

Mehryar Mohri
 Advanced Machine Learning 2015
 Courant Institute of Mathematical Sciences
 Homework assignment 2
 April 13, 2015
 Due: April 27, 2015

A. RWM and FPL

Let $\text{RWM}(\beta)$ denote the RWM algorithm described in class run with parameter $\beta > 0$. Consider the version of the FPL algorithm $\text{FPL}(\beta)$ defined using the perturbation:

$$\mathbf{p}_1 = \left[\frac{\log(-\log(u_1))}{\beta}, \dots, \frac{\log(-\log(u_N))}{\beta} \right]^\top.$$

where, for $j \in [1, N]$, u_j is drawn from the uniform distribution over $[0, 1]$. At round $t \in [1, T]$, \mathbf{w}_t is found via $\mathbf{w}_t = M(\mathbf{x}_{1:t-1} + \mathbf{p}_1) = \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \mathbf{w} \cdot (\mathbf{x}_{1:t-1} + \mathbf{p}_1)$ using the notation adopted in the class lecture for FPL, with \mathcal{W} the set of coordinate vectors. Show that $\text{FPL}(\beta)$ coincides with $\text{RWM}(\beta)$.

Solution: Let $p_{1i} = \frac{\log(-\log(u_i))}{\beta}$ denote the i -th coordinate of vector \mathbf{p}_1 . The distribution of p_{1i} is given by

$$\Pr(p_{1i} \geq x) = \Pr(u_i \leq e^{-e^{\beta x}}) = e^{-e^{\beta x}},$$

where we used the fact that u_i is a uniform random variable. Fix t and let $L_i = \sum_{k=1}^{t-1} x_{ik}$ be the cumulative loss of coordinate i and $\tilde{L}_i = L_i + p_{1i}$. Since the set \mathcal{W} consists of coordinate vectors, the minimization problem is equivalent to finding i^* such that $i^* = \operatorname{argmin}_i \tilde{L}_i$. Let

$$\begin{aligned} F_i(x) &= \Pr(\tilde{L}_i \leq x) = 1 - e^{-e^{\beta(x-L_i)}} & \text{and} \\ f_i(x) &= \beta e^{\beta(x-L_i)} e^{-e^{\beta(x-L_i)}} \end{aligned}$$

be the cumulative distribution function and density function respectively for

the random variable \tilde{L}_i and let $G_i(x) = 1 - F_i(x)$. If $p_i = \Pr(i^* = i)$, then

$$\begin{aligned}
p_i &= \Pr(\tilde{L}_i = \min_j \tilde{L}_j) = \Pr(\tilde{L}_i \leq \tilde{L}_j \forall j \neq i) \\
&= \mathbb{E}_{\tilde{L}_i} [\Pr(\tilde{L}_i \leq \tilde{L}_j \forall j \neq i | \tilde{L}_i)] \\
&= \mathbb{E}_{\tilde{L}_i} \left[\prod_{i \neq j} G_j(\tilde{L}_i) \right] \\
&= \int_{-\infty}^{\infty} f_i(x) \prod_{i \neq j} G_j(x) dx.
\end{aligned}$$

Using the definition of f_i and G_j we see that the above expression is given by

$$\begin{aligned}
\int_{-\infty}^{\infty} \beta e^{\beta(x-L_i)} \prod_{j=1}^n e^{-e^{\beta(x-L_j)}} &= \int_{-\infty}^{\infty} e^{-\beta L_i} \beta e^{\beta x} e^{-e^{\beta x} \sum_{j=1}^n e^{-\beta L_j}} \\
&= \frac{e^{-\beta L_i}}{\sum_{j=1}^n e^{-\beta L_j}}.
\end{aligned}$$

Therefore, the probability of choosing coordinate i is the same as the one given by RWM(β).

B. Zero-sum games

For all the questions that follow, we consider a zero-sum game with payoffs in $[0, 1]$.

1. Show that the time complexity of the RWM algorithm to determine an ϵ -approximation of the value of the game is in $O(\log N/\epsilon^2)$.

Solution: Let \mathbf{p}_t be the probability vectors associated with RWM. From the proof of von Neumann's theorem we know that the mixed strategy $\mathbf{p}_{\text{RWM}} = \frac{1}{T} \sum \mathbf{p}_t$ satisfies:

$$\max_{\mathbf{q} \in \Delta_N} \mathbf{p}_{\text{RWM}}^\top \mathbf{M} \mathbf{q} \leq \min_{\mathbf{p} \in \Delta_N} \max_{\mathbf{q} \in \Delta_N} \mathbf{p}^\top \mathbf{M} \mathbf{q} + \frac{R_T}{T}.$$

Furthermore, we know that the regret of RWM is in $O(\sqrt{\log N}/\sqrt{T})$. Therefore, after only $O(\log N/\epsilon^2)$ iterations of RWM we can obtain an ϵ -approximation of the value of the game.

- Use the proof given in class for von Neumann's theorem to show that both players can come up with a strategy achieving and ϵ -approximation of the value of the game (or Nash equilibrium) that are sparse: the support of each mixed strategy is in $O(\log N/\epsilon^2)$. What fraction of the payoff matrix does it suffice to consider to compute these strategies?

