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Many types of cells migrate directionally in direct current (DC) electric fields (EFs), a phenomenon termed
galvanotaxis or electrotaxis. The directional sensing mechanisms responsible for this response to EFs, how-
ever, remain unknown. Exposing cells to an EF causes changes in plasma membrane potentials (V,,). Exploit-
ing the ability of Dictyostelium cells to tolerate drastic V,, changes, we investigated the role of V,, in electrotaxis
and, in parallel, in chemotaxis. We used three independent factors to control V,,: extracellular pH, extracel-
lular [K*], and electroporation. Changes in V,, were monitored with microelectrode recording techniques.
Depolarized V,, was observed under acidic (pH 5.0) and alkaline (pH 9.0) conditions as well as under higher
extracellular [K*] conditions. Electroporation permeabilized the cell membrane and significantly reduced the
V.., which gradually recovered over 40 min. We then recorded the electrotactic behaviors of Dictyostelium cells
with a defined V,, using these three techniques. The directionality (directedness of electrotaxis) was quantified
and compared to that of chemotaxis (chemotactic index). We found that a reduced V,, significantly impaired
electrotaxis without significantly affecting random motility or chemotaxis. We conclude that extracellular pH,
[K*1, and electroporation all significantly affected electrotaxis, which appeared to be mediated by the changes
in V.. The initial directional sensing mechanisms for electrotaxis therefore differ from those of chemotaxis and

may be mediated by changes in resting V.

Cells migrate directionally in response to many extracellular
cues including chemical gradients (chemotaxis), topography,
mechanical forces (mechanotaxis/durataxis), and electrical
fields (EFs) (electrotaxis/galvanotaxis) (1, 3, 8, 15, 27). Electric
fields have long been suggested to be a candidate directional
signal for cell migration in development, wound healing, and
regeneration. The mechanisms used by cells to sense the weak
direct current (DC) EFs, however, have remained very poorly
understood.

One of the immediate effects felt by a cell upon exposure to
an EF is a change in the cell membrane potentials (V,,,). In an
EF, the plasma membrane facing the cathode depolarizes
while the membrane facing the anode hyperpolarizes (17, 18).
It has been proposed that the changes in V,, may underlie
electrotaxis. In a cell with negligible voltage-gated conduc-
tance, the hyperpolarized membrane facing the anode attracts
Ca®" by passive electrochemical diffusion. This side of the cell
then contracts, thereby propelling the cell toward the cathode.
In a cell with voltage-gated Ca*>* channels, channels near the
cathodal (depolarized) side open, thereby allowing Ca*" in-
flux. Intracellular Ca** levels will rise both on the anodal side
and on the cathodal side in such a cell. The direction of cell
movement in this situation will depend on the balance between
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the opposing contractile forces (17). The role of V,, in elec-
trotaxis has not yet been directly tested.

In this report, we used Dictyostelium cells to test this directly.
Dictyostelium cells show a robust electrotaxis and tolerate sig-
nificant changes in V/,, while maintaining good motility under
conditions of different extracellular pH values and ion concen-
trations and even following electroporation (20, 25, 29). These
features make Dictyostelium cells a unique testing model. We
quantified electrotaxis and chemotaxis of cells with well-con-
trolled Vs by varying three independent factors. We found
that the V,,, indeed regulated electrotaxis while having no effect
on chemotaxis. We thus identified a contrasting role of V,,
between electrotaxis and chemotaxis which may underlie the
mechanisms used by cells to sense weak dc EFs.

MATERIALS AND METHODS

Cell culture and development. Dictyostelium discoideum AX3 cells were grown
axenically in HL5 medium. Vegetative cells were washed and starved in devel-
opment buffer (DB) and then were pulsed with 50 nM cyclic AMP (cAMP) every
6 min for an additional 4 h (29). All procedures were carried out at room
temperature (~22°C).

