

Structured Prediction

Ningshan Zhang

Advanced Machine Learning, Spring 2016

Outline

- Ensemble Methods for Structured Prediction[1]
 - On-line learning
 - Boosting
- A Generalized Kernel Approach to Structured Output Learning[2]

Structured Prediction Problem

- Structured Output: $\mathcal{Y} = \mathcal{Y}_1 \times \dots \times \mathcal{Y}_l$.
- Loss Function: $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_+$ decomposable.
- Training data: sample drawn i.i.d. from $\mathcal{X} \times \mathcal{Y}$ according to some distribution \mathcal{D} ,

$$S = ((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)) \in \mathcal{X} \times \mathcal{Y}$$

- Problem: find hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$ with small generalization error

$$\mathbb{E}_{(x,y) \sim \mathcal{D}} [L(h(x), y)]$$

Ensemble Methods: Further assumptions

- The number of substructures $l \geq 1$ is fixed.
- Loss function L can be decomposed as a sum of loss functions $l_k : \mathcal{Y}_k \rightarrow \mathbb{R}^+$, i.e.
 - for all $\mathbf{y} = (y^1, \dots, y^l)$ and $\mathbf{y}' = (y'^1, \dots, y'^l)$,

$$L(\mathbf{y}, \mathbf{y}') = \sum_{k=1}^l l_k(y^k, y'^k)$$

- A set of structured prediction experts h_1, \dots, h_p :

$$h_j(x) = (h_j^1(x), \dots, h_j^l(x)), \forall j = 1, \dots, p$$

Path Experts

- Intuition: one particular expert maybe better at predicting k-th substructure, but not elsewhere.

Figure: Path Expert

- Construct a larger set of experts, '**path experts**':

$$\mathcal{H} = \left\{ \left(h_{j_1}^1, \dots, h_{j_l}^l \right) \mid j_k \in \{1, \dots, p\}, k = 1, \dots, l \right\}, |\mathcal{H}| = p^l$$

- When selecting the best h^* from \mathcal{H} , it may not coincide with any of original experts.

Review: Randomized Weighted Majority (WM)

- Task: find a distribution over experts.
- Initialize weights for all experts:

$$w_{1,j} = 1/p, j = 1, \dots, p$$

- After receiving sample (x_t, y_t) ,
 - Update weight for expert $j, j = 1, \dots, p$:

$$w_{t+1,j} = \frac{w_{t,j} e^{-\eta L(\hat{y}_{t,j}, y_t)}}{\sum_{j=1}^p w_{t,j} e^{-\eta L(\hat{y}_{t,j}, y_t)}}, \eta > 0 \text{ constant}$$

- Return $\mathbf{w}_{T+1} = (w_{T+1,1}, \dots, w_{T+1,p})$

Randomized Weighted Majority (WM)

- Apply the Weighted Majority algorithm to path experts set \mathcal{H} :

$$\forall h \in \mathcal{H}, w_{t+1}(h) = \frac{w_t(h) e^{-\eta L(h(x_t), y_t)}}{\sum_{h \in \mathcal{H}} w_t(h) e^{-\eta L(h(x_t), y_t)}}$$

- p^l updates per round!
- Using the structure of \mathcal{Y} and additive loss assumption, we can reduce to pl updates per round.

Weighted Majority Weight Pushing (WMWP)

- For every $h = (h_{j_1}^1, \dots, h_{j_l}^l)$, $w(h) = \prod_{k=1}^l w_{j_k}^k$
- Enforce the **weights at each substructure sum to one**:

$$\sum_{j=1}^p w_j^k = 1, \forall k \in \{1, \dots, l\}$$

- The overall weights $\sum_{h \in \mathcal{H}} w(h)$ will automatically sum to one!

Example: $p = 2, l = 2$,

$$w_1^1 w_1^2 + w_1^1 w_2^2 + w_2^1 w_1^2 + w_2^1 w_2^2 = (w_1^1 + w_2^1) (w_1^2 + w_2^2) = 1$$

Weighted Majority Weight Pushing (WMWP)

- Initialize weights: $w_{1,j}^k = 1/p, \forall (k,j) \in \{1, \dots, l\} \times \{1, \dots, p\}$,
- At round $t, \forall (k,j) \in \{1, \dots, l\} \times \{1, \dots, p\}$, update weight

$$w_{t+1,j}^k = \frac{w_{t,j}^k e^{-\eta l_k(h_j^k(x_t), y_t^k)}}{\sum_{j=1}^p w_{t,j}^k e^{-\eta l_k(h_j^k(x_t), y_t^k)}},$$

- Return W_1, \dots, W_{T+1} , where $W_t = (w_{t,j}^k)$.

On-line to batch conversion

- How to define a hypothesis based on $\{W_1, \dots, W_{T+1}\}$?
- Two steps:
 - 1 Choose a good collection of distributions. $P = \{W_1, \dots, W_{T+1}\}$ is one choice, but not necessarily the best.
 - 2 Use P to define hypotheses for prediction.

