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Outline

Ensemble Methods for Structured Prediction[1]

On-line learning
Boosting

A Generalized Kernel Approach to Structured Output Learning[2]



Structured Prediction Problem

Structured Output: Y = Y1 × ...× Yl .

Loss Function: L : Y × Y → R+ decomposable.

Training data: sample drawn i.i.d. from X × Y according to
some distribution D,

S = ((x1, y 1) , ..., (xm, ym)) ∈ X × Y

Problem: find hypothesis h : X → Y with small generalization
error

E(x ,y)∼D [L (h (x) , y )]



Ensemble Methods: Further assumptions

The number of substructures l ≥ 1 is fixed.

Loss function L can be decomposed as a sum of loss functions
lk : Yk → R+ , i.e.

for all y =
(

y1, ..., y l
)

and y
′ =

(

y ′1, ..., y ′l
)

,

L
(

y , y
′
)

=
l
∑

k=1

lk

(

yk , y ′k
)

A set of structured prediction experts h1, ..., hp:

hj (x) =
(

h1

j (x) , ..., h
l
j (x)

)

, ∀j = 1, ..., p



Path Experts

Intuition: one particular expert maybe better at predicting k-th
substructure, but not elsewhere.

Figure: Path Expert

Construct a larger set of experts, ’path experts’:

H =
{(

h1

j1
, ..., hljl

)

, jk ∈ {1, ..., p} , k = 1, ..., l
}

, |H| = pl

When selecting the best h∗ from H, it may not coincide with
any of original experts.



Review: Randomized Weighted Majority (WM)

Task: find a distribution over experts.

Initialize weights for all experts:

w1,j = 1/p, j = 1, ..., p

After receiving sample (xt , yt),

Update weight for expert j , j = 1, .., p:

wt+1,j =
wt,je

−ηL(ŷt,j ,yt)
∑p

j=1
wt,je

−ηL(ŷt,j ,yt)
, η > 0 constant

Return wT+1 = (wT+1,1, ...,wT+1,p)



Randomized Weighted Majority (WM)

Apply the Weighted Majority algorithm to path experts set H:

∀h ∈ H,wt+1 (h) =
wt (h) e−ηL(h(xt),yt)

∑

h∈H wt (h) e−ηL(h(xt),yt)

pl updates per round!

Using the structure of Y and additive loss assumption, we can
reduce to pl updates per round.



Weighted Majority Weight Pushing (WMWP)

For every h =
(

h1
j1
, ..., hljl

)

, w (h) =
∏l

k=1
w k
jk

Enforce the weights at each substructure sum to one:

p
∑

j=1

w k
j = 1, ∀k ∈ {1, ..., l}

The overall weights
∑

h∈H w (h) will automatically sum to one!
Example: p = 2,l = 2,

w 1

1w
2

1 + w 1

1w
2

2 + w 1

2w
2

1 + w 1

2w
2

2 =
(

w 1

1 + w 1

2

) (

w 2

1 + w 2

2

)

= 1



Weighted Majority Weight Pushing (WMWP)

Initialize weights: w k
1,j = 1/p, ∀ (k, j) ∈ {1, ..., l}× {1, ..., p},

At round t, ∀ (k, j) ∈ {1, ..., l}× {1, ..., p}, update weight

w k
t+1,j =

w k
t,je

−ηlk(hkj (xt),yk
t )

∑p
j=1

w k
t,je

−ηlk(hkj (xt),yk
t )
,

Return W1, ...,WT+1, where Wt =
(

w k
t,j

)

.



On-line to batch conversion

How to define a hypothesis based on {W1, ...,WT+1}?

Two steps:

1 Choose a good collection of distributions. P = {W1, ...,WT+1}
is one choice, but not necessarily the best.

2 Use P to define hypotheses for prediction.



On-line to batch conversion

Step 1: Choose a good collection of distributions.

For any collection P, define score

Γ (P) =
1

|P|

∑

Wt∈P

∑

h∈H Wt (h) L (h (xt) , yt) +M

√

log 1

δ

|P|

Chose Pδ = arg minP∈P Γ (P)



On-line to batch conversion

Step 2: define hypotheses.