Micropipette chemotaxis assay. Chemotaxis experiments were performed as
reported (4, 10). Briefly, 20 ul of cells (1 X 10° to 4 X 10° cells/ml) in DB were
seeded onto a coverslip chamber. Bathing solutions with different pH values or
different K* concentrations were then introduced. A Femtotip microinjection
needle filled with 10 uM cAMP was placed into the field, and a positive pressure
of 25 Ib/in* was applied via a connected microinjector. Chemotaxis was recorded
by time-lapse video using an inverted microscope (CKX41; Olympus) with a 10X
objective lens. Images were taken every 30 s for 30 min.

Electrotaxis assay. Electrotaxis experiments were carried out as described
previously (21, 28, 29). Developed cells were seeded into an electrotactic cham-
ber. After 10 min of incubation, unattached cells were removed by gently washing
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FIG. 1. Extracellular pH and K concentration regulate the membrane potential (V,,) of Dictyostelium cells. Developed Dictyostelium cells were

bathed in DB with different pH values and K* concentrations. V,

", was measured by microelectrode impalement. (A) Typical peak-shaped potential

transient that was recorded upon microelectrode penetration of a D. discoideum cell bathed in DB with different pH values or K* concentrations.
(B and C) Continuous recording of V,, with an extra-fine electrode showed stable stationary V), of D. discoideum. The dotted vertical line indicates
the time when the bathing solution was replaced with a buffer of a different pH value or different K" concentration. (D) Averaged Vs from 21
cells (pH 5.0), 16 cells (pH 6.5), 16 cells (pH 7.5), and 16 cells (pH 9.0). *, P < 0.001 compared to that in pH 7.5; #, P < 0.001 compared to that
in pH 6.5. (E) Averaged V,,,s from 13 cells (5 mM K*), 16 cells (25 mM K*), and 24 cells (50 mM K*). %, P < 0.001 compared to that in buffer
with K* concentration of 0.5 mM K*; #, P < 0.001 compared to that in K" concentration of 5 mM K.

with DB. Cells were then bathed in defined buffers, as indicated, with different
pH values or different K* concentrations in parallel with the chemotaxis assay.
For cells treated with electroporation, normal DB (pH 6.5, 5 mM K™) was used,
and the EF was switched on 10 min after seeding.

The applied EF was maintained at 12 V/cm for 30 min. Time-lapse images of
cell migration were acquired using an inverted microscope (Axiovert 40; Carl
Zeiss) equipped with a charge-coupled-device (CCD) camera (C4742-95;
Hamamatsu Corporation) and a motorized XYZ stage (BioPoint 2; Ludl Elec-
tronic Products, Ltd.), and controlled by Simple PCI, version 5.3, imaging soft-
ware.

Quantitative analysis of electrotaxis and chemotaxis. Chemotaxis and elec-
trotaxis were analyzed as previously described (4, 29). The chemotactic index and
electrotactic index were used to quantify how, directionally, cells migrated to-
ward cAMP or in response to an EF, respectively. To calculate the chemotactic
index or electrotactic index, the cosine of the angle between the direction of
movement and the direction of the chemoattractant gradient or electric vector
was determined (29). For migration speed, we used trajectory and displacement
speeds (29). Persistency was further calculated as the shortest linear distance
between the start and endpoints of the migration path divided by the total
distance traveled by a cell. All motile isolated cells were analyzed. At least 30
cells from three independent experiments were analyzed.

Membrane potential (V,,) measurements. Cells were seeded on a sterile glass
coverslip and observed with a 60X objective. },,, measurements were conducted
using fine-tipped glass pipette microelectrodes. Two types of recording, transient
and continuous, were used to verify each other. The pipettes were pulled from
borosilicate glass (World Precision Instruments, Sarasota, FL) using a PP-830
pipette puller (Narishige International, Inc., New York, NY), and the resistance
was ~20 MQ when the pipettes were filled with 3 M KCI solution, as measured
in the DB. Recordings were performed using a GeneClamp 500 amplifier (Axon
Instrument/Molecular Devices, Union City, CA). The signals were digitally fil-
tered at 1 kHz and digitized at 2 kHz using a Digidata 1322A digitizer and
pClamp, version 9.0, software (Axon Instrument/Molecular Devices).

