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Recent advances in photonic imaging and fluorescent
protein technology offer unprecedented views of molec-
ular space-time dynamics in living cells. At the same
time, advances in computing hardware and software
enable modeling of ever more complex systems, from
global climate to cell division. As modeling and experi-
ment become more closely integrated we must address
the issue of modeling cellular processes in 3D. Here, we
highlight recent advances related to 3D modeling in cell
biology. While some processes require full 3D analysis,
we suggest that others are more naturally described in
2D or 1D. Keeping the dimensionality as low as possible
reduces computational time and makes models more
intuitively comprehensible; however, the ability to test
full 3D models will build greater confidence in models
generally and remains an important emerging area of
cell biological modeling.

Which is best: 1D, 2D or 3D?

There is a well-known story about a mathematical modeler
giving a talk to biologists. The modeler starts by saying ‘Let
us assume that a cow has a spherical shape...’, the moral
being that those silly modelers study abstractions that are
lifeless. David McQueen, co-author of a famous 3D me-
chanical model of the heart [1], once said: ‘2D is too damn
wrong, 3D is too damn hard. . ” But is it actually so silly and
wrong to consider a ‘spherical cow’? Likewise, is it indeed
too hard to go 3D mathematically? The first rule of model-
ing is that a model should be as simple as possible and as
complex as necessary to address a particular question. In
this review, we argue that, following this principle, model-
ing in simplified 1D or 2D geometry is actually very useful
in the vast majority of cases. There are, however, biological
systems and phenomena that require 3D simulations.

It is enough to glance at introductory textbook figures of
animal cells to see that the 3D shapes of cells, organelles
and cytoskeletal structures are tremendously complex.
Perhaps biological systems evolve to deal with this geo-
metric complexity, and one strategy is to control the di-
mensionality of a particularly challenging process. A prime
example that comes to mind is a protein searching for a
target on a DNA molecule confined in a finite 3D volume
[2]. A naive way to do the search would be to use ‘sliding’,
1D diffusion along the contour of the DNA. This way, the
protein is constantly bound to the DNA and methodically
tests all neighboring DNA sites, but such a process suffers
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from a slow, square-root-like increase in the number of new
positions probed as a function of time. Another possibility
is to test just one site, then jump’ or travel by 3D diffusion
to another site. This way, the number of new DNA sites
probed grows linearly in time, but the protein misses the
target, which can be very close to one of the tested sites, too
often. Elegant mathematical models [2,3] showed that the
optimal strategy is to intertwine 1D and 3D search strate-
gies (Figure 1a) by exploring a DNA segment by the 1D
diffusion for a finite time, then jumping in 3D and explor-
ing another segment. Experimentation [4] demonstrated
that, as the model predicted, the cell decreases the search
time to a minimum by fine-tuning the average 3D jump
frequencies and 1D diffusion rates, suggesting that biolog-
ical systems tend to organize and explore their space by
sometimes reducing the dimensionality of the process. This
example also illustrates that modeling is crucial in under-
standing the role of geometry and dimensionality in cell
life. To examine the emerging role of 3D modeling in cell
biology, we focus on three specific cellular processes: cell
division, cell polarity and cell migration. For each process,
we expose the logic behind choosing a model’s dimension-
ality, and discuss the complexities of 3D modeling, cases
when such models are needed, and examples of when they
can be avoided in favor of simpler 1D or 2D models.

