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Abstract

We use linear stability analysis and numerical solutions of partial differential equations to
investigate pattern formation in the one-dimensional system of short dynamic polymers and one
(plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If
polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then
the polymer—motor bundle has mixed polarity and homogeneous motor distribution. However,
if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity
separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a
graded-polarity bundle with motors at the center emerges. In the presence of the second,
minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity
pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed
one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle,
then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at
the center and minus-end motors at the edges. We discuss modeling implications for

actin—myosin fibers and in vitro and meiotic spindles.

1. Introduction

Cell shape, motility, division and other behaviors depend on
the cytoskeleton—a dynamic scaffold built from actin, mi-
crotubules and intermediate filaments together with molecular
motors, binding proteins and other accessory molecules [1].
Actin filaments and microtubules are polar polymers charac-
terized by distinct plus and minus-ends (barbed and pointed
ends, respectively, in the case of actin; here we will call
those plus- and minus-ends for simplicity). These polymers
are very dynamic, often turning over in mere seconds, and
are engaged in diverse processes of treadmilling, dynamic
instability, severing and annealing [2]. Molecular motors are
vast families of molecules in the cell that transduce chemical
energy into mechanical force and movement and are crucial
in cross-linking neighboring filaments and sliding them with
respect to each other [3]. Dynamic systems of polymers and
molecular motors that transport these polymers in the cell

0953-8984/11/374102+10$33.00

tend to self-organize [4]. This self-organization, which is
of fundamental interest to both cell biology and biomedical
applications [1], is the focus of our theoretical study.

We examine the dynamics of one-dimensional (1D) cy-
toskeletal bundles, which are amenable to simple mathematical
modeling. Most notable examples of such actin bundles
are muscle sarcomeres, and the stress fibers of an adherent
cell [5, 6] in which actin filaments are arranged periodically
in unipolar parallel bands interspersed with clusters of myosin
IT (just called myosin below) motors (figure 1(a)). In these
stress fibers, tens of motor heads from each cluster reach to
neighboring filaments and execute short power-strokes that
tend to move myosin toward the filaments’ plus-ends, and in
return to slide the filaments in the direction of their minus-ends.
This motor action leads to the opposite sliding of anti-parallel
filament pairs (figure 1) and overall stress fiber contraction.
Another ubiquitous and dynamic actin—-myosin bundle is the
contractile ring of dividing cells [7]. Less organized actin—

© 2011 IOP Publishing Ltd  Printed in the UK & the USA
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Figure 1. Schematic of polymer—motor bundles in the cell. (a) Actin—-myosin bundles at the rear of a migrating cell. (b) Microtubule—motor
organization in meiotic and in vitro spindles. (c¢) Illustration of motor and filament velocities introduced in section 2.

(This figure is in colour only in the electronic version)

myosin bundles are also observed in motile appendages of
migrating cells [8]. In all these bundles, the actin filaments
are much shorter than the whole bundle’s length. An important
open question is: are the spatial organizations of the actin—
myosin bundles imposed by the cell [9] or self-organized?
Mitotic and meiotic spindles present examples of dynamic
microtubule-motor bundles [10]. Microtubules of opposite
polarity overlap at the spindle ‘equator’ where they interact
with kinesin-5 motors (figure 1(b)). These motors are bipolar,
having motor domains on both ends, which allow them to
symmetrically slide apart anti-parallel microtubules [11]. This
sliding of anti-parallel microtubules elongates the spindle [12]
and is an important part of spindle maintenance. In mammalian
spindles, most microtubules extend the half-length between the
pole and the equator [13], but in meiotic and in vitro spindles
that assemble in Xenopus egg extracts [14], the individual
microtubules are much shorter. These spindles consist of many
short microtubules crosslinked by motors [15]. In addition to
kinesin-5 motors, these spindles contain cytoplasmic dynein
motors that are, unlike kinesin-5, minus-end directed and not
bipolar. Dyneins are proposed to bind one microtubule and
transport it along another one toward a spindle pole, as well
as to crosslink microtubules that are closer to the poles [16].

