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Abstract
Intracellular forces shape cellular organization and function. One example is the
mitotic spindle, a cellular machine consisting of multiple chromosomes and centro-
somes which interact via dynamic microtubule filaments and motor proteins, resulting
in complicated spatially dependent forces. For a cell to divide properly, it is important
for the spindle to be bipolar, with chromosomes at the center andmultiple centrosomes
clustered into two ‘poles’ at opposite sides of the chromosomes. Experimental obser-
vations show that in unhealthy cells, the spindle can take on a variety of patterns.What
forces drive each of these patterns? It is known that attraction between centrosomes is
key to bipolarity, but what prevents the centrosomes from collapsing into a monopo-
lar configuration? Here, we explore the hypothesis that torque rotating chromosome
arms into orientations perpendicular to the centrosome-centromere vector promotes
spindle bipolarity. To test this hypothesis, we construct a pairwise-interaction model
of the spindle. On a continuum version of the model, an integro-PDE system, we
perform linear stability analysis and construct numerical solutions which display a
variety of spatial patterns. We also simulate a discrete particle model resulting in a
phase diagram that confirms that the spindle bipolarity emerges most robustly with
torque. Altogether, our results suggest that rotational forces may play an important
role in dictating spindle patterning.
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1 Introduction

Spatial organization in the interior of cells is intimately linked with cellular function.
Consequently, understanding the underlying mechanisms of this organization is a
fundamental pursuit in cell biology. One such example is the mitotic spindle, a cellular
machine that spatially organizes copied genetic material during cell division. The
mitotic spindle has several distinct phases, but here we focus on so-called metaphase,
where in healthy cells, centrosomes (CSs) are at twoopposite ‘poles’ and chromosomes
(CHs) aggregated in the middle, on the ‘equator’, into the so-called metaphase plate
(Dumont and Mitchison 2009), as shown in Fig. 1. This architecture is crucial for
proper segregation of CHs when the cell divides.

The spindle is not always bipolar. Various abnormalities in cancer cells (but also
some healthy cells) result in the appearance of more than two CSs per cell (Rhys and
Godinho 2017). In these cells, the resulting spindle pattern varies, and can be monopo-
lar, bipolar, or multipolar. (Faggioli et al. 2011). If the resulting pattern is multipolar,
consisting of CSs aggregating in more than two groups, proper mitosis fails (Basto
et al. 2008) and these cells often die or display developmental defects (Ogden et al.
2012). However, cancer cells with multiple CSs can ‘cluster’ these extra components
into an apparent bipolar spindle and these cells divide normally (Kwon et al. 2008).
Because this clustering allows many cancer cells to proliferate, understanding of the
underlying mechanics of spindle patterns is important for development of anti-cancer
therapies (Ogden et al. 2012).

Both chemical and mechanical interactions are known to be involved in the for-
mation of the spindle (Dumont and Mitchison 2009), but we will focus on purely
mechanical in this work. The mechanical forces between the CSs and CHs are primar-
ily generated by microtubules (MTs) and molecular motors, as shown in Fig. 1. MTs
are anchored in the CSs with their minus ends, while the plus ends grow outward,
in random directions and with complex, stochastic dynamics (Dumont and Mitchison
2009). Some of antiparallelMT pairs from twoCSs overlap, and a host of motors at the
overlaps exert forces on the MTs. Some of these motors (i.e., kinesin-14;Dumont and
Mitchison 2009) generate forces by attaching to oneMTwith their cargo domains and
using the motor head to walk toward the minus end of the other MT, effectively sliding
the other MT inward (Fig. 1c) and generating the attraction between the respective
pair of the CSs. Other motors (i.e., kinesin-5;Kwon et al. 2008) are bipolar with motor
heads on both ends; on the antiparallel MT overlaps, these motors walk to the plus
ends of both MTs effectively sliding the MTs apart and giving rise to the repulsion
between the two CSs (Fig. 1c). Yet other motors, dyneins, ‘reel in’MTs that connect at
their plus ends with kinetochores—large protein complexes in the middle of the CHs,
resulting in effective attraction between any pair of CS and CH (Hays and Salmon
1990), as shown in Fig. 1a, c. Dynein motors play many roles in mitosis depending on
differential localization and regulation. Henceforth, when referencing dynein, we will
specify their localization and respective action. However, other MTs run with their
plus ends into the chromosome arms, and motors on the arms (chromokinesins), by
walking to the MT plus ends, tend to push the MT tips away generating an effective
repulsion between a pair of CS and CH, called the polar ejection force (Ke et al.
2009). In addition to the motor-generated forces, MT dynamics lead to both push-
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Fig. 1 a The bipolar, mitotic spindle. Centrosomes (CSs) are positioned on opposite sides of a group of
chromosomes (CHs). Their interaction is through microtubule filaments and molecular motors associated
with them. b The complexity of the interactions driving motion in the spindle are approximated here as
pairwise interactions that depend only on relative distance and orientation of CSs and CHs. c Individual
interactions in the model. CS-chrom interactions consist of short-range repulsion from poleward ejection
forces of strength fr and long-range attraction from motors of strength fa . A resulting torque from these
forces which promotes CH being orthogonal to their interaction with the CS (θ = 0). CSs attract or repel
each other depending on model parameter fs . CHs repel each other with strength fc and align via a local
torque (Color figure online)

ing (growing MTs pressing on the CH arms) and pulling (shortening MTs effectively
pulling the kinetochores hanging on to the disassemblingMT ends) forces; mathemat-
ically, these forces can be lumped together with the motor-generated forces (Fig. 1a,
c). Although this list neglects several important factors (e.g., interaction with the cell
boundary/cortex), previous studies have shown these to be sufficient in explaining the
origin of of the spindle architecture (Ferenz et al. 2009; Nédélec 2002).

