

LEARNING BOUNDS FOR IMPORTANCE WEIGHTING

Tamas Madarasz & Michael Rabadi

April 15, 2015

INTRODUCTION

- Often, training distribution does not match testing distribution
- Want to utilize information about test distribution
- Correct bias or discrepancy between training and testing distributions

IMPORTANCE WEIGHTING

- Labeled training data from source distribution Q
- Unlabeled test data from target distribution P
- Weight the cost of errors on training instances.
- Common definition of weight for point x : $w(x) = P(x)/Q(x)$

IMPORTANCE WEIGHTING

- Reasonable method, but sometimes doesn't work
- Can we give generalization bounds for this method?
- When does DA work? When does it not work?
- How should we weight the costs?

OVERVIEW

- Preliminaries
- Learning guarantee when loss is bounded
- Learning guarantee when loss is unbounded, but second moment is bounded
- Algorithm

PRELIMINARIES: RÉNYI DIVERGENCE

For $\alpha \geq 0$, $D_\alpha(P||Q)$ between distributions P and Q

$$D_\alpha(P||Q) = \frac{1}{\alpha - 1} \log_2 \sum_x P(x) \left(\frac{P(x)}{Q(x)} \right)^{\alpha - 1}$$

$$d_\alpha(P||Q) = 2^{D_\alpha(P||Q)} = \left[\sum_x \frac{P^\alpha(x)}{Q^{\alpha-1}(x)} \right]^{\frac{1}{\alpha-1}}$$

- Metric of info lost when Q is used to approximate P
- $D_\alpha(P||Q) = 0$ iff $P = Q$

PRELIMINARIES: IMPORTANCE WEIGHTS

Lemma 1:

$$\mathbb{E}[w] = 1 \quad \mathbb{E}[w^2] = d_2(P||Q) \quad \sigma^2 = d_2(P||Q) - 1$$

Proof:

$$\mathbb{E}_Q[w^2] = \sum_{x \in X} w^2(x)Q(x) = \sum_{x \in X} \left(\frac{P(x)}{Q(x)} \right)^2 Q(x) = d_2(P||Q)$$

Lemma 2: For all $\alpha > 0$ and $x \in X$,

$$\mathbb{E}_Q[w^2(x)L_h^2(x)] \leq d_{\alpha+1}(P||Q)R(h)^{1-\frac{1}{\alpha}}$$

PRELIMINARIES: IMPORTANCE WEIGHTS

Hölder's Inequality (Jin, Wilson, and Nobel, 2014): Let $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_x |a_x b_x| \leq \left(\sum_x |a_x|^p \right)^{\frac{1}{p}} \left(\sum_x |b_x|^q \right)^{\frac{1}{q}}$$

PRELIMINARIES: IMPORTANCE WEIGHTS

Proof for Lemma 2: Let the loss be bounded by $B = 1$, then

$$\begin{aligned} E_{x \sim Q}[w^2(x)L_h^2(x)] &= \sum_x Q(x) \left[\frac{P(x)}{Q(x)} \right]^2 L_h^2(x) = \sum_x P(x)^{\frac{1}{\alpha}} \left[\frac{P(x)}{Q(x)} \right] P(x)^{\frac{\alpha-1}{\alpha}} L_h^2(x) \\ &\leq \left[\sum_x P(x) \left[\frac{P(x)}{Q(x)} \right]^\alpha \right]^{\frac{1}{\alpha}} \left[\sum_x P(x) L_h^{\frac{2\alpha}{\alpha-1}}(x) \right]^{\frac{\alpha-1}{\alpha}} \\ &= d_{\alpha+1}(P||Q) \left[\sum_x P(x) L_h(x) L_h^{\frac{\alpha+1}{\alpha-1}}(x) \right]^{\frac{\alpha-1}{\alpha}} \\ &\leq d_{\alpha+1}(P||Q) R(h)^{1-\frac{1}{\alpha}} B^{1+\frac{1}{\alpha}} = d_{\alpha+1}(P||Q) R(h)^{1-\frac{1}{\alpha}} \end{aligned}$$

LEARNING GUARANTEES: BOUNDED CASE

$\sup_x w(x) = \sup_x \frac{P(x)}{Q(x)} = d_\infty(P||Q) = M$. Let $d_\infty(P||Q) < +\infty$. Fix $h \in H$. Then, for any $\delta > 0$, with probability at least $1 - \delta$,

$$|R(h) - \hat{R}_w(h)| \leq M \sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$

- M can be very large, so we naturally want a more favorable bound...

