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INTRODUCTION

- Often, training distribution does not match testing distribution
- Want to utilize information about test distribution

- Correct bias or discrepancy between training and testing
distributions



IMPORTANCE WEIGHTING

- Labeled training data from source distribution Q

- Unlabeled test data from target distribution P

- Weight the cost of errors on training instances.

- Common definition of weight for point x: w(x) = P(x)/Q(x)



IMPORTANCE WEIGHTING

- Reasonable method, but sometimes doesn't work
- Can we give generalization bounds for this method?
- When does DA work? When does it not work?

- How should we weight the costs?



OVERVIEW

- Preliminaries
- Learning guarantee when loss is bounded

- Learning guarantee when loss is unbounded, but second moment
is bounded

- Algorithm



PRELIMINARIES: RENYI DIVERGENCE

For a > 0, D,(P||Q) between distributions P and Q

Du(P||Q) = logZZP ( g)m

x)ﬁ
)

o) =200~ | 52 0

- Metric of info lost when Q is used to approximate P
D.(P|lQ)=0iff P=Q



PRELIMINARIES: IMPORTANCE WEIGHTS

Lemma 1:

E[w] =1 E[Wz] = d,(P||Q) ol = d2(P]|Q) =1

Proof:

2
Bolw] = YW (9 = () Q) = do(P|[Q)

XEX xXeX
Lemma 2: Forall « > 0 and x € X,

Eq[W (x)L;(x)] < das1(PIIQR(N)' ™=



PRELIMINARIES: IMPORTANCE WEIGHTS

Holder's Inequality (Jin, Wilson, and Nobel, 2014): Let % + % =1, then

1

Slobd < (Slo)’ (Z w);
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PRELIMINARIES: IMPORTANCE WEIGHTS

Proof for Lemma 2: Let the loss be bounded by B =1, then
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Ea (0] = 3 Q(0) [gg; 20) = 3P+ ggg} P() = 13(x)
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LEARNING GUARANTEES: BOUNDED CASE

sup, w(x) = supx% = dwo(P||Q) = M. Let doo(P]|Q) < 4o0. Fix h € H.

Then, for any § > 0, with probability at least 1 -4,

R log3
_ < 7
R(N) — Ru(h)] < My

- M can be very large, so we naturally want a more favorable bound...



OVERVIEW

- Preliminaries
- Learning guarantee when loss is bounded

- Learning guarantee when loss is unbounded, but second moment
is bounded

- Algorithm



LEARNING GUARANTEES: BOUNDED CASE

Theorem 1: Fix h € H. For any o > 1, for any § > 0, with probability at
least 1— 4, the following bound holds:

R(h) < Ru(h) +

2Mlog  [2[das(PlIQ)R(N)'~% — R(h)?] log }
3m * m
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LEARNING GUARANTEES: BOUNDED CASE

Bernstein’s inequality (Bernstein 1946):

1 < —ne?
_ > < -
wo(7 3202 ) <o (23 5er)

when |x;| < M.



LEARNING GUARANTEES: BOUNDED CASE

Proof of Theorem 1: Let Z be the random variable w(x)L,(x) — R(x).
Then |Z] < M. Thus, by lemma 2, the variance of Z can be bounded in
terms of d,+1(P||Q):

0%(2) = Eolw’(x)Ly (x)*)] = R(h)* < dasa(PIIQ)R(N)'™= — R(h)’

PriR(h) — Ru(h) > €] < exp (az(_zglzij/;/g)



LEARNING GUARANTEES: BOUNDED CASE

Thus, setting § to match upper bound, then with probability at least
1—6

2Mlog 3 N M2 log® 1 N 202(Z) log
Im? m
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LEARNING GUARANTEES: BOUNDED CASE

Theorem 2: Let H be a finite hypothesis set. Then for any § > 0, with
probability at least 1 — 4, the following holds for the importance
weighting method:

2M(log|H| + log) \/Zdz(P|O)(log IH| = log }

R(h) < Ru(h) + T -



LEARNING GUARANTEES: BOUNDED CASE

Theorem 2 holds when o« = 1. Note that theorem 1 can be simplified
in the case of a = 1:

N 2Mlog § N 2d,(P||Q) log 1

R(R) < Rulh) + =5 =

Thus, theorem 2 follows by including the cardinality of H
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LEARNING GUARANTEES: BOUNDED CASE

Proposition 2: Lower bound. Assume M < oo and o?(w)/M? > 1/m.
Assume there exists hy € H such that Ly, (x) = 1 for all x. There exists
an absolute constant ¢, ¢ = 2/41?, such that

dy(P[|Q) — 1

>c>0
4m }

Pr | sup |R(h) = Ru(h)] >
heH

Proof from theorem 9 of Cortes, Mansour, and Mohri, 2010.
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LEARNING GUARANTEES: UNBOUNDED CASE

de(P]|Q) < oo does not always hold... Assume P and Q follow a
Guassian distribution with op and oq with means p and p/

P(x) _ op og(x — )’ — op(x — p')?