Importantly, the characteristic spindle-like pattern, in which
kinesin-5 is at the equator and dynein is at the poles, and
microtubules are oriented with their minus-ends toward the
poles and plus-ends toward the equator (figure 1(b)), can
self-assemble without centrosomes and chromosomes [17].
Both kinesin-5 and dynein motors are crucial for this self-
organization [17-19], while other motor families active in the
spindle are likely dispensable [3].

Here, we consider theoretically a simplistic case of
polymer—motor self-organization inspired by actin—myosin
bundle organization in motile cells and microtubule—kinesin—
dynein organization in spindles. Theory of these systems
attracted so much attention in the recent decade that we cannot
cite all relevant papers. Largely speaking, three approaches
were used in modeling the polymer-motor dynamics. A
majority of studies used hydrodynamic-like equations for
non-equilibrium biological gels based on symmetries and
conservation laws of the system [20, 21]. More detailed
models used integro-differential equations taking into account
finite polymer length [22]. Yet other works employed discrete
and stochastic agent-based computer simulations, in which the
trajectory of each individual polymer was simulated [23-25].
Most of these studies were applied to microtubule—kinesin
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systems, but actin—myosin patterns were also modeled [26].
Here, we continue the investigation started by all these
studies, taking a general approach to the problem of pattern
formation in filament bundles by considering continuous one-
dimensional distributions of short polarized filaments and
motors. We demonstrate that a great variety of observed
patterns can be captured by solving very simple partial
differential equations describing densities of polymers and
motors and derived from using force balances and conservation
laws. Interestingly, we find that periodic sarcomeric patterns
are ubiquitous and stable, and that kinesin-5-like motors alone
can organize the spindle-like pattern only if the microtubules
slide very quickly. The sarcomeric pattern is stabilized further
by the addition of a second, dynein-like motor, and a spindle-
like pattern can form only if the dynein-like motor is much
weaker than the kinesin motor. The model also clarifies how
polymer stability, length and autocatalytic nucleation affect
pattern formation.

2. Force balances and transport rates for motors and
polymers

In the model, we derive the rates of the motor gliding and
polymer sliding from the following force balances: in the case
of the myosin cluster, a single motor head can be described by
the force—velocity relation. Most frequently, a linear relation is
used for simplicity [23, 25]:

v 6]

fm=m<u¥@LJE)
where indices r, | stand for motor heads pulling on the right/left
oriented polymers (with plus-ends directed to the right/left,
respectively), fn is the maximal (stall) force developed by the
motor, Vy, is the free gliding motor speed, Vi is the velocity
of the myosin cluster and V; are the velocities of the right/left
oriented polymers (figure 1(c)). We assume, also following
majority of the published models, that the polymer velocities

are proportional to the applied force:

Vil = Ffu1/¢, ()

where ¢ is the effective protein friction coefficient originating
from transient attachments of the bundle polymer to the rest of
the cytoskeleton [27]. The total force on a myosin cluster has to
be equal to zero; assuming that the number of right/left oriented
polymers interacting with the myosin cluster are proportional
to the local densities of such polymers, P;, P, we have:

P fi= P f. 3

Five linear algebraic equations (1)—(3) with five unknowns
(two forces and three velocities; equations (1) and (2) stand
for two equations each) give the following expressions for the
velocities of the motor clusters and two types of polymers

(right/left oriented): Vinow = Vimnprat, Vi = FL2 505 We
P—P

will call the variable P = 7+ B the polarity. The analysis
above was for one myosin cluster; introducing the myosin
density, M, and parameter V;, for the sliding speed of one

polymer interacting with a unit myosin density in the presence
of many oppositely oriented polymers, we have:

VmotZVmPa P=Pr_P17 r=_VOP1M’
Pt B Pt B
_ VoPM
T rrrn
4)

These formulas have a very simple meaning: in a region of
uniform polarity, the motors have no net drift; in regions where
the filaments are all co-aligned, the motors move with their
free gliding speed toward the plus-ends; and in the general case
of mixed filament polarity, this speed is factored by the local
polarity, which is the normalized local difference between the
right and left oriented polymers. The polymers drift in their
minus-end direction with a velocity proportional to the local
motor concentration and to the normalized local density of the
opposite polarity polymers.

