment showed that velocity is
independent of the load [29], which is consistent with the
autocatalytic branching model. It is impossible to say

which force—velocity relation is right until we have quan-
titative data on concentrations of F-actin, Arp2/3 and
capping protein at the leading edge of the actin tail to
compare with the models.

The first direct measurement of the steady velocity of the
actin ‘comet’ growing from a coated bead at constant loads
[6°°] resulted in a convex force—velocity curve consistent
with the predictions of the elastic propulsion theory

www.sciencedirect.com
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36 Cell structure and dynamics

(Figure 1c¢), hence differing from both other experiments
and from the predictions of the microscopic theories.
Astonishingly, another recent experiment in which force
was applied to a transiently growing actin comet resulted
in a concave force—velocity curve ([7°°]; the trapezoidal
comet’s geometry in this experiment is different from the
cylindrical one in [6°°]). Moreover, in the latter experi-
ment the growth rate depends on the history of loading of
the actin network, hinting at complex actin dynamics.

Another test for the theories is provided by observations
of nano- and micro-saltation of Listeria and coated beads.
Listeria appeared to advance in discrete steps of 5.5 nm,
similar to the size of an actin monomer [30], suggesting

Figure 3

some intrinsic molecular-scale mechanism at the interface
between filaments and the surface, which is most easily
explained by the stepping motor theory; there are, how-
ever, doubts about the observations of the nano-saltation
[18,19°]. The tethered ratchet theory also predicts move-
ment in small yet irregular steps resulting from the
breaking of individual actin-surface bonds [17]. Interest-
ingly, the nano-propulsion model also predicts small and
irregular stepping movement of Listeria originating from
cooperative actin—surface bond breaking [27°°]. Such
cooperative de-adhesion seems to be the only explanation
for the recently measured temperature dependence of the
bacterial velocity [31]. On a very different scale, micron-
size saltatory movements are most naturally explained by
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Models of symmetry breaking. (a) Stochastic polymerization model [36]: stochastic fluctuations increasing one filament polymerization at one

side of the bead cause the autocatalytic polymerization process, in which the filaments on that side assist each other by pushing the bead to the
other side and creating gaps for other filaments to grow. At the other side, depolymerization of one filament increases the force on another
catalyzing disassembly. (b) Autocatalytic crosslink-breaking model [17]: breaking of a crosslink stressed by actin growth at one side of the bead
causes the autocatalytic breaking of other crosslinks at that side, because the same stress is distributed between lesser number of the crosslinks.
(c) Elastic cracking model [37°]: growth of the actin filaments at the actin-bead interface leads to radial compression of the inner layer of the

actin gel and tangential stretching of its outer layer. An initial crack at the outer surface of the gel expands rapidly as a result of effective stress

concentration in the crack’s vicinity leading to the symmetry breaking.
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the elastic propulsion theory [21°], assuming a nonlinear
friction—velocity relation: elastic stress grows without
propelling the surface attached to the actin tail until
the stress exceeds a threshold friction, resulting in a
‘jump’ forward and stress relief, upon which the new
propulsion cycle starts.

Experiments with coated lipid vesicles demonstrated the
separation of forces: pushing at the sides, pulling at the
rear [32,33]. The tethered ratchet theory could explain
this effect if the mobile actin—surface links are simply
swept to the rear of the moving vesicle and the growing,
pushing filaments are concentrated at the sides. The end-
tracking motor model also can explain this behavior by
taking into account a G-actin concentration gradient
toward the tail center resulting from actin assembly at
the actin—surface interface and subsequent force differ-
ential accumulation between the outer pushing filaments
and the inner pulling filaments (R Dickinson, personal
communication). Another experiment demonstrates that
curved surfaces are propelled more slowly than flat ones,
which is another critical test for the role of actin gel
elasticity in protrusion [34].

Finally, the protrusion models have to explain the ‘sym-
metry breaking’ phenomenon [35], in which a ‘cloud’ of
actin growing around coated beads loses its symmetry by
‘melting’ away at one side of the bead. The actin comet
then develops at the other side, and the bead’s motility
ensues. The ratchet models explain this phenomenon as
cooperative acts of filament growth at one side and dis-
assembly at the other side of the bead assisted by sto-
chastic fluctuations [36] (Figure 3a) or as a similar process
of breaking crosslinks in the rigid actin cloud [37°]
(Figure 3b). Elastic models are more successful in
describing the sequence of events for large beads where
the stochastic fluctuations are less significant [38]
(Figure 3c): growth of actin at the bead’s surface pushes
the outer actin layer outward, stretching it and generating
growing tangential stress. When critical tangential stress
is reached, a crack at the gel outer surface develops and
propagates to the bead’s surface.

None of the models can explain all the existent data. The
tethered ratchet model, in its simple (mathematical)
original [17] and advanced (computational) [27°°] forms,
seems to fit more data than other models, but so far there
are not enough quantitative data, especially on the actin
network structure and dynamics, to condense the multi-
ple models to the extent of developing an ultimate
protrusion model. However, detailed biophysical data
[39] are rapidly accumulating and will soon fine-tune
the existent models into solid theories.

Conclusions
Understanding dendritic actin arrays will not be enough.
We will have to clarify the role of other plausible force
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generation mechanisms, such as filament bundling [39],
myosin-driven hydrostatic pressure [40], gel swelling [41]
and processes involving non-dendritic actin structures
[42]. More realistic actin rheology [43] and membrane
adhesion [44] and regulation pathways [45] associated
with protrusion have to be quantified and incorporated
into a unified model of protrusion, which eventually will
serve as a boundary condition for multi-scale models of
migrating cells [46].

In the dictionary of idioms, ‘on the edge’ is defined as
being ‘in a precarious position’ or ‘in a state of keen
excitement’. In both senses, the life of a modeler trying to
understand what is going on at the leading edge of the cell
is truly on the edge: the models are short-lived, making a
wrong turn once in a while inevitable, yet very few areas
of biology are as exciting.
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