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Review of (Online) Convex Optimization

Set-up
1 Sequence of convex functions {ct}∞t=1 : S → R over convex

set S.
2 Learner chooses point xt ∈ S and receives ct(xt)
3 Goal: minimize regret

∑n
t=1 ct(xt)−minx∈S

∑n
t=1 ct(x)

4 Update rule: xt+1 = xt − η∇ct(xt).
Scenarios:

1 Offline: ct ≡ c fixed function
2 Online Stochastic: ct(x) = c(x) + εt(x) noisy estimate
3 Online Adversarial: ct chosen adversarially
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Review of (Online) Convex Optimization

Set-up
1 Sequence of convex functions {ct}∞t=1 : S → R over convex

set S.
2 Learner chooses point xt ∈ S and receives ct(xt)
3 Goal: minimize regret

∑n
t=1 ct(xt)−minx∈S

∑n
t=1 ct(x)

4 Update rule: xt+1 = xt − η∇ct(xt).
Scenarios:

1 Offline: ct ≡ c fixed function
2 Online Stochastic: ct(x) = c(x) + εt(x) noisy estimate
3 Online Adversarial: ct chosen adversarially

Key Information: knowledge of gradients!
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Bandit Setting

Bandit Scenario: Set-up
1 Sequence of convex functions {ct}∞t=1 : S → R over convex

set S.
2 Learner chooses point xt ∈ S and receives value ct(xt)
3 Goal: minimize regret

∑n
t=1 ct(xt)−minx∈S

∑n
t=1 ct(x)

Question: can we perform gradient descent without gradients?
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Estimating Gradients - Multi-point

Multi-point −→ use finite differences!

1 one dim: f ′(x) ≈ 1
h(f(x+ h)− f(x))

2 d dim:
∇f(x) ≈ 1

h ((f(x+ he1)− f(x)), . . . , (f(x+ hed)− f(x)))

Theorem (Agarwal et al, 2010)

Querying d+ 1 points is enough to recover standard OCO
bounds, and even querying 2 points will get you to within log(T )
terms.
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Estimating Gradients - One-point

One-point −→ f(x) ≈ 1
vol(δB1)

∫
δB1

f(x+ v)dv

one dim:
1 f(x) ≈ 1

2δ

∫ δ
−δ f(x+ v)dv

2 f ′(x) ≈ 1
2δ

∫ δ
−δ f

′(x+ v)dv = 1
2δ (f(x+ δ)− f(x− δ))

d dim:

1 f(x) ≈
R
δB1

f(x+v)dv

vol(δB1) = Ev∈B1 [f(x+ δv)] =: f̂(x)
2

∇f(x) ≈ ∇f̂(x) =

∫
δB1
∇f(x+ v)dv

vol(δB1)
=

∫
∂(δB1) f(x+ u) u

|u|du

vol(δB1)

=
Eu∈∂B1 [f(x+ δu)u]vol(∂(δB1))

vol(δB1)
= E

u∈∂B1

[f(x+ δu)u]
d

δ
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Algorithm

∇f(x) ≈ ∇f̂(x) =
d

δ
E

u∈∂B1

[f(x+ δu)u] where u ∼ U(∂B1)

Algorithm [Bandit Gradient Descent - Flaxman et al, 2004]:
1 Draw ut ∼ U(∂B1)
2 Play xt = yt + δut and receive value ct(xt)
3 Update: yt+1 = PS(yt − νct(xt)ut)
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Algorithm

Algorithm [Bandit Gradient Descent - Flaxman et al, 2004]:
1 Draw ut ∼ U(∂B1)
2 Play xt = yt + δut and receive value ct(xt)
3 Update: yt+1 = PS(yt − νct(xt)ut)

Subtle issue: yt + δut might fall out of S, so use P(1−α)S for
α ∈ (0, 1) instead

New Update: yt+1 = P(1−α)S(yt − νct(xt)ut)
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Review of OCO Results

Theorem (Zinkevich 2003)

