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@ OCO vs Bandit OCO

@ Gradient Estimates

@ Oblivious Adversary

@ Reshaping for Improved Rates
@ Adaptive Adversary

O Concluding Remarks
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w of (Online) Convex Optimization

Set-up
@ Sequence of convex functions {¢;}§2; : S — R over convex
set S.
@ Learner chooses point x; € S and receives c¢;(x)
@ Goal: minimize regret ;' | ¢;(x¢) — mingeg » ;- ()
@ Update rule: z441 = 2y — nVe(zy).
Scenarios:
@ Offline: ¢; = ¢ fixed function
@ Online Stochastic: ¢;(z) = ¢(x) + €(z) noisy estimate

@ Online Adversarial: ¢; chosen adversarially
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w of (Online) Convex Optimization

Set-up
@ Sequence of convex functions {¢;}§2; : S — R over convex
set S.
@ Learner chooses point x; € S and receives ¢ ()
@ Goal: minimize regret > ;' | ¢;(x¢) — mingeg Y ;- ()
© Update rule: z441 = x — nVe(zy).
Scenarios:
@ Offline: ¢; = ¢ fixed function
@ Online Stochastic: ¢;(x) = ¢(x) 4 €(x) noisy estimate

@ Online Adversarial: ¢; chosen adversarially

Key Information: knowledge of gradients!
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Bandit Setting

Bandit Scenario: Set-up
@ Sequence of convex functions {¢;}52, : S — R over convex
set S.

@ Learner chooses point x; € S and receives value ci(x¢)

@ Goal: minimize regret >} | ¢;(x) — mingeg Y ;- ()

Question: can we perform gradient descent without gradients?
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Estimating Gradients - Multi-point

Multi-point — use finite differences!
Q@ one dim: f/(z) =~ %(f(x +h) — f(x))
Q d dim:
V(@) =5 (f(z+her) = f(2)),..., (f(z + heq) — f(x)))

Theorem (Agarwal et al, 2010)

Querying d + 1 points is enough to recover standard OCO
bounds, and even querying 2 points will get you to within log(T")
terms.
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Estimating Gradients - One-point

One-point — f(z) ~ m Jsp, [z +v)dv

one dim:
Q f(x)~ %fféf(x—i-v)dv
@ f/(z)~ & [*5 f/(x +v)dv = 55 (f(x + ) — f(z - 9))

d dim:
0 f(a) ~ Lo g (fw 4 60)] =: f(a)
2]
Jp, Vi@ +v)dv  foup, (@ +u)pdu
Vi@) ~ V@) = vol(dBy) N vol(dBy)
Eveon, [f(x + du)ulvol (0(6B1))

d
- vol(6B1) - ue]gB1 o+ 5u)u]g
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Algorithm

Vf(x)=Vf(z)= %luelg,B [f(z + du)u] where u ~ U(0B;)

Algorithm [Bandit Gradient Descent - Flaxman et al, 2004]:
@ Draw u; ~ U(0By)

@ Play z; = y; + duy and receive value ¢ ()

@ Update: yr1 = Ps(yr — vey(oe)ue)
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Algorithm

Algorithm [Bandit Gradient Descent - Flaxman et al, 2004]:
Q@ Draw u; ~ U(0By)
@ Play x; = y; + duy and receive value ¢ ()

@ Update: yi11 = Ps(yr — ved(xe)ug)

Subtle issue: y; + duy might fall out of S, so use P_q)g for
a € (0,1) instead

New Update: yir1 = P1_a)s(yr — ver(@)u)
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Review of OCO Results

Theorem (Zinkevich 2003)

Let S C Bpg, {ct} : S — R seq of convex functions,
G = sup, | Ve(xt)||, and i1 = Ps(ze — nVee(ze)). Then

n

Lemma (Randomized Zinkevich)

Let S C Bg, {ct} : S — R seq of convex functions, {g;} s.t

Elgi|ze] = Ver(xr), G = supy ||gell, and 411 = Ps(xs — nge).
Then

w 2 nGQ
E[; ce(zy)] mmZ c(z) < — 4+ n-
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Bandit OCO

Algorithm [Bandit Gradient Descent - Flaxman et al, 2004]:
@ Draw u; ~ U(0By)
@ Play z; = y; + duy and receive value c¢;(x¢)

@ Update: yiry1 = Pi—a)s(yt — ved(ze)u)

Theorem (Flaxman et al 2004)

Assume that B, C S C Bgr and that |¢;| < C uniformly. Then
for sufficiently large n and suitable choices of v, §, and o, we
have

" dR\ /3
E[Z ce(we)] manCt ) < 3Cn 58 ( )
t=1

r
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Extending Randomized Zinkevich

Need to show:
@ BGD’s updates valid for randomized Zinkevich.