However, what happens when the CS number is greater than 2? In this work, we
explore this setup through mathematical modeling. Inhibition of the kinesin-14 motor,
likely responsible for the CS–CS attraction promotes the frequency of multipolarity
(Kwon et al. 2008; Basto et al. 2008), suggesting that the mutual inter-CS attraction
is key to the bipolarity (Kwon et al. 2008). However, the simple question arises: why
does this CS–CS attraction not just aggregate all CSs into just one cluster making the
spindle monopolar? Such monopolar spindles were observed in the situations when
motors responsible for inter-CS repulsion were inhibited (Kapoor et al. 2000; Ferenz
et al. 2009). One theoretical solution to this problem was proposed in (Chatterjee et al.
2020): attraction of the CSs to the cell cortex at the opposite cell ends can keep two
groups of mutually attractive CSs apart. In this study, we wish to find whether such
spindle interactions with the cell cortex are necessary, or the multi-CS spindle could
remain bipolar autonomously, even without interacting with the cell boundary.
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Fig. 2 Cartoon explaining intuition behind torque promoting a bipolar spindle.Without torque, centrosomes
(CSs) attract each other and aggregate into a monopolar configuration.With torque, CS aggregates still form
but are offset by the rotational motion that promoting a bipolar configuration (Color figure online)

To this end, we explore the idea that a torque between the CSs and CHs could
complement the forces to ensure the bipolarity of the multi-CS spindle. The idea is as
follows: in previous models, CHs were usually considered as material points (Ferenz
et al. 2009; Chatterjee et al. 2020). However, they are more accurately represented as
double rods ‘glued’ together at the centromere, in the middle, with ‘rabbit ears’ of CH
arms stretching from the centromeric region. Mathematically, therefore, the CHs can
bedescribed as elongated, oriented objects characterized, besides the coordinates of the
center-of-mass, by their orientation angles. This raises the question: can interaction of
theCH-CS pair depend not only on theirmutual distance, but also on the angle between
the CS–CH vector and CH axis? We posit that it can: if the angle deviates from 90
degrees, then one of the CH arms is closer to the CS, and the polar ejection force from
the CS onto this proximal arm is greater than that between the CS and another, distal
arm. This effect would create a torque that tends to pivot the CS and CH until the
CS–CH vector and CH axis are normal to each other (Fig. 1c). We hypothesize that
such action assists spindle bipolarity, see Fig. 2: if the CHs cluster together and align
with each other (as is observed in the metaphase plate; Hays and Salmon 1990; Faruki
et al. 2002), then multiple CSs would be pushed away from most of the space into
two sectors that are perpendicular to the CH orientation. This effect would prevent
aggregation of the CS groups from two different sides of the CH cluster and lead to
eventual clustering of the CSs into just two groups. In order to test this intuition and to
determine what spindle states emerge from all these complex interactions, we resort
to mathematical modeling.

Modeling has a long history of helping experiment to elucidate the spindle dynam-
ics (Armond et al. 2015; Zaytsev and Grishchuk 2015; Pavin and Tolić 2016; Zaytsev
andGrishchuk 2015; Redemann et al. 2019; Edelmaier et al. 2020). Specifically, force-
balancemodels have been used to probe the spindle structures in one-dimensional (1D)
(Nédélec 2002; Ferenz et al. 2009), two-dimensional (2D) (Zaytsev and Grishchuk
2015), and in realistic three-dimensional (3d) (Edelmaier et al. 2020; Chatterjee et al.
2020) geometry. Several types of mathematical models of the spindle have been pro-
posed. There are the most detailed agent-based models (discrete and stochastic) that
explicitly simulate biochemical details of individual molecular motors and dynamic
elasticMTs (Letort et al. 2019). The advantage of such detailedmodels is unambiguous
mapping onto experimentally observed architectures, but the drawback is difficulty of
exploring parameter space of the models. In principle, one can roughly average the
action of multiple motors and MTs; the resulting mean-field approximation leads to
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the second type of models: pairwise-‘interacting particle’ models (Ferenz et al. 2009;
Manhart et al. 2018), inwhich theCSs andCHs aremodeled as particles driven by inter-
actions through distance-dependent forces. The forces in the particlemodels often have
corresponding potential energy, and so the third type of models—minimizing the total
mechanical energy of the spindle—can give us the spindle’s mechanical equilibrium
without simulating the transient dynamics (Chatterjee et al. 2020). Lastly, an additional
approximation can be made by representing the CSs and CHs as continuous density,
rather than as discrete particles. In this study, we avoid the complexity of the most
detailed agent-basedmodels and explore the role of the CS–CH torque in the bipolarity
of the multi-CS spindles by using the interacting particle and continuous models.

