

On Complexity as Bounded Rationality¹

- ▶ How can we apply complexity in game theory?
- ▶ Prisoner's Dilemma
- ▶ Bounded Rationality
- ▶ General Complexity Result for Games

Nash Equilibrium

Let G be a game with K players. For each player k we have

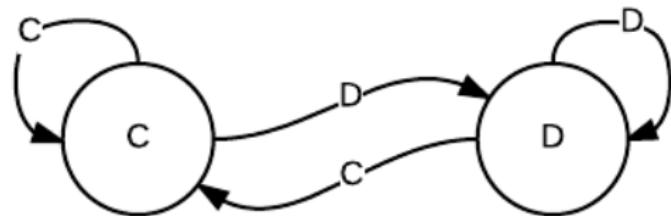
- ▶ action set A_k of actions available to k
- ▶ strategy set $\Delta(A_k)$ of distributions over actions in A_k .
- ▶ payoff function $\mu_k : \prod_{i=1}^K A_i \longrightarrow \mathbb{R}$
 - ▶ payoffs for mixed strategy $p_k \in \Delta(A_k)$: $E_{a_k \sim p_k} [\mu_k(\mathbf{a})]$

A **Nash Equilibrium** S is a strategy assignment (p_1, \dots, p_K) such that for each player k :

$$\forall q \in \Delta(A_k) : \mu_k(p_k, S_{-k}) \geq \mu_k(q, S_{-k}) \quad (1)$$

n -round Prisoner's Dilemma

	C	D
C	3,3	0,4
D	4,0	1,1


- ▶ $A_k^n = [CD]\{n\}$.
- ▶ only Nash equilibrium is (D^n, D^n) via backwards induction

Questions

- ▶ Can we avoid the (D^n, D^n) equilibrium by limiting strategic complexity?
- ▶ How can we quantify strategic complexity?
- ▶ Will players use far more complex strategies for only marginally greater payoffs?

Bounded Rationality

implementation complexity: the number of states required by a finite automaton which implements the strategy

Tit for Tat

Theorem: Let $\epsilon > 0$ and G an n -round Prisoner's Dilemma played by automata. If one of the automata has less than $2^{c_\epsilon n}$ states, then there is a mixed equilibrium with expected payoff for each player at least $3 - \epsilon$.

Proof Sketch

Lemma: If both players have automata with size at least 2^n then the only equilibrium is (D^n, D^n) .

- ▶ prove the inverse: if at least one player is limited to sub-exponential automata, then a **mostly collaborative equilibrium is possible**
- ▶ construct such an equilibrium:
 - ▶ define mixed strategies for each player
 - ▶ the automata with size $2^{c_\epsilon n}$ must have its states fully utilized

⇒ construct a multi-phase mixed strategy for each player

General Complexity Results

- ▶ best response:
 - ▶ NP
- ▶ existence of pure equilibrium:
 - ▶ $S_2 P$
- ▶ feasible payoffs in mixed equilibrium of zero sum games
 - ▶ EXP
- ▶ feasible payoffs in mixed equilibrium of general games
 - ▶ NEXP