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Introduction

∙ Often, training distribution does not match testing distribution
∙ Want to utilize information about test distribution
∙ Correct bias or discrepancy between training and testing
distributions
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Importance Weighting

∙ Labeled training data from source distribution Q
∙ Unlabeled test data from target distribution P
∙ Weight the cost of errors on training instances.
∙ Common definition of weight for point x: w(x) = P(x)/Q(x)
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Importance Weighting

∙ Reasonable method, but sometimes doesn’t work
∙ Can we give generalization bounds for this method?
∙ When does DA work? When does it not work?
∙ How should we weight the costs?
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Overview

∙ Preliminaries
∙ Learning guarantee when loss is bounded
∙ Learning guarantee when loss is unbounded, but second moment
is bounded

∙ Algorithm
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Preliminaries: Rényi divergence

For α ≥ 0, Dα(P||Q) between distributions P and Q

Dα(P||Q) =
1

α− 1 log2
∑
x
P(x)

(
P(x)
Q(x)

)α−1

dα(P||Q) = 2Dα(P||Q) =

[∑
x

Pα(x)
Qα−1(x)

] 1
α−1

∙ Metric of info lost when Q is used to approximate P
∙ Dα(P||Q) = 0 iff P = Q
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Preliminaries: Importance weights

Lemma 1:

E[w] = 1 E[w2] = d2(P||Q) σ2 = d2(P||Q)− 1

Proof:

EQ[w2] =
∑
x∈X

w2(x)Q(x) =
∑
x∈X

(
P(x)
Q(x)

)2
Q(x) = d2(P||Q)

Lemma 2: For all α > 0 and x ∈ X,

EQ[w2(x)L2h(x)] ≤ dα+1(P||Q)R(h)1−
1
α
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Preliminaries: Importance weights

Hölder’s Inequality (Jin, Wilson, and Nobel, 2014): Let 1
p + 1

q = 1, then

∑
x

|axbx| ≤
(∑

x
|ax|p

) 1
p
(∑

x
|bx|q

) 1
q
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Preliminaries: Importance weights

Proof for Lemma 2: Let the loss be bounded by B = 1, then

Ex∼Q[w2(x)L2h(x)] =
∑
x
Q(x)

[
P(x)
Q(x)

]2
L2h(x) =

∑
x
P(x) 1

α

[
P(x)
Q(x)

]
P(x)

α−1
α L2h(x)

≤
[∑

x
P(x)

[
P(x)
Q(x)

]α] 1
α
[∑

x
P(x)L

2α
α−1
h (x)

]α−1
α

= dα+1(P||Q)
[∑

x
P(x)Lh(x)L

α+1
α−1
h (x)

]α−1
α

≤ dα+1(P||Q)R(h)1−
1
αB1+ 1

α = dα+1(P||Q)R(h)1−
1
α
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Learning Guarantees: Bounded case

supx w(x) = supx
P(x)
Q(x) = d∞(P||Q) = M. Let d∞(P||Q) < +∞. Fix h ∈ H.

Then, for any δ > 0, with probability at least 1− δ,

|R(h)− R̂w(h)| ≤ M

√
log 2δ
2m

∙ M can be very large, so we naturally want a more favorable bound...

9



Overview

∙ Preliminaries
∙ Learning guarantee when loss is bounded
∙ Learning guarantee when loss is unbounded, but second moment
is bounded

∙ Algorithm
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Learning Guarantees: Bounded case

Theorem 1: Fix h ∈ H. For any α ≥ 1, for any δ > 0, with probability at
least 1− δ, the following bound holds:

R(h) ≤ R̂w(h) +
2M log 1

δ

3m +

√
2[dα+1(P||Q)R(h)1−

1
α − R(h)2] log 1

δ

m
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Learning Guarantees: Bounded case

Bernstein’s inequality (Bernstein 1946):

Pr
(
1
n

n∑
i=1

xi ≥ ϵ

)
≤ exp

(
−nϵ2

2σ2 + 2Mϵ/3

)
when |xi| ≤ M.
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Learning Guarantees: Bounded case

Proof of Theorem 1: Let Z be the random variable w(x)Lh(x)− R(x).
Then |Z| ≤ M. Thus, by lemma 2, the variance of Z can be bounded in
terms of dα+1(P||Q):

σ2(Z) = EQ[w2(x)Lh(x)2)]− R(h)2 ≤ dα+1(P||Q)R(h)1−
1
α − R(h)2

Pr[R(h)− R̂w(h) > ϵ] ≤ exp
(

−mϵ2/2
σ2(Z) + ϵM/3

)
.
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Learning Guarantees: Bounded case

Thus, setting δ to match upper bound, then with probability at least
1− δ

R(h) ≤ R̂w(h) +
2M log 1

δ

3m +

√
M2 log2 1

δ

9m2 +
2σ2(Z) log 1

δ

m

= R̂w(h) +
2M log 1

δ

3m +

√
2σ2(Z) log 1

δ

m
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Learning Guarantees: Bounded case

Theorem 2: Let H be a finite hypothesis set. Then for any δ > 0, with
probability at least 1− δ, the following holds for the importance
weighting method:

R(h) ≤ R̂w(h) +
2M(log|H|+ log 1

δ )

3m +

√
2d2(P||Q)(log |H| = log 1

δ

m
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Learning Guarantees: Bounded case

Theorem 2 holds when α = 1. Note that theorem 1 can be simplified
in the case of α = 1:

R(h) ≤ R̂w(h) +
2M log 1

δ

3m +

√
2d2(P||Q) log 1

δ

m

Thus, theorem 2 follows by including the cardinality of H
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Learning Guarantees: Bounded case

