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Abstract

We consider a class of models for the dynamic behaviour of ensembles of objects whose interactions depend on
angular orientations as well as spatial positions. The “objects” could be particles, molecules, cells or organisms. We
show how processes such as mutual alignment, pattern formation, and aggregation are describable by sets of partial
differential equations containing convolution terms. Kernels of these convolutions are functions that describe the
intensity of interaction of the objects at various relative angles and distances to one another. Such models appear to
contain a rich diversity of possible behaviour and dynamics, depending on details of the kernels involved. They are
also of great generality, with applications in the natural sciences, including physics and biology. In the latter, the
examples that fall into such class include molecular, cellular, as well as social phenomena. Analysis of the
equations, and predictions in several test cases are presented. This paper is related to Mogilner and Edelstein-
Keshet (1995) in which the spatially-homogeneous version of these models was investigated.

1. Introduction

The mathematical models dealt with in this
paper describe a wide class of aggregation and
alignment phenomena, motivated mainly by bio-
logical applications. We consider populations of
interacting cells, organisms, or molecules in
which individuals tend to aggregate and self-
align. Such phenomena are also well-known in
physics (notably ferromagnets and liquid crystals)
and hence we use the generic term objects in this
paper when referring to the interacting particles,
organisms, or cells. Our interest here is in the
combined spatial and angular aspects of the
order that emerges under different regimes when
such objects interact. In all cases, we are inter-

ested in self-organization of these populations.
The order is not imposed by external bias or
forces, but arises as a natural consequence of the
interactions, starting from a chaotic or random
state.

In the past, models for population distribu-
tions have tended to dwell exclusively on spatial
distribution and temporal dynamics. However,
there are instances in which the relative orienta-
tions of individuals have important influence on
their dynamics and interactions. Typical exam-
ples are herds, fish schools, and other highly
structured animal aggregates, where many mem-
bers of the social group align with each other and
move in a common direction (O’Brien, 1989;
Katz et al., 1981). This type of behaviour allows
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the group to stay together, and it is often
adopted as a defense against threats such as
predation. (See, for example, Edmunds (1974)
pp. 281, 282 for polarization in herds of wil-
debeest and zebras threatened by hyaenas.)
Another example is the mutual contact and self-
alignment in mammalian cells such as fibroblasts,
which align with one another on a surface
(Elsdale, 1972; see Fig. 1). The cells form dense
patches within which they are more-or-less

Fig. 1. Mammalian cells, known as fibroblasts demonstrate
an alignment phenomenon similar to the one discussed in this
paper. A population of cells that is initially oriented at
random forms patches in which cells are lined up in parallel
arrangements. (Note that this happens as the density of the
cells increases.) The bar scales shown under the right hand
corner of each box represent 1000 and 100 u, respectively.
(Sketched from a plate in Elsdale, 1973).

aligned in a sea of rarefied (low density) ran-
domly oriented cells. Because the type of inter-
action depends on relative orientations of con-
tacting cells, we consider spatio-angular distribu-
tions of the cells. Empirical observations, or
information about the phenomenon can be used
to deduce the probability that a given contact
will lead to a particular type of alignment
event.

Models which describe interactions of indi-
viduals at various angles have been explored in a
number of previous papers. Such modelling
appeared in the context of branch interactions
in a network of filaments in Edelstein-Keshet
and Ermentrout (1989) and in fibroblast cul-
tures in Edelstein-Keshet and Ermentrout (1990)
(henceforth denoted EKE(90)). A detailed
analysis of the spatially homogeneous case was
also given in Mogilner and Edelstein-Keshet
(1995a).

The connection between interacting cells and
models containing integral equations becomes
apparent when one considers that a given cell
can meet and interact with a neighboring cell of
any other relative orientation. Each such event is
associated with some probability that one of the
two cells will turn and take on a new orientation.
To account for all possible occurrences, one
needs to sum up the probability of encounter,
weighted by the likelihood of turning over all
possible angles of contact. This reasoning leads
to the formulation of integral equation models.
Similar considerations apply in the binding of
macromolecules which must take on the appro-
priate relative conformations to expose active
sites to one another. The orientations of actin
filaments which are bound and assembled into a
scaffolding structure inside the cell by actin-bind-
ing proteins is one such example. This problem
has been treated in detail in Civelekoglu and
Edelstein-Keshet (1994).

The presence of an environmental gradient, or
of some polarized background is not a require-
ment for the types of self-alignment discussed
above, but if it is present, it biases the selection
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of a direction with which to align. A discussion
of self-alignment as a mechanism for enhancing
chemotactic ability of social organisms such as
schooling fish towards weak, noisy gradients is
given in Grunbaum (1994). Locust swarms orient
strongly to the direction of the wind. Flocks of
migrating birds may use the earth’s magnetic
field as a directional cue. On the microscopic
scale, motile mammalian cells (such as fibro-
blasts) tend to align strongly with grooves on an
artificial substrate. All these cases are not direct-
ly addressed in this paper. We rather investigate
the innate patterns of organization formed by a
group of self-aligning individuals.

As will be discussed in a concluding section,
models in this paper are also related to the
physical kinetics of liquid crystals studied exten-
sively for decades. (Greco and Marrucci, 1992;
Lifshitz and Pitaevskii, 1981; Chandrasekhar et
al., 1970; de Gennes 1974). Our approach does
not, however, use the free energy functional, or
the Lyapunov functional approach. We will dis-
cuss the two approaches at the conclusion of this
paper. We rather use phenomenological model
equations for the densities of objects which, in
the physics literature, are often called rods, rod-
like objects, rod-like molecules. The chief proper-
ty of these objects is that they are elongated and
have a natural axis of orientation. In the bio-
logical examples mentioned above one can dis-
tinguish an axis, as well as a front and a rear
(e.g. “head” and “‘tail”’). We will assume that the
objects are axially symmetric (despite the fact
that this is rarely the case in biological organisms
which have clearly distinguishable dorsal, ventral
characteristics.)

This paper is organized as follows: We intro-
duce and describe the models in Section 2. In
Section 3 we list some necessary mathematical
facts. We perform linear stability analysis in
Section 4. In Section 5 we speculate about
conclusions of the analysis. After a brief discus-
sion of cellular automata models in Section 6, we
finish with a comparison of this approach with
other physical and biological theories.

2. Description of the models

We represent populations of objects using a
continuum description. Models we consider in
the present paper share the following limitations:
(1) At very low densities the stochastic processes
of cell movement cannot be approximated by
continuous PDEs. (2) At very high densities,
topological packing constraints dominate and the
models are no longer valid. (See Elsdale and
Wasoff 1976, Onsager 1949). (3) The models do
not distinguish between clusters of different
sizes. This could be done by introducing the
functions P,(0, t), P;(6,t), P,(6,1), . .. to denote
the density of clusters composed of two, three,
four, . . ., and n objects at orientation 6 but this
would result in a system of infinitely many
equations, a complication that we wish to avoid.

Density distributions that represent the popu-
lation(s) of objects are functions of the space
coordinate r € D, orientational angle 2 €S of
the object’s axis, and time ¢. The spatial domain,
D is either two dimensional (e.g. flat surface to
which cells adhere in artificial in vitro growth
conditions) or three dimensional (e.g. cells in
vivo). In the two dimensional case, the angle
describing the direction of an object is 2€
[—w, 7] and we reserve the letter @ for it. In the
three dimensional case, we have an angle in
spherical coordinates, 2=(¢,0) where ¢ €
[0, 7] is the colatitudinal angle, and 8 € [0, 27} is
the longitudinal angle. Since there is a one-to-
one correspondence between such directions and
points on the unit sphere, the angular part of the
distributions can be considered as functions on
the unit sphere. We denote the angular space as
S in both two and three dimensions.