Although formulas (4) were derived with actin—myosin
bundles in mind, they are more general than their model-
specific derivation above implies. For example, the same
formulas can be used to describe meiotic and in vitro
spindles in which bipolar motors (e.g., kinesin-5) interact with
short microtubules: if the motor density is small, then the
interactions between polymers in the bundle are effectively
pair-wise. This means that the motors connecting parallel
polymers move toward the plus-ends with the free motor
gliding speed, while the motors between an anti-parallel
polymer pair do not move but instead slide the pair apart.
Averaging over random pair-wise interactions, it is easy to
see that for a right/left oriented polymer, the normalized
number of interactions shifting it in its minus-end direction is
P/(P. + Py), respectively, leading to formulas (4) for V,.
Similar averaging of the number of parallel polymer pairs
shows that the average motor drift is proportional to the ratio
(P2 = P)/(Pi4 P)* = (Pr— P)/(P.+ P) = P, again
leading to formula (4) for V. Finally, in the case of unipolar
single motors of the dynein type, agent-based simulations
result in average drifts similar to formulas (4) [25].

3. Reaction—drift—diffusion dynamics of the 1D
polymer—motor bundle

For a system with a single type of plus-end directed motor (1-
motor system), the conservation laws for two polymer densities
and motor density have the form of the following reaction—
drift—diffusion equations:

37 Pry = Dydy Pry — Ox (VerPrt) — Y Py + S, s
OrM = DndxM — dx (VmorM) + Kon — KottM.

The drift terms are discussed in section 2. § is the
constant rate of random polymer nucleation; y is the rate
of the polymer disassembly (turnover); K,, is the rate of
motor attachment to the polymer, and K. is the rate of
motor detachment. Diffusion terms in the equations do not
describe actual thermal diffusion, which is slow. Rather, in
the case of microtubules, dynamic instability behavior can
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under a number of conditions be considered an effective
diffusion of the plus-end and center-of-mass coordinates of a
polymer [28]. Similarly, processes of severing and annealing
of actin filaments lead to random shifts of the polymers’
centers of mass and, effectively, diffusion [29, 30]. Finally,
the motors, in addition to a small diffusion when moving along
single polymers [27], undergo effective diffusion because their
drift rates fluctuate due to random interactions with pairs
of polymers of different polarities. While these equations
describe the 1-motor system, we will also later extend them
to include two oppositely directed types of motors (2-motor
system).

The natural scales in this system are the inverted polymer
disassembly rate, y’l, for time, the ratio of the on- and off-
rates, Kon/Kof, for the average motor density, the nucleation
rate divided by the disassembly rate, S/y, for the polymer
densities, and the average polymer speed multiplied by the
characteristic time, V,/y, for distance. Introducing the non-
dimensional variables, t = yT, m = KogM/Kon, pr1 =
P.1y/S and x = yX/V,, we obtain the non-dimensionalized
equations:

rp1m
3 pri = @D poy £ B, < PeP ) — a1,
Pr+P1
(6)
Pr— D1

Pr+ P

a,szafm—ax( m)—i—a(l—m).

The system behavior is determined by four non-dimensional
parameter combinations:

o D Dur VoK
Dm ' VHZI ' Vm Koff’
(N
Kot
a = .
14

Introducing the characteristic filament sliding speed, Vo =
VoKon/ Kof, Wwe can re-write parameter f as f = \70 / V-

Note that our model has the following interesting features:
adding the equations for the oppositely oriented filaments (z =
pr + p1), we obtain the equation

0,7 = a)Da)?z —z42,

which shows that the net polymer density simply equilibrates
to a constant z = 2, so there is neither contraction nor
expansion of the polymer bundle, and the net polymer flux is
zero. Substituting p, + p; = 2 into the difference between the
equations for the oppositely oriented filaments, we obtain the
following equations for the polarity (p = (pr — p1)/(pr + p1)
and motor densities: 9, p = @Dd?p — B3, (mp*) + Bdm — p,
dm = Dafm — de(pm) +a(l —m).

One can see from the equation for the polarity that
the spatial motor density gradients are a source/sink for the
polarity, which means that local motor aggregates create jumps
of polarity—effective local orientation of the polymers into the
motor aggregate. The polarity also propagates with a drift rate
proportional to the polarity itself, which reinforces the polarity
jumps. The motors, on the other hand, drift in the direction

of local polarity. Thus, we expect that if the effective diffusion
and polymer disassembly are slow, then instabilities and spatial
patterns should evolve in this system. The linear stability
analysis and numerical solutions reported below confirm this
intuition.