OVERVIEW

- Preliminaries
- Learning guarantee when loss is bounded
- Learning guarantee when loss is unbounded, but second moment is bounded
- Algorithm

LEARNING GUARANTEES: BOUNDED CASE

Theorem 1: Fix $h \in H$. For any $\alpha \geq 1$, for any $\delta > 0$, with probability at least $1 - \delta$, the following bound holds:

$$R(h) \leq \hat{R}_w(h) + \frac{2M \log \frac{1}{\delta}}{3m} + \sqrt{\frac{2[d_{\alpha+1}(P||Q)R(h)^{1-\frac{1}{\alpha}} - R(h)^2] \log \frac{1}{\delta}}{m}}$$

LEARNING GUARANTEES: BOUNDED CASE

Bernstein's inequality (Bernstein 1946):

$$\Pr \left(\frac{1}{n} \sum_{i=1}^n x_i \geq \epsilon \right) \leq \exp \left(\frac{-n\epsilon^2}{2\sigma^2 + 2M\epsilon/3} \right)$$

when $|x_i| \leq M$.

LEARNING GUARANTEES: BOUNDED CASE

Proof of Theorem 1: Let Z be the random variable $w(x)L_h(x) - R(x)$. Then $|Z| \leq M$. Thus, by lemma 2, the variance of Z can be bounded in terms of $d_{\alpha+1}(P||Q)$:

$$\sigma^2(Z) = \mathbb{E}_Q[w^2(x)L_h(x)^2] - R(h)^2 \leq d_{\alpha+1}(P||Q)R(h)^{1-\frac{1}{\alpha}} - R(h)^2$$

$$\Pr[R(h) - \hat{R}_w(h) > \epsilon] \leq \exp\left(\frac{-m\epsilon^2/2}{\sigma^2(Z) + \epsilon M/3}\right).$$

LEARNING GUARANTEES: BOUNDED CASE

Thus, setting δ to match upper bound, then with probability at least $1 - \delta$

$$\begin{aligned} R(h) &\leq \hat{R}_w(h) + \frac{2M \log \frac{1}{\delta}}{3m} + \sqrt{\frac{M^2 \log^2 \frac{1}{\delta}}{9m^2} + \frac{2\sigma^2(Z) \log \frac{1}{\delta}}{m}} \\ &= \hat{R}_w(h) + \frac{2M \log \frac{1}{\delta}}{3m} + \sqrt{\frac{2\sigma^2(Z) \log \frac{1}{\delta}}{m}} \end{aligned}$$

LEARNING GUARANTEES: BOUNDED CASE

Theorem 2: Let H be a finite hypothesis set. Then for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for the importance weighting method:

$$R(h) \leq \hat{R}_w(h) + \frac{2M(\log|H| + \log \frac{1}{\delta})}{3m} + \sqrt{\frac{2d_2(P||Q)(\log|H| + \log \frac{1}{\delta})}{m}}$$

LEARNING GUARANTEES: BOUNDED CASE

Theorem 2 holds when $\alpha = 1$. Note that theorem 1 can be simplified in the case of $\alpha = 1$:

$$R(h) \leq \hat{R}_w(h) + \frac{2M \log \frac{1}{\delta}}{3m} + \sqrt{\frac{2d_2(P||Q) \log \frac{1}{\delta}}{m}}$$

Thus, theorem 2 follows by including the cardinality of H

LEARNING GUARANTEES: BOUNDED CASE

Proposition 2: Lower bound. Assume $M < \infty$ and $\sigma^2(w)/M^2 \geq 1/m$. Assume there exists $h_0 \in H$ such that $L_{h_0}(x) = 1$ for all x . There exists an absolute constant c , $c = 2/41^2$, such that

$$\Pr \left[\sup_{h \in H} |R(h) - \hat{R}_w(h)| \geq \sqrt{\frac{d_2(P||Q) - 1}{4m}} \right] \geq c > 0$$

Proof from theorem 9 of Cortes, Mansour, and Mohri, 2010.

