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The two-headed motor protein kinesin hydrolyzes ATP and moves on microtubule tracks
towards the plus end. The motor develops speeds and forces of the order of hundreds of
nanometers per second and piconewtons, respectively. Recently, the dependence of the velo-
city, the dissociation rate and the displacement variance on the load and the ATP concentra-
tion were measured in vitro for individual kinesin molecules (Coppin et al., 1997; Visscher et al.,
1999) over a wide range of forces. The structural changes in the kinesin motor that drive
motility were discovered by Rice et al. (1999). Here we present a phenomenological model for
force generation in kinesin based on the bi-stable, nucleotide-dependent behavior of the neck
linker. We demonstrate that the model explains the mechanical, kinetic and statistical (experi-
mental) data of Coppin et al. (1997). We also discuss the relationship between the model results

and experimental data of Visscher et al. (1999).

1. Introduction

Conventional kinesin is a motor protein that
converts the energy of ATP hydrolysis into mech-
anical work, transporting organelles toward the
plus end of microtubules (Bray, 1992). The motor
is involved in intracellular transport, cell division
and signal transduction (Goldstein & Philip,
1999). It serves as an important model system for
understanding biological motility.

The motor ‘walks’ along a single microtubule
(Ray et al.,, 1993) in a stepwise manner, using
tubulin dimers as ‘steps of the ladder’. It is not
known whether this walk is performed along
a single protofilament, or if the motor straddles
two adjacent protofilaments. The length of a step
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is 8 nm (Svoboda et al., 1993), the same as the
protofilament period. Kinesin mainly interacts
with S-tubulin. This walk, at speeds of few hun-
dreds of nanometers per second, is resisted by the
viscous drag of the cytoplasm. At such speeds the
viscous drag is negligible: the viscous drag on
a sphere the size of kinesin moving at 1 pm/s is
~10"*pN. Even if the motor carries a cargo
a few microns in size, the viscous drag is much
less than 1 pN. However, at higher loads, the rate
of motion slows down, and the motor is stalled by
forces of 5-7pN (Svoboda & Block, 1994;
Visscher et al.,, 1999). The motor can therefore
produce an energy of ~40pNnm per step,
which is about 50% of the energy available from
one ATP molecule (Bray, 1992).

Conventional kinesin is a highly processive
motor able to move along more than 100 tubulin
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units before detaching (Block et al., 1990; Vale
et al., 1996). An alternating site, enzymic mecha-
nism of coupling the ATP hydrolysis cycle to
a cycle involving conformational change in the
protein has been proposed to explain such pro-
cessive motion (Hackney, 1994; Gilbert et al.,
1998). Quantitatively, the essential features of
kinesin’s mechanical behavior were explained
within a ‘head-over-head’ model (Peskin & Oster,
1995). In this model, asymmetry in the hydrolysis
rate between the front and rear heads and the
geometry of the head’s binding and the asso-
ciated power stroke drive the motor forward.

In the next section, we discuss the constraints
that the existing experimental data impose on
theoretical models. In Section 3, we introduce the
model, and in Section 4, describe its mechanical
cycle. The model is quantified in Section 5. The
results of the mathematical analysis of the model
are presented in Section 6. We conclude with
a general discussion of kinesin models and their
utility for biological problems in Section 7. The
details of the computations are contained in the
appendices.

2. Experimental Constraints on a Model

The structural, force-generating and enzymic
properties of kinesin have been extensively
studied. They place increasingly stringent con-
straints on theoretical modeling. Here we briefly
describe the relevant experimental data that
a model has to comply with.

2.1. STRUCTURAL DATA

Conventional kinesin is a heterotetrameric
motor protein that contains two ~7 nm globu-
lar domains—heads—connected to a ~75nm
dimerized o-helical tail (Vale & Fletterick, 1997).
The kinesin head has a ~330-amino acid cata-
lytic core that binds ATP and microtubules. The
nucleotide binding pocket is similar to that in
myosin and G-proteins and contains similar
switch regions. While kinesin is similar to other
motors in its nucleotide binding pocket and some
switch regions, it does not have a region similar
to the myosin light chain stabilized a-helix. In the
dimeric form of kinesin, the heads show a rota-
tional symmetry of 120° about an axis close to

that of the coiled coil. In this arrangement, the
two heads could not have equivalent interactions
with microtubules (Kozielski et al., 1997).

Kinesin does not have an elongated lever arm
to amplify small changes in the catalytic domain,
like myosin, and has to rely on another type of
mechanical element. The neck linker, a 15-amino
acid segment, has proven to be important for
kinesin’s motility and directionality (Rice et al.,
1999).

Our model is based on the contention that the
neck linker is able to dissociate from the catalytic
core and function as both a tether and an elastic
element (Fig. 1). Specifically, following (Rice
et al., 1999), we suggest that the kinesin -10 sheet
and the -9 sheet, dissociate from the nucleotide-
free or ADP-catalytic core. This dissociation cre-
ates, in effect, a tether which is about 5 nm long.
This tether allows the diffusion of the free head
along the substrate to the next binding site on
p-tubulin. Strong binding of this head to the
microtubule upon binding of ATP causes a ‘zip-
pering’—induced fit—of this portion of the kin-
esin heavy chain, which pulls it near the catalytic
core. This movement functions as a power stroke
and pulls the load along the microtubule.

2.2. MECHANICAL DATA

In the in vitro experiments, the motor tows
a latex bead, which is joined to the hinge of the
motor by an elastic tether. A load force, f, is
applied to the bead by a laser trap. Originally,
Svoboda & Block (1994), and more recently,
Coppin et al. (1997) and Visscher et al. (1999)
used a laser-trap-based system to investigate the
mechanical behavior of kinesin.

Coppin et al. (1997) measured the load depend-
ence of the motor’s average velocity. They dis-
covered that the speed is almost insensitive to
loads of magnitude less than ~2 pN. At back-
ward loads of greater magnitude, which resist the
motor’s forward walk, the velocity decreased in
an almost linear fashion to a stall force of
~ 5-6 pN. Under a forward load of ~ 2-6 pN,
the velocity increased significantly, two- to three-
fold, compared to free movement. Coppin et al.
(1997) also observed that kinesin does not walk
backwards at backward loads greater than the
stall load.