2 Continuous and Discrete Models

2.1 Discrete (Interacting Particles) Models

In the model, we consider i = 1, . . . , NS CSs with positions yi (t) ∈ R
2 and

j = 1, . . . , NC CHs with positions x j (t) ∈ R
2 and orientations θ j (t). Each CS

(and each CH) interacts with all other CSs and all CHs (respectively, all CSs) by pair-
wise, distance-dependent interactions, see Fig. 1. The evolution of all positions and
orientations is described by the equations

μc ẋ j =
NC∑

k=1

Fchrom−chrom(x j − xk) +
NS∑

k=1

FCS−chrom(x j − yk, θ j ), (1a)

μs ẏi =
NC∑

k=1

Fchrom−CS(yi − xk, θk) +
NS∑

k=1

FCS−CS(yi − yk), (1b)

μrotθ̇ j =
NC∑

k=1

τchrom−chrom(x j − xk, θ j − θk) +
NS∑

k=1

τCS−chrom(x j − yk, θ j ). (1c)

Here, as is conventional in cellular system, we use the overdamped mechanical equa-
tions, in which linear and angular velocities are proportional to forces and torques,
respectively, and inertial terms are negligible due to the lowReynolds numbers. Param-
etersμc, μs, μrot are the effective viscous drags for the CH, CS and CH arms rotation,
respectively.We introduce the distance dependence of the forces and torques andmodel
parameters below. The CS and CH coordinates are the 2D vectors; 0 < θ j (t) < π .
Numerical integration of the first-order ODEs of the discrete model is straightforward
and standard.

2.2 Continuous Models

As is common in pairwise interacting particle models, we seek qualitative insight of
our model by considering the limit of dense particles, or the so-calledmean-field limit.
Citing rigorous arguments such as Bodnar and Velazquez (2005) and Carrillo et al.
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(2014)) but omitting further detail here, we introduce densities of CSs (S(x, t)) and
CHs (C(x, θ, t)). These densities arise in the limit of dense particles, N−1

S

∑
i δ(x −

yi (t))
NS→∞−→ S(x, t) and N−1

C

∑
j δ(x − x j (t))δ(θ − θ j )

NC→∞−→ C(x, θ, t). In this
limit, integrals become sums, and the resulting continuous system of integro-PDEs
has the form

∂t S = DS∇x
2S − ∇x · {V S S} , (2a)

∂tC = DC∇x
2C − ∇x · {VCC} − ∇θ {ωC} . (2b)

In the continuous system, we add diffusion terms to the linear motion of CSs and
CHs that represent random movements of the particles resulting from stochastic per-
turbations, which are not present in (1) but could be included. DS and DC are the
respective diffusion coefficients. Note that we do not add the rotational diffusion, and
we also consider initial conditions such that C(x, θ, 0) = C(x)δ(θ − ϑ(x)). There-
fore, the hyperbolic character of the PDEs with respect to the angular variable ensures
the angular distribution remains such that there is a deterministic orientation angle at
each spatial point. Although it is unclear a priori if the mean-field limit is appropri-
ate for our system of study with a finite number of interacting bodies, we will later
compare qualitative results of this analysis with explicit simulations of the particle
system (1). The linear and angular velocities in the transport equations are given by
the convolution integrals:

V S = μ−1
s

(
f CS−CS ∗ S + f CS−chrom ∗ C

)
, (3a)

VC = μ−1
c

(
f CS−chrom ∗ S + f chrom−chrom ∗ C

)
, (3b)

ω = μ−1
rot (τCS−chrom ∗ S + τchrom−chrom ∗ C) , (3c)

where the convolution operation is defined by

[K ∗ f ] (x, θ) :=
∫ π

0

∫

R2
K (x − y, θ, θ ′) f ( y, θ ′) dx dθ ′. (4)

We describe the distance dependence of the forces and torques and model param-
eters below.

3 Results

The continuous integro-PDE model of the spindle is mathematically similar to spa-
tial models of animal grouping and swarming. The latter have a rich history of study
(Mogilner and Edelstein-Keshet 1999; Bernoff and Topaz 2011, 2013; Carrillo et al.
2014; Szwaykowska et al. 2015), including stability, bifurcations, and numerical anal-
yses, or inferring interactions directly (Lukeman et al. 2010; Lu et al. 2019). Here,
we focus on characterizing the qualitative behavior of equilibria. The choices of the
parameter values in the model are explained and justified below.
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3.1 Linear Stability Analysis

In order to isolate the effect of torque on the continuous model, we consider a much
simpler setup: the continuous model in one spatial dimension (1D) with no bound-
aries and no alignment or torque terms. In this case, we use the forces exponentially
decreasing with the distance between pairs of interacting particles:

fCS−chrom(z) =
(
− fae

−|z|/La + fr e
−|z|/Lr

)
σ(z), (5a)

fCS−CS(z) = fse
−|z|/Lsσ(z), (5b)

fchrom−chrom(z) = fce
−|z|/Lcσ(z), (5c)

where σ(z) = sign(z). Here, fa and fr (both are positive parameters) are the ampli-
tudes of the attraction (pulling the centromere of the CH toward the CS) and repulsion
(polar ejection force: pushing the CH arms away from the CS) forces; La and Lr

are the spatial ranges of the respective forces, all chosen to satisfy the biologically
relevant regime of H-stability (D’Orsogna et al. 2006). The parameters fs and fc are
the amplitudes of interactions between the CS pairs and CH pairs, respectively. There
is a short-distance steric repulsion between the CH pairs, so fc > 0; however, the
CSs can either repel (if fs > 0) or attract (if fs < 0) each other. Ls and Lc are the
spatial ranges of the respective forces. Three of the force amplitudes ( fs , fa and fr ) are
proportional to respective net motor forces generated at the interpolar MT overlaps by
kinesin-14 and -5 and possibly cytoplasmic dynein, at the kinetochores by dynein, and
at the CH arms by chromokinesins, respectively. These amplitudes are proportional to
the characteristic force per motor multiplied by the average number of the respective
motors. The exponential distance dependence arises from the following factor: the
farther apart the interacting organelles are, the smaller number of MT plus ends reach
from one organelle to the other (or smaller MT-MT overlap between the organelles).
In the simplest case, the MT length distribution is exponential, in which case previous
models showed that the forces decrease exponentially with the distance (Ferenz et al.
2009).

