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Summary

The mitotic spindle assembles into a bipolar, microtu-
bule-based protein machine during prometaphase.
One proposed mechanism for this process is “search-
and-capture,” in which dynamically unstable microtu-
bules (MTs) search space to capture chromosomes
[1]. Although existing theoretical estimates [2, 3] sug-
gest that dynamic instability is efficient enough to al-
low capture within characteristic mitotic timescales,
they are limited in scope and do not address the cap-
ture times for realistic humbers of chromosomes.
Here we used mathematical modeling to explore this
issue. We show that without any bias toward the chro-
mosomes, search-and-capture is not efficient enough
to explain the typical observed duration of prometa-
phase. We further analyze search-and-capture in the
presence of a spatial gradient of a stabilizing factor
[4-6] that biases MT dynamics toward the chromo-
somes. We show theoretically that such biased search-
and-capture is efficient enough to account for chromo-
some capture. We also show that additional factors
must contribute to accelerate the spindle assembly
for cells with large nuclear volumes. We discuss the
possibility that a RanGTP gradient introduces a spa-
tial bias into microtubule dynamics and thus improves
the efficiency of search-and-capture as a mechanism
for spindle assembly.

Results

Optimal Unbiased ‘Search and Capture’ Is Not Fast
Enough to Account for Observed Rates

of Spindle Assembly

Before chromatid segregation can occur, a bipolar mi-
totic spindle consisting of two overlapping microtu-
bules (MTs) arrays must assemble [1]. Some of these
MTs attach to the kinetochores. According to the search-
and-capture model [1], MTs nucleate in a random direc-
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tion and grow and shrink dynamically to probe space
and eventually encounter target kinetochores. Theoreti-
cal analysis of the search-and-capture model showed
that MT dynamic instability is very effective if it is regu-
lated so that the rescue frequency is close to zero (i.e.,
MTs do not search repeatedly in the “wrong” direction)
while the catastrophe frequency is such that a MT
grows on average to a length equal to the mean pole-
kinetochore distance (i.e., MTs neither undergo prema-
ture catastrophe when growing in the “right” direction
nor “waste time” growing in the “wrong” direction) [2,
3]. This analysis is consistent with the measured de-
crease in rescue frequency from 0.175 s~! in interphase
to 0.023 s~ in prometaphase [7].

The estimates in [2] do not analyze the capture times
for a realistic geometry or number of chromosomes. In
the Supplemental Data available with this article online,
we describe mathematical analysis and Monte Carlo
simulations that estimate the time to capture for multi-
ple chromosomes. In short, the computer code places
a number of chromosomes at random locations inside
a nuclear sphere, 10 um in radius (Figure 1). Sister ki-
netochores lie back-to-back—that is, the capture sur-
faces of partner kinetochores face in opposite direc-
tions [8] —so we assume that each kinetochore can be
reached by MTs emanating from one pole only. For
each kinetochore, we calculate the probability of cap-
ture if one assumes that MTs are nucleated in random
directions and their dynamic properties are spatially in-
dependent (Figure 1C). We then use a random number
generator to simulate the number of unsuccessful
searches before the chosen kinetochore is captured
and find the time to capture. We repeat this procedure
for all kinetochores and find the maximal time to cap-
ture the final unattached kinetochore. Values of the
model parameters are listed in Table S1 in the Supple-
mental Data.

To test the model, we first examined the simplified
case of a single aster containing 250 MTs and searched
for a single target at a distance of 10 wm. Our numerical
analysis yielded a mean time to capture of 23 min, sim-
ilar to previous results [2]. We further tested whether
the capture of multiple chromosomes can occur in a
reasonable biological timescale under the same model-
ing assumptions. We first calculated the optimal catas-
trophe frequency (0.0134 s~') by minimizing the search
time and assuming a uniform distribution of chromo-
somes in the nucleus. Then, using the optimal condi-
tions, we simulated the unbiased model with 46 chro-
mosomes.

Calculated mean times to capture are 511 min and
125 min for 250 and 1000 searching MTs, respectively
(Figures 2E and 2F). This time is much longer than the
time it takes to capture a single kinetochore because
the process of capturing a kinetochore is stochastic,
with significant variations. In the case of multiple chro-
mosomes, the process ends only when the last kinet-
ochore is captured, so the most “unsuccessful” and
prolonged search determines the time it takes to cap-
ture the kinetochore. In fact, the mean time to search
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Schematic of the unbiased (A) and RanGTP-biased (B) search-and-capture models and graphical representation of stochastic simulations.
2-D projection of 3-D simulation of MT dynamics in the unbiased (C) and biased (D) models. MT distribution for the unbiased model (C) was
generated with spatially homogeneous optimal catastrophe frequency. Spatially dependent catastrophe frequency for the biased model (in
the middle nuclear cross-section) is shown in panel (F). The catastrophe frequency was calculated based on the assumption that it is an
exponentially decaying function of the RanGTP concentration with a chemical scale of 10 uM and a value of 0.2 catastrophes per second in
the absence of RanGTP. The 3-D distribution of the RanGTP gradient (serial sections in [E]) was calculated based on the assumption of a
uniform distribution of chromosomes in the nucleus and linear superposition of exponentially decaying RanGTP gradients centered at each

chromosome. The dashed white line represents the position of the nuclear envelope before NEB. Scale bars represent 5 pm.

is a logarithmic function of the number of the chromo-
somes (Figure 3B). (See Equation S17 in the Supple-
mental Data.)

