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A. Deep ensembles

In class, we presented a guarantee for the SRM method. This problem
suggests you to derive a similar guarantee for deep ensembles or the principle
of voted risk minimization (VRM). We will largely adopt the notation used in
class. Let X denote the input space and let H1, . . . ,Hp families of functions
mapping from X to R. F is the convex hull of the union of these families:

F = conv

( p⋃
k=1

Hk

)
=

{ N∑
j=1

αjhj : αj ≥ 0,

N∑
j=1

αj ≤ 1

}
.

Let F be the objective function defined for all f =
∑N

j=1 αjhj ∈ F by

F (f) = R̂S,ρ(f) +
4

ρ

N∑
j=1

αjRm(Hk(j)),

where Hk(j) is the least complex family containing hj . Define the VRM
solution as the function fVRM minimizing F :

fVRM = argmin
f∈F

F (f).

Use Corollary 1 and Corollary 2 (see appendix) to show the following result.
For any δ > 0, with probability at least 1 − δ over the choice of a sample
S of size m drawn i.i.d. according to Dm, the following inequality holds for
fVRM:

R(fVRM) ≤ inf
f∈F

(
Rρ(f) +

8

ρ

N∑
j=1

αjRm(Hk(j))

+
4

ρ

√
log p

m

[
1 +

√⌈
log
[ ρ2m

log p

]⌉])
+

√
2 log 4

δ

m
,
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with Rρ(f) = E[Φρ(yf(x))], where Φρ is the margin loss function: Φρ(x) =
min

(
1,max

(
0, 1− x

ρ

))
for all x ∈ R.

Note that the bound applies in particular with the right-hand side func-
tion chosen to be f∗, the one minimizing F : fVRM = argminf∈F F (f).

B. Zero-sum games

In class, we gave a proof of von Neumann’s minimax theorem by assuming
that one of the players was using the RWM algorithm. Consider the scenario
where both players use RWM at each round, which we alluded to in class.
Prove von Neumann’s minimax theorem using that scenario, proceeding as
follows.

1. Assume without loss of generality that u1 ≤ 1. Let pt be the distribu-
tion defined at the tth round by the row player and qt the one for the
column player. Show that

max
p

1

T

T∑
t=1

E
a1∼p
a2∼qt

[u1(a)]− RT
T
≤ min

q

1

T

T∑
t=1

E
a1∼pt
a2∼q

[u1(a)] +
RT
T
.

2. Use the previous inequality and the regret bound for RWM to prove
von Neumann’s minimax theorem.

C. Correlated Equilibria

Consider the game defined by the following matrix:
A B

A (8, 8) (1, 9)
B (9, 1) (0, 0)

1. Which are the pure Nash equilibria for this game?

2. Find a mixed Nash equilibrium. Which is the expected payoff for the
row player?

3. Suppose now that a correlation device draws each of (A,A), (A,B),
(B,A) with equal probability. Prove that this defines a correlated
equilibrium. What is the expected payoff? How does it compare to
the expected payoff for a mixed Nash equilibrium found in the previous
question?
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A Appendix

Corollary 1 Assume p > 1. Fix ρ > 0. Then, for any δ > 0, with prob-
ability at least 1 − δ over the choice of a sample S of size m drawn i.i.d.
according to Dm, the following inequality holds for all f =

∑N
j=1 αjhj ∈ F :

R(f) ≤ R̂S,ρ(f) +
4

ρ

N∑
j=1

αjRm(Hk(j))

+
2

ρ

√
log p

m

[
1 +

√⌈
log
[ ρ2m

log p

]⌉]
+

√
log 2

δ

2m
.

Corollary 2 Assume p > 1. Fix ρ > 0. Then, for any δ > 0, with prob-
ability at least 1 − δ over the choice of a sample S of size m drawn i.i.d.
according to Dm, the following inequality holds for all f =

∑N
j=1 αjhj ∈ F :

R̂S,ρ(f) ≤ Rρ(f) +
4

ρ

N∑
j=1

αjRm(Hk(j))

+
2

ρ

√
log p

m

[
1 +

√⌈
log
[ ρ2m

log p

]⌉]
+

√
log 2

δ

2m
.
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