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Abstract
Contraction of actomyosin networks underpins important cellular processes includ-
ing motility and division. The mechanical origin of actomyosin contraction is not
fully-understood. We investigate whether contraction arises on the scale of individual
filaments, without needing to invoke network-scale interactions. We derive discrete
force-balance and continuum partial differential equations for two symmetric, semi-
flexible actin filaments with an attached myosin motor. Assuming the system exists
within a homogeneous background material, our method enables computation of the
stress tensor, providing a measure of contractility. After deriving the model, we use
a combination of asymptotic analysis and numerical solutions to show how F-actin
bending facilitates contraction on the scale of two filaments. Rigid filaments exhibit
polarity-reversal symmetry as the motor travels from the minus to plus-ends, such that
contractile and expansive components cancel. Filament bending induces a geometric
asymmetry that brings the filaments closer to parallel as a myosin motor approaches
their plus-ends, decreasing the effective spring force opposing motor motion. The
reduced spring force enables the motor to move faster close to filament plus-ends,
which reduces expansive stress and gives rise to net contraction. Bending-induced
geometric asymmetry provides both new understanding of actomyosin contraction
mechanics, and a hypothesis that can be tested in experiments.
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1 Introduction

The mechanics of actin filaments and myosin motor proteins in the cell cortex under-
pins movement (Yamada and Sixt 2019) and division (Pollard 2010) of biological
cells. Early breakthroughs in understanding actomyosin dynamics occurred in muscle
cells (Gautel 2011), in which actin and myosin form sarcomere structures. Sarcom-
eres involve filaments aligned in parallel with minus-ends in the centre and plus-ends
pointing outwards. Relative motion of myosin motors towards filament plus-ends
subsequently generates contraction by pulling filaments inwards. This mechanism
is known as sliding filament theory (Huxley 2004). However, actomyosin networks in
the cell cortex are disordered, with filaments distributed at random. Experiments (Mur-
rell et al. 2015; Pollard and O’Shaughnessy 2019) and simulations (Tam et al. 2021;
Ennomani et al. 2016) have shown that disordered actomyosin networks also con-
tract (Chalut and Paluch 2016). According to sliding filament theory, filament pairs
produce expansion if myosin motor proteins localise close to plus-ends, or contrac-
tion if myosin motor proteins localise close to minus-ends. In disordered actomyosin
networks, motors localise near plus-ends and minus-ends with equal probability.
Therefore, sliding filament theory alone cannot explain disordered network contrac-
tion. The origin of contraction in disordered actomyosin networks remains an active
field of research.

Filament bending flexibility is commonly-hypothesised as a source of asymmetry
that might explain contraction of disordered actomyosin networks (Murrell andGardel
2012; De La Cruz and Gardel 2015; du Roure et al. 2019; Head et al. 2003; Tam
et al. 2021). Actin filaments are semi-flexible (Stachowiak et al. 2014; Belmonte
et al. 2017), such that they undergo small but significant bending (Broedersz and
Mackintosh 2014; Murrell and Gardel 2012). Filament semi-flexibility is irrelevant in
sarcomeres with parallel arrays of straight filaments, but is important for disordered
networks in which motors can cross-link filaments at arbitrary angles and generate
torque. Previous experimental and theoretical studies in disordered networks suggest
that filament buckling gives rise to contraction. These studies show that filaments can
sustain longitudinal tension, but buckle under longitudinal compression (Bidone et al.
2017; Belmonte et al. 2017; Cheffings et al. 2016; du Roure et al. 2019; Freedman et al.
2017, 2018; Lenz 2020;Murrell andGardel 2012; Ronceray et al. 2016; Soares e Silva
et al. 2011; Yu et al. 2018). This buckling mechanism can generate network-scale bias
to contraction over expansion (Belmonte et al. 2017). Other studies have considered
a related filament bending mechanism (Lenz 2014; Tam et al. 2021; Head et al. 2003;
Popov et al. 2016; Kim 2015; Letort et al. 2015) as a source of force asymmetry.
Bending involves applying forces that pluck filaments transversely, in contrast to the
longitudinal forces involved with buckling. Lenz (2014) showed that filament bending
produces forces that exceed those involved with longitudinal buckling, and Tam et al.
(2021) showed that this mechanism facilitates network-scale contraction. A pertinent
question is whether the force asymmetry provided by bending or buckling applies
at the microscopic scale (Lenz 2014; Komianos and Papoian 2018; De La Cruz and
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Gardel 2015), or whether long-range effects transmit contractile force through the
network, without requiring a microscopic asymmetry (Ronceray et al. 2016).

One approach to understand microscopic filament dynamics is to model a single
filament as an inextensible elastic rod, as in ‘worm-like chain’ models (Broedersz and
Mackintosh 2014; Lenz 2014). Broedersz andMackintosh (Broedersz andMackintosh
2014) used this approach to identify an asymmetry under extension and compression.
Other authors have considered structures consisting of two-filaments and an attached
motor (Lenz 2014; Belmonte et al. 2017; Hiraiwa and Salbreux 2016; Komianos and
Papoian 2018). Lenz (2014) reported that disordered networks of rigid filaments with
polarity-reversal symmetry (i.e. any configuration of filaments is equally likely as the
same configuration with minus and plus-ends reversed) generate zero net contraction.
Lenz (2014) also showed that filament bending gives rise to contraction in a two-
filament system, and is the dominant mechanism of contraction for experimentally-
feasible parameters. During motor-induced deformation, semi-flexible actin filaments
evolve to minimise their bending energy. Therefore, we model semi-flexible filament
evolution as a curve-straightening flow. Mathematically, curve-straightening refers
to deformation of curves in R

2 by decreasing their total squared curvature. Curve-
straightening problems have been investigated since the 1980s (Langer and Singer
1984, 1987; Linnér 1989, 2003). Wen (1993, 1995) used the indicatrix representation
and L2-gradient flow of the squared curvature functional to derive a fourth-order,
semilinear parabolic partial differential equation (PDE) for the evolution of the curve.
Oelz (2011) extended this work to model an open curve. However, theoretical analysis
of curve-straightening flows is mostly limited to single curves, rather than the two-
curve representations necessary to model a pair of filaments.

We extend previous curve-straightening models to derive a coupled PDE system
for two symmetric, semi-flexible filaments with a myosin motor attached at their
intersection. After obtaining the governing equations, we describe how to obtain the
stress tensor, assuming the two filaments reside in a homogeneous background mate-
rial. We then use asymptotic analysis and numerical solutions to provide a detailed
explanation of how filament bending facilitates contraction on the two-filament scale.
Our analysis suggests a contraction mechanism based neither on filament buckling,
nor intrinsic force asymmetry where bending generates contraction. Instead, fila-
ment semi-flexibility creates a geometric asymmetry that inhibits expansion. Rigid
filaments exhibit polarity-reversal symmetry, whereby contraction associated with a
minus-end-located motor balances with expansion associated with a plus-end-located
motor. Allowing filaments to bend breaks this symmetry, and the filaments become
closer to parallel as the motor approaches the plus-ends. This decreases the spring
force through the motor, enabling the motor to move faster close to the plus-ends. Fast
motor motion inhibits expansive stress, and gives rise to net contraction. Our analysis
provides a new hypothesis for bending-induced actomyosin contraction, and shows
how contraction can occur on the microscopic two-filament scale.
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Fig. 1 Schematic representation
of two actin filaments with a
myosin motor attached at their
intersection. Filaments are the
curves z1 and z2, and arrow
heads represent minus-ends. The
myosin motor protein is
represented by the blue dot

2 Mathematical model

We develop a mathematical model for a myosin motor attached to two overlapping
actin filaments.We represent filaments as open curves inR

2, and denote their positions
by zi (s(t), t) = (xi (s(t), t), yi (s(t), t)), for i = 1, 2 (see Fig. 1). The variable t
denotes time, and s ∈ [0, Li ] is the arc length parameter, where Li is the length of
the i-th filament. Actin filaments are polarised, so we adopt the convention that s = 0
corresponds to the filament minus-end, and s = Li corresponds to the plus-end. Since
non-muscle myosin thick filaments are short compared to actin filaments (Dasbiswas
et al. 2018), we represent themyosinmotor as a point object existing at the intersection
between the two filaments. We track its position by introducing the variables mi (t) ∈
[0, Li ], such that s = mi is the position of the motor head attached to the i-th filament.
We assume that no other proteins, for example cross-linkers, are present.