Throughout this paper we consider only the
cases in which the range of effective interaction
between the objects is at least a few orders of
magnitude smaller than the size of the domain.
This is a natural consequence of our assumption
about the contact-like character of interaction
between the objects. But note that by contact-
like, we do not mean &-like interaction, as they
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are commonly called in physics, since in that
case, integral terms disappear from the models.
Rather we mean that the effective radius of
interaction is of the same order as the length of
the objects (usually much smaller than the size of
the ensemble). This allows us to consider the
spatial domain as infinite, and for the purposes
of the linear stability analysis, to ignore bound-
ary effects. The latter, however, cannot be
ignored in the analysis of pattern formation, as
will be briefly discussed later.

Three separate models are studied. In the first
(Model 1), we distinguish between two types of
groupings characterized by densities of free ver-
sus bound objects. We can think of this subdivi-
sion as a phase separation: there is one dense
phase, in which objects are ‘“‘bound” and are
consequently constrained in their motion, and a
second, lower density phase in which the objects
move independently. We use the notation
C(r, 2, 1), P(r, 0, t) respectively for these density
distributions. This model is related to the spatial-
ly homogeneous model described in EKE(90),
Mogilner and Edelstein-Keshet (1995a).

In Model II and Model 111 we do not consider
two separate phases, and in that case, we investi-
gate a single density function, C(r,{2,¢). In
Model II we consider the alignment process as a
dynamic event which results from forces causing
rotation of the interacting objects, rather than
instantaneous “jumps” from one direction to
another. Model III is a description of interac-
tions of clusters of objects, in which the size of a
cluster, as well as its position and orientation
determines how it interacts with other oriented
clusters.

2.1. Model I: Instantaneous alignment

The first model studied in this paper is an
extension of the angular alignment model consid-
ered in the papers (EKE (1990), Mogilner and
EK (1995a,b)). The variables in the model are:

Definitions:
t = time,
r = position,

0 =(¢,0) = direction of orientation relative to
some fixed coordinate axes,

C(r, 2, t) = density of free objects at r oriented
with angle {2 at time ¢,

P(r, 0, t) = density of bound objects at r ori-
ented with angle {2 at time ¢,

K(r—r',Q, Q") = functional form of the rate
that an object at r’, {2’ turns to {2 and moves
to r due to influence of object at r, {2,

B = magnitude of the rate of alignment,

v =rate of exchange between bound and free
cells,

w, = rate of random turning by free cells,

w, = rate of random walk (diffusion) of free cells.

The dynamic behaviour of the densities C and
P is governed by the equations

Model 1
aP
E(r,ﬂ,t)=BCK*C+BPK*C—yP,

aC
E’(I‘,QZ)=M1 A,C+pu, AC—BCK*C
-~ BCK*P +yP.
(2.1)

In these equations, A, is the Laplacian in the
angular variables, namely

Aﬂ
82
-5, in 2D
BE
[ S T RV 1 9
Siﬂ¢£(sm¢3—f>+sin2¢ 90%’ in 3D.
(2.2)

The operator A, is the Laplacian in spatial
variables, i.e.,

a® 3
P z+5_2, in 2D
A =g P (2.3)
r aZ 62 aZ
~+—=+—=, in 3D.

ox~ 8y2 az%’
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K+ is a linear operator that depends on the
orientation {2, {2’ and on the distance r —r’
between the interacting objects.

(K *f)(r, Q. t)zfdn' fdr' Kr—r,0,0)

X f(r',02',1). (2.4)

Details about the kernel, K(r — ', 2, 2') will be
given below. The expression (2.4) is the in-
fluence of the distribution of material f(r’, 2', t)
on the angle {2 at position r. Thus a term of the
form K#*C represents the influence of the free
object distribution at angle {2 and position r, and
BCK = C is the rate at which this influence results
in free cells realigning and sticking to other cells
at {2, r. (They then become bound cells.) A
detailed derivation and description of this model
with no space dependence appears in the previ-
ously cited papers.

The nonlinear terms in Eq. (2.1) are respon-
sible for alignment of the objects. We showed in
a previous publication (Mogilner and Edelstein-
Keshet, 1995a,b) that the following situation
occurs in the spatially homogeneous case (u, =
0): if u, is smaller than a critical value, the
stability of the homogeneous state is broken, and
pattern evolves in angular space. The alignment
starts as a smooth bump in the distribution of the
objects. As the governing parameter u, de-
creases, this bump turns into a narrow peak (or a
number of peaks) so that the objects become
fully aligned, and share a common axis (or
common axes) of orientation.

We use the spatial Laplacian operator to
capture a random motion of the object which
does not include persistence in the direction of
alignment, but rather pure random walk of the
object’s center of mass. In each experimental
situation, there would be a specific type of
stochastic process governing the motion of in-
dividual objects. Some stochastic processes
would lead to Brownian motion, while others
result in a persistent motion in random direction.

Further, random turning in general is described
by more general operators, for example integral
operators or their equivalents (see Murray, 1989,
Section 9.5). Here we focus on the simplest
situation, namely that of simple diffusion cap-
tured by the Laplacian operator. It will be seen
below that there is a strong mathematical reason
for choosing the Laplacian, namely that its
eigenfunctions are identical to those of the
integral operator of the model.

The form of the kernel K(r — ', 2, 2') in our
model is of crucial importance and deserves
special explanation. The dependence on the
radius vector, r — r’ between the centers of mass
of the objects, follows from the fact that the
spatial region is assumed to be homogeneous
with respect to its influence on the objects. If this
homogeneity is broken (due to environmental
bias or external force), then more general depen-
dence K(r,r', 2, 2') arises.

The convolution term describes an elementary
process of alignment: two objects meet with
initial directions {2, 2’ and corresponding posi-
tions r, r’. With probability «, the objects con-
tinue moving with no interaction, and their
directions are not changed. With equal probabili-
ty (1 —a)/2, the objects are attracted to either
direction {2 and position 7, or to direction {2’
and position r'. (The factor (1 — «)/2 is absorbed
into the constant S.)

Let us consider the situation when the distance
between the objects is L/2 (where L is the
length of the object), and the objects are parallel
to each other. Then we distinguish between two
possibilities: (1) the directions of the objects are
normal to the radius vector between their
centers-of-mass, or (2) they are parallel to the
radius vector (see Fig. 2). The value of K
represents the probability amplitude of align-
ment. Experimental observations suggest that
the greater the contact area between the objects,
the greater is the probability of alignment. In the
second situation, evidently this contact area is
larger. For this reason, we can deduce that the
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(b) ——
W
Fig. 2. While these pairs of objects have the same distance
separating their centers of mass, there would likely be
different interactions in these two geometrically distinct
cases. Note that when the objects are almost parallel to the

radius vector connecting them, the degree of overlap is much
higher.

value of K should be greater, though both values
(r—r") and (2 — ') are the same in the two
cases. Thus it is reasonable to assume that the
interaction depends on the radius vector, and
two angles of the objects’ axes relative to the
radius vector connecting them.