DB solution was used as the standard recording solution. The solutions with
higher or lower pH values were obtained by adding HCI or NaOH. The solutions
with different K* concentrations were made by using 3 M KCI and normal DB.
All experiments were conducted at room temperature, and the recording was
repeated in 16 or more cells.

Our measurements (both transient impalement and continuous recording)

showed similar V,,, values, which were consistent with other published recordings
(24).

Modulation of membrane potential (V,,). The first method used to control 1,
was to maintain cells in four bathing solutions with pH values of 5.0, 6.5, 7.5, and
9.0. All solutions were autoclaved and stored at room temperature until use.
Before measurement of 1/, or chemotaxis and electrotaxis experiments, cells
were bathed in a defined solution for ~10 min. The second method modulated
V,, by adjusting the recording buffer [K*] at three concentrations (5 mM, 25
mM, and 50 mM). The K" concentrations were verified with an ion-selective
probe. All solutions were autoclaved. The third method was electroporation,
which was carried out as previously described (7, 11). Electroporation was per-
formed in a Gene Pulser Xcell Electroporation System (Bio-Rad) with two
pulses of 0.85 kV/25 wF with a resistance-capacitance (RC) time of 1 ms,
separated by a 5-s interval. For 1, measurements, 20 pl of cell suspension was
immediately taken out of the electroporation chamber and placed in a petri dish
in DB and measured 10 min later.

Statistics. Pearson’s correlation coefficient and a chi-square test were per-
formed when pertinent. All data points were presented as means * standard
errors of the means (SEM) averaged from at least three measurements.

RESULTS

Extracellular pH and K* concentration regulated V,, in
Dictyostelium cells. A typical negative peak potential was tran-
siently observed upon impalement of a Dictyostelium cell with
a microelectrode. V,, transiently reached a peak value within
several milliseconds of impalement; the potential quickly de-
creased due to leakage (Fig. 1A). The initial peak value was
used to reflect the V,,, as in previous studies (24, 25). The
values were verified with the continuous measurement. We
achieved continuous recording using microelectrodes with an
extremely fine tip (resistance up to 30 M(}) that penetrates a
cell so the V,, can be reliably monitored continuously for a
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FIG. 2. Extracellular pH plays different roles in chemotaxis and
electrotaxis in Dictyostelium cells. (A) cAMP gradients were formed
from the tip of a micropipette filled with 10 wM cAMP. Trajectories of
cell migration toward cAMP in DB with different pH values are indi-
cated. Dark spots represent the position of the micropipette. Scale bar,
20 wm. (B) Cell migration in random directions under control condi-
tions without an EF although cells were bathed in DB with different
pH values as indicated. (C) Cell migration trajectories in which the
start point of each cell is set as the origin. Cells migrated cathodally in
apH of 6.5 in an EF. However, directed cell migration was significantly
impaired under acidic (pH 5.0) or alkaline (pH 9.0) conditions.
(D) The effects of extracellular pH on electrotaxis in Dictyostelium cells
correlate with the effects on V,,,. Dictyostelium cells bathed in pH 6.5
showed a greater V,, than that of the cells in pH 5.0 or pH 9.0 and
significantly better electrotaxis. The changes in pH and corresponding
changes in V,, did not significantly affect the chemotaxis (chemotactic
index). *, P < 0.001 compared to that in pH 6.5.

much longer time, usually several minutes in contrast to mil-
liseconds in the first method (Fig. 1B and C).

We first quantified the effect of extracellular pH and [K™] on
V.. Being bathed in solutions of different pH values and K*
concentrations resulted in significant and consistent changes in
V.. (Fig. 1). An example of continuous recording of the dy-
namic change in V,,,, in which extracellular pH dropped from
7.5 to 5.0 and then went back up to 7.5, showed that the V,,
remained stable and was responsive to pH changes over several
minutes (Fig. 1B). The membrane significantly depolarized
when the pH either dropped to 5.5 or increased to 9.0 (Fig.
1D). The maximal Vs were recorded at pH 7.5 and 5 mM K™

MEMBRANE POTENTIALS AND ELECTROTAXIS 3

Chemotaxis and electrotaxis in bathing solutions with dif-
ferent pH values. To test the effects of depolarizing V,,, on
chemotaxis, we used a needle chemotaxis assay and quantita-
tively analyzed the directional cell migration. Without cAMP
gradient, cells bathed in different solutions showed similar
patterns of migration in random directions. In buffer solutions
of pH 5.0, pH 6.5, and pH 9.0, no significant differences in cell
morphology, behavior, or trajectory speed were observed
among cells in response to the cAMP gradient (Fig. 2A and D;
Table 1). This is consistent with a previous report (25).