The search time clearly decreases as the number of
MTs increases (Figure 2F). Even with 1000 searching
MTs, which is an upper limit to the usual estimate of
hundreds of MTs, the mean estimated time until capture
of 46 chromosomes in the unbiased model is substan-
tially greater than experimental measurements (20-30
min; see Figure S2). Thus, even under optimal condi-
tions, the unbiased model cannot explain the experi-
mental results.

Biased Search and Capture Is Sufficiently Fast

to Account for Observed Rates of Mitosis

The MT catastrophe frequency was never measured in
the vicinity of chromosomes in vivo, although astral
MTs were found to display a catastrophe frequency of
0.075 s~' away from the spindle during prometaphase
[7]. This value is 5.6-fold larger than the calculated opti-
mal value of 0.0134 s~', and simulations show that it
would yield an unrealistic mean capture time of 3720
min. This suggests that there is a bias of MT dynamics
near the chromosome, such that a MT growing in the
“wrong” direction would collapse rapidly, whereas a MT
that is close to the target would be allowed to continue
its growth. We tested whether such a bias can increase
the efficiency of search and capture to reach biolo-
gically observed time scales. Although there are several

molecular mechanisms that could plausibly generate
such a bias in MT dynamics, here we examine the pos-
sibility that a RanGTP gradient could serve to stabilize
MTs in the vicinity of chromosomes, as was previously
suggested [4, 5, 9-13]. To explore this possibility quan-
titatively, we simulated the following model.

We calculated the spatial distribution of RanGTP in a
gradient decreasing away from the chromosomes (Sup-
plemental Data and Figures 1B and 1E). We made the
catastrophe frequency a decreasing function of RanGTP
concentration, so that MTs undergo catastrophe very
rapidly away from the nucleus and are very stable near
the chromosomes. We found that the search durations
were minimized under conditions in which RanGTP de-
creased rapidly away from the nucleus but not rapidly
enough to change much between the adjacent chromo-
somes. In such cases there exists a “stabilizing sphere”
of radius similar to that of the nucleus, such that the
catastrophe frequency is step-like (Figure 1F) with no
catastrophes inside the nucleus and a high frequency
of catastrophes outside the nucleus.

We simulated this optimal, simplified, biased model,
in which a MT underwent a catastrophe immediately
outside the nuclear sphere and did not catastrophe in-
side it (Figure 1D). (Other than that, the simulations
were as described above; see also the Supplemental
Data.) The results are shown in Figures 2A and 2B. The
mean time until capture became as short as 11-48 min
for 1000-250 searching MTs, respectively. This result is



Current Biology

830
250 Searching MTs 1000 Searching MTs
g mean 48 (min) B mean 11 (min)
< std 16 (min) std 4 (min)
vy
©
£
a
20
E o
[
A £C mean 171 (min) D mean 41 (min)
o std 63 (min) std 15 (min)
o™
3 £
8¢
o §
a =
zE I —— mean 125 (min)
g std 266 (min) std 66 (min)
©
Q
=
2
(=
S

0 250 500 750 1000 1250 1500 0 50 100 150 200 250 300 350 400
Time (min) Time (min)

Figure 2. Distribution of Time until Capture

Simulation results summarized as the distribution of time until cap-
ture under different assumptions: stabilizing sphere with radius of
the nucleus (top: [A and B]), stabilizing sphere with radius of 1.5
times the nuclear radius (middle: [C and D]), and an unbiased
model with optimal dynamic instability parameters (bottom: [E and
F]). Each model is presented both for 250 searching MTs (left: [A,
C, and E]) and 1000 searching MTs (right: [B, D, and F]). Bars are
histograms of 1000 simulations, and the dashed line is an estimate
of the probability density function obtained from average shifted
histograms.

an order of magnitude faster than in the unbiased
model because in this case the MTs do not spend time
growing in the “wrong” direction and do not grow too
long because they are destabilized away from the chro-
mosomes (Supplemental Data). The estimated time
compares well with the measured prometaphase dura-
tion of 20-30 min (Figure S2), demonstrating that intro-
ducing a bias into the catastrophe frequency, with MTs
being more stable proximal to the chromosomes and
less stable distally, can explain the observed duration
of prometaphase.

Our analysis shows that the average search time is
inversely proportional to the number of MTs (Equations
S17 and S19). Not surprisingly, the cell increases the
number of MTs as it enters mitosis. The time also de-
creases drastically when the size of the kinetochores is
increased [7]. We performed simulations for 15 different
effective kinetochore radii from 0.08 to 1.2 um and for
20 different numbers of searching MTs from 100 to
2000. Each set of parameters was averaged from 100
simulations, equating to a total of 30,000 simulations.
Figure 3A shows how the search time depends on the
kinetochore size and MT number and demonstrates
that the biased-search parameters have to be finely
tuned to achieve the observed capture time. On the
other hand, our analysis predicts that the search time
depends weakly, as a logarithmic function, on chromo-
some number (Figure 3B). Moreover, we predict that the
variance of the search time is proportional to the loga-
rithm of the number of chromosomes.

The size of the stabilizing sphere is another important
parameter to be regulated. The stabilizing sphere
should include all the chromosomes as well as the path
between them and the centrosomes, but if it becomes
too big, the search-and-capture process loses its effi-
ciency because MTs grow too long and sometimes in
the “wrong” direction. We ran the simulation for a
sphere with a radius 1.5 times larger than the nuclear
radius and observed that the mean time until capture
increased 4-fold (Figures 2C and 2D).