For the sake of simplicity in this first inves-
tigation of the problem we will restrict attention
to a somewhat less general form of the separable
kernel,

Kor—r,0,2)=K(r—r)K,@-Q"). (25)

(The fully general situation will be discussed
separately.) The strength of the interactions
decreases as the distance between the objects
grows. We assume that the effective range of
interaction is of order L. where L is the length
of the object. For the spatial part, it is natural to
assume the form

K,(r) = exp(—r°/2) . (2.6)

where r is measured in units of L. For the
angular part of the kernel we use assumptions
similar to (EKE90, Mogilner and Edelstein-
Keshet 1995a). The behaviour of the models
depends on the kernel K,, which would be
specific to the experimental situation. In the case
of metazoan cell such as fibroblasts, alignment
rates are lowest if the cells meet at 90° (see Figs.

3a,b). In the case of actin fibers, crosslinking
proteins allow fibers to interact and bind at
different configurations, including parallel (bun-
dling) and orthogonal (networking) structures.
(Civelekoglu and EK, 1994). The kernel is
different in that case (see Fig. 3c¢).

In parallel interactions, we must still consider
a further distinction, namely whether alignment
occurs only ‘““head-to-head” or also “head-to-
tail”. The first case leads to a single humped
kernel in the domain —w <6 <= (see Fig. 3a).
The second case results in a double humped
kernel (see Fig. 3b). These kinds of kernels lead
to parallel alignment of cells. In the case of
Actin, where interactions can occur between
orthogonal fibers, two mutually orthogonal axes
of orientation can be formed. The total mass of
cells is equally distributed between these two
axes. This case can be treated in the same way

(a) |

-% -nf2 0 n/2 r
7
- -n/2 0 /2 ®
(c)
- -r/2 0 /2 w

Fig. 3. The kernels K used to represent the contact align-
ment phenomena are shown here as functions of the angle
between cells. (In 2D the angle is 8, and in 3D it is £2.) (a)
Single humped kernel, representing alignment in which both
cells are oriented head-to-head. (b) Double humped kernel
which permits cells to align also in a head-to-tail configura-
tion. (c) An orthogonal interaction kernel that plays a role in
the model for actin alignment.



352 A. Mogilner, L. Edelstein-Keshet | Physica D 89 (1996) 346367

(as shown in Civelekoglu and EK, 1994), by
adjusting the kernel (see, for example Fig. 3c).

Let us introduce the mass of objects (at all
angles) at location r:

M(r, 1) = f (C(r. Q. 1) + P(r. Q,0))d0,  (2.7)

and the total mass of the whole ensemble,
M= f M(r,r)dr. (2.8)
D

It is easy to check that the total mass is con-
served in the model. In the usual biological
situation, the objects proliferate (e.g. cells un-
dergo cell-division) so that the total mass in-
creases. (This mass growth slows down and stops
when the density of objects reaches some critical
level.) As the objects proliferate slowly, we
assume that M is the adiabatically varying vari-
able. (I.e. for the analysis we take M to be
constant. Later, we consider what happens if M
is a slowly changing variable.)

For the purposes of analysis, it is convenient
to recast the equations in a dimensionless form:

aP
&7 (. Q.0)=CK*C + PK*C —aP,
aC

S 2D =€A,C+6AC~CK*C (2.9)

~CK*P+aP.

where a = vy/B, €, = /8.

Our description of the object ensemble implies
that Model I has a non-local character. Indeed,
the integral operator K* defines the alignment as
an instantaneous process rather than a local
continuous one, having time dynamics. To put
the elementary alignment process into the form
of a dynamical and gradual change, we introduce
a second model, below. At the same time, we no
longer distinguish between free and bound ob-
jects, and consider only the density C(r, {2, 8) of
one type of object. The definition and properties
of the mass M(r, ) are the same, but the terms
with P are omitted.

2.2. Model II: Objects subject to alignment
force

This model is more physically realistic, since it
takes into consideration real forces causing real
velocities. We assume that the motion of the
object consists of the following two parts: (a)
rotation about the center of mass with “angular
velocity” w = d€2/dr; (b) drift of the center of
mass with linear velocity v =dr/dt. (Here r, 22
are the spatial coordinate and direction of the
object, respectively. In 2D, w = d6/dt is a scalar,
and in 3D we define w =d{2/dr as a tangent
vector to the surface of the unit sphere, such that
{2 is the angle between two points {2, {2, on the
sphere. Then the direction of the vector £ is
tangent to the arc joining {2,, {2,. Note that our
definition of the angular velocity in 3D is differ-
ent from the one common in mechanics).

As in Mogilner and Edelstein-Keshet (1995a),
we will assume that velocities are proportional to
corresponding forces:

wo~F,, (2.10)

v~F,.

The proportionality of the velocities to the
driving forces stems from a number of biological
cases such as molecular and cellular biology.
Here very small objects move in highly viscous
media, i.e. the motion is characterized by low
Reynolds numbers and inertial forces can be
neglected.

The forces F,,, F, are assumed to be conserva-
tive. In that case, they derive from some under-
lying potential functions (as is true, for example
for electrostatic forces). Thus we represent the
forces as the gradients of these potentials (whose
nature is not here characterised.)

Fo=V,W. F=VV. (2.11)
Here, the angular gradient is given by
2 in 2D
Wi 1 (2.12)
¢£+sin¢0%’ in 3D .
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It is reasonable to assume that a given object
at the angle {2, is subject to the effect of a
potential that represents its cumulative inter-
action with the other objects. We assume linear
superposition of forces holds. Then the poten-
tials W, V can be written in the form:

W=WxC, V=V=C, (2.13)

where W, Vx are the linear integral operators
with the kernels W (2) W,(r), V,(12) V,(r), re-
spectively, where

Vi(ry=W,(r)= exp(—r2/2) .

and W (Q2), V,(£2) are the same as K,({2). These
kernels represent the potentials created by a
single object at (r’, 2") acting on a single object
at (r, ). The interaction between the objects is
effective at distances of order L between them
and decreases quickly at large distances.

The motion induced by these forces sets up a
drift of the objects both in physical space and in
orientation space. Since the objects at a given
position and angle all drift with the same mean
rate, we can define fluxes (again in both angle, J,,
and physical space, J,) to describe the population
drift.

Jo=Cuw,

(2.14)

J =Cv. (2.15)

If we include both the divergence of the above
convective fluxes and random motion, repre-
sented by the terms € A,C and €,A,C for the
spatial and angular diffusion, in a balance equa-
tion for the distribution, C({2, r, #) we obtain the
equation:
aC
“ar €A,C+eA,C—Vy Jy -V, -J,.
Using the equations (2.10), (2.11). (2.13), (2.15)
in the above leads, finally to

(2.16)

Model 11

aC
o €A, C+eA C—V, (CVY,(W*())
=V, - (CV(Vx(C)). (2.17)

This equation describes the convectional drift of

the objects in physical and angular space towards
the points of the highest concentration, causing
alignment and aggregation.

In the simplest 2D case, we can introduce W’
and V' as follows:

,_ 0 , @
w ZQW, vV =57V' (2.18)
Then these represent the forces corresponding to
the above potentials. (Note that W’ and V' are
odd functions.) Then the nonlinear terms would
have the forms

¥y J, =25 (CW'50)), o1

J .
V,d, =5 (CV'*C)).

The first term in (2.19) with a specific choice of
kernel (independent of r), appeared in the
models by (Grunbaum, 1994; Alt and Geigant,
1994) for chemotaxis and for Actin—myosin
interactions, respectively.