Randomized: randomly select a path expert h ∈ H according to

p (h) =
1

|Pδ|

∑

Wt∈Pδ

Wt (h) ,

denote the set of generated hypotheses as HRand .

Deterministic: defined a scoring function

h̃MVote (x , y ) =
l
∏

k=1

(

1

|Pδ|

∑

Wt∈Pδ

p
∑

j=1

w k
t,j1hkj (x)=yk

)

HMVote (x) = arg max
y∈Y

h̃MVote (x , y )



Learning Guarantees

Regret RT

RT =
T
∑

t=1

Eh∼Wt [L (h (xt) , yt)]− inf
h∈H

T
∑

t=1

L (h (xt) , yt)

For any δ > 0, with probability at least 1 − δ over sample
(xi , yi)

T
i=1

drawn i.i.d from D, the following hold:

E [L (HRand (x) , y )] ≤
1

T

T
∑

t=1

Eh∼Wt [L (h (xt) , yt)] +M

√

log T
δ

T
,

E [L (HRand (x) , y )] ≤ inf
h∈H

E [L (h (x) , y )] +
RT

T
+ 2M

√

log 2T
δ

T
.



Learning Guarantees

The following inequality always hold: with expectations taken
over (x , y ) ∼ D and h ∼ p for HRand ,

E [LHam (HMVote (x) , y )] ≤ 2 E [LHam (HRand (x) , y )]

Proof: by definition of HMVote , the following always hold:

1

2
1Hk

MVote (x) ̸=yk ≤
1

|Pδ|

∑

Wt∈Pδ

p
∑

j=1

w k
t,j1hkj (x )̸=yk

summing over k and take expectations over D yields the desired
results. !



AdaBoost: Review

Hypothesis space: H =
{

∑N
j=1

αjhj ,αj ≥ 0
}

, where hj ⊂ H0

are base classifiers, hj : X → R.

Objective Function: F (α) =
∑m

i=1
e−yi

∑N
j=1

αj hj (xi )

Apply Coordinate Descent to F (α)

Return hypothesis: h (x) = sgn

(

∑N
j=1

αjhj (x)
)



ESPBoost: hypothesis space
How to make a convex combination of path experts? Prediction
→ Score → Convex Combination of Score → ’Combined’
Prediction
For each path experts ht ∈ H, define the score
h̃t : X × Y → R+:

∀ (x , y ) ∈ X × Y , h̃t (x , y) =
l
∑

k=1

1hkt (x)=yk

Convex combination of score:
{

h̃ =
T
∑

t=1

αt h̃t : h̃t derived from path experts,αt ≥ 0

}

’Combined’ Prediction:

h (x) = arg max
y∈Y

h̃ (x , y) = arg max
y∈Y

T
∑

t=1

l
∑

k=1

αt1hkt (x)=yk



Loss Function and Upper Bound

Normalized Hamming Loss:

1

m

m
∑

i=1

[LHam (HESPBoost (xi) , yi)]

=
1

ml

m
∑

i=1

l
∑

k=1

1h̃k(xi ,yi )−maxy ̸=yi
h̃k(xi ,y)<0

≤
1

ml

m
∑

i=1

l
∑

k=1

exp

{

−
T
∑

t=1

αtρ
(

h̃kt , x i , y i

)

}

:= F (α)

Margin: ρ
(

h̃k , x i , y i

)

= h̃k
(

x i , y k
i

)

− arg maxyk ̸=yk
i
h̃k
(

x i , y k
)



ESPBoost

Hypothesis space: the set of combined predictions

HESPBoost (x) =

{

h (x) : arg max
y∈Y

h̃ (x , y )

}

Objective Function F : RT
+ → R

F (α) =
1

ml

m
∑

i=1

l
∑

k=1

exp

{

−
T
∑

t=1

αtρ
(

h̃kt , x i , y i

)

}

Apply coordinate descent.