An important parameter of our model is spindle size,
implemented as the nuclear radius. Previous work [2]
showed that the average time of the unbiased search
and capture grows exponentially with increasing chro-
mosome-to-pole distance for a single chromosome.
Our numerical simulations confirm that, in the unbiased
model for multiple chromosomes, the search time is an
exponential function of the nuclear size (Figure 3C). In
the biased model, according to both analysis and simu-
lations (Figure 3C), the search time increases more
slowly as a cubic function of the radius, which makes
it orders of magnitude more efficient. However, both
models predict an average search time that is larger
than characteristic biological time scales for nuclei of
15 pm radius or greater; for the unbiased model, the
average predicted time is approximately 10 hr, and for
the biased model it is approximately 1 hr.

Prometaphase Is Prolonged by 2- to 3-fold in Hela
Cells with Perturbed Levels of Ran

We measured the prometaphase duration approxi-
mately 20 min in Hela cells (Supplemental Data). An ob-
vious and testable prediction of our models is that per-
turbations of the RanGTP gradient should increase
both the time to capture and the duration of prometa-
phase, provided that this gradient affects the MT dy-
namics as assumed in the model. Our model predicts
that a dominant-negative mutant, RanL43E, will reduce
the efficiency of any stabilizing gradient and thereby
increase prometaphase duration, whereas a constitu-
tively active mutant, RanQ69L, should increase the size
of the stabilizing sphere and thereby overstabilize MTs
and increase the duration of prometaphase. To test this
prediction, we perturbed the RanGTP system in Hela
cells constitutively expressing a mitosis biosensor by
transfecting them with sequences encoding three dif-
ferent forms of Ran. Specifically, we overexpressed na-
tive Ran and introduced a dominant-negative Ran con-
struct as well as a constituently active one [14]. Both
constituently active and dominant-negative constructs
caused a 2- to 3-fold increase in prometaphase dura-
tion (Supplemental Data, including Figures S1 and S2),
as predicted, indicating that a RanGTP gradient can act
as bias generator in the search-and-capture process.

Discussion

Our work demonstrates that without any bias, the
search-and-capture mechanism is inefficient except in
very small cells. Furthermore, due to the polynomial in-
crease in search time with nuclear size, biased search
and capture could not be the sole mechanism for spin-
dle assembly in large cells. This demonstrates the limi-
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Figure 3. Time-to-Capture Dependence on the Model Parameter Values

(A) Results from a parameter scan of effective kinetochore radius from 0.08 (um) to 1.2 (.m) and number of searching MTs from 100 to 2000.
Black region: The average time until capture for both biased and unbiased models is smaller than 30 min. Gray region: The average time until
capture is smaller than 30 min only for the biased model. White region: The average time until capture for both models is greater than 30
min. Dashed lines are analytical (radius is inversely proportional to square root of MT number) fits to the stochastic simulations based on
Equation S20 in the Supplemental Data. The dash-and-dot circle represents an order-of-magnitude estimate of reasonable biological range.
A black dot marks the parameter choice made by Holy and Leibler [2].

(B) The effect of chromosome number on time until capture. Average time until capture with different numbers of chromosomes under three
different models: unbiased model with 1000 searching MTs (triangles), biased model with 250 searching MTs (diamonds), and biased model
with 1000 searching MTs (circles). Each data point is the average time until capture from 200 simulations. Gray lines are analytical (logarithmic
function) fits to the stochastic simulations based on Equations S17 and S19.

(C) The unbiased (dot-and-dash) model shows exponential increase of the time to capture as a function of nuclear radius. In the biased (solid)
model, the time is proportional to the cube of the radius. A typical experimental observation (nuclear radius and prometaphase time), such

as that illustrated in the Figure S1, is shown with the star.

tation of the centrosomal assembly pathway and sup-
ports experimental evidence that centrosomal and
chromosomal spindle assembly pathways are not mu-
tually exclusive [15-17].

Our analysis predicts that the search time depends
weakly, as a logarithmic function, on chromosome
number. This implies that the time it takes to capture
all chromosomes is not sensitive to mutations chang-
ing the number of chromosomes. This may have im-
plications for cancer, in which genomic instability
often causes an increase in chromosome number [18].
The logarithmic dependency on chromosome number
means there is only a 20% increase in the average time
it takes to capture chromosomes when the number of
chromosomes increases by 10, suggesting that cancer
cells pay a very small price for their genomic instability.
Moreover, we predict that the stochastic fluctuations
(variance/mean) of the search time are independent of
the number of chromosomes.

It is tempting to speculate that the cell optimizes not
just the rescue and catastrophe frequencies [2] but also
the size of the kinetochores [8] and a number of other
parameters to decrease the duration of prometaphase.
According to our analysis, larger kinetochores reduce
the time required for capture, and centrosome-inde-
pendent kinetochore fiber formation could effectively
increase the kinetochore size [19, 20]. In any event, the
cell must strike a balance between hiding and exposing
the kinetochores, a balance that minimizes kinetochore
misorientation, e.g., merotelic or syntelic attachment,
and yet permits effective capture.

Our computer models are based on a number of sim-
plifying assumptions that may affect the validity of the
results. In the model, any one chromosome-capture
event is independent of any other; there is no steric
interference between the kinetochores. Such interfer-
ence would increase the time to capture because some
chromosomes would be “hidden” from view until other
chromosomes were captured. It is not clear how pole-
ward movements of mono-oriented chromosomes
would affect the time it takes to capture the sister chro-
matid. Also, molecular details of MT-kinetochore or MT-
chromosome-arm interactions may affect our estimates
if reaching the target does not always lead to kinet-
ochore attachment, or if lateral kinetochore attach-
ments to the wall of the MT polymer lattice are frequent.
Our analysis also assumes a purely centrosome-
directed spindle-assembly pathway. This may not be
the case [20, 21]: MT nucleation near the chromosomes
as well as on the centrosomes, and the crosslinking
between those differently nucleating MTs, might drasti-
cally decrease the duration of bipolar spindle assembly.