OVERVIEW

- Preliminaries
- Learning guarantee when loss is bounded
- Learning guarantee when loss is unbounded, but second moment is bounded
- Algorithm

LEARNING GUARANTEES: UNBOUNDED CASE

$d_\infty(P||Q) < \infty$ does not always hold... Assume P and Q follow a Gaussian distribution with σ_P and σ_Q with means μ and μ'

$$\frac{P(x)}{Q(x)} = \frac{\sigma_P}{\sigma_Q} \exp \left[- \frac{\sigma_Q^2(x - \mu)^2 - \sigma_P^2(x - \mu')^2}{2\sigma_P^2\sigma_Q^2} \right]$$

Thus, even if $\sigma_P = \sigma_Q$ and $\mu \neq \mu'$, $d_\infty(P||Q) = \sup_x \frac{P(x)}{Q(x)} = \infty$, thus Theorem 1 is not informative.

LEARNING GUARANTEES: UNBOUNDED CASE

However, the variance of the importance weights is bounded.

$$d_w(P||Q) = \frac{\sigma_Q}{\sigma_P^2 \sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp \left[-\frac{2\sigma_Q^2(x - \mu)^2 - \sigma_P^2(x - \mu')^2}{2\sigma_P^2} \sigma_Q^2 \right] dx$$

LEARNING GUARANTEES: UNBOUNDED CASE

Intuition: if $\mu = \mu'$ and $\sigma_P \gg \sigma_Q$

- Q provides some useful information about P
- But sample from Q only has few points far from μ
- A few extreme sample points would have large weights

Likewise, if $\sigma_P = \sigma_Q$ but $\mu \gg \mu'$, weights would be negligible.

LEARNING GUARANTEES: UNBOUNDED CASE

Theorem 3: Let H be a hypothesis set such that

$\text{Pdim}(\{L_h(x) : H \in H\}) = p < \infty$. Assume that $d_2(P||Q) < +\infty$ and $w(x) \neq 0$ for all x . Then for $\delta > 0$, with probability at least $1 - \delta$, the following holds:

$$R(h) \leq \hat{R}_w(h) + 2^{5/4} \sqrt{d_2(P||Q)} \sqrt[3]{\frac{p \log \frac{2me}{p} + \log \frac{4}{\delta}}{m}}$$

LEARNING GUARANTEES: UNBOUNDED CASE

Proof outline (full proof in of Cortes, Mansour, Mohri, 2010):

- $\Pr \left[\sup_{h \in H} \frac{E[L_h] - \hat{E}[L_h]}{\sqrt{\hat{E}[L_h^2]}} > \epsilon \sqrt{2 + \log \frac{1}{\epsilon}} \right] \leq$
- $\Pr \left[\sup_{h \in H, t \in \Re} \frac{\hat{Pr}[L_h > t] - \Pr[L_h > t]}{\sqrt{\hat{Pr}[L_h > t]}} > \epsilon \right]$
- $\Pr \left[\sup_{h \in H} \frac{R(h) - \hat{R}(h)}{\sqrt{R(h)}} > \epsilon \sqrt{2 + \log \frac{1}{\epsilon}} \right] \leq 4\Pi_H(2m) \exp \left(- \frac{m\epsilon^2}{4} \right)$
- $\Pr \left[\sup_{h \in H} \frac{E[L_h(x)] - \hat{E}[L_h(x)]}{\sqrt{E[L_h^2(x)]}} > \epsilon \sqrt{2 + \log \frac{1}{\epsilon}} \right] \leq$
 $4 \exp \left(p \log \frac{2em}{p} - \frac{m\epsilon^2}{4} \right)$
- $\Pr \left[\sup_{h \in H} \frac{E[L_h(x)] - \hat{E}[L_h(x)]}{\sqrt{E[L_h^2(x)]}} > \epsilon \right] \leq 4 \exp \left(p \log \frac{2em}{p} - \frac{m\epsilon^{8/3}}{4^{5/3}} \right)$
- $|E[L_h(x)] - \hat{E}[L_h(x)]| \leq$
 $2^{5/4} \max \{ \sqrt{E[L_h^2(x)]}, \sqrt{\hat{E}[L_h^2(x)]} \} \sqrt[3]{\frac{p \log \frac{2me}{p} + \log \frac{8}{\delta}}{m}}$