Solution: We let the strategy used by the row player be given by the RWM algorithm and denote by p_t be the probabilities used by this algorithm. The column player, plays the best response strategy. That is, given p_t he selects $q_t = \text{argmax}_q p_t^\top M q$. By von Neumann's minimax theorem we know that the value v of the game satisfies

$$v \leq \min_p p^\top M \left(\frac{1}{T} \sum_{t=1}^T q_t \right) \leq v + \frac{R_T}{T}.$$

Since R_T is in $O(\sqrt{\log NT})$, then the strategies $q^* = \frac{1}{T} \sum_{t=1}^T q_t$ and $p^* = \text{argmin}_p p^\top M q^*$ form an ϵ -approximation to an equilibrium. Furthermore, q_t has only one non-zero entry, therefore the vector q^* can have at most $O(\log N/\epsilon^2)$ non-zero entries.

By definition of the RWM algorithm, at every time t , to find p_t we need to evaluate $\sum_{s=1}^t p_s^\top M q_s$. Moreover, since q_s has only one non-zero entry, it follows that $p_s^\top M q_s$ can be calculated using only N entries of the matrix. Therefore, to calculate all vectors p_t we need only to inspect $O(N \log N/\epsilon^2)$ entries of the matrix M .

C. Bregman divergence

- Given an open convex set C , provide necessary and sufficient conditions for a differentiable function $G: C \rightarrow \mathbb{R}$ to be a Bregman divergence. That is, give conditions for the existence of a convex function $F: C \rightarrow \mathbb{R}$ such that $G(x, y) = F(x) - F(y) - \nabla F(y)(x - y)$.

Hint: Show that a Bregman divergence satisfies the following identity

$$B_F(x||y) + B_F(y||z) = B_F(x||z) + \langle x - y, \nabla F(z) - \nabla F(y) \rangle.$$

Solution: A function $G(x, y)$ is a Bregman divergence if and only if

- $G(x, y) + G(y, z) = G(x, z) + \langle x - y, \nabla_z G(z, y) \rangle$
- $\nabla_z G(z, y) = \nabla F(z) - \nabla F(y)$,

where F is a convex function. Furthermore, $G(z, y) = B_F(z||y)$. Notice that these properties can be easily verified for any function G . We first prove the necessity of these conditions. The second bullet point follows directly from the definition of Bregman divergence. To prove the first bullet point, let $G(x, y) = B_F(x||y)$, then

$$\begin{aligned}
& G(x, y) + G(y, z) \\
&= F(x) - F(y) - \langle \nabla F(y), x - y \rangle + F(y) - F(z) - \langle \nabla F(z), y - z \rangle \\
&= F(x) - F(z) - \langle \nabla F(z), x - z \rangle + \langle \nabla F(z), x - y \rangle - \langle \nabla F(y), x - y \rangle \\
&= G(x, z) + \langle x - y, \nabla F(z) - \nabla F(y) \rangle \\
&= G(x, z) + \langle x - y, \nabla_z G(z, y) \rangle.
\end{aligned}$$

In order to show sufficiency, notice that the second condition implies $G(z, y) = F(z) - \langle \nabla F(y), z \rangle + g(y)$ for some function g . By plugging this into the equation defining the first condition we get

$$\begin{aligned}
& G(x, y) + G(y, z) - G(x, z) \\
&= F(x) - \langle \nabla F(y), x \rangle + g(y) + F(y) - \langle \nabla F(z), y \rangle + g(z) - F(x) + \langle \nabla F(z), x \rangle - g(z) \\
&= \langle \nabla F(z), x - y \rangle - \langle \nabla F(y), x \rangle + F(y) + g(y).
\end{aligned}$$

In order for G to satisfy the first condition, the following equality must then hold:

$$\begin{aligned}
g(y) + F(y) - \langle \nabla F(y), x \rangle &= -\langle x - y, \nabla F(y) \rangle \\
\Rightarrow g(y) &= -F(y) + \langle \nabla F(y), y \rangle
\end{aligned}$$

Replacing this expression in the equation defining G gives $G(z, y) = F(z) - F(y) - \langle \nabla F(y), z \rangle + \langle \nabla F(y), y \rangle = B_F(z||y)$.

- Using the results of the previous exercise, decide whether or not the following functions are a Bregman divergence.

- The KL-divergence: the function $G: \mathbb{R}_+^n \times \mathbb{R}_+^n \rightarrow \mathbb{R}$ defined for $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ by $G(x, y) = \sum_{i=1}^n x_i \log \left(\frac{x_i}{y_i} \right)$.
- The function $G: \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ given by $G(x, y) = x(e^x - e^y) - ye^y(x - y)$.

Solution:

- By definition we have $\frac{\partial}{\partial z_i} G(z, y) = \log z_i - \log y_i + 1$. Therefore, there exists no function F such that $\nabla_z G(z, y) = \nabla F(z) - \nabla F(y)$ and G cannot be a Bregman divergence.
- By definition we have $\frac{\partial}{\partial z} G(z, y) = e^z + ze^z - e^y - ye^y = F'(z) - F'(y)$, where $F(z) = ze^z$. Furthermore,

$$\begin{aligned}
F(x) - F(y) - F'(y)(x - y) &= xe^x - ye^y - (ye^y + e^y)(x - y) \\
&= xe^x - xye^y - xe^y + y^2e^y \\
&= x(e^x - e^y) - ye^y(x - y) = G(x, y).
\end{aligned}$$

Therefore G is a Bregman divergence.