Finally, our experimental results are merely an indica-
tion that the RanGTP gradient may contribute to the
bias. Modeling of the RanGTP gradient [22] suggests
that it may not be possible to generate such a gradient
in human somatic cells. Moreover, mutations in the Ran
effector RCC1 in mammalian tissue culture cells show
little change in spindle morphology [23], unlike the re-
sponse seen in Xenopus extract spindles, suggesting
that a RanGTP gradient may have mitotic roles in some,
but not all systems. Another possibility is that RanGTP
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affects MT-kinetochore interactions rather than MT dy-
namics [24]. Also, chemicals other than Ran [25, 26]
could contribute to the bias in search and capture, and
there may exist other, as-yet-undiscovered, mecha-
nisms for chromosomes or kinetochores to influence
MT dynamics. Further combined experiments and com-
puter simulations of prometaphase in model organisms
will lead to an improved understanding of the chemi-
cally biased search-and-capture mechanism.

Supplemental Data
Supplemental Data are available with this article online at http://
www.current-biology.com/cgi/content/full/15/9/828/DC1/.
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Mathematical and Experimental Analysis
of the ‘Search-and-Capture’ Process

Here we report on the results of mathematical analy-
ses and computer simulations that support the state-
ments and claims made in the main text for both the
unbiased and the biased models. The supplemental ma-
terial is organized as follows. First, we describe the
mathematical analysis of the unbiased model. We derive
a formula for the average search time of one MT search-
ing for one kinetochore, then find the optimal value of
the catastrophe frequency minimizing the search time,
and finally generalize the results to arbitrary numbers
of MTs and kinetochores. Second, we expand the analy-
sis to the unbiased model. Third, we investigate the
dependence of the search time on the model parameters
and compare the biased and unbiased searches. Fourth,
we describe three computer simulations, including one
simulation of the unbiased model and two variants of
the biased model. Finally, we describe the experimental
and theoretical procedures and experimental results.
The model parameters are listed in the table.

Derivation of the Probability Distribution

for the Search Time in the Unbiased Model

I. One MT and one kinetochore

(1) Let us define (i) the probability that a kinetochore (kt)
is eventually captured by a MT in the presence of a
single MT nucleation site before time T as P(t = 1), where
t denotes the time of capture, (ii) the probability of having
n sequentially nucleated MTs fail to capture the kineto-
chore as P(n), and (iii) the probability that, when the
(n+1)st MT captures the kinetochore, the time used up
by the preceding n cycles is less than 1 as P(t < 7|n).
According to the law of total probability [S1], we can
decompose P(t = 1) into a sum over n as follows:

Pt =1) = Y P(t =< 7ln) - P(n) (S1)

n=0
We analyze each of the component probabilities in more
detail, starting with P(n) and continuing with P(t < T|n).

(2) Each time a MT nucleates, it has some probability
p to attach to a kinetochore, which is at distance x from
the centrosome. This probability can be decomposed
into the product of (i) the probability of nucleating in
the right direction (Pgiecion) @and (ii) the probability of not
undergoing catastrophe before the kinetochore is
reached (P, ca)-

The probability of nucleating in the right direction:
If MTs are nucleated and grow in random, unbiased
directions, then the probability of nucleating in the right
direction can be calculated as the solid angle subtended
at the origin (centrosome) by the kinetochore “target”
surface area divided by the total solid angle 4w [S2].
This ratio can be expressed in terms of the ratio of the

kinetochore target area to the total area of the surface
of a sphere of radius x:
wrE ra

P direction = 41TX2 = @, (82)

where ry; is the effective kinetochore radius.
Probability of not undergoing catastrophe before the
kinetochore is reached: The time from the nucleation of
a MT to its catastrophe is approximately an exponential
random variable [S3]: the corresponding probability
density function is f,;.exp[—f..t], where f.; is the catas-
trophe frequency. The probability that a MT nucleated
at the proper angle reaches the kinetochore is the proba-
bility that the MT does not catastrophe before the “suc-
cess” time T; = x/V,, the time required to grow at a rate
V; to a length x equal to the distance to the kinetochore, so

Pno cat (t < Ts) = J‘:fcatexp[ifcatt]dt

= exp[—f.ux/Vy]. (S3)

Therefore, the probability that a MT will reach a kineto-
chore is
rd

P = PuiectionPnocat = — 5 exp{

Xfea
o ——f}. (S4)

Ve

(3) The average unsuccessful cycle time (the lifespan
of an unsuccessful MT from nucleation through catas-
trophe to complete depolymerization) T, is the average
time until a catastrophe, (1/f..;), plus the corresponding
time for the MT to shrink, (V,/Vf..):

Vo + Vg
TUC stcat ’ (85)
where V; is the rate of MT shrinking.