Cell division

The position and orientation of the cell division plane are
crucial for the proper development of a multicellular or-
ganism. For example, a recent experimental and theoreti-
cal study of an epithelial sheet [5] established that the
long-known ‘long-axis rule’ — that cells divide their long
axis by forming a cleavage plane along the short axis —
increases the geometric regularity of the cells that are
neighbors with the dividing cell. Here, we discuss a simpler
question of the division geometry of a single, isolated cell.
The plane of division in this case is often dictated by the cell
shape [6]. However, it is known that the division plane
usually passes through the middle and is perpendicular to
the long axis of the nucleus or mitotic spindle (Figure 1b)
[7]. Thus, two principal questions are: how do the nucleus
and mitotic spindle read the cell geometry? How do they
determine the division plane? There is no unique answer to
these questions — the relevant mechanisms depend on the
type of cells and conditions these cells are in — but in a few
simpler cases the answer was obtained with the help of
computational modeling. Briefly, long dynamic microtu-
bules (MTs) extending from the nucleus or spindle to the
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Figure 1. Search-and-capture and microtubule-mediated positioning mechanisms. (a) The optimal strategy of a search for a target on a DNA strand involves combining 3D
diffusive ‘jumps’, which allow rapid sampling of many DNA sites, with 1D diffusive ‘walks’ that enable local testing for the target site. (b) In the elongated fission yeast, the
cell division plane is along the short axis of the nucleus (dashed). The nucleus is elongated and positioned by opposing forces from the MTs growing to the left and right
that are pulled outward by dynein motors at the cell cortex. If the nucleus is closer to the left end, then fewer motors are located at the left, and a greater number of
opposing motors at the right pull the nucleus toward the cell center. The 1D description of the process along the X-axis is adequate in this system. (c) In the model for
spindle oscillations in the lateral cross-section (Y-Z-plane) of the C. elegans embryo, MTs extending in dorsal and ventral directions (blue, along Z-axis) interact with dynein
motors on the cortex that pull on the spindle and generate oscillations. A 1D model is adequate if only those MTs are considered. However, the MTs extending in proximal—
distal directions (red, along Y-axis), attaching to the cortex and bending are crucial in stabilizing these oscillations, and the model thus becomes 2D. (d) Differential
attachment rates of the MTs reaching the anterior and posterior half-cortices (black, along X-axis) cause asymmetric spindle movement, in which case a 3D model is
necessary. (e) A minority of astral MTs (blue) growing from the spindle (black) poles toward the cell equator are stable, and molecular motors therefore deliver myosin-
activating molecular complexes (yellow) to the cell cortex, and contraction at the cell midline ensues. A majority of MTs (red) are unstable, do not reach the cell cortex and
deplete the pool of motors and myosin-activating complexes (green) from the cortex, so the cell poles are relaxed. (f) To accelerate the spindle assembly in prometaphase,
microtubules (green) growing in 3D from centrosomes located at the North and South poles of the cell search for kinetochores (blue) on the chromosomes (white/grey) that
aggregate into a ‘bagel’-like volume along the cell equator.

cell cortex and interacting with molecular motors are able axes. In Box 1 we illustrate how scaling analysis can help to
to both sense and govern cell geometry. decide system dimensionality based on quantitative argu-

This geometry can be characterized by its dimensionali- ments. An excellent example of a 1D system is seen in the
ty. The system can be viewed as 1D if the cell is elongated elongated fission yeast Schizosaccharomyces pombe, where
and events take place along its long axis; 2D if we also nuclear positioning aids in determining the cell division
consider phenomena taking place across the cell, but the plane. One of the models of this process [8] is based on the
cell is flat; or a cell can be 3D, yet axisymmetric. Finally, in observation that dynein motors on the cell cortex pull the
a fully 3D system, there are significant differences along MTs extending from the nucleus with their plus ends
the anterior-posterior, dorsal-ventral and proximal-distal toward the cell poles (Figure 1b). The longer the MT, the
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Box 1. Modeling approaches in 3D

Trends in Cell Biology December 2011, Vol. 21, No. 12

Partial differential equation (PDE) modeling: a traditional tool of
applied mathematics widely used in modeling spatially explicit
processes in biology [59]. When using this approach, continuous
densities of key molecular players are introduced. For example, if a
reaction-diffusion process involving a signaling molecule is modeled,
then the molecular density, A(x, y, z t), where x, y, z are spatial
coordinates and t is time, is governed by the PDE:
9A PA FPA PA
§:D<W W+§>+kF(A)' [
Here, the left-hand side describes the local rate of density change, Dis
the diffusion coefficient, the terms in brackets are second spatial
derivatives, F is a function describing the reaction, and k is the
characteristic rate of the reaction. Owing to an enormous body of
research on PDEs, they can often be solved approximately analytically
(on paper, without a computer), providing invaluable insight. Usually,
however, PDEs are solved numerically, which is easy in 1D, harder in
2D and can be very challenging in 3D; the amount of computer memory
and time required grows exponentially as the dimensionality of the
system increases. The reason is the need to track densities at each grid
point covering cell space; usually not less than ~100 grid points are
necessary across the cell diameter; thus, if the system is 2D then ~100?
grid points are needed, whereas in 3D this number rises to ~100°.
Scaling analysis: this procedure, with non-dimensionalization [60],
is crucial in simplifying PDEs and in reducing the dimensionality. For
example, here is how this procedure applies to the example above: let
the characteristic cell dimensions in the x, y, z directions be L, L, L,,
respectively. We can introduce a characteristic reaction time-scale
7= 1/k and non-dimensional time and distances:

X=x/L,Y=y/L,,Z=2/L,,T =t/t. [
In terms of these new variables, the PDE has the form:

9A <DA><82A <L§>32A <L§>32A>
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If the cell is elongated in one of the directions (i.e. L,>>L,, L,) then
terms with factors (L2/L2,) inside the brackets are much greater than
the other terms, so approximately other terms can be neglected:

PA (L2\ PA
it (i)~ v

more motors it can engage along its length, and thus if the
nucleus is closer to one end of the cell, then MTs at the
other side are pulled with greater force. This servomecha-
nism (length-dependent pulling force) centers the nucleus,
or, if the motors detach faster under strain, leads to nuclear
oscillations [8].

An early model of a similar positioning problem, the
asymmetric positioning of the mitotic spindle during the
first division of the Caenorhabditis elegans embryo, was
also 1D [9]. In this model, MTs extending in dorsal and
ventral directions also interacted with dynein motors on
the cortex (Figure 1c), with the important difference that
the MT plus-ends only, not the whole MT lengths, con-
tacted the cortex. This system was revisited in [10], the
authors of which convincingly demonstrated that the posi-
tioning problem in the C. elegans embryo is, in fact, 2D.
They discovered that MTs extending in dorsal and ventral
directions reach the cortex, interact with dynein motors
there, and pull on the spindle to cause spindle oscillations
(Figure 1c), in agreement with [9]. However, the results of
[10] indicated that MTs growing in proximal-distal direc-
tions are crucial to stabilizing these oscillations — they
attach to the cortex and bend elastically (Figure 1c). Thus,
the forces in the ventral-dorsal direction are different from
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With appropriate boundary conditions, this last equation immediately
suggests that, on a fast time-scale, the molecular density in Y- and Z-
directions equilibrates to a constant, and on a longer time-scale of
interest the density is only a function of X, T, and not of Y, Z. Then, the
PDE becomes 1D on the longer time-scale:

9A Da \ 9%A
i <W>W+ F(A). V]

In a great number of cell systems and in more complex problems,
a similar procedure — using characteristic scales to rescale and
non-dimensionalize model variables — allows one to separate pro-
cesses taking place on drastically different temporal and spatial
scales and thus to split the original problem into a few simpler
ones.

Agent-based simulations: these are based on explicit tracking of all
molecules in the cell involved in a studied mechanism such that,
based on the current configuration these molecules, all forces of
interactions between them are computed, thermal and viscous forces
are added, and then movements of every molecule are computed
based on classical mechanics rules [61]. Usually, thousands of such
molecule-agents are simulated, and the numerical code is quite
involved, but when numerical codes are tuned in 2D, their extension
to 3D does not require principally new numerical techniques, and the
amount of memory and calculations increases only modestly. It is
worth noting that there are other useful modeling techniques, such as
cellular automata and Potts models, which are midway between the
PDE and agent-based simulations in terms of complexity of 2D to 3D
transition.

Homogenization: the practice of ignoring the microstructural
details of a domain over which PDEs are solved or over which an
agent-based simulation is run. For example, a rapidly diffusing
molecule might bind reversibly to a slow-moving, large complex, and
therefore has a fast-diffusing state and a slow-diffusing state. If the
binding-unbinding rates are fast compared to the time-scale of interest
(e.g. morphogen gradient development), it is convenient to average
over these two states and define an ‘effective’ diffusion coefficient (e.g.
[22,33]). The practice of homogenization has a long history in physics
[34], and is used commonly in engineering to model the properties of
composite materials, for example [36].

the forces in the proximal-distal direction, necessitating a
2D model to mimic the spindle trajectory adequately. This
study went even further because the 2D model did not
predict the different oscillation amplitudes of the anterior
and posterior spindle poles (Figure 1b) that are seen
experimentally. It turned out that asymmetric spindle
movement could arise from a differential MT attachment
rate on the posterior of the embryo compared to the ante-
rior, and that full 3D simulations were needed to capture
this asymmetry quantitatively (Figure 1d). Also of note is
that scale-up of the model from 2D to 3D was not unduly
difficult because the authors used ‘agent-based’ simulation
(Box 1).