2.1 Discrete force-balance equations

We express the mathematical model for the filament and motor mechanics as a system
of force-balance equations,

Fa,drag − δEa,bend − δEa,stretch − δEm,stretch + Fm,a = 0. (2.1)

The first three terms in (2.1) describe the drag, bending, and longitudinal stretching
forces respectively on actin filaments. The fourth term represents longitudinal stretch-
ing along the myosin motor, and the final term describes forces between filaments
and motors. We represent bending and stretching forces as the variation of potential
energy, where terms involving δ denote variations. We formulate the force-balance
equations (2.1) as a minimisation problem. This involves constructing a time-discrete
scalar functional that contains a contribution for each force term in (2.1),

E [z1, z2,m1,m2] := Ea,drag + Ea,bend + Ea,stretch + Em,stretch + Em,a . (2.2)
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In (2.2), Ea,bend, Ea,stretch, and Em,stretch are the potential energies associatedwith fila-
ment bending, filament stretching, andmotor stretching respectively. The terms Ea,drag
and Em,a are pseudo-energy terms with variations that correspond to finite-difference
approximations of Fa,drag and Fm,a, which cannot be interpreted as variations of
potential energy.

The first term, Ea,drag, describes drag friction between filaments and a passive
background medium. Drag acts uniformly along the filaments and opposes filament
motion. The term to represent drag between filaments and the background medium is

Ea,drag = λa

2∑

i=1

∫ Li

0

∣∣zi − zni
∣∣2

2�t
ds, (2.3)

where λa is the filament drag coefficient, �t is the time step size, and the superscript
n refers to the previous time step in the discrete formulation, zni = zi (s, t − �t). We
model bending of semi-flexible actin filaments via the elastic potential energy

Ea,bend =
2∑

i=1

∫ Li

0

κa

2

∣∣z′′i
∣∣2 ds, (2.4)

where κa is the flexural rigidity, and primes denote differentiation with respect to
arc-length, s. We assume that κa is constant, and the same for both filaments. We
obtain a term for filament stretching by assuming that actin filaments are inextensible.
To model this, we ensure that |z′i | = 1 at every point along the filaments using the
penalisation term

Ea,stretch =
2∑

i=1

∫ Li

0

1

δa

(∣∣z′i
∣∣ − 1

)2 ds, (2.5)

where δa is an arbitrarily small parameter that enforces the inextensibility constraints.
The remaining two terms in (2.2) describe howmotors contribute to the mechanics.

To model motor stretching, we introduce another penalising potential,

Em,stretch = 1

δm
|z1(m1, t) − z2(m2, t)|2 , (2.6)

where δm is an arbitrarily small parameter that penalises deviation from the constraint
z1(m1, t) = z2(m2, t) stating that motors are to remain point objects. The final term
in (2.2) describes interactions between filaments and motors. We assume that motors
obey a linear (affine) force–velocity relation (Alcazar et al. 2019), illustrated in Fig. 2.
This law integrates themultitude of force contributions exerted bymyosin headswhich
decorate the myosin thick filament and interact with actin filaments (Kull and Endow
2013). Subject to zero force (when the motor is unextended), motors move with speed
Vm . As the motor extends, the spring force through the motor increases. We assume
that motor velocity varies linearly with the spring force through the motor. If the force
through the motor exceeds Fs, the stall force, then the motor velocity is zero. The
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Fig. 2 The linear force–velocity
relationship for myosin motors
bound to actin filaments. An
unextended motor subject to
zero force moves towards
filament plus-ends with the
free-moving velocity, Vm . If the
spring force through the motor
exceeds the stall force Fs , the
motor does not move

corresponding pseudo-energy term consists of a linear term, and a quadratic drag-like
term for the velocity reduction caused by the force through the motor,

Em,a =
2∑

j=1

⎛

⎜⎝−Fs m j + Fs
Vm

(
m j − mn

j

)2

2�t

⎞

⎟⎠ . (2.7)

With the definition of (2.3-2.7), minimising the functional (2.2) for fixed �t provides
a time-implicit numerical method to solve the force-balance equations (2.1) for the
filament and motor positions.

2.2 Governing partial differential equations

Formulating the model as a minimisation problem enables us to derive a contin-
uum model for the filament and motor positions based on the discrete formulation in
Sect. 2.1. The derivation is based on the following variational principle. Given known
data (zn1, z

n
2,m

n
1,m

n
2) at the discrete point in time n, the solution at the following point

in time minimises the functional (2.2), that is

(
zn+1
1 , zn+1

2 ,mn+1
1 ,mn+1

2

)
= argmin E

[
zn1, z

n
2,m

n
1,m

n
2

]
(z1, z2,m1,m2) . (2.8)

We obtain force-balance equations by setting to zero the functional derivatives of (2.2)
with respect to filament and motor positions. Subsequently, we write

δE
[
zn1, z

n
2,m

n
1,m

n
2

] (
zn+1
1 , zn+1

2 ,mn+1
1 ,mn+1

2

)
· (δz1, δz2, δm1, δm2) = 0, (2.9)

where terms involving δ denote the variation of the respective quantity. Minimising
the functional (2.2) enables us to write the force-balance equations (2.1) in terms of z1,
z2, m1, and m2. We obtain the governing equations by evaluating (2.9) and matching
coefficients of δz1, δz2, δm1, and δm2.On taking the formal continuum limit�t → 0,
for which (u − un)/�t → u̇, we obtain the system of PDEs
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λa ż1 + κaz
′′′′
1 − (

λ1z
′
1

)′ + μ
z1 − z2

‖z1 − z2‖δ(s − m1) = 0, (2.10a)

λa ż2 + κaz
′′′′
2 − (

λ2z
′
2

)′ − μ
z1 − z2

‖z1 − z2‖δ(s − m2) = 0, (2.10b)

ṁ1 = Vm

[
1 − μ

Fs

z1 − z2
‖z1 − z2‖ · z′1(m1, t)

]
, (2.10c)

ṁ2 = Vm

[
1 + μ

Fs

z1 − z2
‖z1 − z2‖ · z′2(m2, t)

]
, (2.10d)

where primes denote differentiation with respect to arc length, dots represent deriva-
tives with respect to time, and δ(·) is the Dirac delta function (not to be confused with
variation). Equations (2.10) are a system of continuum force-balance equations for the
filament and motor positions. They are formulated in a formal limit where δa and δm
are small, and the force coefficients 1/δa and 1/δm in the variations of the penalising
potentials (2.5) and (2.6) are replaced by the Lagrange multipliers λ1, λ2, andμ.Note
that the sign of z1 − z2 in (2.10) will be absorbed by μ. As a consequence, solutions
satisfy the constraints

|z′i | ≡ 1, (2.11a)

z1(m1, t) = z2(m2, t). (2.11b)

The equations are subject to the boundary and initial conditions

z′′i (0, t) = z′′i (Li , t) = 0, (2.12a)
(
κaz

′′′
i − λi z

′
i

)∣∣
s=0,Li

= 0, (2.12b)

zi (s, t = 0) = zi,I (s), (2.12c)

where the subscript I represents an initial quantity. A detailed derivation of (2.10) and
(2.12) is provided in Appendix A.

2.3 Calculation of forces and stress

Anobjective of thiswork is to describe how the filament andmotormotion governed by
our model generates contractile and expansive forces. We assume the two-filament–
motor structure is immersed in a dense network of cross-linked filaments covering
a rectangular domain. A pair of actin filaments can locally deform the background
network in which it is immersed. However, we assume the background can only
undergo uniform elongation and shearing. A scenario supporting this assumption is
that the background network consists of numerous two-filament–motor assemblies, all
with the same shape as the reference pair that we describe explicitly (Fig. 3B). In this
scenario, deformations occur equally everywhere in the domain, and the background
network remains homogeneous. If the background is homogeneous, we can associate
the tension at the boundaries of the domain with the stress being generated by the
reference pair of actin filaments (Fig. 3A).
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A B

Fig. 3 Schematic representation of a two-filament–motor systemexistingwithin a rectangular homogeneous
background medium. (A) The filaments are the curves z1 and z2, and arrow heads represent filament minus
(pointed) ends. Myosin motor proteins are represented by blue dots, and initially appear at the intersection
between the two filaments. (B) Visualisation of the two-filament–motor structure embedded in a dense
background network consisting of numerous assemblies (green lines) with the same shape as the reference
pair (black lines)

To quantify contraction, we compute the stress tensor for a small rectangular region
of background material that encloses the two-filament–motor structure. The adjacent
sides of the rectangle are given by the vectorsLx = (Lxx , Lxy)

T , andLy = (Lyx , Lyy)

as shown in Fig. 3A. We compute the vectors Fx = (Fxx , Fxy) and Fy = (Fyx , Fyy),

also shown in Fig. 3A. These vectors are the force components acting on the domain
boundaries that must be applied to prevent uniform elongation and shear deformations.