(4) The number of unsuccessful nucleations required
before a successful MT-kinetochore attachment is a ge-
ometric random variable [S1]: P(n) = p(1 — p)". The
conditional probability P(t < 7|n) equals the probability
that the total time taken up by n unsuccessful searches
is less than :

n
P(t = 7|n) = P( D Toycres < T). (S6)

i=1
The duration of each nucleation cycle, given that the
rescue frequency is zero, is an exponential random vari-
able with the average time T, calculated above. The
sum of n exponential random variables is the Gamma
random variable [S1]

1 Js"*’e*s”ucds. (87)

P(t = 'T|n) = ﬁ
uc(n )'O

Finally, the probability for a capture event occurring
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before time 7 is:

Pt=1=p-+ St —prp- Pt =7l

=p+ E{ﬁ —prpe: oo =) ! 1)|r8””e‘$”ucds}

_p P p)HEﬁ*p)sesn ds
=p+ M LT’e_pS/T"CdS
=p+(1-p—e* (S8)

where 7 > x/V, and ' = 1 — x/V,. For values of p < 1,

the characteristic number of unsuccessful searches is
n > 1 and the typical search time is T > x/V,, so

Pt=1~1-e " (S9)

This analysis shows that the time until capture is distrib-
uted exponentially with the approximate average search
time:

T _ Vg + VodX®

Juc X f cat
vsfcaf r kt2

(S10)

Tsear ch —

g

where Tii,., is the search time of i MTs searching for j
targets.

II. Optimal catastrophe frequency

One can find the optimal catastrophe frequency by tak-
ing the derivative of Equation S10:

d X fnat}/ ) ( {X f cai}/ X fcat )
ex ca ex| fca -1
ar TPy, [l Py, [ Ty,
— 0, oo — Vo (s11)

This result was obtained previously by Holy and Leibler
[S4], although by less rigorous means.
Ill. Ny, MT and one kinetochore
Let Ny be the number of searching MTs. For simplicity,
we analyze both biased and unbiased models while as-
suming that the MT number is constant. In fact, this
number fluctuates because MT nucleation is a stochas-
tic process. However, because both models are ana-
lyzed under optimal conditions, we assume a high nucle-
ation rate such that the number of nucleation sites is
the limiting factor.

The probability that at least one MT will attach to the
target before time 7 is

Puva (€ =1) =1 — Py (¢ > 1) = 1 — (P(t > 7)™
=1 - (e P =1 — e PN, (S12)

Therefore, the time until capture of a single kineto-
chore by N, MTs distributes exponentially as well with
the average search time:

T _Vy+ Vi 422

XFeat
- ex
Nup Vifea Nurk

Ve

Tl —

search

,» (S13)

which is Ny, times less than that for one MT.

IV. N, MTs and Nk kinetochores

Let Nx be the number of kinetochores. Because the
attachment of a kinetochore is independent of all other
kinetochore attachments, the probability that all kineto-
chores will be attached to MTs before time 7 is

Puupk (t = 7) = (Pama(t = 1)) (S14)

= (1 — e P™ulTa,

The corresponding probability density function can be
found by differentiation:

f(t) = % (1 — e—ptNM/Tuc)NK
_ PNkNy

T (1 — e PNt @ PNuT.  (S15)

The maximum of this probability density function can
be found by differentiation:

f(t) PN¢Ny (1 — e PMu/T2 (1 e—ptNM/Tuc)

ue dt
‘11 — Nge P/ = 0. (S16)

Solving this equation (the expression in square brackets
is equal to zero), we find the most likely time when the
last kinetochore is captured, t = (T,./oNy) In N¢. The
average time to capture is not equal to the most likely
time, but numerical analysis shows that these two times
are very close. Therefore, the average time necessary
for the attachment of all kinetochores is

+ 2
Tt = ey, = gYat Ve A
pNM stcat NMrkt

-exp | Xet| . in Ny, €~ 1 (817)

g

Numerical analysis shows that, remarkably, the stan-
dard deviation of the search time o is almost indepen-
dent of the kinetochore number when this number is
greater than 10:

o =~ 1.3 - (T,/pNy) ~ TN/l Ny. (S18)
This formula suggests an interesting test of the theory:
if we know the average measured search time, we can
divide it by the logarithm of the chromosome number,
find the standard deviation of the search time and com-
pare it with the measured value. Jones et al. [S5] mea-
sured the time of mitosis as 32 = 6 min; prometaphase
takes about half of this time. 32 min/(In(92 kts)) =~ 7 min,
which is in a very good agreement with the measured
value.

Derivation of the Probability Distribution

for the Search Time in the Biased Model

(1) In the biased model, the time to catastrophe is not an
exponential random variable, so the analytical approach
provides only limited results. However, we can use Wald’s
theorem [S1] to calculate the average time it takes to
capture a single kinetochore. This theorem states that
the average value of the sum of a random number, n,
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of identically distributed random variables is equal to
the product of the mean of the number of variables and
the mean of the distribution of the variables:

(27 = () - (T,

In our case, n is the number of unsuccessful searches,
and T; is the i cycle time, so we have (n) = 1/p and
(T) = T,. The theorem says that the average time to
capture Tk = Tu/p. Here, as in the unbiased model,
the meaning of the variables T,. and p are the same,
i.e., the average time of an unsuccessful search cycle
and the probability to capture respectively, but their
values are different, as discussed below. When the num-
ber of MTs is Ny, similar simple argument shows that
the average time to capture
T:gg:ch = Tuc/ (NMp)

(2) In the biased model, the time of an unsuccessful
search T, is less random than in the unbiased model
(see below). Because of that, the following heuristic ar-
gument allows us to estimate the probability distribu-
tion, as well as the average and standard deviation of
the time to capture, in the biased model when the kineto-
chore number is greater than 1. In this case, the random
number of unsuccessful searches n before capture is
related to the time to capture t by the expression n =
t/T,.. Because n is a geometric random variable, P(n) =
p(1 — p), so fit) =~ Pt/T,) = p(1 — p)"« = pe~*. Here
o« = —In(l — p)/T, = p/T,. Therefore, the probability
density function for the time it takes one MT to capture
one kinetochore in the biased model is exponential:
Pt = 1) =1 — e, exactly as in the biased model
(Equation S9), where, however, T, and p are different.
The analysis of the unbiased model above is then imme-
diately applicable to the biased model. Namely, for Ny
MTs and N kinetochores:

, T..(biased)
TMwMNqbiased) = C—4————" ,
search( I d) NMp(biased) K
i T..(biased)
biased) ~1.3: ———— C~1 (S19
of d) Nyp(biased) (519

Similarly, the corresponding probability density function
is given by Equation S15 and has the same shape as it
does for the unbiased model.