In 1D, the system of Eqs. (2) becomes

∂t S = DS∂xx S − ∂x {VSS} , (6a)

∂tC = DC∂xxC − ∂x {VCC} , (6b)

where CS and CH velocities are given by the convolutions of respective forces and
densities (3). These now take the form

VS = μS ( fCS−CS ∗ S + fCS−chrom ∗ C) , (7a)

VC = μC ( fCS−chrom ∗ S + fchrom−chrom ∗ C) , (7b)

and the convolution (4) becomes

[K ∗ u] (x) =
∫ +∞

−∞
K (x − x ′)u(x ′) dx ′.
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We start the analysis by noting that this 1D model sustains a homogeneous steady-
state solution: u(x) = [S(x),C(x)] = [S0,C0]. The system is invariant to translations,
so we consider a perturbation from this equilibrium of the form:

u = u0 + ũeiqx+λt =
[
S0
C0

]
+

[
S̃
C̃

]
eiqx+λt . (8)

Substituting this perturbation into Eq. (6) and keeping only terms that are linear
with respect to ũ, we obtain the linear system of algebraic equations:

λũ =
{
−q2

[
DS 0
0 DC

]
− iq

[
f̂CS−CSS0 f̂CS−chromS0

f̂CS−chromC0 f̂chrom−chromC0

]}
ũ, (9)

in which the Fourier transforms for a general f (z) are defined by

f̂ (q) :=
∫ ∞

−∞
f (z)e−iqz dz. (10)

Rewriting these equations in the matrix form:

λũ = M ũ, (11)

the stability boils down to the eigenvalues of the matrix M . This matrix can be com-
puted explicitly for our choice of the inter-particle forces (abbreviating k := q2 > 0):

M =
⎡

⎣ k
(
−Ds − 2 fs L2

s S0
kL2

s+1

)
2S0k

(
fa L2

a
kL2

a+1
− fr L2

r
kL2

r+1

)

2kC0

(
fa L2

a
kL2

a+1
− fr L2

r
kL2

r+1

)
k

(
− 2C0 fc L2

c
kL2

c+1
− Dc

)

⎤

⎦ :=
[
a b
c d

]
.

The eigenvalues of this 2 × 2 matrix are real and give us the dispersion relation,

λ±(k) = a + d ±
√

(a − d)2 + 4bc

= k

[
−2C0 fcL2

c

kL2
c + 1

− Dc − Ds − 2 fs L2
s S0

kL2
s + 1

±
√(

2C0 fc L2c
kL2c+1

+Dc−Ds− 2 fs L2s S0
kL2s+1

)2

+16C0S0

(
fa L2a

kL2a+1
− fr L2r

kL2r +1

)2
]

.

(12)

This expression is challenging to understand directly. We can immediately see that
λ(0) = 0 is expected due to the conservation of the number of particles. Beyond that,
since it is always useful to detect instabilities at low wave-numbers, which correspond
to the aggregation-type instabilities, we can expand the dispersion relation into Taylor
series around k = 0:
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λ±(k) = k
{
−2C0 fcL

2
c − Dc − Ds − 2 fs L

2
s S0

±
[
4S0

(
fs L

2
s

(
−2C0 fcL

2
c − Dc + Ds

)
+ 4C0

(
fa L

2
a − fr L

2
r

)2)

+
(
2C0 fcL

2
c + Dc − Ds

)2 + 4 f 2s L
4
s S

2
0

]1/2}
+ O(k2). (13)

This provides the sufficient (but not necessary) condition for an instability to occur:

fs <

4C0
(
fa L2

a− fr L2
r
)2

2C0 fc L2
c+Dc

− Ds
S0

2L2
s

. (14)

Analysis of this instability criterion indicate that, intuitively, attraction between the
CSs ( fs < 0), greater range of the CS–CS interaction, weaker repulsion between the
CH pairs and smaller diffusion coefficients promotes the aggregation instability. The
quadratic term in the numerator of the aggregation instability criterion indicates that
the instability is promoted if net CS–CS attraction (quantified by the product fa L2

a)
is either much greater or much smaller, than the net CS–CS repulsion (quantified by
the product fr L2

r ).
To gain further insight from the dispersion relation (12), we made the following