The models discussed above demonstrated that in sim-
ple cases the nucleus is positioned in the geometric center
of the cell. A more complex, and essentially multi-dimen-
sional, question is how the orientation of the nuclear long
axis is determined. An elegant recent study [11] used
controlled 2D geometry by placing sea urchin eggs into
micro-fabricated wells to manipulate cell geometry and to
address this question. Surprisingly, the results challenged
the ‘long-axis rule’: in a number of geometries, the cells
divided at an angle different from that perpendicular to the
longest axis of the cell. A 2D computational model in which



MTs from the two nuclear poles extended to the cell edges
and were pulled outward by motor forces demonstrated
that a balance of forces and torques elongates the nucleus
and orients it in a unique way dependent on the specific cell
shape. The model correctly predicted these orientations for
many cell shapes using 2D simulations; the authors sug-
gest that cells divide along the longest axis of symmetry’, a
new rule that can replace the ‘long-axis rule’.

There is no complete answer yet to the second of the two
questions posed in the beginning of this section — how does
the mitotic spindle determine the division plane of the cell?
Nevertheless, a significant contribution to solving this
problem was made in a recent computational study [12].
The authors investigated the following hypothetical mech-
anism (Figure le): a minority of MTs reaching from the
spindle poles to the cell ‘equator’ are stable, whereas the
majority of the MTs undergo rapid dynamic instability and
reach the cortex near the cell poles infrequently. Kinesin
motors transport Rho-activating complex along the stable
MTs to the future cleavage furrow site during anaphase
and telophase, where eventually myosin is activated and
contraction ensues. Kinesin motors also bind to MTs but
rarely reach the cortex near the cell poles because the MTs
growing in these directions usually undergo catastrophe
before contacting the cortex. As a result, the cortex near the
cell poles is mechanically relaxed relative to the cell equa-
tor, which is necessary for proper cytokinesis. This agent-
based model was simulated in 3D and produced spectacu-
lar, life-like figures and movies. Other than these visual
effects, it is not entirely clear whether 3D simulations were
needed in this case, especially taking into account that a
single simulation took a few days of number-crunching on a
powerful computer cluster. Consequently, it became too
time-consuming to attempt a thorough search of the model
parameter space. It is likely that a 2D model would lead to
the same qualitative conclusions with less effort. However,
a limited investigation of how sensitive the model results
were to the parameter values was undertaken in 3D, and it
is an open question whether quantitative results of this
investigation would be the same in 2D.

Another recent study of mitotic spindle assembly illus-
trates very clearly that although qualitative answers can
be obtained by reducing model dimensionality, quantita-
tive conclusions sometimes require full 3D simulations.
One of the mechanisms of spindle assembly is ‘search-and-
capture’, in which centrosomal MTs grow and shrink until
they capture kinetochores on chromosomes [13]. An influ-
ential modeling paper [14] showed that to assemble the
spindle within the observed time, MT dynamic instability
parameters must be optimized such that MTs collapse
often enough to not waste time growing in wrong direc-
tions, but not so often that they begin shortening before
reaching a kinetochore. This model was essentially 1D,
considering only the centrosome-kinetochore distances,
but not the actual chromosome distribution in the 3D space
of a mitotic cell. It was recently discovered that in some
human cells, chromosomes briefly aggregate into an intri-
cate ‘bagel’-like volume along the cell equator (Figure 1f),
whereas the centrosomes stay at the ‘North and South
poles’ of the cell [14]. Simulations in this paper revealed
that there is a good reason for the cell to make this
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arrangement: all the chromosomes are almost equidistant
from the poles where the search originates, so the MT
dynamic instability parameters can be tuned to the same
pole-target distance. More importantly, because the MTs
cannot penetrate chromosome arms, chromosomes that are
too close to the pole could shield a large fraction of 3D space
from the searching MTs. The ‘bagel’-like configuration does
not have such chromosomes, and the majority of targets
are therefore accessible from the poles. Only explicit 3D
simulations could estimate the time needed to assemble
the spindle in this geometry and compare the result with
the experimental measurement; 1D and 2D approxima-
tions would be grossly imprecise.