FIG. 1. Crystal structure of kinesin motor and neck domain (PDB accession number: 2KIN, Sack et al., 1997) displayed
in a Richardson ribbon cartoon. The a-helices and f-strands are displayed as blue coils and red arrows, respectively. Shown in
yellow is the carboxyl terminal neck linker domain (-9, f-10 and «-7) as possibly oriented in the backward pointing state in
the model. The bound ADP molecule is displayed as ball-and-stick to identify the active site. The figure was generated with
the program MOLSCRIPT (Kraulis, 1991).
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Further, the dissociation rate of the motor
from the fiber increased as a function of back-
ward load up to a spontaneous stall (5-6 pN),
and then became insensitive to load at the in-
duced stall force (for forces up to 12 pN).

In this paper, we explain quantitatively the
load dependent behavior of kinesin observed by
Coppin et al. (1997). In Section 6.4, we discuss
the relationship of our model to the results of
Visscher et al. (1999).

2.3. KINETIC DATA

Kinesin hydrolyzes one ATP molecule for each
8-nm step (Coy et al., 1999). The motor’s average
velocity increases almost linearly with ATP con-
centration (at small concentrations in the pM
range). At larger ATP concentrations the growth
slows down and saturates at high concentrations
in the mM range (Coppin et al., 1997; Visscher
et al., 1999).

The motor’s displacement variance increases
linearly with time. The rate of this increase, over
a wide range of ATP concentrations and at low
loads, is close to a half of the rate of a corre-
sponding Poisson stepper with an 8 nm step size
(Svoboda et al, 1994; Visscher et al, 1999).
At a high backward load, this rate increases to
almost the rate of a corresponding Poisson step-
per (Visscher et al., 1999). Our model explains
this behavior.

3. Description of the Model

We assume that only one head of the motor can
bind to each fS-tubulin site at a given time. These
sites are located at a distance 6 = 8 nm apart. The
two heads of the motor are connected at a hinge,
to which the load force f'is applied. Note that in
the experiments of Coppin et al. (1997) and Vis-
scher et al. (1999) the force was applied to a mi-
cron-sized bead connected to the kinesin molecule
through an elastic tether, not directly as assumed
in the model. We discuss this assumption in Ap-
pendix A. The force is measured in the direction of
the minus end of a microtubule, so that positive
and negative values of force correspond to back-
ward and forward loads, respectively.

In the model, each head of a kinesin molecule
has two possible tubulin affinity states, high and

low. In the low affinity state, the head diffuses
along the microtubule and does not bind to an
empty f-tubulin site. In the high affinity state, the
head is firmly bound to a f-tubulin site.

Following Rice et al. (1999), we assume that the
behavior of the neck linker of a kinesin motor
head is nucleotide dependent. When an ATP or an
ADP-P; molecule is bound to the head, the neck
linker is docked to the motor head’s catalytic core
in the forward-pointing state. On the other hand,
when an ADP molecule is bound to the head, or
the head is nucleotide free, the neck linker fluctu-
ates rapidly between the backward- and forward-
pointing states (the ADP-forward state is different
from the docked ATP-state). The ATP and ADP-
P;-heads are in the high affinity state (strongly
bound), while the ADP and nucleotide-free heads
are weakly bound to the microtubule.

The bias for plus-end directed motion is gener-
ated through (i) the asymmetry of a head binding
to a f-tubulin state and the accompanying neck
linker docking; (ii) the highly coordinated nucleo-
tide hydrolysis in the forward and backward
pointing heads; and (iii) the asymmetry of ATP
binding. When an ATP molecule is bound to one
of the heads, its neck linker—forward-pointing
docking causes the other head to bind closer to
the microtubule plus end. The ATP/ADP
exchange in the rear head and the ADP/ATP
exchange in the front head (corresponding to
a sequence of transitions as described in the next
section) trigger the dissociation of the rear head.
Rezippering of the neck linker in the front head
displaces the rear head by 16 nm to the next f-
tubulin site. The net result of this action is an
8 nm step of the kinesin molecule.

Both a Brownian ratchet, and a power stroke
produce a step and generate force in the model.
First, ATP binding rectifies thermal fluctuations
of the neck linker between the two states. Second,
it induces elastic strain in the backward-pointing
state of the neck linker. Third, it rectifies the
‘zippering’ Brownian ratchet of the neck linker
when it is in the forward-pointing state. Finally, it
may change the neck coiled-coil interactions that
could augment the plus-end bias.

Using a mathematical model, we will demon-
strate that a backward load slows down
the motor by biasing the neck linker to the
backward-pointing state, and decreasing the rate
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of the neck linker docking. A forward load speeds
up movement by biasing the neck linker to the
forward-pointing state.

4. The Mechanical Cycle

Figure 2a shows the essential features of the
motor cycle. We begin from the state z;, in which
both heads are bound to adjacent sites, 8 nm
apart (j is the index of tubulin dimers along
a microtubule protofilament). ATP is bound
to the rear head, and the docked neck linker
keeps the front ADP-motor head complex
bound to the microtubule. The hydrolysis and
release of the phosphate group from the rear
head and the release of ADP from the front head
occur with an effective rate of ky. In the model,
this rate is independent of the ATP concentra-
tion. Note that here we ‘bundle together’ several
chemical transitions to simplify the illustration of
kinetic partitioning and the resulting processivity
of the motor. The validity of this approach will be
determined by future work. In the next state u;,
the nucleotide-free head remains bound to the
microtubule, while the other head executes
(rapid) thermal motion between the backward
and the forward positions corresponding to the
respective conformations of the neck linker. ATP
binds to the microtubule bound head of kinesin,
with rates k, and k3 in the forward- and the
backward-pointing states of the neck linker, re-
spectively. If the binding occurs in the forward
state, we assume that the neck linker ‘zippering’
takes place rapidly. It is also load independent
because of the very small distance along the
microtubule between the forward pointing nu-
cleotide-free state and the ATP-bound state.
Thus, when the ATP binding takes place in the
forward pointing state, the motor goes into
the state z;, ;, which completes the cycle. When
the ATP binding takes place in the backward
pointing state, we assume that the neck linker
initially becomes strained, and then swings
forward and ‘zippers’ with an effective load-
dependent rate k4. This is a second pathway for
completing the cycle. The key parameters of this
model are presented in Table 1.