parameter selection: Ds = 1, Dc = 10, La = 10, Ls = 7.5, Lc = 1, Lr = 5, fa =
1, fc = 0.5, S0 = 1,C0 = 4. The rationale for these choices is as follows. Average
CS density is chosen as the unit of density, as there are a few tens of CHs in the
spindle, while usually less than 10 CSs (Kwon et al. 2008), so we choose the ratio of
4 CHs per 1 CS. The CS diffusion coefficient is set to 1 arbitrarily because there is no
respective experimental data and because the qualitative dependence of the results on
the values of the diffusion coefficients is relatively trivial. The CH diffusion coefficient
is set to 10 because the CHs are likely to be more mobile than the CSs (Ferenz et al.
2009), likely due to CSs moving together with their large MT asters. The ranges of
interactions are measured in units of microns. The long range of attraction between
the CSs and centromere regions of the CHs is set to 10, which is on the order of the
spindle size (Kwon et al. 2008; Ferenz et al. 2009). The repulsion range between the
CSs and chromosome arms is chosen twice shorter than the attraction range to make
sure that there is a preferred stable distance between a pair of CS and CH equal to
roughly half the spindle length, as observed in metaphase (Ferenz et al. 2009). The
range of interactions between the CS pairs is chosen to be on the same order as those
between the CSs and CHs, assuming that the respective MTs have similar lengths.
The range of the inter-CH steric repulsion is set to 1, on the order of the CH size. We
lump the mobility coefficients together with the amplitude of the forces, so effectively
parameters f correspond to the velocity amplitudes. We choose the amplitude of
the CS–CH attractive velocity to be the velocity unit; the amplitude of the CH–CH
repulsive velocity is chosen arbitrarily (as respective biophysics was not investigated
before), of the same order of magnitude. Then, we explore the stability as function of
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Fig. 3 Results of the stability analysis on the 1D model around the spatially homogeneous state. Colors
and numbers indicate the number of zeros of the dispersion kernel (12) and black line corresponding to the
stability condition in (14) arising from the linearization around k = 0. The hatched (+) region corresponds
to where the eigenvector u = [z, 1] corresponding to the eigenvalue λ(k�), where k� = argmaxk (λ), has
sign z > 0 (Color figure online)

two parameters, interaction amplitude between CS pairs fs and repulsion amplitude
between CS and CH arms fr . The results are shown in Fig. 3.

From the figure, we see that rich spatial patterning emerges from even the 1D
model: there are four different possible stability regimes. The trivial stable equilib-
rium exists, interestingly, only in a small sliver (region 1) of the parameter space
that corresponds to roughly balanced CS–CH attraction/repulsion and to significant
inter-CS repulsion. If CS pairs attract (part of region 2 corresponding to negative
values of fs), then the CSs aggregate. In order to understand the relative CS–CH
localization, we numerically found the eigenvectors corresponding to the eigenvalues
of the linear stability equations and deduced the spatial pattern corresponding to the
dominant unstable mode close to the equilibrium from relative signs of the harmon-
ics corresponding to the CS and CH densities. That is, we compute the eigenvector
u = [z, 1] corresponding to the eigenvalue compute λ(k�), where k� = argmaxk(λ)

to check the sign of z. In Fig. 3, the negative sign corresponds to the CS and CH
densities in anti-phase (segregated CSs and CHs), while the positive sign means the
co-aggregation of the CSs and CHs. We find that when the repulsion between the CSs
and CH arms is very weak (left part of region 2), then even if CSs repel each other, the
CSs and CHs co-aggregate (plus sign) because inter-species attraction overwhelms
intra-species repulsion. On the other hand, when the repulsion between the CSs and
CH arms is very strong, (right part of region 2), then when CSs repel each other, the
CSs and CHs aggregate (minus sign) into two opposite parts of space (inter-species
repulsion overwhelms intra-species repulsion). The most interesting pattern emerges
when the CS–CH attraction/repulsion roughly balance each other, while CSs repel

123



Mechanical Torque Promotes Bipolarity of the Mitotic… Page 11 of 19 29

each other (region 3). In this region, the periodic pattern of equidistantly grouped
interspersed CS and CH clusters emerges: the dominant CS–CH interaction keeps the
CS and CH clusters at preferable distance, overwhelming the CS–CS and CH–CH
repulsion. Lastly, there is a small sliver of parameter space (region 4), in which the
dispersion relation has two maxima, one corresponding to the unstable aggregation
mode (small k), another—to the periodic spatial instability. The linear stability anal-
ysis cannot say which of these patterns will emerge (Mogilner and Edelstein-Keshet
1996), but the linear stability analysis otherwise provides great insight. It is natural to
consider whether this stability analysis extends to the 2Dmodel. In the supplementary
materials, we follow recent work (Fetecau et al. 2011; Kolokolnikov et al. 2011, 2013;
Chen and Kolokolnikov 2014; O’Keeffe et al. 2017, 2018) to analytically establish
existence of ring equilibria of a modified model that is qualitatively like the one pro-
posed here. Instead, we turn to numerical simulations of the original model to explore
further.

3.2 Numerical Solutions of the 2D Continuous Model with Torque

We solve the full integro-PDE system Eqs. (2) and Eqs. (3) numerically as follows:
we discretize the space into 30×30 grid (�x ≈ 1 micron), and the angular variable is
discretized by8 equidistant points (�θ = π/8).At each computational step, the convo-
lution integrals are computed by using trapezoidal rule. Then, the advection-diffusion
equations are solved by using Crank-Nicolson method. The boundary conditions are
no-flux in both spatial dimensions and periodic boundary conditions in the angular
direction. The simulations were run for a fixed amount of time, chosen such that an
apparent equilibrium was attained. Snapshots of the simulations can be seen in Fig. 4.
In red, the CS density is shown, and in blue, CH density. Color intensity corresponds
to magnitude of the density. Each spatial point is initiated with a single orientation
θ and the evolution of θ is therefore deterministic, and shown in the thin white line.
The initial conditions, distance dependence of the forces and parameter values are
discussed below.