Cell polarity

In the previous section we discussed how the cell reads its
shape and imposes patterns by using MT-related force
balances. Another group of mechanisms enabling cells to
discriminate among all potential directions and to select a
particular direction as being ‘special’ is based on the reac-
tions and diffusion of signaling molecules. This process,
known as polarization, is fundamental to nearly all cells
[15]. Theoreticians view this as an example of ‘symmetry-
breaking’, a class of phenomena in which a chemically
reactive system spontaneously generates spatially hetero-
geneous patterns. Pioneering work by Alan Turing in the
1950s showed that simple sets of reactions coupled to finite
rates of diffusion could lead to spontaneous symmetry-
breaking [16]. Subsequent theoretical studies in the
1960s and 1970s hypothesized that such reaction—diffusion
mechanisms might underlie the morphogenesis of the
early embryo [17,18]. Fueled by recent advances in fluo-
rescent protein imaging (i.e. confocal and two-photon im-
aging, better digital cameras, and better fluorophores) and
in digital technology (i.e. faster processors, larger memory
capacity), we are witnessing a rapid growth in the inte-
grated experimental-theoretical study of polarization.
Here, we discuss how modeling in 3D is shaping advances
in our understanding of cell polarity by examining the
specific case of embryo polarization.

The polarization of early-stage embryos is vital to
determining the major axes of the mature organism:
anterior-posterior, left-right, dorsal-ventral. Model
organisms, such as C. elegans and Drosophila melanoga-
ster, have been crucial to the study of embryo polarization,
and decades of research in this field have facilitated
mathematical modeling by providing a wealth of quanti-
tative data within a consistent spatial-temporal frame-
work (3D spatially plus time reference frame, referred to
hereafter as ‘3D+T°). One of the best-studied polarity
determinants is the protein bicoid, a transcriptional reg-
ulator that exists in an anterior-to-posterior concentra-
tion gradient in the early stages of D. melanogaster
embryonic development [19]. Early work documented
the existence of the bicoid gradient, and led to the synthe-
sis—diffusion-degradation (SDD) model [19]. In this mod-
el, bicoid protein is synthesized from maternally inherited
bicoid mRNA located near the anterior end of the embryo,
diffuses, and is randomly degraded (Figure 2). Although
the SDD was formulated without mathematics, it quali-
tatively described basic features of the bicoid gradient.
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Figure 2. Cell polarity: bicoid morphogen gradient in the Drosophila embryonic
syncytium. In the synthesis-diffusion-degradation (SDD) model originally
proposed, bicoid mRNA located in the anterior cortex serves a synthesis source
for bicoid protein, which then diffuses away over time. Bicoid protein is eventually
degraded, although whether degradation takes place during the period when the
gradient is ‘read-out’ by the nuclei is not clear. Although 1D models have been the
norm and have been very informative, more recent 2D and 3D models are raising,
and framing, new fundamental questions about this well-studied morphogen
system. In addition, 2D and 3D models are facilitating more precise quantitative
measurements needed for discrimination among competing models.

Until recently, however, quantitative tests of the SDD
model were lacking, and it was therefore not clear whether
this model was simply an attractive idea or a rigorous
mechanistic explanation. For example, the SDD model
predicts that at steady-state the gradient will decay
according to an exponential distribution. Whether the
bicoid gradient conforms to an exponential distribution
or whether it even reaches a steady-state at all during
developmentally relevant time-scales were key questions
left unanswered until recent years.

With the rapid advancement of digital cameras and
fluorescent protein technology, the last few years have
witnessed a flurry of new studies on bicoid and other
morphogens [20]. In the case of bicoid, detailed quantita-
tive analysis confirmed an approximately exponential de-
cay in the concentration of bicoid, as measured in 1D along
the contour of the periphery of the embryo, consistent with
a simple diffusion-degradation mechanism [21]. For this
simple model to work quantitatively, bicoid must diffuse at
arate sufficiently fast to allow the gradient to develop from
a characteristic decay length of ~60 pm at 50 min after egg
deposition to ~110 wm at 160 min [22]. Using photobleach-
ing of bicoid—GFP via two-photon confocal microscopy, the
first direct estimate of the bicoid diffusion coefficient was
deemed too small to yield the observed extent of the
gradient according to the SDD model [23]. This finding
led to new modeling efforts to explain the additional miss-
ing convective transport mechanisms, perhaps via cyto-
skeleton-based transport [24]. One could regard this as an
‘SDD+’ model, where the ‘+’ refers to some extra transport
component that is as yet undiscovered. Interpretation of
photobleaching experiments is notoriously tricky [25,26],
however, and subsequent analysis using a full 3D simula-
tion of the bleaching-diffusion experiment re-estimated
the measured value of the bicoid diffusion coefficient to
be threefold higher than initially reported, and consistent
with the SDD model after all [22]. It is important to note,
however, that this measurement was made at a specific
time and place in the developmental process: the anterior
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cytoplasm during mitotic cycle 13. To test the models fully
it will be vital to measure the diffusion coefficient in 3D
space and time (3D+T), and both during mitosis and inter-
phase (and inside and outside of the nucleus). It may turn
out that the diffusion coefficient, rather than being a
constant parameter, is actually a variable that depends
on space and time, as recently suggested [27].