LEARNING GUARANTEES: UNBOUNDED CASE

Thus, we can show the following:

$$\Pr \left[\sup_{h \in H} \frac{R(h) - \hat{R}_w(h)}{\sqrt{d_2(P||Q)}} > \epsilon \right] \leq 4 \exp \left(p \log \frac{2em}{p} - \frac{m\epsilon^{8/3}}{4^{5/3}} \right).$$

Where $p = \text{Pdim}(\{L_h(x) : h \in H\})$ is the pseudo-dimension of $H'' = \{w(x)L_h(x) : h \in H\}$. Note, any set shattered by H' is shattered by H'' , since there exists a subset B of a set A that is shattered by H'' , such that H' shatters A with witnesses $s_i = r_i/w(x_i)$.

OVERVIEW

- Preliminaries
- Learning guarantee when loss is bounded
- Learning guarantee when loss is unbounded, but second moment is bounded
- Algorithm

ALTERNATIVE ALGORITHMS

We can generalize this analysis to an arbitrary function

$u : X \mapsto R, u > 0$. Let $\hat{R}_u(h) = \frac{1}{m} \sum_{i=1}^m u(x_i) L_h(x_i)$ and let \hat{Q} be the empirical distribution: Theorem 4: Let H be a hypothesis set such that $\text{Pdim}(\{L_h(x) : h \in H\}) = p < \infty$. Assume that

$0 < E_Q[u^2(x)] < +\infty$ and $u(x) \neq 0$ for all x . Then for any $\delta > 0$ with probability at least $1 - \delta$,

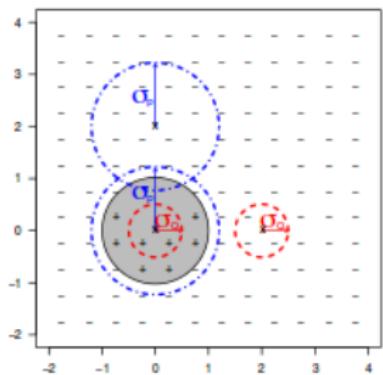
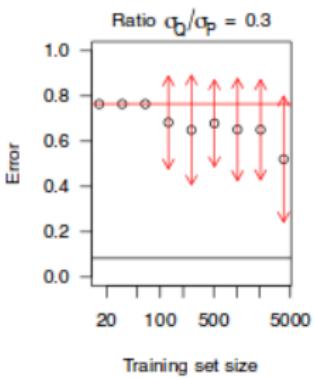
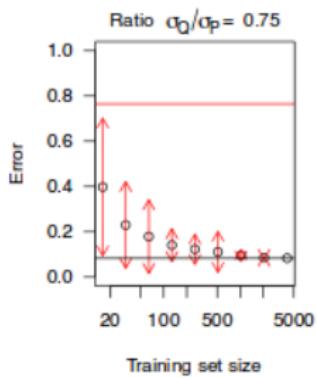
$$|R(h) - \hat{R}_u(h)| \leq |E_Q[(w(x) - u(x)) L_h(x)]|$$

$$+ 2^{5/4} \max \left(\sqrt{E_Q[u^2(x) L_h^2(x)]}, \sqrt{E_{\hat{Q}}[u^2(x) L_h^2(x)]} \right) \sqrt[3]{\frac{p \log \frac{2me}{p} + \log \frac{4}{\delta}}{m}}$$

ALTERNATIVE ALGORITHMS

- Other functions u than w can be used to reweight cost of error
- Minimize upper bound
- $\max \left(\sqrt{E_Q[u^2]}, \sqrt{E_{\hat{Q}}[u^2]} \right) \leq \sqrt{E_Q[u^2]}(1 + O(1/\sqrt{m}))$,
- $\min_{u \in U} E \left[|w(x) - u(x)| \right] + \gamma \sqrt{E_Q[u^2]}$
- Trade-off between bias and variance minimization.

ALTERNATIVE ALGORITHMS



ALTERNATIVE ALGORITHMS