We solved the model equations numerically using the numerical methods with the
following distance dependence for the forces:

f CS−chrom(ξ , θ, θ ′) =
(
− fae

−‖ξ‖/La + fr e
−‖ξ‖/Lr

) ξ

‖ξ‖ (15a)

+ τs
ξ⊥

‖ξ‖ , (15b)

f CS−CS(ξ , θ, θ ′) = fse
−‖ξ‖/Ls

ξ

‖ξ‖ , (15c)

f chrom−chrom(ξ , θ, θ ′) = fce
−‖ξ‖/Lc

ξ

‖ξ‖ . (15d)

The meaning of the parameters for the forces is the same as that explained for the 1D
model. We also use the following torque terms:
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a

b

c

Fig. 4 Numerical solutions to the mean-field integro-PDE equations (2) for three parameter sets, each for
five time points with identical initial conditions. In red, we show the density of the centrosomes (CS), and
in blue, the density of chromosomes (CH). Intensity of color shows magnitude of density and overlaid
white lines indicate orientation θ . In panel a, the condition with CS–CS attraction ( fs < 0) with strong
CS-chrom torque (τs large) is shown, resulting in a bipolar spindle. In panel b, CS–CS repulsion ( fs > 0)
leads to multipolar spindles. In panel c, when the torque τs becomes too small, even with CS–CS attraction
( fs < 0), the spindle becomes monopolar (Color figure online)

τCS−chrom(ξ , θ, θ ′) = −τs

(
ξ⊥

‖ξ‖ · ι(θ)

)
e−‖ξ‖/Lr , (16a)

τchrom−chrom(ξ , θ, θ ′) = −τc sin(2(θ − θ ′))e−‖ξ‖/Lc , (16b)

where ι is the unit-vector in the direction θ . The first torque effectively measures the
angle between ι(θ) and ξ = x − x′ and evolves toward equilibria of 0 and π .

In the simulations, we fixed the majority of the model parameters as follows: fa =
1, fc = 1, fr = 5, La = 15, Lc = 0.5, Lr = 5, Ls = 5, in the same units, on the
same order of magnitude and based on the same logic as was explained in the 1D
model stability analysis. Similarly, the viscous drag coefficients were lumped with
the force terms, as explained above. We choose torque amplitudes on the order of
unity (characteristic force amplitude on the order of unity multiplied by the CH arm
length on the order of 1 micron, which is our length unit). We choose the relatively
weak strength of the CH alignment torque, τc = 0.2. Lastly, we chose relatively small
diffusion coefficients, Dc = 0.2, Ds = 0.2 to provide less influence than the advective
terms in lieu of any other knowledge of these parameters.

Then, we varied two parameters: fs , the amplitude of the CS–CS interaction (from
−2 to 2), and τs , the amplitude of the torque on the CSs (from 0 to 2). As the initial
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condition, we used the physiologically meaningful CS and CH distributions, as shown
in the left column of Fig. 4: CHs distributed evenly in a disc and oriented randomly
(same as the random distribution of the chromosomes in the nucleus at the onset of
mitosis), and CSs distributed uniformly in the ring at the periphery of the CH disc (at
prophase, multiple CSs are scattered near the nuclear envelope).

We found that three qualitatively different solutions emerged. For positive values
of fs (CS–CS repulsion), at any value of τs , the multipolar spindle solutions evolved
(Fig. 4, middle row, movie 1). Specifically, the CH initial disk-like distribution at the
center remained, but the disc radius decreased to an equilibrium (the disc edge smeared
due to the diffusion). Meanwhile, the CHs largely align with one another. The ring-
like CS distribution also stayed, but interestingly, the ring became non-uniform due to
the torque action: the CSs became more concentrated at the ‘poles’, near the direction
normal to that of the CH alignment, and depleted from the ‘equator’, near the direction
parallel to that of the CH alignment. For negative values of fs (CS–CS attraction),
two different solutions evolved, depending on the torque magnitude. At weak torque
(τs < 0.5), the monopolar spindle solutions evolved (Fig. 4, lower row, movie 2).
Transiently, the initial ring of the CSs collapsed into a few clusters, and these clusters,
attracting to each other, pushed into the CH disk. Multiple small CS clusters do not
constrain the CH density enough in space, and the effective CH diffusion allows the
CH density to ‘leak’outward between the CS clusters. This, in turn, allows the mutual
CS–CS attraction to bring the CS clusters closer together, ‘invading’ the CH density
and displacing it to the periphery. Eventually, the CSs merged into the single cluster at
the center, while the CHs formed the ring (with a break at the side). Locally, the CHs
became aligned with the circumference of this ring. The break in the CH ring visible
in Fig. 4, is a consequence of the initial conditions. This break is not permanent: over
a long time (the short-range CH–CH repulsion does not accelerate the ring closure),
the effective CH diffusion will spread the CH density evenly in the ring.

Lastly, for negative fs and strong torque (τs > 1.5), the bipolar spindle solutions
evolved (Fig. 4, upper row, movie 3). The CHs remained in the center but condensed
into an ellipse simultaneously aligning along the long axis of the ellipse, resembling the
metaphase plate. The CSs remained at the periphery but condensed by torque into two
opposite clusters at the spindle poles. At the intermediate torque (0.5 < τs < 1.5),
monopolar spindles tended to evolve at greater negative values of fs , and bipolar
spindles—at smaller negative values of fs . In principle, the parameter space of the
continuousmodel can be fully explored, and respective phase diagram can be sketched.
However, the continuous model is merely an approximation to the the discrete model
in the limit of a continuous density. As there are only tens of CHs and but a few CSs,
whether these lessons hold for these numbers is unclear. Therefore, we resort to the
discrete model to confirm their existence even in this scenario.