In fact, owing to the combination of 3D modeling and
improved 3D imaging, nearly all the basic assumptions of
the SDD model have recently been thrown into question.
For example, the first ‘D’ in the SDD model, ‘diffusion’,
recently came into question when it was asserted, in the
absence of mathematical modeling, that the bicoid protein
gradient could be explained entirely by a pre-existing,
maternally derived bicoid mRNA gradient [28]. In this
case there would be no requirement for bicoid protein
diffusion at all, other than from the mRNA-ribosome
synthesis site to its target binding sites in the nucleus.
However, it seems that this model would have difficulty in
explaining the increase in the decay length of the gradient
over time, mentioned above. In addition, a recent report
shows that protein diffusion is necessary to explain the
different decay lengths in the mRNA and protein, as
measured quantitatively [27]. An important aspect of this
recent study is that it included a full 3D model, using the
experimentally measured embryo geometry as the domain
over which the solution was obtained [29]. Combined with
comprehensive 3D quantitative analysis, the results show
that the bicoid protein gradient is not simply a rescaled
version of the bicoid mRNA gradient. The last ‘D’ in the
SDD model, degradation, is also controversial because it is
not clear that degradation actually takes place during the
period when bicoid influences polarity development. In
fact, recent modeling analysis makes the case for bicoid
not being degraded at all [30]. In this ‘nuclear-trapping’
model, net consumption of synthesized bicoid protein is
provided by newly produced nuclei; as the number of nuclei
increases, the capacity of bicoid per unit volume of embryo
also increases. Thus, the SDD model could in one respect be
simpler than previously imagined in that no degradation is
necessarily required, such that an ‘SD’ model (i.e. synthe-
sis—diffusion) might be adequate.

In summary, it seems that understanding the dynam-
ics of bicoid and other morphogens will require model
predictions and measurements in 3D+T to discriminate
among various hypotheses and test long-held assump-
tions. For example, it may be important to incorporate
even more realistic models of the cell geometry, such as
the inward invaginations of the plasma membrane that
would presumably limit diffusion on the 10-20 wm length
scale [31]. However, as a full 3D+T picture emerges, it
may still be possible to mathematically homogenize the
cytoplasm and thereby return to a simpler D+T model
[32,33]. Such coarse-graining and homogenization meth-
ods are standard in engineering, and are commonly used
to predict and simulate the electrical and diffusive trans-
port properties of both naturally occurring and fabricated
composite materials [34-36]. Reducing complexity by
coarse-graining (i.e. from 3D down to 2D or 1D) will
make it easier to obtain in silico predictions of mutant
phenotypes rapidly, and thereby gain a more complete



molecular-level mechanistic understanding of morpho-
gen systems.

Cell motility

One particularly important cellular process that utilizes
the reaction-diffusion processes that drive polarization is
cell motility [37]. After morphogens determine the front,
sides and rear, the cell moves by protruding the cell front
through growth of actin networks, retracting the rear by
myosin-driven contraction and adhering to the surface
[38]. The whole phenomenon is so complex that a reduc-
tionist approach is essential. Thus, actin-propelled bacte-
rial pathogens and plastic beads, which mimic cell
protrusion but do not employ contraction or adhesion,
have attracted much attention. In addition to the reduc-
tion of biological complexity, dimensional reduction was
widely used to model the protrusion. Thus, the influential
elastic propulsion theory [39] posits that actin gels grow at
the bead surface and push away older parts of the actin
network that surround the nascent actin filaments. These
older actin-gel layers stretch, and generate a squeezing
stress, propelling the bead forward. The first and simplest
1D formulation of this theory [39] explained successfully
how the bead is propelled forward by the actin network
growing at the rear of the bead (Figure 3a). The 1D model,
however, did not explain how the spherical bead, which is
initially surrounded by a spherically symmetric ‘actin
cloud’, breaks through this cloud as observed [40] and
initiates unidirectional motility. This symmetry-breaking
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phenomenon was explained by the 2D model [41], which
analyzed how radial compression of the inner layer of the
actin gel equilibrated with the tangential stretching of the
outer layer, and thus variations of the stress in two
dimensions were explicitly considered. This model dem-
onstrated that when the outer layer of the actin gel
becomes thin in any location, then the stretching force
per actin filament grows there and the gel starts to fail
locally, making it possible for the bead to escape
(Figure 3a). The exact geometry of the symmetry-break-
ing, which in principle may not have axial symmetry,
cannot be revealed by either 1D or 2D models, however.
Recent experiments [42] indeed showed that the actin
cloud breaks through an asymmetric linear crack [42]
(Figure 3a). 3D agent-based simulations faithfully repro-
duced this cracking process [42], providing the ultimate
test for the actin elastic propulsion theory.