Note that in the model, one ATP is hydrolyzed
during each cycle. Although the mechanical cycle
does not uniquely determine the kinetic para-

meters, the mechanical cycle in the model is sim-
ilar to the kinetic scheme proposed by Gilbert
et al. (1998) (the ADP release step is different).
Also note that all chemical steps in the model are
taken to be irreversible. In fact, we assume that
all backward transitions in the suggested mech-
anical cycle are characterized by rates, which are
very slow in comparison with the corresponding
forward rates. Therefore, the respective transi-
tions can be neglected in calculations of the aver-
age kinetic and mechanical characteristics of the
motor. This assumption can be justified, for the
transition from the zippered to the unzippered
state, by the fact that this transition is associated
with the release of the phosphate group. The
experiments are performed at low concentrations
of the hydrolysis products, so the corresponding
backward rate is very small. Our omission of
transitions from the zippered to the strained state
is based on the assumption that zippering is asso-
ciated with a large decrease in free energy (in
comparison with thermal energy). ATP binding is
known to be reversible. However, our numerical
analysis demonstrated that the corresponding
backward rate does not (in a qualitative way)
affect the theoretical results.

It was suggested by Coppin et al. (1997) that
the results on the load dependence of the kinesin
dissociation rate can be explained by a load
dependent partitioning between two kinetic path-
ways. We will demonstrate here that this is
indeed the case.

5. The Mathematical Model of the
Force Generating Cycle

At the instant of the transition from the zip-
pered to the unzippered state of the neck linker,
the free kinesin head begins to fluctuate between
the backward and the forward pointing states,
Rice et al. (1999) observed that the backward and
forward positions are similar in energy, and that
transitions between these states are very rapid.
These observations were made on monomeric
kinesin. We will assume that in the backward
position, the effective interaction of the free head
with the microtubule lowers the corresponding
energy of the backward state by a few kzT. We
will also assume that the maximum position of an
effective energy barrier between the two states is
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FIG. 2. (a). Essentials of the mechanical motor cycle. Different shading of kinesin heads indicates different conformations
that depend on both binding (strong and weak) and chemical states. T and D stand for ATD and ADP respectively. Empty
‘pocket’ corresponds to the nucleotide-free state. Dashed arrows indicate the alternative pathways. Other details are in the
text. (b). Simplified two-step mechanical cycle in the case of moderate loads. (c). Simplified two-step mechanical cycle in the
case of large backward loads. (d). Simplified two-step mechanical cycle in the case of large forward loads.

located close to the backward pointing state, The diffusion time, T~ 107 5-10" 3, of the kin-
such that the load does not significantly affect the  esin head over distances on the order of 16 nm is
transition time between the states. brief in comparison with the mean life times of
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TABLE 1
Model parameters

Symbol Value Meaning
kgT 4.1 pNnm Thermal energy
o 8 nm Kinesin step size = distance between f-tubulin sites along microtubule protofila-
ment
f From — 6 pN to 6 pN Load force
w 5 kgT Free energy difference between the forward and backward pointing state of the
neck linker
L 5nm Separation between the forward and backward pointing state of the neck linker
ky 505! Rate of hydrolysis/unbinding of the back head
ko 120s~! at 1 mM ATP, Rate of ATP binding in the backward pointing state of the neck linker
80s~ ! at 40 uM ATP,
15571 at 5uM ATP
ks 35s ' at 1 mM ATP, Rate of ATP binding in the backward pointing state of the neck linker
255! at 40 uM ATP,
55 tat 5pM ATP
k4(0) 25x103s7 ! Rate of the zippering of the neck linker at zero load
k. 0.12s~1 Dissociation rate from the conformation with the backward pointing state of the
neck linker and no ATP bound
ks 2571 Dissociation rate from the conformation with the backward pointing state of the

neck linker and ATP bound

the different states of the cycle, ~10~2s. (For the
free diffusion, T ~ (16 nm)?/(10” nm?/s) ~ 10~ s,
where 107 nm?/s is the order of magnitude of the
diffusion coeflicient of the kinesin head. It is brief
even when multiplied by the Arrhenius factor,
exp(SkgT/kgT) ~ 100, where SkpT is the likely
height of the energy barrier between the states.)
Thus, we can average over the different head
positions that are in thermodynamic equilibrium.
From the Boltzmann distribution, we find that
the ratio of the expected occupancies of the
forward- and backward-pointing states is
exp((—W — Lf)/kgT). Here W is the free energy
difference between the states of the neck linker,
L ~ 5 nm is the separation between the forward-
and backward-pointing states (Rice et al., 1999),
and f'is the load force. Neglecting the time spent
by the head in its transition between the two
states, we obtain the load-dependent probability
for the free head to be in the forward state:

_exp((— W — Lf)/ksT)
P = T exp(— W — L)k T)’

(1)

while the probability for the head to be in the
backward state is (1 — p(f)).

The rate of transition from the strained state of
the neck linker to the zippered position, ku( f), is
assumed to be load dependent, because this
transition implies a forward movement compara-
ble to L. According to the analysis of Fisher
& Kolomeisky (1999), the effect of the load
may be taken into account by modifying the
forward and backward transition rates (k4(0) and
k_4(0), respectively) according to ku(f) = k4(0)
exp(— 0.+ Lf/kpT) and k_4(f) = k- 4(0) exp(0-Lf/
kgT). Here 0. and 0_ are load distribution fac-
tors which reflect how the external force affects
the individual rates, 0, +0_ = 1. As we dis-
cussed above, we assume that the (individual)
backward rate k_ 4(0) is negligibly small. Further-
more, we will assume that 0, ~ 1 > 0_, so that:

ka(f) = ka(0) exp(— Lf/kgT). 2

A similar assumption is usually made in simple
models of a polymerization ratchet (Peskin et al.,
1993).