4. Characteristic parameters of the system

Characteristic parameters for the system can be estimated
from the experimental literature. The characteristic size
of short microtubules in in vitro spindles is in the 1 pum
range [31]. Actin filaments in actin-myosin bundles have
similar characteristic sizes [8, 32]. Both actin—myosin bundle
length [8, 33] and spindle size [14, 34] are on the order of
10 um. The characteristic gliding speed of molecular motors
in the spindle is V,, ~ 0.2 um s™' [35]. Similar speeds
are reported for myosin clusters in rapidly motile cells [36].
The characteristic sliding speed of actin filaments in rapidly
motile cells could be as fast as \70 ~ 0.2 ums~! [36]. The
microtubule sliding (called poleward flux in mitosis literature)
is slow in both the in vitro and some in vivo spindles, on the
order of \70 ~ 0.03-0.05 pum s~! [37, 38]. The short MTs both
in in vitro and some in vivo spindles are very dynamic, turning
over in just a few seconds, such that y ~ 0.1 s~! [31, 34].
Actin in the actin—-myosin bundles in the rapidly motile cells
disassembles with similar rates [8]. Detachment of the kinesin-
5 motors from the microtubules in the spindles is quick, K ~
0.5 s7' [35]. Even faster, but similar rates are reported for
dynein [39]. Myosin clusters that have tens of motor heads
extending from each of them probably detach more slowly; no
numbers are reported in the literature.

An effective diffusion coefficient for microtubules
undergoing dynamic instability [28] can be estimated by
dividing the square of the characteristic microtubule length,
L ~ 1 um, by the average time, y’l ~ 10 s, of its complete
disassembly: D, ~ L?/2y~! ~ 0.05 um? s~!. Interestingly,
severing and annealing of actin filaments are characterized by
the same effective diffusion coefficient [29, 30]. For example,
the effective diffusion coefficient due to the severing process
can be estimated by multiplying the square of the characteristic
filament length, L ~ 1 um, by the average severing rate,
r~0.1s% D, ~ L?/2 ~ 0.05 um? s~!. Similarly, the
effective diffusion coefficient of the motors can be estimated
by multiplying the square of the average motor speed, Vi, ~
0.2 ums~', by the average time a motor stays attached,
1/ Kot ~ 28,: Dy ~ V2/2Kogr ~ 0.05 pm? s~

Using these parameters, we estimate the characteristic
non-dimensional parameter combinations that determine the
system behavior: for both actin—myosin bundles, and for the
spindle, D ~ 0.1 and B ~ 1. For the spindle, where the
motor’s Kinetics are fast compared to polymer turnover, we
estimate a ~ 5. Actin—-myosin bundles may have slower motor
turnover as discussed above, corresponding to a smaller value
of a. Finally, effective diffusion of polymers and motors is of
the same order of magnitude, and simulations show that modest
varying of the diffusion coefficients does not affect the results
qualitatively, so in the analysis we kept the parameter v = 1
for simplicity. Thus, the effective diffusion of polymers and
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Figure 2. Results for polymer—motor bundles in the 1-motor system. (a) Linear stability analysis results (shown here for D = 0.1). Left:
dispersion relation for the linear growth rate o as a function of the wavevector g, at the stability boundary for pattern formation

(B =2D(1 + a + 24/a)) with a = 5. Middle: the stability boundary dividing the region of parameter space where patterns will form

(B > 2D(1 + a + 2+/a)) from the region where the homogeneous solution is stable. Right: the wavenumber g, of the predicted pattern when
the system is at the stability boundary. (b) Upper: simulated motor density (solid) and polarity (dashed) for increasing values of g (3, 6, 10;
from left to right) with the other parameters: D = 0.1,a =5, w = 1 and A = 10. (We use A = 10 here and in other simulations because many
polymer—motor bundles in the cell are on the order of 10 um long, which is about ten times the characteristic length for these systems.
However, the simulated results are not highly sensitive to the choice of A.) Here, we are in the regime 8 > 2D(1 + a + 24/a), such that
pattern formation is expected. Lower: schematics of the sarcomeric pattern (relatively low 8) and the graded-polarity pattern (high g).

motors is small, and drift, attachment, detachment, nucleation
and disassembly determine the pattern formation.