Q(x) oq 2040}

Thus, even if op = 0q and p # 1/, doo(P||Q) = sup, % = oo, thus
Theorem 1is not informative.
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LEARNING GUARANTEES: UNBOUNDED CASE

However, the variance of the importance weights is bounded.

[ | 2RO U IY g

ZUP

dw(Pl|Q) =

\/E
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LEARNING GUARANTEES: UNBOUNDED CASE

Intuition: if p = u’ and op >> oq

- Q provides some useful information about P
- But sample from Q only has few points far from g

- A few extreme sample points would have large weights

Likewise, if op = oq but p >> u/, weights would be negligible.
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LEARNING GUARANTEES: UNBOUNDED CASE

Theorem 3: Let H be a hypothesis set such that

Pdim({Ls(x) : H € H}) = p < c0. Assume that d,(P||Q) < 40 and
w(x) # 0 for all x. Then for § > 0, with probability at least 1 — 4, the
following holds:

. 3/ plog22€ + log 3
R(h) < Ru(h) +2°/*/dy(PI|Q) i/pg"mg‘s
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LEARNING GUARANTEES: UNBOUNDED CASE

Proof outline (full proof in of Cortes, Mansour, Mohri, 2010):

VEIL]
PrlL—h>t]—Pr[L,>1]

Pr _SupheH,teéﬁ \/m

-~ Pr|suppey R(f}%h) > €4/2 + log l} < 4My(2m) exp ( = mTez)

. E[Lh()]=E[Ly ()] 1
Pr_supheH JEC0] > € 2+log6}§

Lexp <p logze—’” = :)

[ /3
Pr{ SUPyey ELOILR0 e} < 4exp (p log 287 — e )
* [E[Lh(0)] = E[La(x)]] <

2me
25/4 max{\/E[L2 \/E[Lz ]} p log <7 +log plog Z=+log 5 N

- Pr SUpheH E[Lh] E[Lh] > € 2+logli| é




LEARNING GUARANTEES: UNBOUNDED CASE

Thus, we can show the following:

Pr[sup R(h) — Ru(h)

2em m68/3>
het +/d2(P]|Q)

Where p = Pdim({L,(x) : h € H} is the pseudo-dimension of

H” = {w(x)Ln(x) : h € H}. Note, any set shattered by H’ is shattered
by H”, since there exists a subset B of a set A that is shattered by H”,
such that H" shatters A with witnesses s; = r;/w(x;).
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ALTERNATIVE ALGORITHMS

We can generalize this analysis to an arbitrary function

Ui X R,u>0. LetRy(h) = L 2 u(x;)Ln(x;) and let Q be the
empirical distribution: Theorem 4: Let H be a hypothesis set such
that Pdim({Ly(x) : h € H}) = p < co. Assume that

0 < Eq[u?(X)] < +o0 and u(x) # 0 for all x. Then for any § > 0 with
probability at least 1— 4,

IR(h) = Ru(h) < |Ea[[W(x) = u()ILa(x)]|

1954 max (\/ Eq[u?(X)L3 (X)], \/ E@[uz(x)L,%(X)]) i/ plog = +log 5

m
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ALTERNATIVE ALGORITHMS

- Other functions u than w can be used to reweight cost of error
- Minimize upper bound

- max (BT, \/Bolu]) < VESIFI(1+ 0(1/v),
. mmueUEDWx u(x }+7\/Eo[u2

- Trade-off between bias and variance minimization.

27



ALTERNATIVE ALGORITHMS
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ALTERNATIVE ALGORITHMS

Unweighted, Rafio 04/t = 0.75  Importance, Ratio 0x/05= 0.75 Quanile, Rafio &/th= 0.75 Cappad 1%, Ratio 0/, = 0.75
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