To elucidate how cells move on flat surfaces, under-
standing of actin-based protrusion has to be complemented
by knowledge of contraction, adhesion and the role of the
membrane enveloping the cell. One of the main mechanical
questions about the migrating cell is how the cell manages
to maintain its length such that the rear neither lags
behind nor collapses onto the protruding front. This com-
plicated question can be, in the first approximation,
addressed in 1D by considering the anterior-posterior slice
across the moving cell. Pioneering 1D modeling [43] illus-
trated under simple and natural assumptions that a sim-
plified 1D actomyosin strip protruding at one end and

(@)

(b)

|

TRENDS in Cell Biology

Figure 3. Dimensionality in actin protrusion and cell motility. (a) The actin-driven propulsion of a plastic bead can be, in the simplest case, modeled in 1D by calculating
gradients of actin density, deformation and stress along the long axis of the actin tail (left). The simplest model of the bead breaking through the initially symmetric ‘actin
cloud’ can be formulated in 2D (center): thinning of the actin gel (lighter region at the right) causes autocatalytic contraction of the gel at the opposite side of the bead and
further breakage of the gel at the site of the initial thinning. Calculation of the elastic stress distribution in radial and tangential directions is required for modeling this
process. To understand the exact geometry of the symmetry-breaking, full 3D simulation of the actin gel mechanics (right) is necessary. The figure at the right is reprinted
from [42] with permission. (b) Motile fish keratocyte cell modeled in 3D in the framework of the Virtual Cell software as the union of the cell body (half ellipsoid) and
lamellipodium (thin ellipsoid) (left). Much insight can be obtained from 2D models analyzing the distributions of the key molecular players (such as actin, myosin, adhesion
molecules; in the figures the distribution of G-actin is shown). These 2D models can either address dynamics in the flat lamellipodium (bottom right), or in the dorsal-
ventral plane in the middle of the cell (top right). Valuable answers can, in fact, be obtained even from 1D models that calculate front-to-rear dynamics along the dashed line
at the center of the lamellipodium. Elements of the figure are reprinted from [58] with permission.
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contracting and adhering to the surface across the cell
indeed achieved stable size and crawling speed because
the myosin contraction at the rear accelerated while the
protrusion at the front slowed down as the cell became
longer. Moreover, this simplistic model correctly predicted
that the cell maximizes its speed at a moderate level of
adhesion [44]; weaker adhesion causes the cell to treadmill
in place, whereas stronger adhesion makes the cell unable
to pull forward the rear. The next step would be to under-
stand how the migrating cell contains its lateral dimen-
sion, neither letting the sides expand too widely, nor
allowing them to collapse to the middle. This question is
answered only for simple, steadily crawling cells, such as
fish keratocytes [45,46] (Figure 3b). Because this question
concerns behavior in two dimensions, mathematical mod-
els were developed in 2D based on experimental observa-
tions. These models proposed that the cell maintains low or
high actin density at the sides or front of its edge, respec-
tively. Lower-density actin networks at the sides are
stalled by the outstretched cell membrane, whereas a
higher-density actin gel at the front protrudes against
the membrane tension, and myosin swept to the rear in
the framework of the moving cell contracts, pulling the rear
forward. The 2D models of the keratocyte are adequate
because the motile appendage of the moving cell is very flat
(Figure 3b); its height is smaller than a micrometer, com-
pared to tens of micrometers in length and width. These
models did not address this flatness. Interestingly, a lim-
ited 2D model of the ventral-dorsal cross-section of the
motile cell suggested that myosin contraction keeps the
ventral and dorsal surfaces close together [47].