@ x; € S for chosen « and §.
o g = %ct(xt)ut are valid

@ Upper bounds on G for randomized Zinkevich.
@ Bound for ¢ can be extended to ¢;.
© Bound for (1 — «)S can be extended to S.
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BGD’s Updates Valid for Randomized Zinkevich

Q@ z; € S for chosen o and §.
e d<ar=uxz=y+ous €S
Q gt = %Ct(a:t)ut are valid

o Elgtly] = $Bucon, [ct(ye + du)u] = VE,ep, [ci(ys + 6v)]
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Upper Bounds on G for Zinkevich’s Theorem

Fact: |g:]| = [|$ci(ze)us]| < 9
Thus, for
0 dC
0,1 6 < =v-, G=—
a € (0,1), Sar, n=vo, 5
randomized Zinkevich implies that
n n R2 77G2
E ¢ — i % < —+n—-
[; ()] xeg{%g;%@) = n 9
d
= RG+v/n = RTC\/E
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Extending from ¢; to ¢;

Lemma

2C
lee(y) —erl2)l < —lo—yl, Wye(l-a)Szes

2C

R 2C
|e(ye) — ee(ye)| < o—, ee(ye) — ce(ze)| < 255

The previous regret bound implies

n

E[th(xt)—%&]_ min > ae) + 520 RAC\/n

prt ar’ ze(l-a)s = 0
or
- " RdC\/n
E — mi =
N
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Extending from (1 — a)S to S

Lemma

- - RdC’f
Z c(ze)] mnSl Z; c(z) < 35— + 2aCn
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n n

DED  éw)] - min)SZét(:v) < R%\/ﬁ

t=1 ve(l-a)S

(optimal n, and § < ar, a <1, B, C S, |¢| < C)

DED c(z)]— min > afz) < Rdcf +362¢
1

1- ar
=1 z€(l—a)S P

(Lip across (1 —a)S and S, B, C S, |c:| < C)

BE )] — min D eifa) < LV
t=1 t=1

(min’s are close, B, C S, |¢| < C)

+ 35— +2aCn
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Remarks

@ Optimize over § and « to get the theorem:

n

n 1/3
E[Z ce(zy)] — miant(m) < 3Cn°/¢ <dR>

t=1 t=1

@ If Lip(c;) < L known, then get O(n**) bound.
R

© Preconditioning = can improve ratio *
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Theorem for L-Lipschitz Cost Functions

Theorem (Flaxman et al 2004 for L-Lipschitz cost functions)

If each ¢; is L-Lipschitz, then for n sufficiently large and

S=n" .25 RdCr é

Lri0) and o = -, we have

V_Cf7

n
th xt)) —manCt ) < 2n3/4y [3RAC(L + g)
t=1 "
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Reshaping

Reshaping increases the accuracy of gradient descent!
Above regret bound depends on R/r - can be very large.
Idea: reshape the body to make it more 'round’ - put it in
isotropic position:

This amounts to finding an affine transformation 7.
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Isotropic Position and Algorithm

Isotropic position:
@ Estimate covariance of random samples from S (estimating
rand Rin B, C S C Bpg).
@ Find an affine transformation 7" so that the new covariance
matrix is the identity matriz.
@ Apply T to S CR%so By C T(S) C By.
©@ Then ' =dand v’ = 1.
Algorithm [Lovasz and Vempala, 2003]
- runs in time O(d*)poly-log(d, R/r) and
- puts the body in a nearly isotropic position: R’ = 1.01d and
r'=1.
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Reshaping Properties

Lemma (New Lip constant

Let ¢,(u) = ¢,(T~Y(u)). Then ¢} is LR-Lipschitz.