5. Stability and emergence of patterns in the
homogeneous polymer-motor bundle

Equations (6) for the I-motor system have the constant
stationary solution, p; = p; m = 1, on the infinite 1D
domain (a similar solution exists on a long finite domain with
biologically relevant no flux or periodic boundary conditions).
This solution describes homogeneous distributions of polymers
and motors in the bipolar bundle with polarity equal to zero. To
investigate the stability of this state, we turned to the standard
procedure of linear stability analysis [40]. We looked for the
solutions in the form, p, = 1+ p,, pr= 1+ p,m =1 +m,
linearized the equations with respect to py, pi, m, substituted
the solutions in the form p;, p;, m ~ explot]expligx] and
obtained the dispersion relations for the linear growth rate o as
a function of the wavevector g. Two branches of this function
describe unconditionally stable perturbations, while the third
branch gives the potential instability:

o= %|:—((D+a)D)q2 +a+1) —i—{((D +wD)g® +a+1)?

]

—4 ((Dq2 + 1)(wDgq* + a) —

Figure 2(a) summarizes findings of the linear stability analysis.
Finding maximum of o with respect to g gives (at w = 1) a
very simple instability criterion: 8 > 2D(1 + a + 24/a). In
dimensional form:

VoVin > 2Dy (v + Kogr + 24/ Kofr).- (8)

Thus, if the product of characteristic motor and polymer
speeds is greater than the product of the effective diffusion
coefficient and a combination of polymer disassembly and
motor detachment rates, the homogeneous un-polarized steady
state breaks into a pattern. The instability criterion is
especially simple if the motors detach much faster than
polymers disassemble: \70 Vin > 2DpKuf.  On the other
hand, if the motors rarely detach, the instability criterion is
VoV > 2D,y. The known parameters for many motor—
polymer systems give 8 ~ 1, while 2D(1 + a + 2/a) ~ 2, so
many bundles in the cell are predicted to be homogeneous and
un-polarized. However, greater stability of actin filaments and
slower detachment of myosin clusters can easily create patterns
in the actin—-myosin bundles.

When the stability is broken, a periodic pattern should
evolve characterized by the wavevector that maximizes

(q): ge V355 — D] Close to the bifurcation

point, g ~ (%)%, which indicates that the characteristic
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spatial period of the evolving pattern is [ ~ ZH(KD—‘_’V)I/ 4

ff
3

27 (7o)
reveals that the period is a few microns, or a few polymer
lengths long. Another important conclusion is that, because
of the exponent 1/4 and characteristic parameter ranges, the
period of the pattern is very robust and not sensitive to exact
parameter values.

We solved equations (6) using Virtual Cell software [41];
our simulations can be reproduced using a public MathModel
called ‘Cytoskeletal bundle_1-motor’ (‘Cytoskeletal bundle_2-
motor’, for the extended model described in section 6) under
the username ‘ecraig’ at the Virtual Cell database (http://vcell.
org). Figure 2(b) shows that two general types of patterns
evolve. If filament sliding is fast and motor gliding is slow
(relatively large ), then the majority of motors gather at the
center, and the polarity is perfectly sorted out: filaments in
each half of the bundle are oriented with their plus-ends toward
the center. On the other hand, if filament sliding is slow and
motor gliding is fast (small 8), then a periodic pattern evolves
resembling sarcomere-like organization of muscle. The period
of this pattern is insensitive to values of parameter a. For
intermediate values of 8, a complex pattern forms: regions
of uniform polarity evolve at the edges, while the sarcomeric
organization persists at the center. As the polymer speed grows
(increasing B), the uniform polarity regions widen, while the
number of ‘sarcomeres’ at the center decrease, until just one
motor aggregate at the center is left. If the whole bundle
becomes longer, the length of the uniform polarity regions at
the edges does not change, rather more ‘sarcomeres’ appear at
the center.