2.3. Model I11: Interactions at discrete angles

The third model is a simplification of the
second model, in which objects jump instanta-
neously from their initial positions and orienta-
tions to ones acquired through the result of an
interaction. We consider the interactions of clus-
ters of objects, and assume that the size of the
cluster influences its ability to attract objects.
(Bigger clusters grow at the expense of smaller
ones.) We use the same symbol, C for density
and consider only one type of object. The model
again consists of a single equation. It turns out
that if the nonlinearities are quadratic, and if no
distinction is made between different types of
objects, no pattern can form for the following
reason: Suppose there are two clusters of fully
aligned objects of different sizes. Because no
turns to intermediate angles are allowed, the
quadratic nonlinearities will not redistribute the
objects, but diffusion will dissipate the peaks, so
that pattern will not persist. By comparison, in
models of (Geigant, Mogilner and Ladizhansky,
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1995) where turns to other angles are allowed,
quadratic nonlinearities suffice to produce pat-
tern. Here we consider another approach based
on nonlinearities of higher order.

With the above considerations, we obtain the
following equation:

Model 111
aC
T €A, C+e6AC+C(QECY*C). (2.20)
Here the integral term is defined as:
oC)=C= j j L(C(r, 2) - C(r', 2"))

§ D

XGr—r,02-0")

X C(r', 2, 1)d’ dr. (2.21)

The kernel is now the product of two func-
tions, one of which is responsible for the inter-
action dependence on the spatial and angular
coordinates and has the same meaning and form
as for the kernel K above:

5

G2, =G,(@)e . (2.22)

The function, L(C(r, 2) — C(r', 2')) reflects the
tendency for the bigger cluster to grow at the
expense of the smaller cluster.

This is a rough approximation of the process
of fast motion of the small cluster of objects
towards the more slowly moving big cluster, and
their final merging. For this purpose, the func-
tion L should be an odd one: L(—C)= —L(C).
At the same time, the symmetry of the function
L provides conservation of the total mass of the
system. For the purposes of this paper, all we
need to assume about the function L aside from
the fact that it is odd, monotonously increasing.
and bounded. We do not need further specifica-
tion of the function L.

In all three models, the nonlinear terms are
favorable for the aggregation and alignment of
the objects, while the diffusion terms cause
dispersion of the objects, destroying order. We
expect, then, that at large governing parameter

values, €,, €,, the angularly and spatially
homogeneous state is the only stable one. We
will find that as the total mass in the system
grows adiabatically, bifurcation occurs, the
stability of the homogeneous state is broken, and
a pattern emerges. In Section 4 we undertake
linear perturbation analysis to investigate this
phenomenon. Before doing so, however, we
establish a number of results about the linearized
problem that will be necessary for our analysis.

3. Eigenfunctions of the operators

We are considering an infinite spatial domain,
so that the wavenumber ¢ is a continuous vari-
able. Let us introduce the complete set of
orthonormal functions:

{u,(Nz,(2)}, q€R’ n=0,1,2,..., (3.1
where

u,(r)~exp{i(qg-r)}, (3.2)
and

in6 .
€ in2D,
Z"—{Yn(d),ﬂ) in 3D, n=0,1,2,....

(3.3)

Y, are surface spherical harmonics (SSH), [Mac-
robert, 1967; Abramowitz and Stegun, 1964].
Our analysis is based on the following proposi-
tions:

Proposition 1. The set (3.1) is the set of eigen-
functions of the operator A, with corresponding
eigenvalues:

B,=—q". (3.4)

Proposition 2. The set (3.1) is the set of eigen-
functions of the operator A, with the corre-
sponding eigenvalues:

{-nz in 2D,

=0,1,2,....
—-n(n+1) in 3D, =y

o, =

(3.5)
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Rigorous proof of the above two propositions
can be found in any classical book on mathemati-
cal physics.

Proposition 3. The set (3.1) is the set of eigen-
functions of the operators K*, W* V¥ G#*, with
the corresponding eigenvalues: K(n, q), W(n, q),
V(n, q), G(n, q) respectively. These eigenvalues
are given by the following formula (in the case of
K, for example):

R(n,q)=K, e 7. (3.6)

Similar formulae hold for W, V, G. The
separability of the function K is a direct conse-
quence of the separable nature of the kernel
K(£2,r). Here K is either the Fourier coefficient
in the expansion of the kernel K, ({2) over
cosines or sines or the coefficient in the Legen-
dre expansion over the SSH (See Mogilner and
Edelstein Keshet 1995a for details.) Eq. (3.6)
follows from the fact that exp(—gq°/2) is the
Fourier transform of exp(—r°/2).

4. Linear stability analysis

In this section we consider only the 2D case.
The 3D case is a clear generalization of our
results. It is easy to see in all three models that
the homogeneous solution (in both angle and
space) is stationary. We are interested in the
situation that pattern can arise. Our first step is
to perform linear stability analysis to determine
when the homogeneous solution becomes un-
stable.

Model I. We consider the weakly perturbed
homogeneous pattern:

[P(r’ﬂ’t)]—[ﬁ]+[1)°] Q) et
cr.2,0]~ Lel ¢ ] u)z e
(4.1)

where P, C obey the relations:

M=P+

C,
G = aM
Ta+ M
Ve
P:a+M‘ (4.2)

By substituting this into the system (2.9) and
keeping terms linear in P,, C, we obtain a
condition under which A has a positive real part
(implying growing perturbation, and thus in-
stability). We introduce the function A=A,(q)
which we call the Linear Growth Rate (LGR).
This function is obtained from the secular alge-
braic equation linking the values of A, n and q,
and represents the rate of growth of pattern
close to the homogeneous steady state. Note that
conservation of mass in all three models implies
that the homogeneous solution is neutrally stable
to perturbation by the mode n =0, g =0 (that is,
Ay(0) = 0).

The analysis is analogous to that in [EKE
(1990)], and we get the instability criterion:

69 <—-en’+K, e 71—k, e 7. (4.3)
Model II. Substituting the pattern

C(r.2,0)=C + Cou,(r) z,(2) e, (4.4)
into Eq. (2.17) and keeping the terms linear in
C, we obtain the instability criterion:

6q < —en’+ C(q°V,+n’W,) e 92, (4.5)

Model I11. Substituting the pattern (4.4) into Eq.
(2.20), using the fact that at small C we have:

L(C)=nC + O(C?), (4.6)

and keeping the terms linear in C,, we get the
instability criterion in the form:

6q°<—en*+nC*(1-G,e "), (4.7)

The criteria for all three models lead quali-
tatively to the same conclusions. The most con-
venient way to investigate the conclusions of
these inequalities is by graphical methods. We
introduce the complete bifurcation diagram (see
Fig. 4).
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» £,

Fig. 4. A complete bifurcation diagram. A and B are the
lines of primary bifurcations. Line A corresponds to the
growing mode n#0, ¢ =0. Line B corresponds to n=0,
g =0. The shaded region is the region of stability of the
homogeneous state. The unshaded region corresponds to
some non-homogeneous pattern. The dashed lines are sec-
ondary bifurcations. The vertical dashed lines correspond to
n#0, g #0. The curved portion of the dashed lines corre-
sponds to n# 0, g # (.

This diagram represents the state of the system
with all parameters fixed except two governing
parameters, €, and e,. The shaded area in the
parameter space is the region of stability of the
homogeneous solution. The border of this region
is the set of primary bifurcation points. The
unshaded region is the region of instability. The
dashed lines are the set of secondary bifurcation
points. As the total mass of the system slowly
grows, and €, €, are decreasing, we cross either
the line labelied (A) or the line labelled (B).