Let S ⊂ BR, {ct} : S → R seq of convex functions,
G = supt ‖∇ct(xt)‖, and xt+1 = PS(xt − η∇ct(xt)). Then

n∑
t=1

ct(xt)−min
x∈S

n∑
t=1

ct(x) ≤ R2

η
+ n

ηG2

2

Lemma (Randomized Zinkevich)

Let S ⊂ BR, {ct} : S → R seq of convex functions, {gt} s.t.
E[gt|xt] = ∇ct(xt), G = supt ‖gt‖, and xt+1 = PS(xt − ηgt).
Then

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ R2

η
+ n

ηG2

2
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Bandit OCO

Algorithm [Bandit Gradient Descent - Flaxman et al, 2004]:
1 Draw ut ∼ U(∂B1)
2 Play xt = yt + δut and receive value ct(xt)
3 Update: yt+1 = P(1−α)S(yt − νct(xt)ut)

Theorem (Flaxman et al 2004)

Assume that Br ⊂ S ⊂ BR and that |ct| ≤ C uniformly. Then
for sufficiently large n and suitable choices of ν, δ, and α, we
have

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ 3Cn5/6

(
dR

r

)1/3
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Extending Randomized Zinkevich

Need to show:
1 BGD’s updates valid for randomized Zinkevich.

1 xt ∈ S for chosen α and δ.
2 gt = d

δ ct(xt)ut are valid
2 Upper bounds on G for randomized Zinkevich.
3 Bound for ĉt can be extended to ct.
4 Bound for (1− α)S can be extended to S.
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BGD’s Updates Valid for Randomized Zinkevich

1 xt ∈ S for chosen α and δ.

δ ≤ αr ⇒ xt = yt + δut ∈ S
2 gt = d

δ ct(xt)ut are valid

E[gt|yt] = d
δ Eu∈∂B1 [ct(yt + δu)u] = ∇Ev∈B1 [ct(yt + δv)]
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Upper Bounds on G for Zinkevich’s Theorem

Fact: ‖gt‖ = ‖dδ ct(xt)ut‖ ≤
dC
δ

Thus, for

α ∈ (0, 1), δ ≤ αr, η = ν
δ

d
, G =

dC

δ
,

randomized Zinkevich implies that

E[
n∑
t=1

ĉt(yt)]− min
x∈(1−α)S

n∑
t=1

ĉt(x) ≤ R2

η
+ n

ηG2

2

= RG
√
n = R

dC

δ

√
n

for η =
R

G

√
n
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Extending from ĉt to ct

Lemma

|ct(y)− ct(x)| ≤ 2C
αr
|x− y|, ∀y ∈ (1− α)S, x ∈ S

|ĉt(yt)− ct(yt)| ≤ δ
2C
αr

, |ĉt(yt)− ct(xt)| ≤ 2δ
2C
αr

The previous regret bound implies

E[
n∑
t=1

ct(xt)− 2δ
2C
αr

]− min
x∈(1−α)S

n∑
t=1

ct(x) + δ
2C
αr
≤ RdC

√
n

δ

or

E[
n∑
t=1

ct(xt)]− min
x∈(1−α)S

n∑
t=1

ct(x) ≤ RdC
√
n

δ
+ 3δ

2C
αr

Nadejda Drenska and Scott Yang Bandit Online Convex Optimization



Extending from (1− α)S to S

Lemma

min
x∈(1−α)S

n∑
t=1

ct(x) ≤ min
x∈S

n∑
t=1

ct(x) + 2αCn

Thus,

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ RdC
√
n

δ
+ 3δ

2C
αr

+ 2αCn
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Recap

1) E[
n∑
t=1

ĉt(yt)]− min
x∈(1−α)S

n∑
t=1

ĉt(x) ≤ RdC
δ

√
n

(optimal η, and δ ≤ αr, α < 1, Br ⊂ S, |ct| ≤ C)

2) E[
n∑
t=1

ct(xt)]− min
x∈(1−α)S

n∑
t=1

ct(x) ≤ RdC
√
n

δ
+ 3δ

2C
αr

(Lip across (1− α)S and S, Br ⊂ S, |ct| ≤ C)