Dependence of the Average Search Time on the
Kinetochore Radius and MT Number

The time to capture is inversely proportional to the num-
ber of searching MTs and to the square of the kineto-
chore radius. Therefore:

rie = AINNy (S20)

where A is an arbitrary constant that gives the level
curves of search time in the r,;, — Ny, space.

Analysis of the Difference in Capture Time
between the Unbiased and Biased Models
Equations S17 and S19 show that the average time until
capture in the biased model is less than that in the

unbiased model by a factor equal to [p(biased)/p(unbi-
ased)] - [T,.(unbiased)/T,(biased)]. The directional factor
is the same in both models, but in the biased model there
is no chance for a MT to catastrophe before reaching the
target, if we assume the piecewise constant catastrophe
rate, whereas in the unbiased model the respective
event decreases the number of successful MTs by ap-
proximately 2.7 in the optimal case. Therefore, p(bi-
ased)/p(unbiased) ~ 2.7. Half of the MTs in the biased
model—those growing in the “wrong” direction, away
from the sphere of the nucleus—catastrophe immedi-
ately, thereby decreasing the ratio T,(unbiased)/T,.
(biased) by a factor of 2. Furthermore, in the unbiased
model, MTs have to grow equally long on average, inde-
pendently of their orientation. On the contrary, in the
biased model, MTs growing in a direction almost normal
to the straight line between the spindle poles reach the
edge of the nuclear sphere quickly and catastrophe.
Because of that, the average length of the searching
MTs is much smaller in the biased model. The numerical
analysis described below predicts that in the biased
model the MTs are on the average 1.7 times shorter (so
the corresponding cycle time is 1.7 times shorter) than
those in the unbiased case. Therefore, T, (unbiased)/
T.c(biased) ~ 2 X 1.7 = 3.4 and

T'Nx(unbiased)/T""(biased) ~ 2.7 x 3.4

search search

=9.2, (S21)

so the analysis predicts that the search and capture
time in the biased model is an order of magnitude smaller
than it is in the biased model.

Computer Simulations of the

Search-and-Capture Process

The practical use of the mathematical analysis is limited
because:

(1) The kinetochores are distributed in a specific way,
and formulae for computing probability distributions
and averages become too cumbersome when kinet-
ochore location is taken into account;

(2) In the biased model, the unsuccessful search time
is not an exponential random variable, so it is not
possible to derive the exact probability distribution
for the sum of the unsuccessful search times;

(3) Mostimportantly, the approximations in the analysis
above are valid in the limit when the typical search
requires several repeated attempts (multiple nucle-
ation events: pNy, = 1. However, when the total MT
number is large, this is not always true. For example,
in the biased model, if

NM = 500, ry = 1 wm, X
=10 um, pNy ~ (r2Nu/4x?) ~ 1,

and the error of the approximation becomes too
great.

Therefore, we use Monte Carlo simulations as
follows.
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I. Optimal catastrophe frequency
in the unbiased model
Equation S11 gives the optimal catastrophe frequency
in the case of one kinetochore at distance x. In the case
of many kinetochores randomly positioned within the
nuclear sphere, the optimal frequency depends on a
weighted average of the average time to capture. First,
because each kinetochore has to be captured from both
poles, we generated 10° random positions of kineto-
chores uniformly distributed inside the nuclear sphere
and calculated numerically the distance from both poles
generating 2+10° random distances. We used this set of
distances to estimate numerically the probability density
function of pole-kinetochore distances. Second, we
used a random number generator to generate a few
dozen catastrophe frequency values and a few dozen
values of x, the latter by using the computed probability
density function of pole-kinetochore distances. Third,
we found the average weighted search time for each
frequency by using Equation S10 to find the search time
for each distance and then calculating the average. Fi-
nally, we numerically found the optimal catastrophe fre-
quency that minimizes this weighted average time for
capture.

The result is

foptmal ~ 0.0134/sec. (S22)

The corresponding average MT length found is
Vg/fgapttimal:

(x)(unbiased) = V, /f&im ~ 13.3 um. (S23)

In the biased sphere model, we used the same com-
puted probability density function of pole-kinetochore
distances to find the average MT length. If we count
only MTs that grow in the nuclear sphere, this average is
close to 8 pum. However, half of the MTs —those growing
away from the sphere —catastrophe immediately, bring-
ing the average length down to

(x)(biased) =~ 4 pm. (S24)

II. Simulation of the time to capture
in the unbiased model
The computer code works as follows:

1. Chromosome positions are generated randomly
within the nuclear sphere, and two corresponding
pole-kinetochore distances are calculated.

2. For each of these distances, the probability of a suc-
cessful search, p, is calculated from Equation S4.

3. The number n of unsuccessful searches is generated
randomly according to the geometric probability dis-
tribution: P(n) = p(1 — p)".

4. The duration of each unsuccessful search is gener-
ated randomly according to the exponential probabil-
ity distribution P(t) ~ exp(—t/T,), where T, is given
by Equation S5 and the sum of n such times, plus
the successful search time (x/V,), is calculated.