The separation of time scales between the
faster molecular diffusion rate and the slower
transition rate between chemical states reduces
the motion of the motor to a Markov chain
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governed by the following system of equations
[see Fig. 2(a)]:

dz; ~ ~

d_l’J = — klzj + k2uj*1 + k4Sj71,

du; ~ ~

d_tJ =kyz; — (ky + k3)uj,

ds; ~

d_tj = kau; — kys;, (3)

6. Results
6.1. THE LOAD-VELOCITY RELATION

The eqn (3) are solved analytically in Appen-
dix B to obtain the following dependence of the
average rate of the motor’s motion on the load:

1 k -1
o } L@
ka(ky + ks3)

1
VY =0|—+= =
<> |:k1 k2+k3

We can choose the parameter values of W, kq, k,,
ks, k4(0) to fit the experimental data of Coppin
et al. (1997) (see Table 1). We then choose the
values of W, kq, k4(0) such that they are ATP
independent. The rates of ATP binding k,, k3
increase with increasing ATP concentration to
saturation (according to Michalis—-Menten kinet-
ics). We set the ratio k,/k; to be ATP indepen-
dent. All the rates and characteristic distances are
of the same order of magnitude as those known
from the experimental values. The value (and
even the sign) of the free energy parameter W is
unknown. The assumption that the backward-
pointing state has a lower energy, than that of the
forward-pointing state, is crucial to our model. If
the magnitude of parameter W is greater than
S5kgT, then the fit to the experimental data will be
even better. However, if W is less than 5kgT, the
‘plateau’ region in the force—velocity curve be-
comes less pronounced.

The theoretical force-velocity relation (4)
shows a good fit to the experimental data
(Fig. 3). Here it is clearly seen that there are three
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FIG. 3. Force-velocity relations for three different ATP
concentrations. The theoretical relations predicted by
eqn (4) are plotted with the solid lines. The stars represent
the experimental results of Coppin et al. (1997).

distinctive load-dependent regimes of kinesin
movement.

(1) Moderate loads; nearly free motion (— 2 pN
<f<2pN).

At a small load force, the load dependence of
the occupancies of the forward- and backward-
pointing states of the neck linker are negligible.
The neck linker is in the backward-pointing state
most of the time. When ATP binds, the transition
of the strained neck linker into the zippered state
occurs with rate ky(0)exp(—Lf) > 200s™ ' > k.
The mechanical cycle simplified into a detach-
ment of the rear head with the load-independent
rate k¢, and its subsequent attachment with the
load-independent rate k3 [Fig. 2(b)]. The corre-
sponding load-independent velocity is the step
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length divided by the duration of the cycle:

kiks
= e
(2) High backward loads; nearly stalled

motion (f> 2 pN).

At a larger positive (backward) force, the cycle
still goes through the pathway associated with
the backward state of the neck linker [Fig. 2(c)].
However, at a large load, the load-dependent rate
of zippering, k4( f) becomes comparable with the
rate of ATP binding, and an effective rate of head
attachment can be computed as (ksks/(ksy + k3)).
At very great loads, f> 5 pN, k4(f) < k3, and
(ksks/(ks + k3)) ~ ky. The duration of the cycle
because ki!'+ kil ~ki! (at f>5pN, ku(f)
< ki), so that the average rate of the nearly
stalled motion is:

(v = 0ky(f) = 0k4(0)exp(—Lf).

Thus, the velocity decreases exponentially with
force at large backward loads in an ATP-inde-
pendent way. There is no possibility of backward
motion in our model. The model predicts that at
a backward load of the order of 6 pN, the rate of
motion becomes so small that the dissociation of
the kinesin molecule from the mictrotubule oc-
curs within one cycle. We discuss the relationship
of our results to the observations of Visscher et al.
(1999) in Section 6.4.

(3) High forward loads; accelerated motion
(f <—2pN).

At a large negative (forward) force, the prob-
ability of the forward pointing state of the neck
linker becomes greater than that of the backward
state [Fig. 2(d)]. The simplified, attachment-
detachment mechanical cycle, goes through an
alternative pathway. This leads to an acceleration
of the head movement because the rate of ATP
binding in the forward state is assumed to be
greater, and the rate of zippering from the for-
ward state is load independent. The effective rate
of attachment at great forward loads, f < —5pN,
becomes k,, the duration of the cycle ki * + k5 ?,
and the rate of motion:

kik,
ki +ky

W)~ 6

The motor accelerates (k,(k; + k3)/ks(ky + k»))
times in comparison with the zero load case (1.7
times at 1 mM of ATP, 1.8 times of 40 uM of
ATP, 2.5 times at 5 uM of ATP).

6.2. LOAD-DEPENDENT DISSOCIATION KINETICS

The processivity of the kinesin molecule is
high; it moves along a microtubule for as many as
~100 steps. In our model, we assume that the
rate of dissociation of the motor from the micro-
tubule is negligible when the motor—neck linker is
in the zippered state and both heads are bound.
The dissociation rate of the motor from the un-
zippered state, k,, is relatively low, while that
from the strained state, k,, is high. We also
assume these rates to be load independent. In
Appendix B we compute the resulting net disso-
ciation rate y:

ku%4 + ks%3
= = ~ ~ T 7 ’ 5
) Rk + Fall + Gk )

We plot its load dependence in Fig. 4. The para-
meter value k, was chosen to give the known
processivity at zero load. The value of k; was
chosen to fit the experimental results of Coppin
et al. (1997) (see Table 1). Our explanation for the
observed behavior of the dissociation rate is that
at low loads the motor is almost never in the
strained state because the transition to the zip-
pered state is very fast. As a result, the processiv-
ity is high. At high loads, f> 5 pN, the stalled
motor is almost always in the strained state, from
which the zippering is very slow. The dissociation
rate becomes high and load independent above
a value of 5 pN.