The electrotaxis of Dictyostelium cells, however, is signifi-
cantly altered by the pH of the bathing solution. The chemo-
tactic indexes for cells bathed in DB of pH 5.0, pH 6.5, and pH
9.0 were 0.56 = 0.01, 0.58 = 0.01, and 0.52 = 0.01, respectively.
However, electrotaxis was significantly affected by bathing so-
lution pH (Fig. 2C and D). Cells in solutions of pH 6.5 had
more negative V,,,s and showed the best electrotaxis. Cells in
pH 5.0 or pH 9.0 showed significantly reduced electrotaxis,
with directedness values of 0.51 = 0.01 or 0.30 = 0.01, respec-
tively (Fig. 2D).

Chemotaxis and electrotaxis of K*-induced depolarized
Dictyostelium cells. We then examined the effect of extracellu-
lar [K*] on chemotaxis and electrotaxis. Cells bathed in buffer
of 5 mM K" moved toward cAMP with a typically polarized
morphology. In buffer of 50 mM K™, cells near the micro-
pipette tip moved toward the cAMP source. Cells further away
from the tip appeared to move less directionally toward the
pipette. Nonetheless, directional migration was evident (Fig.
3A). Cells in 50 mM K™ migrated with a reduced chemotactic
index of 0.30 = 0.01, compared to that of 0.58 = 0.01 for cells
in 5 mM K* (Fig. 3D).

Extracellular [K™] significantly affected electrotaxis. Cells
bathed in buffer with 5 mM K" showed robust electrotaxis with
a directedness value of 0.93 = 0.01 (Fig. 3D). The directedness
gradually decreased to 0.64 in 25 mM K™ and 0.24 in 50 mM
K" (Fig. 3D). Cells bathed in buffer with 50 mM K" had a
significantly lower directedness value, representing a decrease
of 73%. Although increasing extracellular [K*] appeared to
inhibit both chemotaxis and electrotaxis, it seemed to have a
more significant effect on electrotaxis (Table 2).

Electroporation depolarized V,, and abolished electrotaxis.
To further verify the role of V,, in electrotaxis, we used elec-
troporation to depolarize Dictyostelium cells. Electroporation
with high-voltage pulses permeabilizes the cell plasma mem-
brane, thus significantly depolarizing V,, by causing a large
increase in non-ion-selective membrane permeability. Mea-
surements in electroporated cells showed that the membrane is

TABLE 1. The effects of extracellular pH and K" on chemotaxis”

Developing Trajectory Displacement Chemotactic .

buffer speeq speeq index Persistency
(pm/min) (pm/min)