If we cross line A first then the mode corre-
sponding to n#0, g =0 breaks the stability.
Then the angular pattern evolves while the
spatial distribution remains homogeneous. l.e.
the objects orient but they do not aggregate (see
Fig. 5a). The nonlinear analysis of this situation
is described in Mogilner and Edelstein-Keshet
(1995a). We call this scenario A. If, on the other
hand, we cross line B, then the modes n =0,
q=0 (see Appendix) are responsible for the
instabilities, then the angularly disordered pat-
tern with the spatial inhomogeneities evolves.
This means that the objects aggregate but they
do not align. One would then see evolution of

T
Ly "
AL
PILIESTE =4 Ef’: ®)
—:_’/ JL—-" .......... » . l\/}:
\l—o\ ‘_::, ‘L
JLLLIILL

I [©
trittrtretet

Fig. 5. Depending on the growth protocol, any one of three
possible bifurcation scenarios can take place. Starting from
an initially disordered state (left), bifurcation may lead to
(A) formation of angular order in a distribution that is
spatially homogeneous, (B) aggregation and formation of
spatial inhomogeneities without angular order taking place,
(C) formation of patches of aligned objects.

patches of objects within which the objects are
not directionally ordered (see Fig. 5b). We call
this scenario B. The detailed calculations leading
to these conclusions are given in the Appendix.

We now briefly describe a more general situa-
tion. Let us consider the kernel K({2, r) such that
its Fourier or Legendre coefficients have the
form

K, oxp(~1r2q%). (4.8)

Here r, is the effective range of interaction (in
units of L) within the angularly ordered phase.
This means that spatio-angular dependence is
more general and realistic than before. It can be
shown that the kernel can be represented in the
following form:

K, (02) exp(;%) , (4.9)

where the effective radius of interaction, «
depends in a nontrivial way on the angle. Thus
we control not only the strength of the inter-
action, but also its effective range as a function
of angle. We note that not all such kernels with
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the Fourier or Legendre coefficients given above
by Eq. (4.8) are positive. Since kernels in our
model are transition probabilities we must im-
pose restrictions on acceptable values of K, and
r.. It can be shown (we omit details of the
calculations) that the complete bifurcation dia-
gram has qualitatively the same form as the one
in Fig. 4 but with displaced lines A and B. In
particular, the bigger is r,, the larger the dis-
placement from the origin of these lines. How-
ever, depending on K,, r,, the diagram may
change qualitatively in the vicinity of the inter-
section of lines A and B (see Fig. 6). The new
primary bifurcation (line C) appears corre-
sponding to the mode n#0, g=~qg"’ #0. This
line in general corresponds to the largest value of
r,.

If it happens that line C corresponds to the
primary bifurcation or one of the secondary
bifurcations, then the mode exp inf exp igr in 2D
and Y, (2) expiqr in 3D is the leading one. Then
spatio-angular order grows simultaneously. In
this case, contrary to scenario B, the spatial
density of the homogeneous state is not altered,
but there exists long-range correlation between
the axes of preferred orientation of the objects.
In fact, the angle of preferred orientation
changes periodically in space, with a characteris-
tic period of order L, creating stripes (rolls) or
spots (squares or hexagons). Schematically, the

m

L ) 81
Fig. 6. The same as Fig. 4. but with an additional line for

primary bifurcation (C). This line corresponds to the growing
mode n#0, g #0.

case of stripes is shown in Fig. Sc. This is
strikingly similar to the experimental results of
Tabony and Job (1990) in artificial polymeri-
zation of Tubulin. We call this scenario C.

Note that we do not consider structurally
unstable situations when bifurcation is caused
simultaneously by two different modes. This may
happen, for example, if we cross at the point of
intersection of lines A and B. We also have to
remember that linear stability analysis does not
predict which pattern evolves in reality. It just
gives us a strong hint about the form of the
growing structure (see discussion for more de-
tails).

5. Implications of the linear stability analysis

Mathematical results obtained in Section 4
have the following qualitative interpretation: we
have two diffusion coefficients, the rotational
one u, with dimension 7' and the translational
one, p, with dimension /°/T. (I is the unit of
length and T is the unit of time.) We can then
introduce an “intensity of interaction” of order
BM (which is the same for both spatial and
angular interaction and has the dimension T7')
and an “effective range of interaction’”” L. Three
parameters with the dimension 7' define time
dynamics in this system: g, w,/L’, (BM).
(There will be an additional parameter, y in
Model 1. Then three parameters w,y, m,y/L>,
and (BM)® determine the dynamics of the sys-
tem. If w,/L>>BM, over the effective range of
the interaction translational diffusion destroys
spatial order faster than the interaction between
objects restores it. If simultaneously u, <BM,
the angular part of the interaction prevails over
the rotational diffusion. In this situation scenario
A is realized, and the objects align first, before
any spatial order is evident. Otherwise, if u, >
BM rotational diffusion destroys angular order,
and u,/L° < BM (spatial order is created), then
we have scenario B, i.e. spatial aggregation is
evident before any kind of angular order is seen.
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For example, the usual situation for molecules
is u,L*~p, (see Landau and Lifshitz, (1956)).
In this case the detailed structure of the kernel
determines the bifurcation scenario. However, if
for one reason or another in a biological system
the parameters, u,/L’ and p, are very different,
then clear predictions can be made without
knowing the detailed form of the kernel. The
specific Gaussian form of the kernels K, W, V, G
is not crucial for the results of this paper. The
only important thing is the symmetry of the
angular dependence, and the fact that the spatial
dependence is a decreasing function of distance
which falls to zero on a length scale of the order
of L, the size of the object.

In a separate paper, we will investigate the
character of the spatial bifurcation, and the
spatial patterns evolved. We expect that this
bifurcation will be a first order nonequilibrium
phase transition. The smallness of the wavenum-
bers responsible for the bifurcation, implies a
long length scale (relative to L) of the spatial
pattern near criticality. This means that the
length scale of the pattern may be comparable to
the size of the spatial domain, and the effect of
the boundaries could be significant. One of the
implications is that irregular “droplets” contain-
ing large numbers of objects start to grow, and
that a multitude of topological singularities can
arise in the spatio-angular pattern (Cross and
Hohenberg, 1993; Elsdale and Wasoff, 1976).
This is similar to patterns formed in fibroblast
cultures.

Characteristic sizes of patches of ordered ob-
jects that evolve and the time dynamics of this
evolution are currently under investigation. It
appears that the role of fluctuations is important
near the nonequilibrium phase transition. It is
also of interest to consider more realistic forms
of the kernels K(r — r', £2, 2'). Throughout the
present paper, we considered an isotropic do-
main. If there is anisotropy, the O(n) symmetry
is broken, and this must be reflected in the
choice of kernel. We expect, further that nonloc-
al effects in the random motion of the objects

will lead to nonlinear terms in the diffusion
operators, which will cause important changes in
the linear stability analysis and nonlinear bifurca-
tion analysis. (See, for example Murray, 1989.)

In some systems in which there is substantial
interest (for example aggregations of animals
such as fish schools, bird flocks, or herds of
mammals) free motion of the “objects” is not
limited to diffusion, but contains an ordered
component of persistent motion, with some
intrinsic velocity. (See Alt and Pfistner, 1989).
The cellular automata described below are an
example of such systems. Including this motion
in the models would lead to hydrodynamic-like
equations and would reveal a number of new
phenomena.