Substituting characteristic parameter values

6. Pattern formation by two opposite motors

The case of two opposite motors (2-motor system) can be
modeled easily with the following changes in equations (6).
The equations for the polymer dynamics become:

prp1 (my — myq)

3 ey = wDd; ) £ PO, (
pr+ P

) - pr,1+ 1 (9)

where my and my stand for kinesin and dynein concentrations,
respectively, assuming that kinesin and dynein actions are
linearly additive. Instead of the single equation for the
motors, two equations for kinesin and dynein concentrations,
respectively, must be considered:

P1— Pr
Pr+ D
Pr— DPr

T P

oymy = DBfmk — Oy < mk) +a 0.5+ x —my),

dmyg = Dd?my + ad, ( md> +aq (0.5 — x —my).

(10
The new dimensionless parameter ag describes dynein
attachment—detachment kinetics, and the parameter o shows
how much faster/slower dynein glides compared to kinesin-
5. For simplicity, we assume that the diffusion coefficients
of both motors are the same. We calibrate the model so that
the total strength of the motors (proportional to the sum of

their average concentrations) is the same as that of a single
motor in the model above. In the single motor model, the
motor average concentration was equal to one; in the two
motor model, the sum of the average concentrations is also
0.5+ x +0.5— x) = 1. Parameter x quantifies the relative
strength of the motors.

We repeated the linear stability analysis for the two motor
model. The new instability criterion has the form:

4D (14 a+2/a)
l+a+x(—-a)’

an

which indicates that if the two motors are of equal strength
(x = 0) and speed (¢ = 1), the stability conditions for the
polymer—motor bundle are the same as in the case of the single
motor. If the second motor is faster (¢« > 1) or stronger
(x > 0), the instability criterion is lowered such that patterns
will arise for smaller values of 8 than in the case of one motor.

Numerical solutions shown in figure 3 illustrate the
characteristic periodic pattern that evolves in this system if
the polymer and motors’ speeds are fast enough. In this
pattern, regions of parallel polymers are interspersed with
motor aggregates, and two motor types alternate: dynein
aggregates near the minus-ends, and kinesin near the plus-
ends. This pattern is very robust—it evolves in a vast range
of the parameter space. The period of the pattern is not very
sensitive to the ratio f of filament sliding to motor gliding
speeds, unlike in the one motor case (figure 3(a)). The period
is also insensitive to motor Kinetics (parameters a, aq, ). As
the effective diffusion decreases, the pattern’s period becomes
smaller.

The graded-polarity pattern and the mixed pattern
(sarcomeric in the middle, and uniform polarity at the edges)
appearing in the single motor case (figure 2(b)) do not emerge
for two motors of comparable strengths. However, if one of
the motors (dynein, see discussion below) is weaker, and also
the polymer sliding is faster than the motors’ gliding, then
the spindle-like (graded-polarity) pattern evolves (figure 3(b)):
the weaker motor aggregates to the edges, the stronger one
aggregates to the middle, and microtubules orient with their
plus-ends into the center.

7. Influence of autocatalytic polymer nucleation and
of long polymers

As discussed above, we find that the periodic sarcomeric
pattern is very robust for both the 1-motor and 2-motor systems
considered. Here, we discuss several possible mechanisms
that could increase the level of robustness of the spindle-
like pattern. We find that if we make the rate of motor
attachment proportional to the polymer density, the system
behavior does not change. Another potentially important
factor in the spindle is that short nascent microtubules can
form at the sides of the pre-existing polymers [42]. This
so-called autocatalytic nucleation was shown to be a very
important part of maintaining proper spindle architecture [43].
When we add polymer-induced nucleation to the equations
describing polymer dynamics, so that the respective reaction


http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org
http://vcell.org

J. Phys.: Condens. Matter 23 (2011) 374102 E M Craig et al

(a)

- -
-

———
|

> |
s iy Ll
G il o]
o ! 11
5 LA RNE
g
YR\l
1] [ \‘
0 I I I I 0 I I I I
0 2 4 6 8 10 0 2 4 6 8 10
Distance Distance

] I LMF‘NIpﬂ__T

Polarity
o
o
|
1

= | | |- .1_UUL.I.L|L~L~~_J_

0 2 4 6 8 10 0 2 4 6 8 10
Distance Distance

—_—

O

—
N

2

2 1 11— —
[0}
©
S
°

0 0“I“I" 4= ===
0 2 4 6 8 10
Distance Distance

1= I I ] e | I I ]