ESPBoost: algorithm



Generalized Kernel Approach

Problem Setting: Given (xi , yi)
n
i=1

∈ X × Y , we want to learn a
mapping f from X to Y .

l : Y × Y → R a kernel function

FY : RKHS associated with l

Φl : the mapping from Y to FY

Step 1: Learn the mapping g from X to FY

Step 2: Find the pre-image of g (x)



Generalized Kernel Approach

Step 1: learn the mapping g : X → FY

Preliminaries

Operator-valued kernels
Function-valued RKHS



Operator-valued Kernels

L (FY) be the set the bounded operators T : FY → FY

Non-negative L (FY)− valued kernel K : X × X → L (FY)
such that:

∀xi , xj ∈ X , K (xi , xj) = K (xj , xi )
∗.

For any m > 0,
{

(xi ,ϕi )i=1,...,m

}

⊆ X × FY ,
∑m

i ,j=1
⟨K (xi , xj )ϕj ,ϕi ⟩FY

≥ 0.

Note: * denotes adjoint operator, i.e. ∀ϕ1,ϕ2 ∈ FY ,
⟨K (ϕ1) ,ϕ2⟩FY

= ⟨ϕ1,K ∗ (ϕ2)⟩FY



Function-valued RKHS

A Hilbert space FXY of functions g : X → FY is a FY − valued
RKHS if there is a non-negative L (FY)− valued kernel K with
the following properties:

∀x ∈ X ,∀ϕ ∈ FY , the function K (x , ·)ϕ ∈ FXY

∀g ∈ FXY ,∀x ∈ X ,∀ϕ ∈ FY ,
⟨g ,K (x , ·)ϕ⟩FXY

= ⟨g (x) ,ϕ⟩FY

Theorem: Bijection between FXY and K , as long as K is
non-negative.



Kernel Ridge Regression

Step 1: Learning g : X → FY

Kernel Ridge Regression, with closed form solution:

arg min
g∈FXY

n
∑

i=1

∥g (xi)− Φl (yi)∥
2

FY
+ λ ∥g∥2

FXY

g (x) = K x (K + λI )−1
Φl

K x : a row vector of operators, [K (·, xi) ∈ L (FY)]
n
i=1

K : a matrix of operators, [K (xi , xj) ∈ L (FY)]
n
i ,j=1

Φl : a column vector of functions [Φl (yi) ∈ FY ]
n
i=1



Find Pre-image
Step 2: Find pre-image of g (x)

f (x) = arg min
y∈Y

∥g (x)− Φl (y )∥
2

FY

= arg min
y∈Y

∥

∥

∥
K x (K + λI )−1

Φl − Φl (y )
∥

∥

∥

2

FY

= arg min
y∈Y

l (y , y )− 2
〈

K x (K + λI )−1
Φl ,Φl (y )

〉

FY

Φl (y ) unknown, use a generalized kernel trick:

⟨T Φl (yi) ,Φl (y )⟩ = [T l (yi , ·)] (y )

Express f (x) using only kernel functions:

f (x) = arg min
y∈Y

l (y , y )− 2
[

K x (K + λI )−1
L.
]

(y )

where L. is a column vector of [l (yi , ·)]
n
i=1



Covariance-based Operator-valued Kernels
Covariance-based operator-valued kernels:

K (xi , xj) = k (xi , xj)CYY

k : X × X → R a scalar-valued kernel;
CYY : FY → FY a covariance operator defined by a random
variable Y ∈ Y:

⟨ϕ1,CYYϕ2⟩FY
= E [ϕ1 (Y )ϕ2 (Y )]

Empirical covariance operator

ĈYY (ϕ) =
1

n

n
∑

i=1

ϕ (yi) l (·, yi )

To account for the effects of input, we could also use conditional
covariance operator

CYY |X = CYY − CYXC
−1

XXCXY



Conclusion

Ensemble methods: ensemble learning with expended ’path
experts’.

On-line algorithm (WMWP): efficient for learning and inference
by exploiting the output structure.
On-line-to-batch-conversion: randomized and deterministic
algorithms with learning guarantees.
Boosting: efficient for output structure.

Kernel method:

Use a joint feature space.
Covariance-based operator-valued kernel to encode interactions
between outputs.
Conditional Covariance-based operator to correlate input with
’interaction between outputs’.
Express the final hypothesis with only kernel functions.
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