

Online Learning for Global Cost Functions

Even-Dar et al. *COLT* 2009

Jonay Trénous

March 23, 2016

Overview

- 1 Motivation and Setup
- 2 Approachability Theory
- 3 Regret Bound
- 4 Further Results

Motivation: Load Balancing / Job Scheduling

- Distribute Jobs over the Machines
- Objective: Minimize maximum Load
- Cost not additive over timesteps

Learning Setup

- Finite Set of Alternatives

$$K = \{1, \dots, k\}$$

- At each time step t , Algorithm A chooses a distribution

$$p_t \in \Delta(K)$$

- Incur Vector of Losses

$$l_t \in [0, 1]^k$$

- Vector of average losses after T Timesteps:

$$L_T = (L_T(1), \dots, L_T(k)) = \left(\frac{1}{T} \sum_{t=1}^T l_t(1), \dots, \frac{1}{T} \sum_{t=1}^T l_t(k) \right)$$

- Vector of average losses incurred by Algorithm

$$L_T^A = (L_T^A(1), \dots, L_T^A(k)) = \left(\frac{1}{T} \sum_{t=1}^T p_t(1)l_t(1), \dots, \frac{1}{T} \sum_{t=1}^T p_t(k)l_t(k) \right)$$

Global Cost Functions

- Standard Setup: Cost per round Additive in $L_T^A(i)$

$$C(L_T^A) = \sum_{i=1}^k L_T^A(i) = \|L_T^A\|_1$$

- Generalization: L_d , $d \geq 1$ norm

$$C(L_T^A) = \|L_T^A\|_d$$

- L_∞ norm for Load Balancing example

Regret

- Regret measured against best static allocation

$$p^* = \operatorname{argmin}_{p \in \Delta(K)} C(L_T^p)$$

- $R_T(A) = C(L_T^A) - C^*(L_T) = C(L_T^A) - C(L_T^{p^*})$
- C convex, C^* concave
- Goal: Algorithm A that guarantees vanishing Regret

Vector Valued Games

- Strategy Sets

$$A \subseteq \mathbb{R}^a, B \subseteq \mathbb{R}^b$$

- (Bilinear) Payoff Function

$$m: A \times B \rightarrow \mathbb{R}^c$$

- Target Set $V \subseteq \mathbb{R}^c$
- Goal of player A: Achieve average payoff close to V

Approachability Theory

- Target Set V is *approachable* with convergence rate $r(t)$ if
$$\exists a_1, a_2, \dots \in A \text{ s.t. } \forall b_1, b_2, \dots \in B: \text{dist}(\hat{m}_t, V) \leq r(t)$$
- (Blackwell, 1956). *If V is a closed and convex set and for every $b \in B$, there is an $a \in A$ such that $m(a, b) \in V$, then V is approachable with a convergence rate of*

$$r(t) = \frac{2D}{\sqrt{t}}$$

Where D is the diameter of the image of the Payoff function m .

Regret minimization as a Game

- Strategy Sets:

$$A = \Delta(K), B = [0, 1]^k$$

- Payoff Function

$$m_t = m(p_t, l_t) = (p_t(1)l_t(1), \dots, p_t(k)l_t(k), l_t(1), \dots, l_t(k))$$

⇒ Average Payoff

$$\hat{m}_T = (L_T^A, L_T)$$

- Target Set

$$S = \{(x, y) \mid C(x) \leq C^*(y), (x, y) \geq 0\}$$

Convexity of Target Set

Let $\beta \in [0, 1]$, $(x_1, y_1), (x_2, y_2) \in S$.

$$C(\beta x_1 + (1 - \beta)x_2)$$

$$\leq \beta C(x_1) + (1 - \beta)C(x_2) \quad (\text{Conv. of } C)$$

$$\leq \beta C^*(y_1) + (1 - \beta)C^*(y_2) \quad (\text{Def. } S)$$

$$\leq C^*(\beta y_1 + (1 - \beta)y_2) \quad (\text{Conc. of } C^*)$$

Realizability

- Let $l \in [0, 1]^k$
- Choose optimal static allocation
 $p^* = \operatorname{argmin}_{p \in \Delta(K)} C(p(1)l(1), \dots, p(k)l(k))$
- By definition of p^* and S

$$m(p^*, l) \in S$$

Approachability Result

- By Blackwells Theorem S approachable with convergence rate

$$r(t) = \frac{2D}{\sqrt{t}}$$

- $m(\Delta(K) \times [0, 1]^k) \subseteq [0, 1]^{2k} \Rightarrow D \leq \sqrt{2k}$
- Therefore S is approachable with convergence rate

$$r(t) = \sqrt{\frac{8k}{t}}$$

Regret Bounds

Assume C, C^* are Λ -Lipschitz. After T rounds of Alg. A, choose $(x, y) \in S$ such that

$$\|(L_T^A, L_T) - (x, y)\| \leq \sqrt{\frac{8k}{T}}$$

$$\begin{aligned} R_T(A) &= C(L_T^A) - C^*(L_T) \\ &= \underbrace{[C(x) - C^*(y)]}_{\leq 0} + [C(L_T^A) - C(x)] + [C^*(y) - C^*(L_T)] \quad (\text{add zero}) \\ &\leq \Lambda \left(\|L_T^A - x\| + \|L_T - y\| \right) \quad \text{By Lipschitz} \\ &\leq \Lambda \sqrt{2\|L_T^A - x\|^2 + 2\|L_T - y\|^2} \quad (a^2 + b^2) \geq 2ab \\ &= \Lambda \sqrt{2\|\hat{m}_t - (x, y)\|^2} \leq 4\Lambda \sqrt{\frac{k}{T}} \end{aligned}$$

Conclusions

- Generalization of Loss Functions with Vanishing Regret
- Optimality Result: For any L_d norm, Regret of $\frac{1}{\sqrt{T}}$ is optimal
- Further results: Bound Logarithmic in number of Alternatives for L_∞ norm