5. The previous four steps are repeated N, (humber of
MTs) times for each of the chromosomes, then (Ny/2)
(number of chromosomes) times.

6. The maximum of Ny search times is found; this is the
search time of one numerical experiment.

7. A large number of numerical experiments (the first
six steps) are carried out, and the results are reported
in the histograms and processed statistically.

lll. Simulation of the time until capture in the biased

model with the sphere of influence

The computer code works as follows:

1. Chromosome position is generated randomly within
the nuclear sphere, and two corresponding pole-
kinetochore distances are calculated.

2. For each of these distances, the probability of a suc-
cessful search is calculated from the formula p =
re?/(4x2).

3. The number n of unsuccessful searches is generated
randomly according to the geometric probability dis-
tribution: P(n) = p(1 — p)".

4. The duration of each unsuccessful search is gener-
ated randomly, first by finding a random MT length
X; according to the computed probability density
function of “pole to edge of the nucleus,” and then
by finding the corresponding time T; = X; - (1/V,) + (1/
Vi)]. Then, the sum of n such times, plus the success-
ful search time (x/V,), is calculated.

5. The previous four steps are repeated N,, (number of
MTs) times for each of the chromosomes, and then
(N«/2) (number of chromosomes) times.

6. The maximum of Nk search times is found—this is
the search time of one numerical experiment.

7. A large number of numerical experiments (the first
six steps) are carried out, and the results are reported
in the histograms and processed statistically.

IV. Simulation of the time until capture in the biased

model with continuous spatial RanGTP gradient

The computer code works as follows:

1. Positions of 46 chromosomes are generated ran-
domly and uniformly within the nuclear sphere.

2. The spatial RanGTP distribution is generated as a
linear superposition of the exponentially decreasing
[S6] concentrations of RanGTP centered at each ki-
netochore:

Ran(x) = AE;‘;e*V‘ x=%,

where A is the RanGTP concentration in the immedi-
ate vicinity of a chromosome and v, is the inverse
space constant associated with the decay RanGTP
away from a kinetochore. RanGTP spreads effec-
tively from a chromosome, X is the 3-D coordinate,
and X; is the coordinate of the center of i kt. (The
exact value of A is irrelevant provided it is sufficiently
large; the order of magnitude of the parameter v, is
1/(a few pm)—numerical experiments showed that
fine tuning of this parameter does not affect the re-
sults.)

3. The spatially dependent catastrophe frequency was
calculated as

felX) = B exp(—vy.Ran(x)),

where v, is a phenomenological parameter showing
how sensitive the catastrophe frequency is to
RanGTP concentration and B is the maximal fre-
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Figure S1. Mitosis Time Measured with the Mitosis Biosensor

During interphase (A) the florescence biosensor is localized to the
nucleus. After NEB and during prometaphase (B), the biosensor has
a diffusive cytosolic localization pattern as well as an electrostatic
ionic interaction with the condensed chromatids; this interaction
allows for the visualization of the metaphase plate (C) and sister-
chromatid separation during anaphase (D). Finally, cytokinesis (E)
and the reformation of the nuclear envelope in two daughter cells
(F) mark the end of mitosis. The scale bar represents 5 pm.

quency. The phenomenological function f_,(X) is cho-
sen so that at high (low) RanGTP concentration the
catastrophe frequency tends to zero (maximum). (The
exact value of B is irrelevant provided it is sufficiently
large; we varied the value of the parameter v, in the
numerical experiments. The results are not sensitive
to specific functional dependence of the catastrophe
rate on RanGTP concentration; linear dependence
works as well as the exponential one.)

4. RanGTP concentrations and corresponding catas-
trophe frequency distributions fi,(/) along the trajec-
tories from each pole to the 46 corresponding kineto-
chores were calculated from the 3-D RanGTP
distribution with 3-D linear interpolation in Matlab.

5. For each kinetochore, the probability of a successful
search is calculated with numerical integration ap-
plied to the formula p = r,?/(4x?) - Py, cat Where

Procat = €XP

|t )d//vg).

6. The number n of unsuccessful searches is generated
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Figure S2. Duration of Different Stages of Mitosis in Cells Express-
ing Different Forms of Ran

Measurement of prometaphase and metaphase (A) and NEB until
anaphase duration (B) in untransfected cells (UN); control cells trans-
fected with CFP (control); cells overexpressing native Ran (OE); cells
expressing a constitutively active mutant form of Ran (CA); and
cells expressing a dominant-negative mutant (DN) form of Ran. * p
value <105, ** p value <10~%in a comparison to untransfected cells
via a Student’s t test. Error bars are standard error (SEM). The total
numbers of mitotic cells measured were 35, 49, 22, 66 and 42 for
control, UT, OE, CA, and DN, respectively. Out of these, congression
was visible in 31, 47, 17, 27, and 11 cells, respectively, and both
prometaphase and metaphase duration were measured.

randomly according to the geometric probability dis-
tribution: P(n) = p(1 — p)".

7. The duration of each unsuccessful search is gener-
ated randomly, along a randomly generated trajec-
tory, by (i) finding the catastrophe frequency distribu-
tion fi,(/) along this trajectory, (i) finding the random
maximal MT length X; (via the inverse method for
random number generation for a non-homogeneous
Poisson process [S1]) characterized by the probabil-
ity density

Nexp( - j:’fga,(/)d//vg),

and (iii) finding the corresponding time T; = X; - [(1/V,) +
(1/VQ)]- Then, the sum of n such times, plus the suc-
cessful search time (x/V,), is calculated.