6.3. LOAD DEPENDENCE OF FLUCTUATIONS
IN DISPLACEMENT

If the motor is progressing by random Poisson
steps of length ¢, at a rate §/T, then the variance
in its position will grow linearly with time at the
rate 6%/T (Van Kampen, 1981). In other words, if
the average rate of motion of the ‘Poisson step-
per’is <v), then the rate of growth of the variance
in its position would be 6<{v). The actual rate is
considerably less than this. This indicates that
more than one rate limiting step is involved in
each cycle of the motor.
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FIG. 4. Load dependence of the dissociation rate given by
eqn (5) is shown by the solid line. The stars represent the
experimental results of Coppin et al. (1997).

In Appendix B we compute the so-called ran-
domness parameter, r, (Svoboda et al., 1994)
showing the ratio of the actual rate of growth of
the displacement variance to that of a ‘Poisson
stepper’ moving with the same speed:

At significant forward loads, » does not change
significantly for moderate and high ATP concen-
trations: it stays between 0.5 and 0.6. At low ATP
concentrations, the randomness parameter signif-
icantly decreases at forward loads. Coppin et al.
(1997) did not measure the load dependence of
the variance of the motor’s displacement. We will
discuss the relationship of our results to the ex-
perimental data of Visscher et al. (1999) in the
next section.

6.4. THE RELATIONSHIP BETWEEN THE MODELING
RESULTS AND THE DATA OF VISSCHER ET AL. (1999)

There are significant differences in the experi-
mental results of Coppin et al. (1997) and those of
Visscher et al. (1999). These differences may stem
from the fact that the kinesin molecules studied
were moving on sea urchin axonemes in the for-
mer experiments, and on microtubules in the
latter experiments. Also, Visscher et al. (1999)
used methods of measuring force and displace-
ment that were of a higher resolution than
Coppin et al. (1997). It is not possible to explain,

r=1+2

The load dependence of the randomness para-
meter at different ATP concentrations is shown
in Fig. 5. For moderate loads, —2 pN <f<2pN,
the randomness parameter is load independent.
It is close to 0.55 at moderate and high ATP
concentrations and it is about 0.85 at 5 uM ATP.

At significant backward loads, of about 3 pN
(at moderate and high ATP concentrations), and
loads of 5pN at 5uM ATP, the randomness
parameter decreases to 0.35. This supports the
notion that at these loads and ATP concentra-
tions the cycle of kinesin consists, in effect, of
three transitions of similar duration. (The ran-
domness parameter of a stepper motor, each step
of which is accomplished after three random
transitions with equal transition rates, is equal to
1/3.) At high backward loads, the randomness
parameter increases rapidly for all ATP concen-
trations approaching the value of 1, almost that
of a Poisson stepper motor.

k3koky — kikoksky, — k3ksky — kik3ky — kikok2 — ki ksk2
(kika + kiks + ka(ky + k3))? ‘

quantitatively, the difference between the experi-
mental results within the framework of our
model, using a single set of parameters, because
binding to the track (axonemes or microtubules)
is coupled to a particular transition between
states of the kinesin cycle.

Here we discuss changes in our model that
could explain the data of Visscher et al. (1999).

6.4.1. Randomness parameter

Visscher et al. (1999) observed that at a 2 mM
ATP concentration, the randomness parameter
has values between 0.35 and 0.5 for loads between
0 and 5 pN. This parameter increases to 1.2 when
the load increased from 5 to 6 pN. These data
agree qualitatively with the results of our model
at high ATP concentration [1 mM; see our Fig. 5
and Fig. 4(b) of Visscher et al. (1999)]. The
fact that our model does not allow for the
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FIG. 5. Theoretically predicted load dependence of the
randomness parameter at three different ATP concentra-
tions given by eqn (6).

randomness parameter to be greater than 1, is
due to our assumption that all the backward
transition rates are negligibly small. This as-
sumption is likely to become inadequate at either
high loads, or small ATP concentrations, when
some forward transitions are slowed down.

Our results show that at low backward loads,
the randomness parameter decreases as the ATP
concentration increases. However, at high back-
ward loads, the randomness parameter increases
slightly as the ATP concentration increases.
Qualitatively, these predictions agree with the
measurements of Visscher et al. (1999) [see their
Fig. 4(a)]. As we noted above, a different set of
transition rates is necessary in order to precisely
fit their experimental data.

6.4.2. Load-velocity relation

The most remarkable experimental result of
Visscher et al. (1999) was that the ‘stall force’
depends on ATP concentration: it increases from
~5.5 pN at ATP concentrations in the uM range
to ~7pN at ATP concentrations in the mM
range. Also, at small backward loads, the
load-velocity curve showed a steeper slope than
that of Coppin et al. (1997). This slope also de-
pended on ATP concentration: the velocity de-
creased faster with the growth of the load at
lower concentrations of ATP [Fig. 3(a) of
Visscher et al. (1999)]. Let us note that the ob-
served ‘stall force’ is not the force at which the

kinesin advancement stops completely: both our
model, and that of Schnitzer et al. (1999) predict
exponental decrease of the velocity to zero at
high loads. The ‘stall force’ is defined, effectively,
by the extrapolation of the force-velocity curve
from high (4-6 pN) loads to very high ( >6 pN)
loads.