These forces sum the contributions of both filaments and the motor, and provide
a measure of net contractility. To derive closed form expressions for these forces, we
return to the discrete formulation. We obtain Fx and Fy by first adding extra terms to
the functional (2.2), and defining

Etotal := Ẽa,drag + Ea,bend + Ea,stretch + Em,stretch + Em,a

+ Fx · Lx + Fy · Ly .
(2.13)

In (2.13), we use the modified drag term

Ẽa,drag = λa

2∑

i=1

∫ Li

0

∣∣zi − Lzni
∣∣2

2�t
ds, (2.14)

where

L =
[
Lxx/Ln

xx L yx/Ln
yy

Lxy/Ln
xx L yy/Ln

yy

]
. (2.15)

The matrix L represents the transition from the coordinate frame Ln
x , L

n
y at time n,

to the new coordinate frame Lx , Ly, corresponding to a rectangle that has undergone
uniform shearing and elongation. If we impose Lx = Ln

x and Ly = Ln
y , the vectors

Fx = − ∂Lx E and Fy = − ∂Ly E represent Lagrange multipliers that enforce the
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constant domain size and shape constraints.We assume that any possible deformations
of the rectangle are small, such that Cauchy stress theory applies. The two-dimensional
state of stress in the domain is then given by the stress tensor,

σ =
[
Fxx/Lyy Fxy/Lyy

Fyx/Lxx Fyy/Lxx

]
. (2.16)

The bulk stress,

σ = 1

2
tr (σ ) , (2.17)

then provides ameasure of the contraction or expansion generated by the two-filament–
motor system.Byconvention, negativeσ indicates contraction, andpositiveσ indicates
expansion. The quantity σ is invariant to domain rotations, and equal to the average
of the eigenvalues of σ . The associated eigenvectors of σ are the principal stress
directions, which indicate the directions of maximum contraction or expansion.

To obtain an explicit expression for the bulk stress, σ, in terms of the filament
positions, we differentiate the functional (2.13) with respect to Lx and Ly . This yields

Fx = λa

2∑

i=1

∫ Li

0

xni
Ln
xx

(
zi − Lzni

)

�t
ds, (2.18a)

Fy = λa

2∑

i=1

∫ Li

0

yni
Ln
yy

(
zi − Lzni

)

�t
ds. (2.18b)

Applying the formal continuum limit �t → 0, L → I, and (zi − zni )/�t → żi , we
obtain

Fx = λa

2∑

i=1

∫ Li

0

xi
Lxx

∂zi
∂t

ds, (2.19a)

Fy = λa

2∑

i=1

∫ Li

0

yi
L yy

∂zi
∂t

ds. (2.19b)

Evaluating the bulk stress (2.17) then yields

σ = λa

2∑

i=1

∫ Li

0

xi
Lxx

∂xi
∂t

+ yi
L yy

∂yi
∂t

ds = λa

2∑

i=1

∫ Li

0
zi · ∂zi

∂t
ds. (2.20)

Furthermore, the expressions (2.19) confirm that

σxy − σyx = λa

2∑

i=1

∫ Li

0

xi
Lxx L yy

∂yi
∂t

− yi
Lxx L yy

∂xi
∂t

ds
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= λa

Lxx L yy

2∑

i=1

∫ Li

0

[−yi
xi

]
· ∂zi

∂t
ds

= λa

Lxx L yy

2∑

i=1

∫ Li

0
z⊥i · ∂zi

∂t
ds = 0, (2.21)

where z⊥i denotes a vector orthogonal to zi , and we obtain the result by substitut-
ing (2.10) for żi . The stress tensor (2.16) is thus symmetric, and the bulk stress σ is
equal to the average of the eigenvalues of σ .

2.4 Nondimensionalisation

We nondimensionalise the PDE model (2.10)-(2.12) by introducing the length and
time scales

t̂ = Fs
λa L2

a
t, and

(
x̂, ŷ

) = 1

La
(x, y) , (2.22)

where hats represent dimensionless variables, and La is a characteristic filament length.
The dimensionless model is then (dropping hats for convenience)

ż1 + κ∗z′′′′1 − (
λ∗
1z

′
1

)′ + μ∗ z1 − z2
‖z1 − z2‖δ∗(s − m1) = 0, (2.23a)

ż2 + κ∗z′′′′2 − (
λ∗
2z

′
2

)′ − μ∗ z1 − z2
‖z1 − z2‖δ∗(s − m2) = 0, (2.23b)

1

V ∗
m
ṁ1 = 1 − μ∗ z1 − z2

‖z1 − z2‖ · z′1(m1, t), (2.23c)

1

V ∗
m
ṁ2 = 1 + μ∗ z1 − z2

‖z1 − z2‖ · z′2(m2, t), (2.23d)

subject to the boundary and initial conditions

z′′i (0, t) = z′′i
(
L∗
i , t

) = 0, (2.24a)
(
κ∗z′′′i − λ∗

i z
′
i

)∣∣
s=0,L∗

i
= 0, (2.24b)

zi (s, t = 0) = zi,I (s), (2.24c)

and the constraints

|z′i | ≡ 1, (2.25a)

z1(m1, t) = z2(m2, t), (2.25b)
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where δ∗(x̂) = Laδ(La x̂) is a scaled Dirac delta function. The dimensionless param-
eters and forces are

κ∗ = κ

Fs L2
a
, λ∗

i = λi

Fs
, μ∗

i = μi

Fs
,

V ∗
m = Vmλa La

Fs
, and L∗

i = Li

La
.

(2.26)

2.5 Model simplification

Before obtaining asymptotic and numerical results, we consider a simplification to
the dimensionless model (2.23)-(2.25). First, we assume that the two filaments are
symmetric about the vertical, that is

z1 = z, z2 =
[−1 0
0 1

]
z, (2.27)

and have identical length La = L1 = L2. Symmetry also implies that the relative
position of the motor is the same for both filaments, m1 = m2 = m, and that λ∗

1 =
λ∗
2 = λ∗. To simplify the motor dynamics (2.23c)-(2.23d), we impose Vm → ∞.

Finally, we rewrite dimensionless flexural rigidity according to κ∗ = 1/ε, indicating
that the flexural rigidity is large (ε 
 1), and that the filaments undergo only minor
bending. On applying these simplifications, the dimensionless model (2.23) becomes
(dropping asterisks on dimensionless parameters)

∂z

∂t
+ 1

ε
z′′′′ − (

λz′
)′ + μ

(
1
0

)
δ(s − m), (2.28a)

0 = 1 − μ

(
1
0

)
· z′(m(t), t), (2.28b)

subject to the boundary and initial conditions

z′′ (0, t) = z′′ (1, t) = 0, (2.29a)
(
1

ε
z′′′ − λz′

)∣∣∣∣
s=0,1

= 0, (2.29b)

z(s, t = 0) = zI (s), (2.29c)

and the constraints

|z′| = 1, (2.30a)

z(m(t), t) =
(

0
y(t)

)
. (2.30b)
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Equations (2.28a) and (2.28b) describe the filament and motor evolution respectively,
under the simplifying assumptions. Equations (2.28a) and (2.28b), with the boundary
and initial conditions (2.29), and constraints (2.30), complete our simplified model.

The dimensionless bulk stress (2.20) for the simplified model becomes

σ = 2
∫ 1

0

∂z

∂t
· z ds = −2

∫ 1

0

1

ε

(
z′′

)2 + λ ds. (2.31)

To obtain a measure of net stress, we integrate σ over the time between motor attach-
ment and detachment. This yields

∫ T

0
σ dt = J (T ) − J (0), (2.32)

where

J (t) =
∫ 1

0
|z(s, t)|2 ds. (2.33)

The quantity J (T ) − J (0) describes the net, time-aggregated stress that the two fil-
aments produce between motor attachment and detachment. This quantity will be
important in our asymptotic and numerical investigation on how filament bending
affects contraction.