3) E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ RdC
√
n

δ
+ 3δ

2C
αr

+ 2αCn

(min’s are close, Br ⊂ S, |ct| ≤ C)
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Remarks

1 Optimize over δ and α to get the theorem:

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ 3Cn5/6

(
dR

r

)1/3

2 If Lip(ct) ≤ L known, then get O(n3/4) bound.
3 Preconditioning ⇒ can improve ratio R

r
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Theorem for L-Lipschitz Cost Functions

Theorem (Flaxman et al 2004 for L-Lipschitz cost functions)

If each ct is L-Lipschitz, then for n sufficiently large and
ν = R

C
√
n

, δ = n−.25
√

RdCr
3(Lr+C) , and α = δ

r , we have

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ 2n3/4

√
3RdC(L+

C

r
)

.

Nadejda Drenska and Scott Yang Bandit Online Convex Optimization



Reshaping

Reshaping increases the accuracy of gradient descent!
Above regret bound depends on R/r - can be very large.
Idea: reshape the body to make it more ’round’ - put it in
isotropic position:

This amounts to finding an affine transformation T .

Nadejda Drenska and Scott Yang Bandit Online Convex Optimization



Isotropic Position and Algorithm

Isotropic position:
1 Estimate covariance of random samples from S (estimating
r and R in Br ⊆ S ⊆ BR).

2 Find an affine transformation T so that the new covariance
matrix is the identity matrix.

3 Apply T to S ⊆ Rd so B1 ⊆ T (S) ⊆ Bd.
4 Then R′ = d and r′ = 1.

Algorithm [Lovasz and Vempala, 2003]
- runs in time O(d4)poly-log(d,R/r) and
- puts the body in a nearly isotropic position: R′ = 1.01d and
r′ = 1.
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Reshaping Properties

Lemma (New Lip constant L′ = LR)

Let c′t(u) = ct(T−1(u)). Then c′t is LR-Lipschitz.

Proof outline:
Let x1, x2 ∈ S and u1 = T (x1), u2 = T (x2). Then,

|c′t(u1)− c′t(u2)| = |ct(x1)− ct(x2)| ≤ L||x1 − x2||

Using that T is affine hence bounded, prove by contradiction
that ||x1 − x2|| ≤ R||u1 − u2||, thus the LR-Lipschitz condition
on c′t.
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Reshaping and the BGD Algorithm

Corollary (Reshaping)

For a set S of diameter D, and ct L-Lipschitz, after putting S
into near-isotropic position, the BGD algorithm has expected
regret

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ 6n3/4d(
√
CLR+ C)

Without the L-Lipschitz condition

E[
n∑
t=1

ct(xt)]−min
x∈S

n∑
t=1

ct(x) ≤ 6n5/6dC

Proof.
Use r′ = 1, R′ = 1.01d, L′ = LR, and C ′ = C.
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Oblivious Adversary

So far, we have analyzed the algorithm in the case of an
oblivious adversary who:

1 fixes the sequence of functions c1, c2, ...
2 knows the decision maker’s algorithm
3 doesn’t have knowledge of the random decisions of the

algorithm
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Adaptive Adversary

Consider an adaptive adversary who plays a game with the
decision maker:

1 decision maker knows
x1, c1(x1), x2, c2(x2), ..., xt−1, ct−1(xt−1)

2 decision maker chooses xt
3 adaptive adversary knows x1, c1, x2, c2, ..., xt−1, ct−1

4 adaptive adversary chooses ct

Main takeaway: theorems against an oblivious adversary all
hold against an adaptive adversary, up to changes of
multiplicative constant by a factor of at most 3.
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Adaptive Adversary - Regret

Fact: The bounds relating costs ct(xt), ct(yt), ĉt(yt) were all
worst case bounds, i.e. they hold for arbitrary ct, regardless of
whether the ct are adaptively chosen or not. Thus it suffices to
bound the regret:

E[
n∑
t=1

ĉt(yt)−min
y∈S

n∑
t=1

ĉt(y)]

Idea: Need to show that the adversary’s extra knowledge of
{xk}tk=1 cannot help to maximize the above regret.
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Extending Randomized Zinkevich for an Adaptive
Adversary

Need to show:
1 BGD’s updates valid for randomized Zinkevich - next slides

1 xt ∈ S for chosen α and δ.
2 gt = d

δ ct(xt)ut are valid
2 Upper bounds on G for randomized Zinkevich. (from

before)
3 Bound for ĉt can be extended to ct (from before)
4 Bound for (1− α)S can be extended to S - (from before)
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Lemma - BGD Updates for an Adaptive Adversary

Lemma (BGD updates for adaptive costs)

Let S ⊂ BR, {ct} : S → R seq of convex differentiable
functions,(ct+1 possibly depending on z1, z2, ..., zt), where
z1, z2, ..., zt ∈ S are defined by zt+1 = PS(zt − ηgt). Here {gt}
are vector-valued random variables s.t.
E[gt|z1, c1, z2, c2, ..., zt, ct] = ∇ct(zt), G = supt ‖gt‖.
Then, for η = R

G
√
n

E[
n∑
t=1

ct(zt)−min
x∈S

n∑
t=1

ct(x)] ≤ 3(
R2

η
+ n

ηG2

2
) = 3RG

√
n
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Proof of Adaptive Adversary Lemma

Proof:
Let ht(x) := ct(x) + xξt, where ξt = gt −∇ct(zt). Observe that

∇ht(zt) = ∇ct(zt) + ξt = gt

and
||ξt|| ≤ ||gt||+ ||∇ct(zt)|| ≤ 2G. By Zinkevich’s theorem, applied to ht
- which are deterministic at this point of the game

n∑
t=1

ht(zt) ≤ min
x∈S

n∑
t=1

ht(x) +RG
√
n

Since
E[ht(zt)] = E[ct(zt)] + E[ξt.zt] = E[ct(zt)],

it suffices to show that

E[min
x∈S

n∑
t=1

ht(x)] ≤ E[min
x∈S

n∑
t=1

ct(x)] + 2RG
√
n
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Proof of Adaptive Adversary Lemma - part 2

Proof continued:
Left to show:

E[min
x∈S

n∑
t=1

ht(x)] ≤ E[min
x∈S

n∑
t=1

ct(x)] + 2RG
√
n

By Cauchy Schwartz
|
∑n
t=1(ht(x)− ct(x))| = |x

∑
ξt| ≤ ||x|| · ||

∑
ξt|| ≤ R||

∑
ξt||.

This is in particular true for the minimal x. We take the expectation
and bound the sum by using properties of i.i.d. vectors (recall:
||ξt|| ≤ 2G):

(E[||
∑

ξt||])2 ≤ E[||
∑

ξt||2] =
∑

E[||ξt||2]+2
∑

1≤s<t≤n

E[ξs.ξt] ≤ 4nG2

.

Nadejda Drenska and Scott Yang Bandit Online Convex Optimization



Summary

The paper extends Zinkevich’s gradient descent idea to a
problem in which one doesn’t have access to the gradient.

Instead, the gradient of a function is approximated from a
single sample.

Interpretation: approximation at each step is the gradient of
a smoothed out version of the function at that step.

Analysis applies to both oblivious and adaptive adversaries
(bounds change by a factor of 3).

Preconditioning (‘reshaping’) improves bounds significantly.
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Possible Extensions

Extension of BGD to Zinkevich’s model in the case of adaptive
step size.

Extension of BGD to Zinkevich’s model in the case of a
non-stationary adversary, i.e. when regret is of the form:

n∑
t=1

ct(xt)− min
w1,w2,...,wn∈S

n∑
t=1

ct(wt)

Potential extension to minimizing any (convex?) function over a
convex set by updates

yt+1 := yt − ν(ct(xt)− ct−1(xt−1))ut,

even if we don’t know the uniform bound on ct.
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Thank you

Thank you!
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