pH 5.0 4.69 £ 0.03 3.34 +0.03 0.56 + 0.01 0.79 = 0.017

pH 6.5 5.01 £0.02 3.06 + 0.02 0.58 = 0.01 0.70 = 0.01

pH 9.0 3.89 + 0.02* 2.07 = 0.02° 0.52 = 0.01 0.64 + 0.01

5 mM K" 5.01 £ 0.02 3.06 + 0.02 0.58 +0.01 0.70 + 0.01

50 mM K* 4.26 £ 0.03 1.62 = 0.03" 0.30 £ 0.01"  0.65 = 0.01

“ The data represent means = SEM. *, P < 0.001, compared to buffer using 5
mM K*; f, P < 0.01, compared to buffer at buffer at pH 6.5; §, P < 0.001,
compared to buffer at buffer at pH 6.5.
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FIG. 3. Extracellular K" significantly affects electrotaxis but does
not affect chemotaxis of Dictyostelium cells. (A) Chemotaxis of Dictyo-
stelium cells in buffer with different extracellular K* concentrations.
Cells in buffer with 5 mM or 50 mM K* were able to undergo che-
motaxis. Trajectories show that cells migrate toward cAMP. Dark spots
represent the positions of micropipette tips. Scale bar, 20 wm. (B) Cells
migrate in random directions in buffer with 5 mM or 50 mM K*
without an applied EF. (C) Cells migrate cathodally in DB with 5 mM
and 50 mM K". When the K" concentration increased V,,, decreased)
(Fig. 1), and electrotaxis was significantly reduced. (D) The effects of
extracellular K™ on electrotaxis in Dictyostelium cells correlated with
the effects on V,,. Cells in buffer with 50 mM K* had a significantly
reduced V,, as well as significantly reduced electrotaxis. Slightly re-
duced chemotactic activity was seen with higher concentrations of K*
solution.

Directedness /Chemotax index

significantly depolarized following electroporation. In the data
shown in Fig. 4, the starting time (0 min) was set as the time of
electroporation. All cells measured at 10 min following elec-
troporation showed a significantly reduced V/,,, which recov-
ered gradually. The recovery took roughly 30 to 40 min fol-
lowing electroporation (Fig. 4A).

EUKARYOT. CELL

Electrotaxis in electroporation-induced depolarized cells
was lost. Batch-matched control cells had good directional
migration with a directedness value of 0.96 = 0.01 within 10
min in an EF, which was maintained through 20 to 30 min (Fig.
4C). Following electroporation, electrotaxis was completely
inhibited (Fig. 4B). In the first 20 min following electropora-
tion, the directedness of cells in an EF was almost zero. At 30
to 40 min, some directedness reappeared as V,, recovered to a
certain degree (Fig. 4D).

We analyzed the relationship between these parameters and
V... We found that V,, correlates significantly well with elec-
trotaxis, with a correlation coefficient of —0.77 (Fig. 5A),
whereas chemotaxis did not appear to correlate with the
changes in V,, (Fig. 5B).

DISCUSSION

We tested the effects of extracellular pH and [K*] on elec-
trotaxis using Dictyostelium cells, which have the unique prop-
erty of tolerating changes in extracellular pH, [K™], and even
electroporation, while maintaining good motility. We found
that (i) changes in extracellular pH and [K™] and electropora-
tion significantly affected V,,, and that (ii) reduced V,, in re-
sponse to these three factors significantly inhibited electrotaxis.
The inhibitory effect on electrotaxis correlated well with the
reduced V,,,, but chemotactic effects did not.

In developed Dictyostelium cells, cAMP binds G protein-
coupled receptors, activates Ga2Bvy, small GTPase, and class
1 phosphatidylinositol-3 kinases (PI3K), thereby phosphory-
lating phosphatidylinositol-3,4-bisphosphate [PI(3,4)P,] into
phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P;], and fi-
nally induces F-actin polymerization, resulting in pseudopod
development. Several other pathways may also contribute to
chemotaxis (9, 22). We demonstrated that Dictyostelium cells
also show robust electrotaxis and are a good model for dissect-
ing the molecular/genetic basis of electrotaxis (19, 29).

Extracellular pH, [K"], and electroporation significantly af-
fected V,,, and correspondingly reduced or abolished electro-
taxis. When V,,, recovered, electrotaxis was restored. V,, in
Dictyostelium cells is mainly generated by electrogenic proton
pumps (24, 25). By varying extracellular pH, we controlled the
V,, with good reproducibility. The V,, values were smaller than
those reported previously (24, 25). We used two different re-
cording methods to confirm the measurements. The difference
in V,, values may be due to other modifications: (i) the AX3
strain was used here whereas NC4 was used before; (ii) we