3 Results and discussion

We analyse the simplified model derived in Sect. 2.5 to quantify how filament flex-
ibility gives rise to contractile stress. First, we use asymptotic analysis to obtain an
explicit approximation to the solution in the limit of infinite flexural rigidity. Through
the leading-order problem, we show that a rigid two-filament–motor structure with
polarity-reversal symmetry produces zero net stress. The first-order problem gives rise
to a system of differential equations that governs the dynamics with small filament
bending. Second, we obtain numerical solutions to validate the asymptotic analysis,
and investigate solutions beyond the large flexural rigidity limit. These solutions reveal
that contraction arises from a geometric asymmetry, whereby filaments become more
parallel as themotor approaches the plus-ends. This inhibits expansion associatedwith
plus-end-locatedmyosinmotors. Since contraction associatedwithminus-end-located
motors is unaffected, the net outcome is a contractile two-filament–motor structure.

3.1 Asymptotic analysis

We construct an asymptotic approximation to the solution of the simplified symmetric
model (2.28)-(2.30). Asymptotic analysis involves expanding variables in powers of
ε,

z = z0 + εz1 + ε2z2 + O(ε3), (3.1a)
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m = m0 + εm1 + ε2m2 + O(ε3), (3.1b)

λ = λ0 + ελ1 + ε2λ2 + O(ε3), (3.1c)

μ = μ0 + εμ1 + ε2μ2 + O(ε3), (3.1d)

σ = σ0 + εσ1 + ε2σ2 + O(ε3), (3.1e)

J = J0 + εJ1 + ε2 J2 + O(ε3), (3.1f)

as ε → 0. On substituting the asymptotic series (3.1) into the model (2.28)-(2.30), the
leading-order solution is the evolution of two rigid filaments with infinite resistance
to bending. The first-order problem describes how small, non-zero bending affects
the dynamics and stress. We present the key results and arguments in subsequent
subsections, and give full details of the computations in Appendix B.

3.1.1 Leading-order solution

The leading-order solution describes the evolution of rigid filaments. To solve for z0,
we consider the balance at O(1/ε). This yields

z′′′′0 = 0, z′′′0
∣∣
s=0,1 = 0, z′′0

∣∣
s=0,1 = 0, |z′0| = 1. (3.2)

The solution to the O(1/ε) problem (3.2) is a straight filament, whose direction we
parameterise by the filament angle, θ/2, measured from the positive vertical axis (see
Fig. 4). We write

z′0 =
[
sin (θ/2)
cos (θ/2)

]
. (3.3)

For a filament orthogonal to z0 we use the notation

z′⊥0 =
[− cos (θ/2)

sin (θ/2)

]
, (3.4)

where the symbol ⊥ denotes rotation to the left by π/2. A suitable ansatz for the
position of a rigid filament solution satisfying the constraint (2.30b) is then

z0 =
(
0
y0

)
+ z′0 (s − m0) , (3.5)

where the leading-ordermotor relative position,m0, and leading-order vertical position
of the intersection, y0, complete the parameterisation. The leading-order ansatz is
illustrated in Fig. 4.

To obtain the leading-order solution, we consider the O(1) problem

∂z0
∂t

+ z′′′′1 − (
λ0z

′
0

)′ + μ0

(
1
0

)
δ (s − m0) = 0, (3.6a)

0 = 1 − μ0 sin

(
θ

2

)
, (3.6b)
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Fig. 4 Schematic of a
two-filament–motor system with
rigid symmetric actin filaments.
The myosin motor has relative
position m0(t), and physical
position (0, y0(t)). Filaments
are symmetric about the dashed
vertical line, which is the
positive y-axis. The angle
between the filaments is θ, such
that the angle between a filament
and the y-axis is θ/2.

z′′′1 − λ0z
′
0

∣∣
s=0,1 = 0, (3.6c)

z0 (m0(t), t) =
(

0
y0(t)

)
, (3.6d)

z′0 · z′1 = 0. (3.6e)

Equation (3.6a)-(3.6b) are the leading-order equations governing the filaments and
motor respectively. Equation (3.6c) provides twoboundary conditions, and the solution
must also satisfy the ansatz (3.6d) and orthogonality constraint (3.6e). To proceed, we
use the orthogonality condition (3.6e) to infer the ansatz

z′1(s, t) = h′(s, t)z′⊥0 , (3.7)

where h(s, t) is an arbitrary scalar function. Substituting the ansatzes (3.5) and (3.7)
into the PDE for filament evolution (3.6a) enables us to solve for the leading-order
quantities

μ0 = 1

sin(θ/2)
, λ0 = H (s − m0) − s, and σ0 = 2ν0, (3.8)

where H is the Heaviside step function, and ν0 = m0 − 1/2. Filament evolution then
satisfies the ordinary differential equations

dS

dt
= −24ν0 (1 − S) , (3.9a)

S
dν0
dt

= 1 + 12ν20 (1 − S) , (3.9b)

where S = sin2(θ/2). Since z0 is written in terms of the angle θ only, the system
(3.9) determines z0. With h′ known, we subsequently obtain z1. Full details on this
calculation are available in Appendix B.1.

An important property of the system (3.9) is that it is invariant under a change of
variables that reverses the direction of time. If we introduce the reversed-time t̃ = T−t
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for an arbitrary constant T , we have ν̃0(t̃) = −ν0(T − t̃) and θ̃ (t̃) = θ(T − t̃), and
subsequently S̃ = S. Consequently, if the motor is initially positioned at the pointed
ends (ν0(0) = −1/2), and T denotes the time it reaches the barbed ends, then the
time-aggregated stress vanishes,

J (T ) − J (0) =
∫ T /2

0
σ(t) dt +

∫ T

T /2
σ(t) dt,

=
∫ T /2

0
2ν0(t) dt +

∫ T /2

0
2ν0(T − t̃) dt̃

=
∫ T /2

0
2ν0 dt −

∫ T /2

0
2ν̃0 dt̃ = 0. (3.10)

This is because the equations and initial conditions satisfied by ν0, θ, and ν̃0, θ̃ both
coincide, and we have that ν0(t̂) = ν̃0(t̂) for all t̂ ∈ [0, T ] (see also numerical result
shown in Fig. 5C). This finding agrees with the previously reported results that rigid
filaments with polarity-reversal symmetry produce zero net stress (Dasanayake et al.
2011; Lenz 2014).

3.1.2 First-order correction

The higher-order correction terms, z1, σ1 and J1, elucidate the effect of small, non-
zero bending on filament evolution and stress. To obtain expressions for the first-order
corrections to bulk stress and J , we substitute the asymptotic expansions (3.1) into
the stress terms (2.31) and (2.32). This yields

σ = −2
∫ 1

0
λ0 ds − 2ε

∫ 1

0

(∣∣z′′1
∣∣2 + λ1

)
ds + O

(
ε2

)
, (3.11a)

J =
∫ 1

0
|z0|2 ds + 2ε

∫ 1

0
z0 · z1 ds + O

(
ε2

)
. (3.11b)

Matching coefficients of ε then yields

σ1 = −2
∫ 1

0

(∣∣z′′1
∣∣2 + λ1

)
ds, J1 = 2

∫ 1

0
z0 · z1 ds. (3.12)

In addition, we use the PDE (3.6a) and the ansatz (3.7) to obtain an explicit expression
for the curvature of z1,

h′′ = − cot

(
θ

2

)[
(m0 − s)H(s − m0) + s2(m0(2s − 3) − s + 2)

]
. (3.13)
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Since the first-order correction to stress, σ1, involves the currently unknown λ1,

progress requires consideration of the O(ε) problem, which is

∂z1
∂t

+ z′′′′2 − (
λ0z

′
1 + λ1z

′
0

)′ + μ1

(
1
0

)
δ (s − m0)

− μ0

(
1
0

)
δ′ (s − m0)m1 = 0, (3.14a)

0 = −
(
1
0

) (
μ1z

′
0(m0(t), t) + μ0z

′
1(m0(t), t)

)
, (3.14b)

z′′′2 − λ0z
′
1 − λ1z

′
0

∣∣
s=0,1 = 0, (3.14c)

z′′2
∣∣
s=0,1 = 0, (3.14d)

z1 (m0(t), t) + z′0(m1(t), t) =
(

0
y1(t)

)
, (3.14e)