To understand fully the motile cell, which does not pos-
sess enough symmetry, a 3D model is needed. The first
attempt to tackle such a full 3D model, albeit with a some-
what artificial vertical force flattening the cell, was made in
a recent pioneering study [48]. It remains to be seen if
biological insight will emerge from this model, however.
Notably, unlike most 3D computational models using the
agent-based approach, the authors [48] employed computa-
tionally demanding numerical analysis of partial differen-
tial equations describing actin-myosin mechanics; thus,
this traditional modeling tool is difficult, but not impossible,
tousein 3D. Itis becoming clear that cell migration through
a 3D extracellular matrix in physiologically relevant sys-
tems employs mechanisms that are somewhat different
from those on 2D surfaces [49]. Respective 3D modeling will
undoubtedly be needed very soon. So far, the lack of high-
quality data on the dynamics of actin, myosin and other key
molecules in three spatial dimensions plus time, combined
with a lack of ideas for how to develop these 3D models and
computer limitations, hinders progress. However, recent
success in high-resolution imaging [50] will no doubt lead
to more adequate simulations and understanding. One
additional challenge of 3D cell motility modeling is that,
in addition to the cell mechanics, one has to model highly
non-trivial deformations, stresses and breakage of the ex-
tracellular matrix surrounding the cell.

Concluding remarks
Computational modeling in cell biology generates quan-
titative hypotheses for experimental testing and provides
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a rigorous framework for interpretation of the data. A
model has to be as simple as possible for maximal quali-
tative insight, but still capture essential features of the
cell dynamics. Thus, if the symmetry and dimensions of
the problem allow, there is no reason to develop a hyper-
realistic 3D model (other than perhaps to daze collabora-
tors with lifelike simulation movies!). A 3D model is
necessary when either (i) a process is completely asym-
metric and understanding its exact geometry is essential,
or (ii) a predicted quantity has to be compared with a
more-or-less precise measurement. Clear illustrations of
these two situations, in addition to the cases highlighted
above, come from morphogenesis. For example, the de-
veloping vertebrate limb is highly asymmetric, and its
multicellular pattern looks different in all three (anteri-
or-posterior, dorsal-ventral and proximal-distal) dimen-
sions. The most straightforward way to test our
understanding of this process is to develop 3D models,
simulate them in 3D and see if the simulations predict the
observed pattern, as has been done [51,52]. Conversely,
gastrulation - a fundamental morphogenetic behavior
that transforms a flat cell sheet into a pit — has rotational
symmetry, and so can be modeled successfully in 2D
[53,54]. Both of these studies report insightful 2D simula-
tions of a frontal cross-section of cell sheets being buckled
by asymmetric and heterogeneous actomyosin contrac-
tions. Notably, both studies contain exemplary discus-
sions of the 2D versus 3D aspect of the problem and
contend that although all qualitative model conclusions
are valid in 3D, the 2D models ignore circumferential
deformations and stresses along annular rings of cells
around the symmetry axis. Thus, when accurate mea-
surements of these strains and stresses become available
and models have to be tested against those numbers,
there will be no choice but to update the 2D models to
the full 3D versions.

How hard is it to model in 3D? It is not difficult to
formulate a model in 3D, but solving its partial differential
equations, which are the most powerful and developed
mathematical tool, is very taxing; the amounts of memory,
disk storage and processing time needed are enormous.
With the increasing speed and bandwidth of modern com-
puters it is now possible to run 3D models involving tens of
millions of grid points and tens of thousands of time steps,
but it takes terabytes of disk storage and several days to
compute, even on the most powerful of supercomputers.
This prevents exploratory use of modeling by prohibiting
frequent back and forth between models and experiments
owing to time constraints. Although computer power is
increasing rapidly, so is the known biological (i.e. inter-
actome) complexity. Techniques are being developed to
minimize computing time, such as parallel simulations
(where the computation is spread across multiple
machines) and graphical processing unit-based computa-
tion (developed for gaming applications). The latter is
carried out on specialized processors that do not perform
many generalized tasks, however, and are highly opti-
mized to crunch data and equations for specific types of
models [55]. In addition, as mentioned above, agent-based
simulations in 3D generally do not increase computational
complexity significantly beyond 1D or 2D. Finally, hard



thinking almost invariably makes a model, even a 3D one,
simple enough to simulate by using one of a growing
number of user-friendly software interfaces, such as Vir-
tual Cell [56] and CompuCell3D [57]. One must always
remember the second rule of modeling: computation time is
inversely proportional to thinking time.
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