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A. RWM and FPL

Let RWM(β) denote the RWM algorithm described in class run with pa-
rameter β > 0. Consider the version of the FPL algorithm FPL(β) defined
using the perturbation:

p1 =
[

log(− log(u1))
β

, . . . ,
log(− log(uN ))

β

]>
.

where, for j ∈ [1, N ], uj is drawn from the uniform distribution over [0, 1].
At round t ∈ [1, T ], wt is found via wt = M(x1:t−1 + p1) = argminw∈W w ·
(x1:t−1 +p1) using the notation adopted in the class lecture for FPL, with W

the set of coordinate vectors. Show that FPL(β) coincides with RWM(β).

Solution: Let p1i = log(− log(ui))
β denote the i-th coordinate of vector p1. The

distribution of p1i is given by

Pr(p1i ≥ x) = Pr(ui ≤ e−e
βx

) = e−e
βx
,

where we used the fact that ui is a uniform random variable. Fix t and let
Li =

∑t−1
k=1 xik be the cumulative loss of coordinate i and L̃i = Li + p1i.

Since the set W consists of coordinate vectors , the minimization problem is
equivalent to finding i∗ such that i∗ = argmini L̃i. Let

Fi(x) = Pr(L̃i ≤ x) = 1− e−eβ(x−Li) and

fi(x) = βeβ(x−Li)e−e
β(x−Li)

be the cumulative distribution function and density function respectively for
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the random variable L̃i and let Gi(x) = 1− Fi(x). If pi = Pr(i∗ = i), then

pi = Pr(L̃i = min
j
L̃j) = Pr(L̃i ≤ L̃j ∀ j 6= i)

= EeLi
[

Pr(L̃i ≤ L̃j ∀ j 6= i|L̃i)
]

= EeLi
[∏
i 6=j

Gj(L̃i)
]

=
∫ ∞
−∞

fi(x)
∏
i 6=j

Gj(x)dx.

Using the definition of fi and Gj we see that the above expression is given
by ∫ ∞

−∞
βeβ(x−Li)

n∏
j=1

e−e
β(x−Lj) =

∫ ∞
−∞

e−βLiβeβxe−e
βx

Pn
j=1 e

−βLj

=
e−βLi∑n
j=1 e

−βLj
.

Therefore, the probability of choosing coordinate i is the same as the one
given by RWM(β).

B. Zero-sum games

For all the questions that follow, we consider a zero-sum game with payoffs
in [0, 1].

1. Show that the time complexity of the RWM algorithm to determine
an ε-approximation of the value of the game is in O(logN/ε2).

Solution: Let pt be the probability vectors associated with RWM.
From the proof of von Neumman’s theorem we know that the mixed
strategy pRWM = 1

T

∑
pt satisfies:

max
q∈∆N

pRWMMq ≤ min
p∈∆N

max
q∈∆N

p>Mq +
RT
T
.

Furthermore, we know that the regret of RWM is in O(
√

logN/
√
T ).

Therefore, after only O(logN/ε2) iterations of RWM we can obtain an
ε-approximation of the value of the game.
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2. Use the proof given in class for von Neumann’s theorem to show that
both players can come up with a strategy achieving and ε-approximation
of the value of the game (or Nash equilibrium) that are sparse: the
support of each mixed strategy is in O(logN/ε2). What fraction of the
payoff matrix does it suffice to consider to compute these strategies?

Solution: We let the strategy used by the row player be given by
the RWM algorithm and denote by pt be the probabilities used by
this algorithm. The column player, plays the best response strategy.
That is, given pt he selects qt = argmaxq p>t Mq. By von Neumann’s
minimax theorem we know that the value v of the game satisfies

v ≤ min
p
p>M

( 1
T

T∑
t=1

qt

)
≤ v +

RT
T
.

Since RT is in O(
√

logNT ), then the strategies q∗ = 1
T

∑T
t=1 qt and

p∗ = argminp p>Mq∗ form an ε-approximation to an equilibrium. Fur-
thermore, qt has only one non-zero entry, therefore the vector q∗ can
have at most O(logN/ε2) non-zero entries.