∣∣z′1
∣∣2 + 2z′0 · z′2 = 0. (3.14f)

Obtaining the solution to (3.14) involves an intricate calculation based on the ansatz

z1 =
(

0
y1(t)

)
− z′0(t)m1 + z′⊥0

[
A(t)(s − m0) +

∫ s

m0

h̃′(s, t) ds
]

, (3.15)

where A(t) is a (possibly time-dependent) constant of integration. The form of (3.15)
arises from the ansatzes (3.14e) and (3.7), and gives rise to a system of equations
for the degrees of freedom A(t), y1(t), and m1(t). We provide full details on the
calculation to obtain this in Appendix B.2. A key result is the stress correction term,

σ1 = −2
∫ 1

0

∣∣h′′∣∣2 ds − 2
[
A + h̃′(m0, t)

]
cot

(
θ

2

)(
1

2
− m0

)
+ 2m1, (3.16)

where h̃′(m0, t) is given by

h̃′(m0, t) = − 1

12
m3

0

(
6m2

0 − 15m0 + 8
)
cot

(
θ

2

)
. (3.17)

Similar to the system (3.9), we can obtain a system of differential equations to solve
for A(t), y1(t), and m1(t). Since h′′ and h̃′ are in terms of the leading-order degrees
of freedom θ andm0,we can subsequently compute σ1.However, the ODEs for A(t),
y1(t), and m1(t) have no exact solution. Therefore, we continue our investigation
using numerical solutions.

3.2 Numerical solutions

We compute numerical solutions to the simplified governing equations for filament
and motor positions (2.28) in Julia. Our numerical method involves minimising the
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time-discrete functional (2.13) with �t = 0.001. Energy minimisation is equivalent
to a time-implicit numerical method for solving the dimensionless model (2.23). In
our solutions, each filament has total length 1µm (Kamasaki et al. 2007), and consists
of 50 equal-length line segments joined at nodes, about which segments can rotate. In
Julia, we use the package Optim.jl (Mogensen and Risbeth 2018) to obtain the
minimiser using the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
method. After obtaining the minimiser, at each time step we use automatic differen-
tiation (ForwardDiff.jl) of the functional (2.13) to compute the forces Fx and
Fy, and subsequently bulk stress σ (2.17).

3.2.1 Comparison with asymptotic analysis

We begin by computing numerical solutions for two symmetric filaments withm(0) =
0, and θ(0) = π/2. Like the asymptotic analysis, we assume these filaments are
initially rigid, Vm → ∞, and solve until the motor reaches the plus-end and detaches.
First, we compute a solution for two rigid (ε = 1 × 10−5) filaments, to validate the
leading-order bulk stressσ0 = 2ν0, and the solution to the systemofODEs (3.9),which
governs z0. As Fig. 5A and B show, for both of these we obtain agreement between
the numerical solution and leading-order solution. Furthermore, Fig. 5C illustrates the
result from (3.10), namely that zero net stress is generated when a motor traverses two
rigid filaments from theminus to plus-ends, i.e. J0(T ) = J0(0) = 0,where T = 0.627
is the time at which the motor reaches the plus end.

Next, we solve the model with ε = 0.01 to validate the formulae for h′′ and
σ1, (3.13) and (3.16) respectively. The dynamics of the two filaments and motor are
illustrated in Fig. 6. As part of the solution, we compute h′′ using the asymptotic
formula (3.13) and numerical values of θ and m, and compare this with the numerical
value for the curvature,

h′′ = 1

ε

(
z′⊥0 · z′′

)
. (3.18)

As Fig. 7 shows, we obtain agreement between the numerical and asymptotic results.
The curvature formula (3.13) also reveals the shape that the two filaments adopt as
they evolve (the qualitative pattern is easier to see in Fig. 10). Initially, the filaments
adopt a convex shape, as the positive curvature in Fig. 7A shows. As the motor moves
and pulls the filaments inwards, their shape changes to concave, as Figs. 7C–D show.
When the motor approaches the plus-end, the filaments return to a convex shape. The
asymptotic result for h′′ remains accurate for up to ε ∼ O(1), before breaking down
for ε ∼ O(10).

We also use the numerical solution with ε = 0.01 to validate the formula for σ1,

the first-order correction to bulk stress. At each time step, we compute the stress σ,

and compare with the stress in a simulation with ε = 1 × 10−4, which we consider
to be σ0 for rigid filaments. We then approximate the first-order correction as σ1 ≈
(σ − σ0)/ε, and present results in Fig. 8A. For most values of t, it holds that σ1 > 0.
In particular, larger positive values of σ1 occur close to t = 0 and t = T , or m = 0
and m = 1. Fig. 8A is surprising, because it suggests the introduction of filament
bending generates stresses that are biased to expansion. Similarly, as Fig. 8B shows,
the quantity J1(T )− J1(0) > 0, also suggesting net expansive bias. Based on this, one
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(a) (b)

(c)
Fig. 5 Numerical results for a solution with two rigid filaments (ε = 1×10−5).AComparison between the
numerical bulk stress, and the leading-order approximation given by (3.8). B Numerical validation of the
system of ODEs (3.9). C Numerical result for J (t), confirming that J (T ) − J (0) = 0 for rigid filaments

might conclude that bending cannot facilitatemicroscopic-scale contraction.However,
we have not yet accounted for the changes in filament geometry, and how they influence
motor dynamics. Further simulations in Sect. 3.2.2 will reveal this more clearly, and
confirm that bending does facilitate net microscopic-scale contraction.

3.2.2 Flexible filament solutions

We now consider numerical solutions beyond the ε 
 1 regime considered in the
asymptotic analysis. These solutions are with the same conditions as Fig. 6, where
the motor is initially at the minus-ends of two symmetric filaments. We then solve the
model until the motor reaches the plus-ends. Results are presented in Fig. 9.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Numerical solution for the evolution of two actin filaments (red solid curves) with ε = 0.01. The
black nodes indicate the filament plus ends, and the blue dot at the filament intersection represents the
myosin motor. A t = 0.001; B t = 0.028.; C t = 0.2.; D t = 0.4. (E) t = 0.6. (F) t = 0.627.

The quantity J (t) measures the effect of ε on net stress, and is plotted in Fig. 9A.
For rigid filaments, we showed that J (T )− J (0) = 0, indicating zero net stress as the
motor moved from the minus to the plus-ends. Since J (T ) decreases as ε increases,
the introduction of filament bending facilitates bias to contraction. This contractile
bias is despite the quantities σ1(T ) and J1(T ) being positive, as in Fig. 8. Indeed,
Fig. 9B confirms that σ1 > 0, with stress increasing with ε close to t = 0 and t = T .

Semi-flexible filaments facilitate net contraction because bending breaks the
polarity-reversal symmetry, and the resulting geometry favours contraction.As Fig. 9C
shows, with increasing ε, the myosin motor moves faster along the filaments and
detaches earlier. The increase in motor speed is largest as the motor approaches the
plus-ends, which Fig. 9B shows is associatedwith expansion. As themotor approaches
the plus-ends, the semi-flexible filaments adopt a convex shape that brings them closer
to parallel at their tips, as illustrated in Fig. 9D. This decreases the spring force through
the motor, enabling it to move faster. Since the motor moves faster close to the plus-
ends, the expansive component persists for shorter time than the contractile component.
Consequently, the time-integrated stress J (T ) − J (0) decreases as ε increases.

The results in Fig. 9 are relevant for in vivo actin filaments, for which the param-
eters (Kamasaki et al. 2007; Gittes et al. 1993; Thoresen et al. 2011; Reichl et al.
2008; Oelz et al. 2015) estimated in Tam et al. (2021) give ε = 68.5. To further our
analysis, we compute a numerical solution with ε = 68.5 and Vm = 1, to investigate
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Numerical (black solid curves) and asymptotic (red dashed curves) solutions for h′′(s, t), the curva-
ture of z1, in a numerical solution with ε = 0.01, and θ(0) = π/2. A t = 0.001; B t = 0.028.; C t = 0.2.;
D t = 0.4.; E t = 0.6.; F t = 0.627.
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(a) (b)

Fig. 8 Calculation of σ1 ≈ (σ − σ0)/ε and J1 ≈ (J − J0)/ε in the numerical solution with ε = 0.01. The
values of σ0 and J0 were obtained using a solution with ε = 1 × 10−4.; A σ1.; B J1.

whether contraction persists after relaxing the assumption of infinite motor velocity.
The evolution of these filaments is shown in Fig. 10.