Proof outline:
Let x1,29 € S and u; = T'(x1),us = T'(z2). Then,

|c;(u1) — ci(ug)| = |er(x1) — ce(w2)| < Ly — 2|

Using that T is affine hence bounded, prove by contradiction
that ||z1 — x2|| < R||u1 — uz||, thus the LR-Lipschitz condition
on ¢j. O
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Reshaping and the BGD Algorithm

Corollary (Reshaping)

For a set S of diameter D, and c¢; L-Lipschitz, after putting S
into mear-isotropic position, the BGD algorithm has expected
regret

zES

E[Z ce(z)] manct ) < 6n%/*d(VCLR + O)
t=1 t=1

Without the L-Lipschitz condition

E ) < 6n%/%dC
[Z ce(zy)] gleln Z ez n

Use r' =1,R' = 1.01d,L’' = LR, and C' = C. O
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Oblivious Adversary

So far, we have analyzed the algorithm in the case of an
oblivious adversary who:

@ fixes the sequence of functions c1, co, ...
© knows the decision maker’s algorithm

@ doesn’t have knowledge of the random decisions of the
algorithm
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Adaptive Adversary

Consider an adaptive adversary who plays a game with the
decision maker:

@ decision maker knows
x1, C1($1),1‘2702(9E2), ooy Lt—1, Ct—l(ﬂﬁt—l)
@ decision maker chooses x;
@ adaptive adversary knows x1, c1, 2, Co, ..., Tt_1, Ct—1

@ adaptive adversary chooses ¢;

Main takeaway: theorems against an oblivious adversary all
hold against an adaptive adversary, up to changes of
multiplicative constant by a factor of at most 3.
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Adaptive Adversary - Regret

Fact: The bounds relating costs ci(xy), ci(yt), é(ye) were all
worst case bounds, i.e. they hold for arbitrary c;, regardless of
whether the ¢; are adaptively chosen or not. Thus it suffices to
bound the regret:

n
E[Z ¢e(yt) mln Z ¢y
t=1

Idea: Need to show that the adversary’s extra knowledge of
{z}t_; cannot help to maximize the above regret.
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Extending Randomized Zinkevich for an Adaptive

Adversary

Need to show:
@ BGD’s updates valid for randomized Zinkevich - next slides

@ z: € S for chosen o and §.
9 g = %ct(xt)ut are valid

@ Upper bounds on G for randomized Zinkevich. (from
before)

@ Bound for ¢ can be extended to ¢; (from before)
© Bound for (1 — «)S can be extended to S - (from before)
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Lemma - BGD Updates for an Adaptive Adversary

Lemma (BGD updates for adaptive costs)

Let S C Bg, {ct} : S — R seq of convex differentiable
functions, (ci+1 possibly depending on z1, za, ..., 2 ), where
21,22, ..y 2t € S are defined by z41 = Ps(zt —ngt). Here {g:}
are vector-valued random variables s.t.

Elgt|z1, €1, 22, €2, ..y 2ty €] = Ver(ze), G = supy || ge]|-

Then, for n = Gﬁﬁ
n n R2 77G2

Nadejda Drenska and Scott Yang
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Proof of Adaptive Adversary Lemma

Let hi(x) := ci(x) + &, where & = g — Vei(z:). Observe that

Vhi(z) = Ve(ze) + & = g¢
and

& < llgell + [|Ver(2e)]| < 2G. By Zinkevich’s theorem, applied to hy
- which are deterministic at this point of the game

th 2t) <mmth )+ RGv/n

Since
E[hi(2t)] = Elee(2t)] + E[&t-2¢] = Elee(24)],

it suffices to show that

n
E[mi ] <E| 2
[ggrsl tz:; hi(z)] mln Z ct(7)] + 2RGV/n
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Proof of Adaptive Adversary Lemma - part 2

Proof continued:

Left to show:

n

<
glénght Elxneanct )] + 2RGv/n

By Cauchy Schwartz
| 3t (@) — er(@))] = |z 30 &) < [l - | &l < RII &l

This is in particular true for the minimal z. We take the expectation

and bound the sum by using properties of i.i.d. vectors (recall:
|I€el] < 2G):

E[l Y &N <EllY_&lP1=> Ell&l’l+2 > El&.&] < 4nG?

1<s<t<n

Ol
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The paper extends Zinkevich’s gradient descent idea to a
problem in which one doesn’t have access to the gradient.

Instead, the gradient of a function is approximated from a
single sample.

Interpretation: approximation at each step is the gradient of
a smoothed out version of the function at that step.

Analysis applies to both oblivious and adaptive adversaries
(bounds change by a factor of 3).

Preconditioning (‘reshaping’) improves bounds significantly.
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Possible Extensions

Extension of BGD to Zinkevich’s model in the case of adaptive
step size.

Extension of BGD to Zinkevich’s model in the case of a
non-stationary adversary, i.e. when regret is of the form:
n n

Z ci(zy) — min Z ce(wy)

1 W1 ,W2,..., W ES =1

Potential extension to minimizing any (convex?) function over a

convex set by updates

Yer1 =y — v(ci(we) — co—1(xe-1))us,

even if we don’t know the uniform bound on ¢;.
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Thank you

Thank you!
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