In the framework of our model, one possible
explanation for the dependence of the stall force
on ATP concentration is based on the assump-
tion that the catalytic core of the motor is modi-
fied at high backward loads, when bound to
a microtubule. Namely, a load-induced strain
effectively decreases the rate of ATP binding.
Quantitatively, we can assume that the corre-
sponding rate constant k3 (of ATP binding in the
backward pointing state) is changed by the load-
dependent factor (p. + (1 — p.)exp(fl/kgT))™ .
This assumption is valid when the corresponding
step consists of a load-independent biochemical
transition followed by a load-dependent mechan-
ical transition (Schnitzer et al, 1999). The
parameter p,. is the fraction of time required for
the unloaded biochemical transition, and [ is the
length of the effective step associated with
the mechanical transition. For the model to be
consistent, we have to reduce the effective dis-
tance associated with the transition from the
strained state of the neck linker to the zippered
position: the load dependence of the rate
ki(f) = ka(O)exp (—fL/kgT)) has to be changed
to ka(f) = k4(0) exp(f(l — L)/kgT)). We intro-
duced these changes into eqn (4) and used the
parameters | = 2.5 nm and p. = 0.9 at 5 uM ATP
and p. = 0.8 at a 1 mM ATP concentration to
obtain the modified force-velocity curves shown
in Fig. 6. These curves are in good qualitative
agreement with the results of Visscher et al. (1999)
[see their Fig. 3(a)].

6.4.3. Dissociation kinetics

Schnitzer et al. (2000) both showed experi-
mentally, and modeled theoretically the load de-
pendence of kinesin processivity. They observed
that the mean run length increased with an in-
crease in the ATP concentration to saturation
and exhibited Michaelis-Menten behavior. The
mean run length increased significantly as the
ATP concentration grew at low loads, and less
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significantly at high loads. In keeping with our
model, the model of Schnitzer et al. (2000) was
based on the dissociation of kinesin involving
two states in the mechanochemical cycle.

The mean run length can be defined as the
average velocity times the average time before
dissociation, or as the average velocity divided by
the effective dissociation rate, {(v)/y. We used
formulae (4) and (5) to compute the dependence
of the mean run length on the load and ATP
concentration. The results shown in Fig. 7 are in
qualitative agreement with the corresponding
data of Schnitzer et al. (2000).

7. Conclusions, Predictions and Discussion

Our model quantifies the mechanical cycle of
the kinesin molecule suggested by Rice et al.
(1999). It is based on nucleotide-dependent con-
formation transitions of the neck linker. In our
model, as in that of Peskin & Oster (1995), part of
each step is accomplished due to elastic deforma-
tion; a similar distance is covered due to thermal
diffusion. Our mathematical model accounts for
the experimental data of Coppin et al. (1997) on
the load dependence of the velocity and the dis-
sociation rate. We were able to explain the accel-
eration of the motor at high forward loads and
the load-independent regime of the motor at
moderate loads. Our conclusions confirm the
predictions of Coppin et al. (1997) and Rice et al.
(1999) concerning the existence of two alternative
pathways of the kinesin cycle that are coupled to
two conformations of the neck linker region of
the molecules.

We base our model on a strong coordination
between the hydrolysis cycle in each of the two
motor heads, similar to (Peskin & Oster, 1995).
One of the main differences between our model
and that of Peskin & Oster is that we used a dif-
ferent mapping of the mechanical cycle onto the
mechanochemical cycle in order to conform fully
to the qualitative ideas of Rice et al. (1999). How-
ever, this is not of primary importance for under-
standing the mechanical behavior of kinesin.
More importantly, Peskin & Oster (1995) as-
sumed free diffusion of the free head (information
about the two states of the neck linker was not
available) and explained the ‘plateau’ in the
force-velocity curve at moderate loads as due to
subtle effects in the interaction of the neck with
the elastic tether. In our model, this plateau is
explained by the load-independent pathway of
the kinesin walk at small loads, due to an energy
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difference between the two states of the neck
linker.

Two quantitative predictions of our model that
can be used to test its adequacy are:

(1) According to our calculations of the load
dependence of the dissociation rate, the proces-
sivity of the motor will almost double at high
forward loads. Not only will the motor move
faster, it also will travel a greater distance before
dissociation.

(2) At forward loads and low ATP concentra-
tions (of the order of a few uM), the randomness of
the motor’s motion should decrease significantly.

Schnitzer et al. (2000) and Fisher &
Kolomeisky (2001) employed multi-state chem-
ical kinetic models to explain quantitatively the
data of Visscher et al. (1999). The model of
Schnitzer et al. (2000) is based on the assumption
of the existence of a load-dependent, conforma-
tionally composite state in the kinesin cycle. In
this model, there are two effects of the load on
catalysis of ATP occuring immediately after ATP
binding. The model successfully fits the data of
Visscher et al. (1999) relating the ATP concentra-
tion and the load dependence to the average
velocity of the motor. The theory also fits the
data of Schnitzer et al. (2000) on the relationship
between the ATP concentration and the load
dependence of the dissociation kinetics of the
motor. The experimental results of Visscher et al.
(1999) on the ATP concentration and the load
dependence of the randomness parameter, as well
as the results of Coppin et al. (1997) at forward
loads were not modeled by Schnitzer et al. (2000).
The model of Fisher & Kolomeisky (2001) is of
a purely kinetic character. It is extremely success-
ful in fitting the model results with virtually all
known quantitative experimental data. Notably,
this model predicts acceleration of kinesin at for-
ward loads. However, the characteristic ‘plateau’
in the load-velocity curve at small loads is not
predicted by this model.

Our modeling philosophy is the following. We
believe that a theoretical model should explain
some of the currently available experimental data
in detail, and some of the data qualitatively.
Then, despite existing controversy between differ-
ent theories and experimental results, successive
models will evolve into an adequate picture.
Earlier theoretical models of kinesin, most no-

tably those of Duke & Leibler (1996) and Derenyi
& Vicsek (1996), were very valuable for the devel-
opment of the current theories.

Finally, let us note that however informative
and non-trivial kinetic models are, it is clear that
complex combinations of the ratchet action and
the power stroke can fit most any data (Keller
& Bustamante, 2000). Nevertheless, such models
are a necessary first phenomenological step to-
wards a complete molecular model. The ultimate
future goal will be to model, in molecular detail,
the pathway of the energy transfer between the
motor’s catalytic site, the tubulin binding site,
and the motors neck linker region.