Despite the slower motor speed, the evolution qualitatively follows the prediction
from Fig. 7. Filaments are initially convex, then become concave, and adopt a convex
shape again as the motor approaches the plus-ends. As Fig. 10F shows, the two fila-
ments are curved when the motor reaches the plus-ends and detaches. To rule out the
possibility that relaxation to straight configuration produces expansion that cancels
out net contraction, we continued the simulation after motor detachment, until the
filaments were again straight. We plot σ(t) and J (t) in Fig. 11. Although relaxation
to the straight configuration (shown in Fig. 11A) generates a small amount of expan-
sive stress, Fig. 11C shows J (2) − J (0) < 0, suggesting net contraction. Thus, our
proposed geometric mechanism for contraction remains relevant for realistic filament
flexural rigidity and motor speed. Since actomyosin networks (for example those in
the cortex) consist of many cross-linked two-filament assemblies, our mechanism pro-
vides a possible explanation for the microscopic origin of network-scale actomyosin
contraction.

4 Conclusion

Understanding the origins of actomyosin contraction is an openproblem in cellular bio-
physics, with implications for cell movement and division. In this paper, we presented
a detailed investigation of how a two-filament-motor system generates microscopic
contraction if the filaments are flexible. We first derived a partial differential equa-
tion model, and described a method of computing in-plane stress. We then applied
asymptotic analysis to a symmetric system with infinite free-moving motor velocity.
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(a) (b)

(c) (d)

Fig. 9 The effect of ε on quantities in solutions of two symmetric filaments. Solutions are computed with
m(0) = 0, θ(0) = π/2, and proceed for all t ∈ [0, T (ε)] such that m(t) < 1. After this time T , the motor
reaches the plus-end and detaches. Results are plotted for six values of ε, and arrows indicate the direction
of increasing ε. A J (t).; B Bulk stress, σ.; C Motor position, m. DMean angle, θ.

The leading-order solution showed that two rigid filaments do not generate net stress
if the motor traverses the entire length of the filaments. However, the introduction of
filament bending enables the two-filament–motor structure to generate net contrac-
tion. This is because bending breaks the polarity-reversal symmetry of rigid filaments.
The resulting geometric asymmetry draws the plus-ends closer to parallel as the motor
approaches. This facilitates faster motor movement when motors are close to filament
plus-ends, and inhibits production of expansive stress.

Our analysis confirms that the microscopic dynamics of symmetric filament pairs
and motors can explain contraction. We expect that the same mechanism also favours
contraction in non-symmetric filament–motor assemblies and that, consequently,
macroscopic contraction in disordered networks could arise from the accumulation
of multiple filament pairs, without the need for nonlinear amplification of contractile
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Numerical solution for the evolution of two flexible actin filaments (red solid curves) with ε = 68.5
and Vm = 1. The black nodes indicate the filament plus ends, and the blue dot at the filament intersection
represents the myosin motor. A t = 0.; B t = 0.3.; C t = 0.6.; D t = 0.9.; E t = 1.2.; F t = 1.567.

(a) (b) (c)

Fig. 11 The final filament configuration, bulk stress, σ, and J (t) for the flexible filament (ε = 68.5 and
Vm = 1) solution in Fig. 10. (A Solution at t = 2.; B Bulk stress, σ.; C J (t).

stress. Nevertheless, the question of how these results apply to disordered networks
remains open. In disordered networks, filament pairs cross at arbitrary angle and posi-
tion, and interact with an active background of other filaments, rather than the passive
medium considered in this work. Tam et al. (2021) confirmed that disordered net-
works described by the biomechanical model for semi-flexible filaments and motors
presented in this study do contract. Another potential approach modelling disordered
network contraction is to derive a coarse-grained, continuum model based on the
assumption of infinite filament length (Oelz 2014). This, and investigating howmicro-
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scopic mechanics give rise to structures including stress fibres (Pellegrin and Mellor
2007) and the contractile ring (Kamasaki et al. 2007; Svitkina 2018), will be subjects
of future work.
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Appendix A: mathematical model derivation

In this Appendix, we present a detailed derivation of the PDEmodel (2.10) -(2.12).We
derive the systemof force-balance PDEs using the variational principle. The functional
for the structure consisting of a myosin motor attached to two semi-flexible actin
filaments is

E[z1, z2,m1,m2] :=
2∑

i=1

∫ Li

0

(
λa

2�t
|zi − zni |2 + κa

2
|z′′i |2

+ 1

δa

(∣∣z′i
∣∣ − 1

)2
)

ds + 1

δm
|z1(m1, t) − z2(m2, t)|2

+
2∑

j=1

⎛

⎜⎝−Fsm j + Fs
Vm

(
m j − mn

j

)2

2�t

⎞

⎟⎠ ,

(A1)

where zi (s, t) = (xi (s, t), yi (s, t)), for i = 1, 2, are the filament shapes and positions,
m1(t), andm2(t) are themotor relative positions.According to the variational principle
underlying the derivation, the solution at the next time step is such that the functional
derivative with respect to all degrees of freedom vanishes, that is

δE

δz1
= 0,

δE

δz2
= 0,

δE

δm1
= 0, and

δE

δm2
= 0. (A2)

123

http://creativecommons.org/licenses/by/4.0/


F-actin bending facilitates actomyosin contraction Page 25 of 35 4

Evaluating each of (A2) gives rise to the variational equations

0 =
∫ L1

0

λa

�t
δz1 · (

z1 − zn1
) + κaz

′′
1 · δz′′1 + 2

δa
(|z′1| − 1)

z′1 · δz′1∣∣z′1
∣∣ ds

+ 2

δm
(z1(m1, t) − z2(m1, t)) · δz1 (m1, t) , (A3a)

0 =
∫ L2

0

λa

�t
δz2 · (

z2 − zn2
) + κaz

′′
2 · δz′′2 + 2

δa
(|z′2| − 1)

z′2 · δz′2∣∣z′2
∣∣ ds

− 2

δm
(z1(m1, t) − z2(m1, t)) · δz2 (m2, t) , (A3b)

0 = δm1

[
−Fs + Fs

Vm

(
m1 − mn

1

)

�t

+ 2

δm
(z1(m1, t) − z2(m1, t)) · z′1 (m1, t)

]
, (A3c)

0 = δm2

[
−Fs + Fs

Vm

(
m2 − mn

2

)

�t

− 2

δm
(z1(m1, t) − z2(m1, t)) · z′2 (m2, t)

]
. (A3d)

For the motor evolution equations (A3c) and (A3d), we can immediately apply the
continuum limit �t → 0, for which ṁi = (mi − mn

i )/�t for i = 1, 2. In addition,
we consider the limit δm → 0 and replace the forces due to motor stretching by the
force μ which represents the Lagrange multiplier for the constraint

z(m1, t) = z(m2, t). (A4)

This yields the ordinary differential equations

dm1

dt
= Vm

[
1 − μ

Fs

z1 − z2
‖z1 − z2‖ · z′1(m1, t)

]
, (A5a)

dm2

dt
= Vm

[
1 + μ

Fs

z1 − z2
‖z1 − z2‖ · z′2(m2, t)

]
, (A5b)

which are force-balance equations for the myosin motor positions m1(t) and m2(t).
The equations (A5) represent that unloaded motors (for which μ = 0) move at the
free-moving velocity, Vm . As the motor moves, it is exposed to stretching forces, with
magnitude given by the Lagrange multiplier μ. The term involving the dot product
is the projection of this force onto the direction of motor movement along the i-th
filament. Assuming a linear force–velocity relation, the ratio of the term involving μ

and the dot product to the stall force, Fs, determines the reduction of motor speed due
to stretching forces.
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For the filament equations (A3a) and (A3b), in addition to δm → 0, we also let
δa → 0 enforcing the constraints

|z′i | = 1, i = 1, 2. (A6)

We write the limits of 2(|z′i | − 1)/δa as λi and apply integration by parts to remove
derivatives of δzi from under the integral sign. This yields

∫
κaz

′′
i · δz′′i + λi z

′
i · δz′i ds =

∫
δzi ·

[
κaz

′′′′
i − (

λi z
′
i

)′] ds

+ δzi · (
λi z

′
i − κaz

′′′
i

) + κaδz
′
1 · z′′i .