By definition of the RWM algorithm, at every time t, to find pt we
need to evaluate

∑t
s=1 p

>
s Mqs. Moreover, since qs has only one non-

zero entry, it follows that p>s Mqs can be calculated using onlyN entries
of the matrix. Therefore, to calculate all vectors pt we need only to
inspect O(N logN/ε2) entries of the matrix M .

C. Bregman divergence

1. Given an open convex set C, provide necessary and sufficient condi-
tions for a differentiable function G : C → R to be a Bregman diver-
gence. That is, give conditions for the existence of a convex function
F : C → R such that G(x, y) = F (x)− F (y)−∇F (y)(x− y).
Hint: Show that a Bregman divergence satisfies the following identity

BF (x||y) +BF (y||z) = BF (x||z) + 〈x− y,∇F (z)−∇F (y)〉.

Solution: A function G(x, y) is a Bregman divergence if and only if

• G(x, y) +G(y, z) = G(x, z) + 〈x− y,∇zG(z, y)〉
• ∇zG(z, y) = ∇F (z)−∇F (y),
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where F is a convex function. Furthermore, G(z, y) = BF (z||y). No-
tice that these properties can be easily verified for any function G. We
first prove the necessity of these conditions. The second bullet point
follows directly from the definition of Bregman divergence. To prove
the first bullet point, let G(x, y) = BF (x||y), then

G(x, y) +G(y, z)

= F (x)− F (y)− 〈∇F (y), x− y〉+ F (y)− F (z)− 〈∇F (z), y − z〉
= F (x)− F (z)− 〈∇F (z), x− z〉+ 〈∇F (z), x− y〉 − 〈∇F (y), x− y〉
= G(x, z) + 〈x− y,∇F (z)−∇F (y)〉
= G(x, z) + 〈x− y,∇zG(z, y)〉.

In order to show sufficiency, notice that the second condition implies
G(z, y) = F (z)− 〈∇F (y), z〉+ g(y) for some function g. By plugging
this into the equation defining the first condition we get

G(x, y) +G(y, z)−G(x, z)
= F (x)− 〈∇F (y), x〉+ g(y) + F (y)− 〈∇F (z), y〉+ g(z)− F (x) + 〈∇F (z), x〉 − g(z)
= 〈∇F (z), x− y〉 − 〈∇F (y), x〉+ F (y) + g(y).

In order for G to satisfy the first condition, the following equality must
then hold:

g(y) + F (y)− 〈∇F (y), x〉 = −〈x− y,∇F (y)〉
⇒ g(y) = −F (y) + 〈∇F (y), y〉

Replacing this expression in the equation defining G gives G(z, y) =
F (z)− F (y)− 〈∇F (y), z〉+ 〈∇F (y), y〉 = BF (z||y).

2. Using the results of the previous exercise, decide whether or not the
following functions are a Bregman divergence.

• The KL-divergence: the function G : Rn
+ × Rn

+ → R defined for

x = (x1, . . . , xn) and y = (y1, . . . , yn) byG(x, y) =
∑n

i=1 xi log
(
xi
yi

)
.

• The function G : R+×R+ → R+ given by G(x, y) = x(ex− ey)−
yey(x− y).

Solution:
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• By definition we have ∂
∂zi
G(z, y) = log zi − log yi + 1. Therefore, there

exists no function F such that ∇zG(z, y) = ∇F (z) − ∇F (y) and G
cannot be a Bregman divergence.

• By definition we have ∂
∂zG(z, y) = ez + zez− ey− yey = F ′(z)−F ′(y),

where F (z) = zez. Furthermore,

F (x)− F (y)− F ′(y)(x− y) = xex − yey − (yey + ey)(x− y)

= xex − xyey − xey + y2ey

= x(ex − ey)− yey(x− y) = G(x, y).

Therefore G is a Bregman divergence.
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