We would like to thank G. Oster, R. Vale and
A. Kolomeisky for valuable discussions. AM was sup-
ported by NSF Grant DMS 0073828 and NSF RTG
Grant DBI-9602226. A portion of this work was per-
formed under the auspices of the US Department of
Energy by the University of California Lawrence
Livermore National Laboratory, through the Institute
for Laser Science and Applications, under contract
No. W-7405-Eng-4 (LS01-004 to RJB).

REFERENCES

BLoCK, S. M., GOLDSTEIN, L. S. & ScHNAPP, B. J. (1990).
Bead movement by single kinesin molecule with optical
tweezers. Nature 348, 348-352.

BrAY, D. (1992). Cell Movements. New York: Garland.

CorpriN, C. M., PIERCE, D. W., Hsu, L. & VALE, R. D.
(1997). The load dependence of kinesin’s mechanical cycle.
Proc. Natl Acad. Sci. U.S.A. 94, 8539-8544.

Coy, D. L., WAGENBACH, M. & HOWARD, J. (1999). Kinesin
takes one 8-nm step for each ATP that it hydrolyzes.
J. Biol. Chem. 274, 3667-3671.

DERENYI, M. & VICSEK, F. (1996). The kinesin walk: a dy-
namic model with elastically coupled heads. Proc. Natl
Acad. Sci. U.S.A. 93, 6775-6779.

DUKE, T. & LEIBLER, S. (1996). Motor protein mechanics:
a stochastic model with minimal mechanochemical coup-
ling. Biophys. J. 71, 1235-1247.

ELsTON, T. (2000). A macroscopic description of biomolecu-
lar transport. J. Math. Biol. 41, 189-206.

FISHER, M. & KOLOMEISKY, A. (1999). The force exerted by
a molecular motor. Proc. Natl Acad. Sci. U.S.A. 96,
6597-6602.

FISHER, M. & KOLOMEISKY, A. (2001). Simple mechano-
chemistry describes the dynamics of kinesin molecules.
Proc. Natl Acad. Sci. U.S.A., In press.

GILBERT, S. P., MOYER, M. L. & JOHNSON, K. A. (1998).
Alternating site mechanism of the kinesin ATPase.
Biochemistry 37, 792-799.

GOLDSTEIN, L. S. B. & PHILIP, A. V. (1999). The road less
traveled: emerging principles of kinesin motor utilization.
Annu. Rev. Cell. Dev. Biol. 15, 141-183.

HACKNEY, D. D. (1994). Evidence for alternating
head catalysis by kinesin during microtubule-stimulated



A MATHEMATICAL MODEL OF KINESIN 155

ATP hydrolysis. Proc. Natl Acad. Sci.
6865-6869.

KELLER, D. & BUSTAMANTE, C. (2000). The mechano-
chemistry of molecular motors. Biophys. J. 78, 541-556.
KozieLski, F., SACK, S., MARX, A., THORMAHLEN, M.,
SCHONBRUNN, E., Biou, V., THOMPSON, A., MANDEL-
Kow, E.-M. & MANDELKOV, E. (1997). The crystal
structure of dimeric kinesin and implications for micro-

tubule-dependent motility. Cell 91, 985-994.

KRAULIS, P. J. (1991). MOLSCRIPT: a program to produce
both detailed and schematic plots of protein structures.
J. Appl. Crystallogr. 24, 946-950.

PESKIN, C., ODELL, G. & OSTER, G. (1993). Cellular motions
and thermal fluctuations: The Brownian ratchet. Biophys.
J. 65, 316-324.

PESKIN, C. & OSTER, G. (1995). Coordinated hydrolysis
explains the mechanical behavior of kinesin. Biophys. J. 68,
202-211.

RAY, S., MEYHOFER, E., MILLIGAN, R. & HOWARD, J. (1993).
Kinesin follows the microtubule’s protofilament axis.
J. Cell Biol. 121, 1083-1093.

RICE, S., LIN, A. W.,, SAFER, D., HART, C. L., NABER,
N., CARRAGHER, B. O., CAIN, S. M., PECHATNIKOVA,
E., WILSON-KUBALEK, E. W., WHITTAKER, M., PATE,
E., COOKE, R., TAYLOR, E. W., MILLIGAN, R. A. & VALE,
R. D. (1999). A structural change in the kinesin motor
protein that drives motility. Nature 402, 778-784.

SACK, S., MULLER, J., MARX, A., THORMAHLEN, M., MAN-
DELKOV, E.-M., BRADY, S. T. & MANDELKOW, E. (1997).
X-ray structure of motor and neck domains from rat brain
kinesin. Biochemistry 36, 16155-16165.

SCHNITZER, M. J., VISSCHER, K. & BLOCK, S. M. (1999).
Force production by single kinesin motors. Nature Cell
Biol. 2, 718-723.

SVOBODA, K., SCHMIDT, C. F., SCHNAPP, B. J. & BLOCK, S. M.
(1993). Direct observation of kinesin stepping by optical
trapping interferometry. Nature 365, 721-727.

SvoBODA, K. & BLOCK, S. M. (1994). Force and velocity
measured for single kinesin molecules. Cell 77, 773-784.
SvoBODA, K., MITRA, P. & BLOCK, S. (1994). Fluctuation
analysis of motor protein movement and single enzyme
kinetics. Proc. Natl Acad. Sci. U.S.A. 91, 11782-11786.
VALE, R. D., FUNATSU, T., PIERCE, D. W., ROMBERG, L.,
HARADA, Y. & YANAGIDA, T. (1996). Direct observation of
single kinesin molecules moving along microtubules.

Nature 380, 451-453.

VALE, R. D. & FLETTERICK, R. J. (1997). The design plan for
kinesin motors. Annu. Rev. Cell. Dev. Biol. 13, 745-777.
VAN KAMPEN, N. G. (1981). Stochastic process in physics

and chemistry. Amsterdam: North-Holland Publ. Co.

VISSCHER, K., SCHNITZER, M. J. & BLOCK, S. M. (1999).
Single kinesin molecules studied with a molecular force
clamp. Nature 400, 184-189.