3.3 Spindle Configurations in the Discrete Particle Model

We finally turn to numerical simulations of the discrete 2D model of the interacting
particles with torque Eq. (1). We use the same interaction functions described in the
full 2D integro-PDE simulations.
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Fig. 5 Results of numerical simulations of discrete particle model Eq. (1) for varying parameters fs and
τs . For each set of parameters, 100 simulations with random initial conditions are computed until apparent
equilibrium is reached. The mean number of CS clusters over these trials is shown, along with characteristic
cartoonsof the corresponding typical equilibria. This phasediagramsupports the claim thatCS–CSattraction
fs < 0 and CS–CH torque τs > 0 promote bipolarity (Color figure online)

The meaning of the parameters for the forces is again the same as previously
mentioned. In the simulations, we kept most of the parameters fixed as follows: fa =
1, fc = 1, fr = 5, La = 15, Lc = 1, Lr = 5, Ls = 7.5, in the same units, on the
same order of magnitude and based on the same logic as was explained in the 1D
model stability analysis. Similarly, the viscous drag coefficients were lumped with the
force terms, as explained above. We choose torque amplitudes on the order of unity
(characteristic force amplitude on the order of unity multiplied by the CH arm length
on the order of 1 micron, which is our length unit). We choose the relatively weak
strength of the CH alignment torque, τc = 0.5.

We simulate this model with Ns = 10 and Nc = 20 with CHs initially placed
uniformly and randomly within the disc ‖x‖ ≤ 10 and CSs initially spaced randomly
and uniformly along a circumference with radius ‖x‖ = 10 and the center being the
center of the CH disc (movies 4–7). This initial condition corresponds to biologically
meaningful initial condition at the prometaphase onset, in which the CHs are at the
center, filling the former nuclear sphere after the nuclear envelope breakdown, while
the CSs are surrounding the former nuclear envelope. The simulations are terminated
when an apparent equilibrium has been reached, defined by the timestep when the
displacement for all particles is below 10−4 microns.

We then varied two key parameters, fs, τs , and found that depending on the region
of this 2D parameter space, four qualitatively different spindle configurations evolved
(Fig. 5, movies 4–7). For positive values of fs (CS–CS repulsion), multipolar spindles
evolve (Fig. 5, movie 4), with aligned CHs in one cluster at the center, and CSs
spread individually and almost equidistantly along the circle around the CHs. In a
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triangular part of the parameter space with strong CS–CS attraction and weak CS–CH
torque, monopolar spindles evolved with all CSs in one cluster at the center, and the
CHs distributed almost uniformly along the circle around the CSs and aligned locally
along the circumference (Fig. 5, movie 5). In most of the rest of the parameter space,
corresponding to CS–CS attraction and moderate CS–CH torque, the bipolar spindles
evolved with the aligned CH cluster at the center and two CS clusters at the opposite
sides of the CHs, so that the CS–CS axis is normal to the CH orientation (Fig. 5, movie
6). All these three spindle states and regions of the parameter space corresponding
to them predicted by the discrete 2D model are similar to those predicted by the
continuous 2D model. Interestingly, the discrete model predicts the fourth possible
spindle state (Fig. 5, movie 7) not captured by the continuous model. This peculiar
state corresponds to amultipolar spindle, but of a special kind: theCSs are not scattered
in space individually, but rather grouped into more than two clusters. Furthermore, the
CHs aggregate into more than one cluster, in each of which the CHs are aligned with
each other, but CH orientation in different clusters is different. These spindle states
correspond to large values of CS–CH torque and relatively weak CS–CS attraction.
It is easy to understand the origin of these states: when, depending on the initial
conditions, such state emerges, due to random initial proximity of sub-groups of the
mutually attractive CSs and mutually aligning CHs, then multiple CS clusters do not
merge further, because the strong CS–CH torque puts barriers in the way of the CS–
CS attraction. Also note that in some regions of the parameter space multiple spindle
states emerge at the same parameter values, depending on random initial conditions.
These boundary regions are the only locations of parameter space with observable
variation between the number of emergent CS clusters.

4 Discussion

The stability analysis of the simplified 1D continuous model without torque, expect-
edly, predicts aggregation of all CSs into a single cluster when CSs mutually attract.
Unexpectedly, this model predicts a rich variety of spatial patterns when CSs repel
each other, including either co-aggregation or segregation of CSs and CHs and peri-
odic patterns of multiple intermittent CS and CH clusters. The numerical solutions of
the 2D continuous model with the CS–CH torque then confirm the hypothesis that the
CS–CH torque combined with the CS–CS attraction result in the bipolar spindle con-
figuration. To test whether these predictions survive the transition to the finite discrete
system, and to explore the parameter space systematically, we then numerically sim-
ulate the discrete model with torque and find that the bipolar spindles indeed evolve
if moderate CS–CH torque accompanies limited CS–CS attraction. Notably, greater
torque leads to the spindle configurations with not only multiple CS clusters, but also
with multiple CH groups.