In all three models, we have at least two
governing parameters proportional to the spatial
and angular diffusion coefficients respectively.
Due to the additional adiabatic growth of the
total mass, the synchronous changes in these
parameters causes one or another “growth
protocol” (see Cross and Hohenberg, 1993) also
called a “developmental pathway” (Segel, 1984)
namely, a sequence of the spatio-angular bifurca-
tions. The first bifurcation is one of three pos-
sible types described above. The final pattern,
however, may be formed by secondary bifurca-
tions. (Moreover, the linear instability at ¢ =0
may not lead to any stability break. In this case,
the mode responsible for one of the secondary
bifurcations will be responsible for the patterns
evolved.) One of the possibilities is that if spatial
patches of objects are formed in an angularly
disordered state, then the conditions for align-
ment are most favorable within the patches, and
the axes of orientation of objects in the different
patches are not correlated. If, on the other hand,
patches start to grow in a partially aligned
ensemble of objects, then patches themselves
have elongated forms and the axes of orientation
of the objects within the patches are correlated
between neighboring patches. (See Figs. 5S¢, 7.)
This phenomenon is seen in cellular automata
simulations. The full investigation of the final
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Fig. 7. Cellular automata simulations of interacting objects reveal some of the bifurcation phenomena described in this paper. (a)
Formation of several distinct patches of similarly aligned objects. (Note that each patch has its own orientation). (b) Formation of
a single alignment region. In this case, the patch is elongated in the direction of its alignment. See EKE (90) and Ermentrout and

EK (1991) for details about the cellular automata.

patterns requires scrupulous nonlinear analysis
of the competing unstable modes, and will be
undertaken later.

6. Comparison with cellular automata models

Cellular automata modelling of a similar sys-
tem was described in EKE (90), Ermentrout and

Edelstein-Keshet (1991). In these models, persis-
tent motion of the objects at random directions,
rather than spatial Brownian motion was consid-
ered. Furthermore, hard-core repulsion between
the objects was introduced. Despite these differ-
ences, the qualitative picture of the patterns
evolved (see Figs. 7a,b) bear similarities with the
qualitative predictions we make in this paper.
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The range of interaction is virtually greatest in
the aligned state, so that scenario B is not
realized. In some cases, it was clearly seen that
patches start to form in the aligned phase,
resembling scenario A. The form of the patches
is elongated in the same direction as the axis of
orientation of the objects within the patches. In
other cases (when the density of the objects was
higher), patches are formed from aligned ob-
jects, but different patches have different
orientations. This suggests that scenario C can be
realized. We emphasize that cellular automata
modelling produces pictures of well-developed
patterns, while our paper here deals with the
initial phase of this process. No direct corre-
spondence can be made for this reason.

7. Comparison with physical and biological
theories

There is a close analogy between these models
and alignment phenomena described in the
physics literature: that of liquid crystals. A good
general review of the properties of liquid crystals
is found in the book by De Gennes (1974).
Liquid crystals are formed by rod-like molecules
which undergo random motion and tumbling,
and interact by electrostatic attraction or repul-
sion. Such molecules tend to align with one
another, to attract each other at intermediate
distance, and repulse at short distances.

In biological examples, (e.g. mammalian cells
such as fibroblasts) objects are living units, with
essentially “infinite resources of energy” on
which to draw. Their interactions cannot be
easily summarized with simple physics. The
alignment of populations of cells is not an
outcome of the shapes of the cells, but of the
complex membrane and cellular cytoskeleton,
and the dynamic response to contact with
another cell.

In work dating back to Onsager (1949) and
Zwanzig (1963) the case of hard rod-like mole-
cules which do not overlap was studied using

thermodynamic principles. It was shown that
thermodynamic considerations of entropy alone,
without forces of attraction between molecules
could account for the long-range orientational
order in these liquid crystals.

Several rigorous models in the physics litera-
ture predict orientational phase transitions of the
second order for nematics, and these are analo-
gous to the ones we observed in our models. A
key difference in the methods of approach and
the tools used for analysis of these physical
phenomena must be emphasized. Models in
physics are traditionally based on minimization
of a free energy functional, which mandates that
the system studied is being investigated close to
thermodynamic equilibrium. However, in our
approach the interest is on the dynamic process
itself, far away from such equilibrium.

The reason that we abandon the traditional
physics approach when dealing with these bio-
logical systems is that a meaningful definition of
free energy cannot be derived from first princi-
ples in highly non-equilibrium open systems such
as living cells. It would be possible to formally
define a free-energy functional, perhaps, as has
been done for some open non-equilibrium sys-
tems, but this approach may be artificial. This
alternate energy approach is explored in Murray
(1989, Section 9.6).

It is interesting to note that there are two
groups whose work on liquid crystals is vaguely
in the flavour of our approach. The first due to
Villard Baron (1969) and Chandrasekhar et al.
(1970), is a Monte Carlo simulation of the finite
system of elongated molecules represented by
objects (ellipses) which undergo thermal transi-
tions restricted by excluded volumes (the ellipses
are not allowed to overlap). It is found that a
sequence of two transitions — positional and
orientational — is observed as the density of the
objects increases. For less elongated ellipses,
when the homogeneous steady state is disturbed,
first the positional transition occurs (patches of
spatially ordered ellipses formed) and only then
the rotational transition. For more elongated
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ellipses, the order of the transitions is reversed.
In these simulations, direct interactions between
molecules is absent. However, due to the effect
of excluded volumes it is most entropically
favorable for them to take on some degree of
spatio-angular order. There is clear analogy of
these results on the sequence of phase transitions
with our scenarios A and C.

An example of an approach that resembies our
model in the field of liquid crystals is the paper
by Greco and Marrucci (1992). They also pos-
tulate a dynamic system of nonlinear PDE’s to
describe the interactions of rod-like molecules,
and their distribution over space and angle. The
details of the equations, and the techniques and
results of the analysis is, however, quite different
from our own.

There are many other applications of integral
equations in the biological literature. We draw
the reader’s attention to applications concerned
with biological movement (Alt, 1988, Othmer et
al., 1988), and with neuronal interactions Er-
mentrout and Cowan, 1979; Ermentrout et al.
(1986); Swindale, (1980), (1982), (1991), (1992).
Integral equations have also appeared recently in
the literature on coupled oscillators. An evolu-
tion equation for the density of oscillators at
phase 6 and frequency w, analogous to a model
by Kuramoto (1975) was derived and analyzed
by Strogatz and Mirollo (1991). The oscillators
interact with one another with intensity that

Appendix

depends on their relative phases, and this causes
changes in the frequency and phase. An equa-
tion described by Strogatz (and reviewed also in
Strogatz, 1993) is:

9p  a(pv) _
ot o0

0,

where

v(e.t,w)=w

+Kf fsin(cp—e)p(d;,t, v) g(v) dv déb .

-7 —x

This equation bears similarity to Model II dis-
cussed in this paper. It is likely that methods
outlined in this paper may prove suitable to
further investigation of such models.
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We consider Models I-II1. Results are given below and summarized in Table 1.

Model 1

We consider separately three cases, I: n =0, II: n#0, K,>1/2, 1I: n %0, K, <1/2. We will denote

as g,(q) the right hand side of the inequality (4.3).