US.A. 91,

APPENDIX A

Discussion of a possible effect of tether elasticity

Peskin & Oster (1995) assumed that the free
head of the motor approaches thermal equilib-
rium much faster than the large, tethered bead.
They demonstrated that, in this situation, the
tether elasticity has a significant influence on the

force-velocity relation. The difference in our
model is that the free head does not move freely
(restricted only by the length of the neck region),
but rather transitions between the forward- and
backward- pointing states. The order of magni-
tude of the delay time between such jumps can be
estimated roughly as the diffusion time between
the states, ~ (10 nm)?/(107 nm?/s) ~ 10~ s,
multiplied by the Arrhenius factor, exp(SkgT/
kgT) ~ 100, where SkpT is the likely height of
the energy barrier between the states. Thus, the
characteristic time scale for the motion of the
free head of kinesin is 107%s. A 0.5-um bead
diffusing against a 0.5 pN/nm spring equilibrates
over ~ (107> pNs/nm)/(1 pN/nm) ~ 10~ >s. (The
characteristic time for a bead to equilibrate is its
frictional coefficient, ~ 10~ > pN s/nm, divided by
the spring constant of the tether.) Therefore, the
bead equilibrates almost instantly after the jump
between the two states of the free head takes
place. Then, until the next jump, we can assume
that the average force, equal to the load force, is
applied to the hinge between the heads. Based on
this qualitative argument, we assume that the
tether elasticity has only a small effect, and that
the load force is applied directly to the hinge
between the kinesin heads. In the future, if the
effective potential energy of the neck region con-
formation is determined, we will then be able to
examine more rigorously the effect of the tether
elasticity.

APPENDIX B

Calculations of the dissociation rate, load—velocity
relations and randomness parameter

Our analysis in the appendix follows closely
the approach of Elston (2000). We will use the
following notations:

ky=kap(f), ks=ks(l —p(f))

ki = ka(f) = ka(0)exp(— LfjksT), (B.1)
and
zj(t)
p(j, ) = | uy(t) (B.2)
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The Markov chain equations (3) can be rewritten
in a matrix formulation:

d . .
d_ft’=Ap(],t)+A+p(J—1,t), (B.3)
where
— ky 0 0
A=| ky —(ka+ks) 0 |,
0 %3 _%4
ky, ki
A;=[(0 0 0 (B.4)
0 0 0

In order to find the average velocity, dissocia-
tion rate and displacement variance, we have to
compute the moments of j(t) (Van Kempen,
1987). A useful technique for calculating these
moments is to consider the vector

RGO= Y Tplin,

It is straightforward to verify [also see Elston
(2000)] that eqn (B.3) can be recast in the form:

drR _ AR + (AR = B())R,
dt
— ky g%z ) (ky
BO)=| ki —(ky+ks) O (B.5)
0 ks —ky

B.1. DISSOCIATION RATE

Components of the vector
Z(1) zj(1)

Un| =% |u
S/ T T \s0

R(L,t) =

designate the probability of the motor being in
the zippered, unzippered and strained states,
respectively. Based on these designations, the
following equality holds:

Z(t)+ U(t) + S(t) = 1. (B.6)

Steady-state solutions of system (B.5) at { = 1 are
restricted by condition (B.6) and are given by the
following formulae:

T LT Tt
U=[1+M+@J :
ky ka

ks + ks %3]1
+ + = . B.7
ky ka B9

The dissociation rate y can be computed as the
dissociation rate from the unzippered state, k,,
factored by the probability of this state, U, plus
the dissociation rate from the strained state, k,,
factored by the probability of this state, S:

y =k, U + kS. (B.8)
Substituting expression (B.7) into eqn (B.8), we
obtain formula (5).

B.2. LOAD DEPENDENCE OF VELOCITY AND
RANDOMNESS PARAMETER:

Let /74({) denote the largest eigenvalue of matrix
B({). It is easy to see in the special case of { =1,
that the largest eigenvalue of transition matrix
B(1) is equal to 0: Ao(1) = 0. Elston (2000) demon-
strated that:

Gy =2t +00), =2

= (Ao(1) + Ao(1))t 4+ O (1), (B.9)
where 25(() = do()/d{, and 25(0) = d?20(£)/d>.
These formulae are very useful, because they
allow us to express the average velocity, (u), and
the effective diffusion coefficient of the motor, D
. 2N /N2

@y =61im &2, po s 2=

t— o0 t t— o0 2t

in terms of the first two derivatives of the largest
eigenvalue of matrix B({):

vy =0d4(1), D= % (Zo(1) + Zo(1)).
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The randomness parameter, r, is defined as
(Svoboda et al., 1994)

2D
V—5<U>.

(B.10)

To find the derivatives of the largest eigenvalue
of matrix B({), let us consider the characteristic
equation

det[BG({) — AI] = 0.
This equation has the following form:
W3+ (ky + ko + ks + kA2 + (kiky
+ (ky + ka)ky + ks) — kyky0)2
+ kika(ky + k3)(1 — ) = 0. (B.11)

Let us introduce a small variable o < 1, such that
{ =1+ a. We can use a Taylor series expansion
of Zo(C):

2

ol + o) = ady(1) + % (1) + -

Substituting this expansion and expression { =
1 + o into the characteristic eqn (B.11) and

setting the coefficients in front of « and «? equal
to zero, we find the first two derivatives of 14({) at

(=1

K, kik, — K 26(1)
Ao(l) =——-, A5(1) =24(1) ————2,
o)== ) =22
(B.12)
where

Ky =ky + ks + ks + kg,

Ky = kiky + (ky + ka) (ky + k3),
Ky = kika(ky + k3). (B.13)
Using eqns (B.12) and (B.13), we obtain the for-

mulae for the average velocity and the random-
ness parameter:

K3
= 64~,
<U> KZ - klkZ
r— 1 4 2 Kika(Ks = kiks) — K1K3’ (B.14)

(K5 — kik2)?

which result in eqns (4) and (6), respectively.
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