2 o ] 0}— —
©
©
o

A — -1 = =

I I I I I I I I
0 2 4 6 8 10 0 2 4 6 8 10

Distance Distance
t*ﬁtﬁ:x :I:E: R Sy I Wil

=S << aa
SEERSESRE BBiaEH

Figure 3. Results for polymer—motor bundles in the 2-motor system. Unless otherwise noted: D = 0.1,w = 1,a =ag = S5Sand ¢ = 1. (a)
Simulations for opposite motors with similar strength (x = 0.05). Motor density (upper; solid for plus-end motor, dashed for minus-end
motor) and polarity (lower) are shown for parameters f = 3 (left) and § = 10 (right). (b) Same as (a), with 8 = 10, but minus-end motor
significantly weaker than plus-end motor (x = 0.2, 0.4; from left to right), demonstrating recovery of the graded-polarity (spindle-like)
pattern when the minus-end motor is weak enough. Lower: schematics of the sarcomeric and graded-polarity patterns, roughly corresponding
to the simulations above. Plus-end motors are shown with round motor domains, and minus-end motors with square domains.
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terms become (1 + g(p:r + p1)¥ — pr1), where g and ¢ < 1
are model parameters, the patterns do not change. However,
such terms describe autocatalytic nucleation of arbitrary
orientation. Not much is known about autocatalytic nucleation
of microtubules, but autocatalytic Arp2/3-mediated branching
of actin filaments is orientation-specific—daughter filaments
grow in the same direction as mother filaments—and it
is possible that autocatalytic nucleation of microtubules is
characterized by the same feature. To test the consequences
of such an assumption, we make the reaction terms look like
(14 gp{; — pr1). The results shown in figure 4(a) illustrate
that, indeed, such orientation-specific autocatalytic nucleation
of microtubules leads to more spindle-like patterns.

The second important factor is that longer microtubules
coexist with the short ones in the in vitro and meiotic
spindles [15, 31]. Including dynamic long microtubules into
the model would significantly complicate the mathematics (we
intend to work on this in the future), but we can easily add
static long microtubules (figure 4(b)) growing from the edges
of the bundle (spindle poles) with their plus-ends toward the
center (spindle equator), which is the case for in vivo mitotic
spindles. In the equations, these additional static microtubule
densities are added to the dynamic densities p;;, providing
additional tracks for the motors and biasing kinesin-5 to the
center and dynein to the edges. In the simulations, all added
long microtubules were of similar lengths, but we also explored
exponential and a couple of other length distributions, and
the results were not sensitive to exact functional form of the
distributions. As expected, the addition of long microtubules
perturbs the sarcomeric pattern and makes it more spindle-like
(figure 4(b)).

8. Discussion

The first of the interesting findings from our model is a very
simple criterion for the absence of polarity sorting and motor
aggregation: the product of the effective polymer diffusion
coefficient and polymer disassembly/motor detachment rate
(whatever is faster) has to be greater than the product of
characteristic motor and polymer speeds. If this inequality is
not valid, then patterns emerge. Estimates using data from the
literature suggest that characteristic rates in the cell are such
that the cytoskeletal bundles are very close to the bifurcation:
with a few-fold shift, the cell can easily switch from a ‘no
pattern’ to a ‘pattern’ state if needed. When the stability
is broken, the most ubiquitous, in terms of the largeness
of respective domain in the parameter space, is the periodic
sarcomere-like pattern, in which periodic regions of alternating
polarity (with co-aligned filaments within each region) are
interspersed by motor aggregates. Motor aggregates of the
same type are spaced a period apart, while two opposite motors
create alternating aggregates half a period apart. These patterns
evolve if motor gliding is fast.