TABLE 2. The effects of pH and K* on electrotaxis®

Developin Trajectory Displacement

buffepr & speed (pm/ speed (pm/ Directedness Persistency

min) min)

pH 5.0 927 0.02°7 4790027 051 =001 052 +0.01°7
pH 6.5 14.79 = 0.08°  10.75 = 0.07" 0.95 = 0.01 0.73 = 0.02
pH 7.5 11.68 = 0.06" 9.20 = 0.06" 097 = 0.01 0.78 = 0.01
pH 9.0 9.05+0.027 442 +002°7  030=0017 050+ 0017
5mM K"  13.09 = 0.05 8.55 = 0.04 0.93 = 0.01 0.66 = 0.01
25mM K" 6.15 = 0.03* 357 £0.02f  0.64 = 0.01* 059 +0.01
50 mM K* 646 = 0.01% 295 +0.01* 024 =0.01%* 046 = 0.00%

“The data represent means = SEM. *, P < 0.001 compared to buffer at pH
7.5; ¥, P < 0.001 compared to buffer pH 6.5; §, P < 0.001 compared to that in
buffer with 5 mM K™,
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FIG. 4. Electroporation depolarizes membrane potential (V,,) and abolishes electrotaxis. (A) Representative V,, measured at pH 6.5 after
electroporation. The moment of electroporation was set as time zero. (B) Electroporated cells lost the electrotactic response, which showed some
degree of recovery 30 min later (see video S6 in the supplemental material). (C) Control cells showed robust electrotaxis. (D) Loss of electrotaxis
correlated well with V,,. When V/,, recovered, electrotaxis recovered significantly. Control, V,, in control cells not electroporated. The EF was 12

V/em. *, P < 0.001 compared to that of cells not being electroporated; #, P < 0.001 compared to that of cells after 40 min of recovery following
electroporation.

used DB buffer while Van Duijn and coworkers used a Na™- inhibition of electrotaxis by changes in extracellular pH, [K*],
saline (40 mM NaCl, 5 mM KCl, 1 mM CaCl, and 5§ mM and electroporation appears to be a specific effect caused by
HEPES-NaOH, pH 7.0); (iii) we used different development changes to V,,. The genome of Dictyostelium cells shows at

protocols (24, 25). The concentration of extracellular K" af- least two possible transient receptor potential (TRP) channel
fects V,, (26). Different extracellular K* concentrations regu- genes, a Ca®" channel gene, and several K* channel genes
lated V,,,: the higher the K™ concentration, the lower the V,, (14). Several signal transduction pathways related to electro-
(Fig. 1). taxis could depend on V/,, caused by the interactions between

At 50 mM K", electrotaxis was significantly inhibited (Fig. ion channels and other signaling proteins such as integrins (2,
3). Depolarization of cells following electroporation abolished 5, 6, 12, 13, 16, 23). It may involve different membrane pro-
the electrotactic response while recovery of V,,, restored the teins, such as ion channels, transporters, receptors, and the

electrotactic response (Fig. 4). Chemotaxis of the cells with an actin cytoskeleton, and may also involve Ca*" signaling (20).
altered V,,,, modulated by changes in extracellular pH or [K™], The reduced V,, might inhibit Ca®" signaling and thereby
was largely unaffected. This is consistent with a previous report affect electrotaxis. Another possibility is that V/,, may control
(25). Collectively, these results support the theory that the the sensors that detect the EFs. We are currently using a
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A Electrotaxis correlates well with membrane potentials
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FIG. 5. Significant correlation is between V,, and electrotaxis but
not chemotaxis. (A) Scatter plot shows electrotactic directedness and
resting membrane potential (r = —0.77). The best-fit line is shown.
(B) Scatter plot shows chemotactic index and membrane potential (r =
—0.51).

high-throughput strategy to screen for such sensing molecules
in electrotaxis.

In conclusion, changes in extracellular pH, [K*], and elec-
troporation all had significant effects on electrotaxis. When the
V,, was depolarized, electrotaxis was significantly inhibited.
Extracellular pH, [K*], and electroporation all had significant
effects on electrotaxis, which appeared to be mediated by the
changes in V,,,. The initial directional sensing mechanisms for
electrotaxis therefore differ from those in chemotaxis and may
be mediated by changes in V,,,.
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