Case I. The function

gol@)=e " (1-e ")

has the asymptotes:
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Table 1
Summary of the results of linear stability analysis
Case I Case II Case 111
Angular mode n=0 n#0 n#0
Model LK, >1/2 I K, <1/2
I: V,>n*W, /2 II: V, <RHS
In: G, >0 I G, <0
Critical wavenumber q“'=0 g’ =0 g #0 g9=0
€, any e, <€\ eV<e <e! € <el
€ 6 <ey e, >el’ e, <€ any
Scenario B A C A
Figure Sb Sa 4c 4a
Growth rate diagram (Fig.) 8 8b 8b 8c
Linear growth rate (Fig.) 9 9a 9b 9c
Stability diagram (Fig.) 10a 10b 10b 10c
1¢°-1q¢'+0(q"), gq<1,
(D=9 _ 2, (A.1)
e R q>1,

and the maximum value, g,(q) =1/4 at g = q, = (2In(2))'"*. If ¢, > €'” = 1/2 then the LGR A,(g) <0.
If €, <€\ then Ay(g) <0 whenever g > ¢’ and A,(g) >0 whenever 0<g < g where

4 —8¢,\'"?
q(c)z( 3 2> - (A2)

We show the left and right sides of the inequality (4.3) on the LGR diagram (see Fig. 8a). The LGR is
maximal

1-2¢,)\?
Am‘tl)(z( 3 e-> 4 (A'3)

at g =q,,..~q"”/2 (see Fig. 9a). Finally, we sketch the stability diagram in the governing parameter
space (Fig. 10a). Here the shaded region is the region of stability, (the other region corresponds to
instability to the mode n =0.)

Case II. In this case, the LGR diagram is as shown in Fig. 8b. The function g,(g) has the asymptotes

¢ K,4K,-1q’

.. 5 q B,8K,71)g 6 .
—en’+K, e, g>1,
gn(O) = _eln2 + Kn(l - Kn) (A'S)

and max g,(q) =g,(0)+ 1/4 at
g, =(2In(2K,))""*. (A.6)
If €, <€!” where €\ is defined as

- +K(1-K)=0, (A.7)

then A,(q) <0 if ¢ >q'” where
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Fig. 8. The linear growth rate diagrams. The dashed lines
show the left-hand sides of the instability criteria of the three
models. Solid lines are the right hand sides of these criteria.
Instability occurs whenever the dashed line is below the solid
line. (a) Case I: the unstable mode is n =0, g =¢‘” =0. (b)
Case II: depending on the values of ¢, €,, two possibilities
occur. If €, is large, and € is small, we have a situation
similar to (a) above. If ¢, is small and ¢, is large, the mode
n#0, g=g" #0 is the leading one. (c) Case III: the mode
n#0, g =0 is unstable.
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Fig. 9. The linear growth rate of an unstable mode as a
function of ¢. (a) and (c) correspond to Figs. 8a,c respective-
ly. (b) corresponds to Fig. 8a if ¢, is large, and to Fig. 8biif ¢,
is small.

(A.8)

at any €,. Otherwise, A,(q)>0. If ¢, > €\” then A,(g) <O at any g, whenever €, > €5(¢;) and A,(q) >0

at g = q,# 0 whenever ¢, <e}(¢;), where

, 1—den’
€3(e) = 4(]2
0

1

. €5(e)<IK,(2K,-1)<), <. (A.9)

an’

The LGR is maximal at g =0 at ¢, <&'” (see Fig. 9a). It is maximal if g =~ g, # 0 if
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Fig. 10. The stability diagram in the governing parameter space. The shaded region is the stability region and the unshaded
region corresponds to a non-homogencous pattern. (a) Case I: Independently of €, when ¢, decreases below €', the
orientationally disordered patches start to grow (scenario B). (b) Case II: the vertical border of the shaded region corresponds to

the growing mode n # 0, g = 0 (scenario A). The curved border corresponds to the growing mode n #0, q # 0 (scenario C). (c)

Case III: Independently of €,, as €, decreases below €', the mode n#0, g =0 breaks the stability (scenario A).

1
e(lc)<el<F, €, <e)(eg). (A.10)
n

(See Fig. 9b). The stability diagram then has the form shown in Fig. 10b.
Case II1. In this case, the LGR diagram looks like Fig. 8c. A, (g)>0 at g <q‘” whenever ¢, <e'” and
any €,. A,(q) is the same as the one shown in Fig. 9c. The stability diagram is shown in Fig. 10c.
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To determine the primary bifurcation in the case that €, and €, decrease monotonously, we must find
the intersection of a countable number of subsets of R® corresponding to the shaded stability regions
discussed above (for all n =0, 1, 2,...). Then the border of this intersection is the line of the primary
bifurcation. The borders of the stability areas which do not belong to this line together form lines of
secondary bifurcations. The cumulative set of bifurcation lines is shown in Fig. 4. We call this picture
the Complete Bifurcation Diagram.

Model 11
It is easy to see that the right hand side of the inequality (4.5) has the following asymptotes:

) = 2<% = ~ n?' ”
(—eln~+Cn~Wn)+c<vn—7wn>q2+0(q“), g<1,
—e,n2+C"'anze“’:'f2, g>1.

g, = (A11)

Furthermore, the function g,(g) has a maximum at ¢ =0 if V, <n’W,/2 and at g #0 if v, > n*Ww, /2.
We consider separately three cases: 1, n =0; II, n # 0, Vn >n2Wn/2; III, n#0, Vn <n2W,,/2;

Case I. When n = 0 the LGR diagram is as shown in Fig. 8a. Independently of €, there is stability at all

q’s if e, > CV, . There is instability at small g’s if €, < CV,. The linear growth rate and the stability

diagram are shown in Figs. 9a and 10a respectively.

Case Il. When n#0, V, >nW,/2, the LGR diagram is given in Fig. 8b. If ¢, > €\ and ¢ > €\, where

(. W
e;f’=c<v,,— 5 ) eV =CWwW, (A.12)
there is stability at all ¢’s. If €, > €', €, <e'” there is instability at small g’s. At e, <e'”, €\ <¢ <€}
there is stability at all ¢’s if €, > ¢} 2(€;) and instability at g =~ g #0 if €, <e€)(e,). Here €] and ez(el)
depend parametrically on V, W and C and can be found from certain transcendental equatlons q
defined by the expression:

W, 112
q“ (2— V") . (A.13)

n

The linear growth rate and the stability diagram are given in Figs. 9a, 9b, and 10b.
Case III. The LGR diagram in the case n#0, V, <n°W,/2 is given in Fig. 8c. Independently of e,
there is stability at all g's, if €, > €' and there is instability at small ¢’s if €, < e\” where

~e+ CW, =0 (A.14)

(if W, <0 there is no instability at all.) The linear growth rate and the stability diagram are shown in
Figs. 9¢, 10c respectively.
Because €\ < CV,, the complete bifurcation diagram has the same form as the one in Fig. 4.

Model 111
The right hand side of the inequality (4.7) has the asymptotes:

2 ~2 A N =24
2(q) = (—en’ +1C(1-G,) +5 C*G,q4°+0(q"), g<1, (A15)
" (—e1n2+ncz)-nCZGAne‘qz’lz, g>1,
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g,(g) is monotonously decreasing if G, <0 and monotonously increasing if G, >0. Here we have to
distinguish three cases: I, n=0; II, n#0, G" >0; III, n #0, G,, <0.

Case I. The LGR diagram for the case n = 0 is shown in Fig. 8a. Independently of ¢, there is stability at
all g’s if €, >7C/2 and there is instability at small ¢’s if €, <nC?/2. The linear growth rate and stability
diagram are given in the Figs. 9a, 10a respectively.