Proposition 2: Lower bound. Assume M < ∞ and σ2(w)/M2 ≥ 1/m.
Assume there exists h0 ∈ H such that Lh0(x) = 1 for all x. There exists
an absolute constant c, c = 2/412, such that

Pr
[
sup
h∈H

|R(h)− R̂w(h)| ≥
√
d2(P||Q)− 1

4m

]
≥ c > 0

Proof from theorem 9 of Cortes, Mansour, and Mohri, 2010.
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Overview

∙ Preliminaries
∙ Learning guarantee when loss is bounded
∙ Learning guarantee when loss is unbounded, but second moment
is bounded

∙ Algorithm
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Learning Guarantees: Unbounded case

d∞(P||Q) < ∞ does not always hold... Assume P and Q follow a
Guassian distribution with σP and σQ with means µ and µ′

P(x)
Q(x) =

σP
σQ

exp
[
−

σ2Q(x− µ)2 − σ2P(x− µ′)2

2σ2Pσ2Q

]
Thus, even if σP = σQ and µ ̸= µ′, d∞(P||Q) = supx

P(x)
Q(x) = ∞, thus

Theorem 1 is not informative.
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Learning Guarantees: Unbounded case

However, the variance of the importance weights is bounded.

dw(P||Q) =
σQ

σ2P
√
2π

∫ +∞

−∞
exp

[
−
2σ2Q(x− µ)2 − σ2P(x− µ′)2

2σ2P
σ2Q

]
dx
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Learning Guarantees: Unbounded case

Intuition: if µ = µ′ and σP >> σQ

∙ Q provides some useful information about P
∙ But sample from Q only has few points far from µ

∙ A few extreme sample points would have large weights

Likewise, if σP = σQ but µ >> µ′, weights would be negligible.
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Learning Guarantees: Unbounded case

Theorem 3: Let H be a hypothesis set such that
Pdim({Lh(x) : H ∈ H}) = p < ∞. Assume that d2(P||Q) < +∞ and
w(x) ̸= 0 for all x. Then for δ > 0, with probability at least 1− δ, the
following holds:

R(h) ≤ R̂w(h) + 25/4
√
d2(P||Q)

3
8

√
p log 2me

p + log 4
δ

m
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Learning Guarantees: Unbounded case

Proof outline (full proof in of Cortes, Mansour, Mohri, 2010):

∙ Pr
[
suph∈H

E[Lh]−Ê[Lh]√
Ê[L2h]

> ϵ
√
2+ log 1ϵ

]
≤

Pr
[
suph∈H,t∈ℜ

P̂r[L−h>t]−Pr[Lh>t]√
P̂r[Lh>t]

> ϵ

]
∙ Pr

[
suph∈H

R(h)−R̂(h)√
R(h)

> ϵ
√
2+ log 1

ϵ

]
≤ 4ΠH(2m) exp

(
− mϵ2

4

)
∙ Pr

[
suph ∈ HE[Lh(x)]−Ê[Lh(x)]√

E[L2h(x)]
> ϵ

√
2+ log 1

ϵ

]
≤

4 exp
(
p log 2em

p − mϵ2

4

)
∙ Pr

[
suph∈H

E[Lh(x)]−Ê[Lh(x)]√
E[L2h(x)]

> ϵ

]
≤ 4 exp

(
p log 2em

p − mϵ8/3

45/3

)
∙ |E[Lh(x)]− Ê[Lh(x)]| ≤

25/4max{
√
E[L2h(x)],

√
Ê[L2h(x)]}

3
8

√
p log 2me

p +log 8
δ

m 23



Learning Guarantees: Unbounded case

Thus, we can show the following:

Pr
[
sup
h∈H

R(h)− R̂w(h)√
d2(P||Q)

> ϵ

]
≤ 4 exp

(
p log 2emp − mϵ8/3

45/3

)
.

Where p = Pdim({Lh(x) : h ∈ H} is the pseudo-dimension of
H′′ = {w(x)Lh(x) : h ∈ H}. Note, any set shattered by H′ is shattered
by H′′, since there exists a subset B of a set A that is shattered by H′′,
such that H′ shatters A with witnesses si = ri/w(xi).
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∙ Preliminaries
∙ Learning guarantee when loss is bounded
∙ Learning guarantee when loss is unbounded, but second moment
is bounded
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Alternative algorithms

We can generalize this analysis to an arbitrary function
u : X 7→ R,u > 0. Let R̂u(h) = 1

m
∑m

i=1 u(xi)Lh(xi) and let Q̂ be the
empirical distribution: Theorem 4: Let H be a hypothesis set such
that Pdim({Lh(x) : h ∈ H}) = p < ∞. Assume that
0 < EQ[u2(x)] < +∞ and u(x) ̸= 0 for all x. Then for any δ > 0 with
probability at least 1− δ,

|R(h)− R̂u(h) ≤ |EQ
[
[w(x)− u(x)]Lh(x)

]
|

+25/4max
(√

EQ[u2(x)L2h(x)],
√

EQ̂[u2(x)L2h(x)]
) 3

8

√
p log 2me

p + log 4
δ

m

26



Alternative algorithms

∙ Other functions u than w can be used to reweight cost of error
∙ Minimize upper bound

∙ max
(√

EQ[u2],
√

EQ̂[u2]
)

≤
√

EQ[u2]
(
1+ O(1/

√
m)

)
,

∙ minu∈U E
[
|w(x−u(x)|

]
+ γ

√
EQ[u2]

∙ Trade-off between bias and variance minimization.

27



Alternative algorithms
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Alternative algorithms
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