8. The previous seven steps are repeated for all kineto-
chores.

9. The maximum of the search times is found—this is
the search time of one numerical experiment.

To save computation time, a “shortcut” was used,
such that when the number of unsuccessful nucleations
was greater than 50, the time until capture was approxi-
mated by a normal distribution for which the average
and variance were calculated based on 500 random-
nucleation cycles. Even with this shortcut, a single nu-
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Table S1. Terms Used in This Study

Symbol  Meaning Type Value/Distribution/Equation
t Time until capture Random Variable Equations S9, S12, S15
n Number of nucleation cycle needed until a successfulone  Random Variable Geometric discrete
for a single MT
p Probability for single MT to capture target Random Variable Depends on x, r, fe, Vy see Equation S4
X Pole-kinetochore distance Random Variable Uniform in sphere radius r,,,
Ts The time it takes a MT to grow to the distance x Random Variable T, = x/V,
Tidareh Time for i MTs to capture j kinetochores (targets) Random Variable Equations S10, S13, S17, and S19
o Standard deviation of search time Random Variable Equation S18
P girection Probability to nucleate in the right direction toward Random Variable Equations S2
a target
P cat Probability not to catastrophe before reaching the target Random Variable Equations S3
Tuc Average time of an unsuccessful nucleation cycle Variable Equations S5
Frescue MTs Rescue frequency Optimized Parameter 0[]
foat MTs Catastrophe frequency Optimized Parameter 0.0134 [V]
Ny Number of searching MTs Parameter 250 / 1000 (see Fig 3.)
Ng Number of kinetochore (targets) Parameter 92
e Radius of the nucleus Parameter 10 [pum]
I Effective radius of the kinetochore Parameter 0.44 [um] (see Fig. 3)
Vs MT shrinking velocity Parameter 0.2050 [*"]
A MT growth velocity Parameter 0.1783 [*"]

merical experiment took longer than 24 hr on an IBM dual
CPU Opteron server. Therefore, we could not gather
enough statistics from simulations of this sophisticated
model. However, with a limited number of numerical
experiments, we established that:

1. The average capture time is a decreasing function
of v, (within certain limits). This means that the more
sensitive catastrophe frequencies are to RanGTP
concentration, the more efficient is kinetochore cap-
ture. Note that large values of y, generate a catastro-
phe frequency distribution that resembles the
piecewise constant model described in lll.

2. The times to capture were close to and slightly
greater than those computed in the model where the
catastrophe frequency is zero in the nuclear sphere
and very large outside of it. Therefore, we conclude
that the biased model with the sphere of influence
is the optimal way to use the RanGTP gradient to
guide MTs to capture kinetochores.

Model limitations: In the simulations, we neglected
the effect of decreasing the number of searching MTs
after part of the kinetochores is attached because the
number of the searching MTs is typically an order of
magnitude greater than the kinetochore number, and
this effect does not introduce large error. We also ne-
glect crosslinking of some of the searching MTs with
their counterparts from the opposite pole. Note also that
these errors would increase the effective search-and-
capture time slightly, whereas our main focus is estimat-
ing the lower limit for this time.

A very difficult issue left to be dealt with in the future
is that history dependence in MT dynamic instability
could play an important role in animal-cell chromosome
capture; it has been shown that during their assembly
in vitro [S7], in extracts [S8], and in interphase cells [S9],
MTs exhibit history dependence in their catastrophe
behavior. Specifically, it has been found that the distri-
bution of growth times in vitro is -y distributed [S7] rather

than exponential, as is generally assumed. If catastro-
phe is low early in the growth phase, then MTs will tend
to persist out to the edge of the nuclear sphere, thereby
increasing the probability not to catastrophe until at-
tachment. (This effect was considered in [S6] in a differ-
ent context.)

Supplemental Experimental Procedures and Results

Hela cells constitutively expressing the fluorescent mitosis biosen-
sor [S5] were grown in Dulbecco’s modified Eagles medium (DMEM)
supplemented with 10% fetal calf serum, 2 mM glutamine, 100 U/ml
penicillin, and 100 pg/ml streptomycin (from Invitrogen). Hela cells
(2500) were plated in 96-well polystyrene plates (Costar) and 24 hr
later were transfected with 1 ul of Fugene (Roche) and 400 ng of
the following constructs, ECFP (Clontech), wild-type Ran fused to
ECFP, constitutively active Ran (RanQ69L) fused to ECFP or the
dominant-negative Ran (RanL43E) fused to CFP. Ran constructs
were gifts of Won Do Heo [S10]. Because of the toxicity of the Ran
constructs, imaging was started 10 hr after transfection. The cells
were imaged with an Axon ImageXpress 5000A equipped with an
environmental control system (Molecular Devices). The imaging
chamber was maintained at 37°C and 5% CO,. Cells were imaged
with a framing rate of every 5 min for the EYFP and every 30 min
for the ECFP with a 10X objective lens for approximately 12 hr.
Images were compiled into sequences with the IXconsole (Molecular
Devices), and mitotic cells were analyzed. NEB was determined
as the time the mitosis biosensor redistributed from the nucleus
throughout the cell. As can be seen from Figure S1, the biosensor
clearly localizes to condensed chromatin, allowing prometaphase,
metaphase, and anaphase to be identified; e.g., at metaphase the
chromatin-associated biosensor was aligned in one plane in the
middle of the cell. Figure S2 shows the prometaphase and meta-
phase durations measured in the wild-type and mutant cells.

Theoretical Procedures
The numerical codes were implemented with Matlab. Numerical
experiments were performed on an IBM dual CPU Opteron server.
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