Themodeling predictions qualitatively agree with a few experimental observations:
CS clustering is known to be promoted by upregulation of kinesin-14 (Kwon et al.
2008) and dynein (Quintyne et al. 2005) motors which generate CS–CS attraction,
noting that this interpretation relates specifically to cytoplasmic dynein. CSs that lack
CHs between them do not form a stable spindle-like MT array (Faruki et al. 2002),
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exactly as our models predict. Multiple independent metaphase plates (CH clusters)
were also observed (Duncan 2015), similar to the predicted multi-CH cluster spindles
emergingwhen the torque is too great, as shown in Fig. 5. Normally though, multipolar
spindles are characterized by a single, interconnected cluster of CHs at the center, with
individual or clustered CSs at the periphery (Baudoin et al. 2020). The observed CH
distribution in this single CH clusterwithinmultipolar spindles has branched,Y-, V-, or
T-shaped configurations, with CHs aligning between multiple spindle poles (Heneen
1975; Wheatley and Wang 1996; Baudoin et al. 2020; Goupil et al. 2020), which
resembles the model-predicted multipolar state at high torque. (See also the transient
Y-shaped CH distribution in movie 7). On the other hand, the predicted multipolar
spindle with the CSs encircling the single aligned metaphase CH plate was never
observed, which perhaps indicates that the CS–CS force is never repulsive at this
mitotic stage. Beyond equilibria, simulations ending in bipolar spindles commonly
displayed transient multipolarity, also noted experimentally (Silkworth and Cimini
2012). Lastly, we are not proposing that the CS–CH torque is the only factor preventing
theCS–CSattraction from formingmonopolar spindles. Indeed, attractionof theCSs to
the cell boundary also supports the bipolarity by competing with the CS–CS attraction
and separating two CS clusters to the opposite cell sides (Chatterjee et al. 2020).
Respective forces pulling the CSs to the cell cortex are generated by cortical dynein.
Note that dynein in fact promotes the CS clustering (Quintyne et al. 2005) rather
than separation of the CSs, however, we reiterate that dynein has multiple functions
in mitosis and is regulated differently in different parts of the cell. We hypothesize
that both torque and dynein-mediated attraction of the CSs to the cell boundary are
integrated to make the spindle bipolarity more robust.

The notions of torque and pivoting in MT-motor systems appeared in a few recent
studies. Molecular motors generate torque when they move along the helical MT
lattice (Novak et al. 2018). Multiple motors crosslinking MT pairs can generate a
bundling torque (Lamson et al. 2019). There may exist a torque between a CS and
an MT anchored into the CS (Endow et al. 1994). Torques of unknown origin in the
spindle generate chiral MT structures (Mitra et al. 2020). Pivoting movements of MTs
in spindles also have been observed (Kalinina et al. 2013; Winters et al. 2019; Fong
et al. 2021). The idea of the progressive restriction of the angle between a MT and a
kinetochore to which this MT binds proposed in (Edelmaier et al. 2020) is similar to
our idea of the CS–CH torque. Such torque would most naturally emerge if MTs were
cantilevered into kinetochores at normal angles, and if angular deformations of such
connectionswere resisted elastically.However, there is little evidence of such elasticity
of theMT-KTs connections. Indeed, plastic angular displacements of the kinetochores
were observed instead (Lončarek et al. 2007) and swinging of MT bundles (K-fibers)
projecting from the kinetochores over wide angles was observed (Sikirzhytski et al.
2014; Elting et al. 2014). Therefore, we hypothesize that the CS–CH torque could
arise due to the geometric effect of the polar ejection force asymmetrically pushing
on the proximal/distal parts of the CH arms, with the centromere pulled toward the
CS, effectively rotating them into the orientation perpendicular to the CS–CH vector.

Our models have many limitations. To mention but two: (i) CH arms are very
deformable, so modeling them as rods is not very accurate; (ii) our 2D solutions
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miss characteristic ‘doughnut-like’ spatial organization of the CH group in the spindle
(Magidson et al. 2015).

Although, prior studies have used non-local models for MT-motor-organelle orga-
nization (Manhart et al. 2018) or local PDE models to describe the spindle MT
array (Oriola et al. 2020), our non-local description of spindle organization appears
novel. The resulting model bares great similarity to descriptions of animal group-
ing (Mogilner and Edelstein-Keshet 1999; Levine et al. 2000; Topaz and Bertozzi
2004; Chen and Kolokolnikov 2014) and models of particles interacting with orienta-
tions (Mogilner and Edelstein-Keshet 1996; O’Keeffe et al. 2017, 2018). Exploring
analogies and lessons from these fields may create helpful intuition for understanding
intracellular architecture or inspire newmathematical pursuits in further understanding
possible behaviors of these models.
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Novak M, Polak B, Simunić J, Boban Z, Kuzmić B, Thomae AW, Tolić IM, Pavin N (2018) The mitotic
spindle is chiral due to torques within microtubule bundles. Nat Commun 9(1):1–10

Ogden A, Rida P, Aneja R (2012) Let’s huddle to prevent a muddle: centrosome declustering as an attractive
anticancer strategy. Cell Death Differ 19(8):1255–1267

O’Keeffe KP, HongH, Strogatz SH (2017)Oscillators that sync and swarm.Nat Commun 8(1):1–12. https://
doi.org/10.1038/s41467-017-01190-3

O’Keeffe KP, Evers JH, Kolokolnikov T (2018) Ring states in swarmalator systems. Phys Rev E
98(2):022203. https://doi.org/10.1103/PhysRevE.98.022203

Oriola D, Jülicher F, Brugués J (2020) Active forces shape the metaphase spindle through a mechanical
instability. Proc Natl Acad Sci 117(28):16154–16159
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