Case II. If n#0, G, >0, the LGR diagram is similar to that shown in Fig. 8b. The only difference is
that the humped curves are monotonically increasing in this case, a feature which does not alter the
results. If €, > €' and ¢, > €\”, where

>
nC’G, (-6
7 a@=nCl ", (A.16)

© _

there is stability at all g’s. At €, >¢'” and ¢ <e\”, there is instability at small ¢’s. At 6, <€,

€\ <e, <nC?/n® there is stability at all g’s. If €, > €(e,) there is instability at some g ~q@#0 if
€, <€)(¢). Here €)(¢,) depends parametrically on 5, C, G,, and can be found from certain
transcendental equations. The distinctive feature of this model is that q‘ can vary from zero to infinity:

CZ
q(c)—>oc ife,—0, € _)_77 3 (A.17)
n
The linear growth rate and stability diagram are shown in Figs. 9a, 9b, 10b.
Case I1I. If n #0, G, <0, the LGR diagram is shown in Fig. 8c. Independently of e, , there is stability at
all ¢’s if €, > €'” and instability at small g’s if €, < €' where €!” is given in (A.16). The linear growth
rate and stability diagram are shown in Figs. 9c and 10c, respectively. Because

CvZ . CZ
el =75 G, <= (A.18)

2 Al
the complete bifurcation diagram has the same form as the one in Fig. 4.

References

Alt, W. and Geigant, E. (1994), private communication.

Abramowitz, M. and Stegun, A. eds. (1964), Handbook of Mathematical Functions (National Bureau of Standards, Washington).

Alt, W. (1988), Modelling of motility in biological systems, ICIAM 1987 Proceedings (SIAM, Philadelphia) pp. 15-30.

Civelekoglu, G. and Edelstein-Keshet, L. (1994), Models for the formation of actin structures, Bull. Math. Biol. 56, 587-616.

Chandrasekhar, S., Shashihad, R. and Tara, N. (1970), Theory of melting of molecular crystals: the liquid crystalline phase, Mol.
Cryst. Liq. Cryst. 10, 337-358.

De Gennes, P.G. (1974), The Physics of Liquid Crystals (Clarendon, Oxford).

Edelstein-Keshet, L. and Ermentrout, G.B. (1989), Models for branching networks in two dimensions, SIAM J. Appl. Math. 49,
1136-1157.

Edelstein-Keshet, L. and Ermentrout, G.B. (1990), Models for contact-mediated pattern formation: cells that form parallel
arrays, J. Math. Biol. 29, 33-58.

Edmunds, M. (1974), Defense in Animals (Longman, London).

Elsdale, T. (1972), Pattern formation in fibroblast cultures, an inherently precise morphogenetic process, in: Towards a
Theoretical Biology, Vol. 4, C.H. Waddington, ed. (Edinburgh Univ. Press, Edinburgh).

Elsdale, T. and Wasoff, F. (1976), Fibroblast cultures and dermatoglyphics: the topology of two planar patterns: Wilhelm Roux’s
Archives, Vol. 180, pp. 121-147.

Ermentrout, B., Campbell, J. and Oster, G. (1986), A model for shell patterns based on neural activity, The Veliger 28, 369-388.

Ermentrout, G.B. and Cowan, J. (1979), A mathematical theory of visual hallucination patterns, Biol. Cybern. 34, 137-150.



A. Mogilner, L. Edelstein-Keshet | Physica D 89 (1996) 346~367 367

Ermentrout, G.B. and Edelstein-Keshet, L. (1991), Cellular Automata approaches to biological modelling, J. Theor. Biol. 160,
97-133.

Geigant, E., Mogilner, A. and Ladizhansky, K. (1995), A nonlinear model for active alignment, in preparation.

Greco, F. and Marrucci, G. (1992), Rodlike molecular dynamics, the tumbling regime, Mol. Cryst. Liq. Cryst. 212, 125-137.

Gross, M.C. and Hohenberg, P.C. (1993), Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851-112.

Grunbaum, D. (1994), Swarming behaviour as an aide to Chemotaxis; in: Parrish, J. and Hammner, W., eds., 3D Animal
Aggregations (Cambridge Univ. Press, Cambridge).

Katz, L.C., Potel, M.J. and Wasserung, R.J. (1981). Structure and mechanism of schooling in tadpoles of the clawed frog,
Xenopus laevis, Anim. Behav. 29, 20-33.

Kuramoto, Y. (1975), Self-entrainment of a population of coupled nonlinear oscillators, in: Intern. Symp. on Mathematical
Problems in Theoretical Physics, H. Araki, ed., Lecture Notes in Physics, Vol. 39 (Springer, New York) pp. 420-422.

Landau, L.D. and Lifshitz, E.M. (1956), Hydrodynamics (Pergamon, London).

Lifshitz, E.M. and Pitaevskii, L.P. (1981), Physical Kinetics (Pergamon, Oxford).

Macrobert, T.M. (1967), Spherical Harmonics (Pergamon, Oxford).

Marcus, M. and Ming, H. (1964), A Survey of Matrix Theory and Matrix Inequalities (Allyn Bacon, Boston).

Mogilner, A. and Edelstein-Keshet, L. (1995a), Selecting a common direction I: How orientational order can arise from simple
contact responses between interacting cells, J. Math. Biol., in press.

Mogilner, A. and Edelstein-Keshet, L. (1995b), Selecting a common direction II: Peak-like solutions representing total alignment
of cell clusters, submitted for publication.

Murray, J.D. (1989), Mathematical Biology (Springer, New York).

O’Brien, D.P. (1989), Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea,
Mysidacea), J. Exp. Mar. Biol. Ecol. 128, 1-30.

Onsager, L. (1949), The effects of shape on the interaction of colloidal particles, Ann. NY Acad. Sci. 51, 627-659.

Othmer, H.G., Dunbar, S.R. and Alt, W. (1988), Models of dispersal in biological systems, J. Math. Biol. 26, 263-298.

Pfistner, B. and Alt, W. (1989), A two-dimensional random walk model for swarming behaviour, Alt, W. and Hoffmann, G.,
eds., in: Biological Motion (Springer, New York).

Segel, L. (1984), Modelling Dynamic Phenomena in Molecular and Cellular Biology (Cambridge Univ. Press, Cambridge).

Strogatz, S.H. (1993), Norbert Wiener’s brain waves, in: Lecture Notes in Biomathematics, Vol. 100 (Springer, Berlin).

Strogatz, S.H. and Mirollo, R.E. (1991), Stability of incoherence in a population of coupled oscillators, J. Stat. Phys. 63,
613-635.

Swindale, N.V. (1980), A model for the formation of ocular dominance stripes, Proc. R. Soc. Lond. B 208, 243-264.

Swindale, N.V. (1982), A model for the formation of orientation columns, Proc. R. Soc. London B 215, 211-230.

Swindale, N.V. (1991), Coverage and the design of striate cortex, Biol. Cybern. 65, 415-424.

Swindale, N.V. (1992), A model for the coordinated development of columnar systems in primate striate cortex, Biol. Cybern. 66,
217-230.

Tabony, J. and Job, D. (1990). Spatial structures in microtubular solutions requiring a sustained energy source, Nature 346,
448-451,

Villard Baron, J. (1969), J. Phys. (Paris) 30 (Suppl. 34), 22.

Zwanzig, R. (1963). First-order phase transitions in a gas of long thin rods, J. Chem. Phys. 39, 1714-1721.