These results applied to actin—-myosin bundles mean that
the stability of individual actin filaments is the main condition
for evolution of striated stress fibers. Perhaps, this is the reason
why large actin arcs and bundles in the rapidly motile cell’s
appendages, where the actin turnover is generally fast, do not

have the stress fibers’ structure [8, 33]. A certain degree of
global graded actin polarity in such bundles reported in [8, 33]
implies, according to our analysis, that myosin cluster gliding
is slow, while actin filament sliding is fast in these bundles.
This is a prediction to be tested in the future. Similarly, further
research will show if complex patterns of actin filaments and
unconventional myosin [44], as well as the observed peculiar
behavior of the contractile ring consisting of two parallel sub-
bundles in the beginning, and of intermingling short filaments
in the end [45], have anything to do with the patterns predicted
by the model.

Note that our model does not suggest the only, or even
the principal, mechanism of assembly of the sarcomeric
structure in actin stress fibers [32]. Indeed, the half-period
of the predicted periodic structure in our model is a few
filament lengths long, while in the classical stress fibers
individual filaments seem to span the whole half-period. More
importantly, actin binding proteins that are absent in our model
clearly play a crucial role in the stress fiber dynamics [32].
Finally, our model does not predict contractile force generation
(total flux of actin filaments is zero and the net actin density
is constant in the model), while the stress fibers can contract.
Nevertheless, it is possible that the periodic pattern instability
our model predicts is an integral part of the stress fiber
formation, and that the actin binding proteins ‘solidify’ the
emerging pattern.

Applied to in vitro and meiotic spindles, the model
predicts that if microtubules slide faster than kinesin-5 motors
glide, then the global polarity sorting of the microtubules
into the characteristic spindle-like configuration would evolve.
However, the published data indicate that the kinesin motors
are actually faster than the microtubules. Presence of an
oppositely directed motor of comparable strength, in fact,
additionally destabilizes the graded-polarity bundle. However,
the model makes the following important prediction: if the
minus-end motor is weaker than kinesin-5, then the spindle-
like pattern is restored in the case of fast filament sliding.
Interestingly, dynein motors generate force ~1-1.5 pN [39],
weaker than the force (~5 pN) exerted by kinesin-5 [46].
(There is no data though on relative numbers of these motors
in the spindle.) In addition, the model predicts that if nascent
microtubules nucleate from the sides of existent ones in the
same direction, and/or long microtubules are present in the
spindle, then the spindle-like architecture becomes even more
stable. Both of these factors are likely at play in in vitro and
meiotic spindles [15, 42].

Further investigation is needed to see how our model
relates to the computational slide-and-cluster model [16]
of spindle self-organization, to models of contractile ring
dynamics [47, 48] and to the model of self-organization of
finite-length polymers [22]. Before such investigation takes
place, our model has to include a number of factors omitted in
this study for simplicity. Most importantly, a wide variation
of the lengths of filaments in the bundles probably has a
major impact on the emerging behaviors and patterns [49].
Another factor is that even in the 1D bundles, interactions
between the polymers at the core of the bundle and those at
the margins have geometric differences, so the description of
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Figure 4. Influence of autocatalytic polymer nucleation and of long polymers on the robustness of the graded-polarity (spindle-like) pattern.
Unless otherwise noted: D = 0.1, w = 1,a = a4 = 5 and @ = 1. (a) Motor density (upper; solid line for plus-end motor, dashed line for
minus-end motor) and polarity (lower) evolve from the sarcomeric to the graded-polarity pattern as the autocatalytic polymer nucleation
increases. Here, we use g = 2 (left) and g = 4 (right), and for both: x = 0.2, 8 = 10 and ¢ = 0.5. (b) To include long stationary filaments
oriented with their plus-ends toward the center, approximately equal to half the domain length, we model their distribution as step-like
functions: L, = Lo(ﬁ) and L, = 1 — L, for right oriented and left oriented filaments respectively. Here, we show simulations with long
filament density parameter L, = 0.5. For both: 8 = 3 and x = 0.05. Similarly to (a), motor density (upper; solid line for plus-end motor,
dashed line for minus-end motor) and polarity (lower) evolve from the sarcomeric to the graded-polarity pattern as the density of the

stationary long filaments increases.
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the polymers with continuous density is an approximation to
be researched further. Finally, it is unclear what quantitative
errors are introduced by continuous approximations of this
study and models [20-22] compared to the agent-based
simulations [23-25], and how important are the nonlocal [22]
effects for the self-organizing patterns. The only consistent
way to answer these questions is to study a single model system
using the whole spectrum of mathematical and computational
approaches.
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