(A7)

We then rewrite equations (A3a) and (A3b) as

∫ L1

0
δz1 ·

[
λa

�t

(
z1 − zn1

) + κaz
′′′′
1 − (

λ1z
′
1

)′

+μ
z1 − z2

‖z1 − z2‖δ (s − m1)

]
ds + [

δz1 · (
λ1z

′
1 − κaz

′′′
1

) + κaδz
′
1 · z′′1

]L1
0 , (A8a)

∫ L2

0
δz2 ·

[
λa

�t

(
z2 − zn2

) + κaz
′′′′
2 − (

λ2z
′
2

)′

−μ
z1 − z2

‖z1 − z2‖δ (s − m2)

]
ds + [

δz2 · (
λ2z

′
2 − κaz

′′′
2

) + κaδz
′
2 · z′′2

]L2
0 , (A8b)

where δ is the Dirac delta function. The equations (A8) enable us to derive the con-
tinuum governing equations and boundary conditions. First, we require the filaments
to have zero curvature at their tips,

z′′i = 0 at s = 0, Li . (A9)

The remaining boundary terms in (A8) then give rise to the conditions

λi z
′
i − κaz

′′′
i = 0 at s = 0, Li , (A10)

which specifies that the boundary values vanish at s = 0, Li . Next, we apply the
fundamental lemma of the calculus of variations to the remaining integrals. In the
continuum limit �t → 0 for which (zi − zni )/�t = żi , we obtain

λa
∂z1
∂t

+ κaz
′′′′
1 − (

λ1z
′
1

)′ + μ
z1 − z2

‖z1 − z2‖δ (s − m1) = 0

on (0 < s < L1) , (A11a)

λa
∂z2
∂t

+ κaz
′′′′
2 − (

λ2z
′
2

)′ − μ
z1 − z2

‖z1 − z2‖δ (s − m2) = 0

on (0 < s < L2) . (A11b)
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The differential equations (A11) and (A5), and conditions (A9) and (A10) aswell as the
constraints (A4) and (A6) then define a system of force-balance equations and bound-
ary conditions that govern the evolution of two inextensible, semi-flexible filaments
connected to an inextensible motor. This is the dimensional PDE model (2.10)-(2.12)
given in the main text.

Appendix B: Asymptotic analysis

In this Appendix, we present the asymptotic analysis of Sect. 3.1 in more detail. We
first outline themethod used to solve the leading-order problem (3.6), and subsequently
consider the O(ε) problem (3.14) for the first-order corrections.

B.1 Leading-order problem

We commence the analysis by considering the ansatz for rigid filaments. Taking the
time derivative of (3.3) gives ∂t z′0 = −z′⊥0 θ̇/2, and taking four spatial derivatives

of (3.7) yields z(5)1 = h(5)z′⊥0 . Next, we can differentiate the governing equation of
O(1) (3.6a) once with respect to s, and substitute the two above expressions to obtain

− z′⊥0
θ̇

2
+ h(5)z′⊥0 − λ′′

0z
′
0 + μ0

(
1
0

)
δ′(s − m0) = 0. (B1)

Wecannowmultiply the boundary condition (3.6c) by z′0, anduse the property z′′′1 ·z′0 =
0,which follows from the orthogonality condition (3.6e), to obtainλ0(0) = λ0(1) = 0.
Finally, multiplying (B1) by z′0 implies that

λ0 = μ0

(
1
0

)
· z′0 (H(s − m0) − s) = H(s − m0) − s, (B2)

where H(s) denotes the Heaviside step function. The Lagrange multiplier μ0 =
1/ sin(θ/2), by rearranging (3.6b). The leading-order bulk stress is then

σ0 = −2
∫ 1

0
λ0 ds = −2μ0 sin

(
θ

2

) (
1

2
− m0

)
= −2

(
1

2
− m0

)
= 2ν0, (B3)

where ν0 = m0 − 1/2. This completes the derivation of the quantities listed in (3.8).
We now derive the ordinary differential equations (3.9) for y0, θ, and ν0, the three

degrees of freedom that govern the leading-order filament position, z0. On taking the
time derivative and variation, the ansatz (3.5) implies that

∂t z0 =
(
0
ẏ0

)
− z′0ṁ0 − z′⊥0 (s − m0)

θ̇

2
, (B4a)

δz0 =
(

0
δy0

)
− z′0δm0 − z′⊥0 (s − m0)

δθ

2
. (B4b)
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Integrating (3.6a) against δz0 then yields

0 =
∫ 1

0
∂t z0 · δz0 ds + μ0

(
1
0

)
·
((

0
δy0

)
− z′0δm0

)

=
∫ 1

0
∂t z0 · δz0 ds − μ0 sin(θ/2)δm0

=
∫ 1

0
∂t z0 · δz0 ds − δm0. (B5)

Substituting (B4) into (B5) then gives

0 =
∫ 1

0

[(
0
ẏ0

)
− z′0ṁ0 − z′⊥0 (s − m0)

θ̇

2

]
·
[(

0
δy0

)

−z′0δm0 − z′⊥0 (s − m0)
δθ

2

]
ds − δm0

=
(

0
δy0

)
·
∫ 1

0

[(
0
ẏ0

)
− z′0ṁ0 − z′⊥0 (s − m0)

θ̇

2

]
ds

− δm0

[(
0
ẏ0

)
· z′0 − ṁ0

]

−
∫ 1

0

[
z′⊥0 ·

(
0
ẏ0

)
− (s − m0)

θ̇

2

]
· (s − m0)

δθ

2
ds − δm0

= δy0

∫ 1

0

(
ẏ0 − cos(θ/2)ṁ0 − sin(θ/2)(s − m0)

θ̇

2

)
ds

− δm0 (ẏ0 cos(θ/2) − ṁ0)

−
∫ 1

0

(
ẏ0 sin(θ/2) − (s − m0)

θ̇

2

)
· (s − m0)

δθ

2
ds − δm0

= δy0

(
ẏ0 − cos(θ/2)ṁ0 − sin(θ/2)(1/2 − m0)

θ̇

2

)

− δm0 (1 + ẏ0 cos(θ/2) − ṁ0)

−
(
ẏ0 sin(θ/2)(1/2 − m0) − (1/3 − m0 + m2

0)
θ̇

2

)
δθ

2
. (B6)

Collecting the coefficients of δy0, δθ and δm0, we obtain the system of differential
equations (writing ν0 = m0 − 1/2)

ẏ0 =
(
12ν20 + 1

)
cot

(
θ

2

)
csc

(
θ

2

)
, (B7a)

θ̇ = −24ν0 cot

(
θ

2

)
, (B7b)

ν̇0 = csc2
(

θ

2

)(
1 + 6ν20 (cos(θ) + 1)

)
, (B7c)
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where csc(φ) = 1/ sin(φ). The equations (B7b) and (B7c) for θ and ν0 are also
independent of y0, suggesting that the solution is invariant to vertical translations.
Furthermore, the trigonometric functions can be eliminated by writing S = sin2(θ/2),
which yields

dS

dt
= −24ν0 (1 − S) , (B8a)

S
dν0
dt

= 1 + 12ν20 (1 − S). (B8b)

This completes the derivation of equation (3.9).

B.2 First-order problem

To obtain the higher-order corrections, we first use the leading-order equation (B1)
and the ansatz (3.7) to solve for h, the curvature of z1. Multiplying (B1) by z′⊥0 and
using z′′′1 · z′0 = 0 (which follows from the orthogonality condition (3.6e)), we obtain
h′′′(0) = h′′′(1) = 0, and subsequently

− θ̇

2
+ h′′′′′ − μ0 cos

(
θ

2

)
δ′(s − m0) = 0. (B9)

The boundary conditions h′′′(0) = 0 = h′′′(1) imply that

h′′′ = θ̇

2

s(s − 1)

2
+ μ0 cos

(
θ

2

)
(H(s − m0) − s) (B10)

and furthermore (since z′′1(0) = 0 = z′′1(1)), substituting for θ̇ and μ0,

h′′ = − cot

(
θ

2

) [
(m0 − s)H(s − m0) + s2(m0(2s − 3) − s + 2)

]
, (B11)

which is an expression for filament curvature, h′′(s, t).
We now obtain the perturbation solution for the bulk stress, σ1, which requires

knowledge of the quantities μ1 and λ1. First, we integrate (B11) once with respect
to s. This introduces another constant of integration, denoted A(t), which might be
time-dependent and cannot be determined fromboundary data. Consequently,wewrite

h′(s, t) = h̃′(s, t) + A(t), (B12)

where

h̃′(s, t) = θ̇

2

s3

12

( s
2

− 1
)

+ μ0 cos

(
θ

2

) (
1

2
(m − s)2H(s − m) − s3

6

)
. (B13)
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Collecting the coefficients of ε in the governing equations with asymptotic expan-
sions, we obtain the O(ε) problem (3.14). On taking a derivative of (3.14a) and
substituting z′1 = h′(s, t)z′⊥0 = (A(t) + h̃′(s, t))z′⊥0 , we obtain

( Ȧ + ∂t h̃
′)z′⊥0 + z′′′′′2 − ((λ0(A + f ′(t, s)))′′z′⊥0 + λ′′

1z
′
0)

+μ1

(
1
0

)
δ′(s − m0) − μ0

(
1
0

)
δ′′(s − m0)m1 = 0.

(B14)

Expanding the inextensibility constraint (3.14f) implies that z′0 · z(5)2 = −(|z′1|2)(4)/2.
Multiplying (B14) by z′0, we obtain

− 1

2
(|z′1|2)(4) − λ′′

1 +
(
1
0

)
· z′0

[
μ1δ

′(s − m0) − μ0δ
′′(s − m0)m1

] = 0. (B15)

We can integrate (B15) twice and apply the boundary conditions (3.14c) to determine
the constants of integration. This yields

1

2
(|z′1|2)′′ + λ1 =

(
1
0

)
· z′0

[
μ1

(
H(s − m0) − s

L

)
− μ0δ(s − m0)m1

]
, (B16)

which we can rearrange to obtain λ1. To eliminate μ1 from (B16), we use (3.14b)
to infer an expression for μ1. Substituting the ansatzes (3.5) and (3.7) for z0 and z1
respectively, we obtain

0 = −
(
1
0

)
·
(
μ1z

′
0 + μ0h

′(s, t)z′⊥0 (m0, t)
)

= −
[
sin

(
θ

2

)
μ1 − cos

(
θ

2

)
μ0h

′(m0, t)

]
,

and therefore

μ1 = μ0h
′(m0, t)

cos (θ/2)

sin (θ/2)
= μ0(A + h̃′(m0, t)) cot

(
θ

2

)
. (B17)

Substituting (B17) into (B16), we obtain

λ1 =
(
1
0

)
· z′0

[(
μ0(A + h̃′(m0, t)) cot

(
θ

2

))
(H(s − m0) − s)

−μ0δ(s − m0)m1] − 1

2

(
|z′1|2

)′′

=
(
A + h̃′(m0, t)

)
cot

(
θ

2

)
(H(s − m0) − s) − δ(s − m0)m1

− (z′1 · z′′1)′. (B18)
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Using the simplified expression (B18) for λ1,we can write the first-order perturbation
of the bulk stress (3.12), given by

σ1 = −2
∫ 1

0

(∣∣z′′1
∣∣2 + λ1

)
ds

= −2
∫ 1

0

∣∣h′′∣∣2 ds − 2
(
A + h̃′(m0, t)

)
cot

(
θ

2

)(
1

2
− m0

)
+ 2m1, (B19)

where h̃′(m0, t) is

h̃′(m0, t) = θ̇

2

m3
0

12

(m0

2
− 1

)
+ cot

(
θ

2

) (
−m3

0

6

)

= 1

2

(
−12(2m0 − 1) cot

(
θ

2

))
m3

0

12

(m0

2
− 1

)

+ cot

(
θ

2

)(
−m3

0

6

)

= cot

(
θ

2

) (
−m3

0

12

)[
(12m0 − 6)

(m0

2
− 1

)
+ 2

]

= − 1

12
m3

0

(
6m2

0 − 15m0 + 8
)
cot

(
θ

2

)
. (B20)

To solve for the first-order correction to the filament positions, z1, we require an
initial condition, here denoted zI ,1(s) = z1(s, 0). To determine the asymptotic expan-
sion of the initial condition (2.29c), we return to the force-balance equations (2.1),
and its equivalent time-discrete minimisation problem for the functional (2.2). In this
expression, the drag component (2.3) dominates when �t is small. Therefore, we
determine the leading order term in the asymptotic expansion of the initial condition
zI = zI ,0 + εzI ,0 + . . . as the best approximation of zI in L2 among the straight fibres
(3.5), that is

zI ,0 =
(

0
yI ,0

)
+

(
sin(θI /2)
cos(θI /2)

) (
s − mI ,0

)
, (B21)

where

(mI ,0, yI ,0, θI ) = argminm̄,ȳ,θ̄

∫ 1

0

(
zI ,0 − zI

)2 ds. (B22)

Since we focus on pairs of initially straight fibres in this study, we set zI = zI ,0.
A similar approach is available to determine zI ,1. Using the ansatz (3.7), we have

zI ,1 =
(

0
yI ,1(t)

)

− z′I ,0(t)mI ,1 + z′⊥I ,0

(
AI (s − mI ,0) +

∫ s

mI ,0

h̃′(t, s) ds
)

,

(B23)
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where

(mI ,1, yI ,1, AI ) = argminm̄,ȳ,θ̄

∫ 1

0

(
zI ,0 + εzI ,1 − zI

)2 ds. (B24)

In the case where zI ,0 = zI the term zI ,1 is minimal in L2. Then, the degrees of
freedom mI ,1, yI ,1, and AI can be computed using

0 =
∫ 1

0
zI ,1 · δzI ,1 ds, (B25)

where

δzI ,1 =
(

0
δy1

)
− z′I ,0δm1 + z′⊥I ,0(s − mI ,0)δA. (B26)

When we set δy1 = y0, δm1 = ∫ 1
0 (m0 − s) ds, and δA = 0, we find that

0 =
∫ 1

0
zI ,1 ·

[(
0
yI ,0

)
+ z′I ,0(s − mI ,0)

]
=

∫ 1

0
zI ,1 · zI ,0 ds. (B27)

It therefore holds that J1(0) = 0.
To complete the derivation, we use the ansatz (3.7) with degrees of freedom A(t),

y1(t), and m1(t). Its variation and time-derivative are given by

δz1 =
(

0
δy1

)
− z′0δm1 + z′⊥0 (s − m0)δA, (B28a)

∂t z1 =
(

0
ẏ1(t)

)
+ z′0

[
−ṁ1 + θ̇

2

(
A(t)(s − m0) +

∫ s

m0

h̃′(s, t) ds
)]

+ z′⊥0
(

θ̇

2
m1 + Ȧ(t)(s − m0) − Aṁ0

+
∫ s

m0

∂t h̃
′(s, t) ds − h̃′(m0, t)ṁ0

)
, (B28b)

where h̃′(m0, t) is given in (B20). A system of differential equations for m1, A and
y1 can then be found integrating (3.14a) against δz1. Using computer algebra, we
obtained the system

dy1
dt

= 1

960
csc4

(
θ

2

)[
960A sin

(
θ

2

) (
6ν20 cos(θ) + 6ν20 + 1

)

+ cos

(
θ

2

) (
−8928ν70 + 9600ν50 − 720ν40 + 490ν30 + 2940ν20

+3ν0(960m1 − 17) + 240)

−3 cos

(
3θ

2

) (
864ν70 − 960ν50 − 240ν40 + 30ν30 + 980ν20

+3ν0 + 960ν0m1 + 80)] , (B29a)
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dm1

dt
= − 1

960
csc4

(
θ

2

) [
−5760Aν20 sin(θ) − 480A sin(θ)

+10
(
576ν70 − 624ν50 − 20ν30 + 3ν0 + 48

)
cos(θ)

+4608ν70 − 5040ν50 − 200ν30 − 1440ν20 + 21ν0

+3ν0 cos(2θ)
(
384ν60 − 400ν40 + 480ν0 + 480m1 + 3

)

−1440ν0m1 − 480] , (B29b)

dA

dt
= − 1

160
cot

(
θ

2

)
csc2

(
θ

2

) [
576ν60 − 880ν40 + 720ν30 − 300ν20

−900ν0 − 15 + 4
(
96ν50 − 120ν30 + 60ν20 + 245

)
ν0 cos(θ)

]
. (B29c)

These ODEs govern the solution for z1, the first-order correction to the filament shape.
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