On-line to batch conversion

- Step 1: Choose a good collection of distributions.
- For any collection P , define score

$$\Gamma(P) = \frac{1}{|P|} \sum_{W_t \in P} \sum_{h \in \mathcal{H}} W_t(h) L(h(x_t), y_t) + M \sqrt{\frac{\log \frac{1}{\delta}}{|P|}}$$

- Choose $P_\delta = \arg \min_{P \in \mathcal{P}} \Gamma(P)$

On-line to batch conversion

- Step 2: define hypotheses.
- Randomized: randomly select a path expert $h \in \mathcal{H}$ according to

$$p(h) = \frac{1}{|P_\delta|} \sum_{W_t \in P_\delta} W_t(h),$$

denote the set of generated hypotheses as \mathcal{H}_{Rand} .

- Deterministic: defined a scoring function

$$\tilde{h}_{MVote}(x, y) = \prod_{k=1}^l \left(\frac{1}{|P_\delta|} \sum_{W_t \in P_\delta} \sum_{j=1}^p w_{t,j}^k \mathbf{1}_{h_j^k(x)=y^k} \right)$$

$$\mathcal{H}_{MVote}(x) = \arg \max_{y \in \mathcal{Y}} \tilde{h}_{MVote}(x, y)$$

Learning Guarantees

- Regret R_T

$$R_T = \sum_{t=1}^T \mathbb{E}_{h \sim W_t} [L(h(x_t), y_t)] - \inf_{h \in \mathcal{H}} \sum_{t=1}^T L(h(x_t), y_t)$$

- For any $\delta > 0$, with probability at least $1 - \delta$ over sample $(x_i, y_i)_{i=1}^T$ drawn i.i.d from \mathcal{D} , the following hold:

$$\mathbb{E} [L(\mathcal{H}_{Rand}(x), y)] \leq \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{h \sim W_t} [L(h(x_t), y_t)] + M \sqrt{\frac{\log \frac{T}{\delta}}{T}},$$

$$\mathbb{E} [L(\mathcal{H}_{Rand}(x), y)] \leq \inf_{h \in \mathcal{H}} \mathbb{E} [L(h(x), y)] + \frac{R_T}{T} + 2M \sqrt{\frac{\log \frac{2T}{\delta}}{T}}.$$

Learning Guarantees

- The following inequality always hold: with expectations taken over $(x, y) \sim \mathcal{D}$ and $h \sim p$ for $\mathcal{H}_{\text{Rand}}$,

$$\mathbb{E} [L_{\text{Ham}}(\mathcal{H}_{\text{MVote}}(x), y)] \leq 2 \mathbb{E} [L_{\text{Ham}}(\mathcal{H}_{\text{Rand}}(x), y)]$$

- Proof: by definition of $\mathcal{H}_{\text{MVote}}$, the following always hold:

$$\frac{1}{2} \mathbf{1}_{\mathcal{H}_{\text{MVote}}^k(x) \neq y^k} \leq \frac{1}{|P_\delta|} \sum_{W_t \in P_\delta} \sum_{j=1}^p w_{t,j}^k \mathbf{1}_{h_j^k(x) \neq y^k}$$

summing over k and take expectations over \mathcal{D} yields the desired results. \square

AdaBoost: Review

- Hypothesis space: $\mathcal{H} = \left\{ \sum_{j=1}^N \alpha_j h_j, \alpha_j \geq 0 \right\}$, where $h_j \subset \mathcal{H}_0$ are base classifiers, $h_j : \mathcal{X} \rightarrow \mathbb{R}$.
- Objective Function: $F(\boldsymbol{\alpha}) = \sum_{i=1}^m e^{-y_i \sum_{j=1}^N \alpha_j h_j(x_i)}$
- Apply Coordinate Descent to $F(\boldsymbol{\alpha})$
- Return hypothesis: $h(x) = \text{sgn} \left(\sum_{j=1}^N \alpha_j h_j(x) \right)$

ESPBoost: hypothesis space

- How to make a convex combination of path experts? Prediction → Score → Convex Combination of Score → 'Combined' Prediction
- For each path experts $h_t \in \mathcal{H}$, define the **score**
 $\tilde{h}_t : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_+$:

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}, \tilde{h}_t(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^I 1_{h_t^k(\mathbf{x}) = y^k}$$

- Convex combination of score:

$$\left\{ \tilde{h} = \sum_{t=1}^T \alpha_t \tilde{h}_t : \tilde{h}_t \text{ derived from path experts, } \alpha_t \geq 0 \right\}$$

- 'Combined' Prediction:

$$h(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} \tilde{h}(\mathbf{x}, \mathbf{y}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^T \sum_{k=1}^I \alpha_t 1_{h_t^k(\mathbf{x}) = y^k}$$

Loss Function and Upper Bound

- Normalized Hamming Loss:

$$\begin{aligned}& \frac{1}{m} \sum_{i=1}^m [L_{Ham}(\mathcal{H}_{ESPBoost}(x_i), y_i)] \\&= \frac{1}{ml} \sum_{i=1}^m \sum_{k=1}^l 1_{\tilde{h}^k(x_i, y_i) - \max_{y \neq y_i} \tilde{h}^k(x_i, y) < 0} \\&\leq \frac{1}{ml} \sum_{i=1}^m \sum_{k=1}^l \exp \left\{ - \sum_{t=1}^T \alpha_t \rho \left(\tilde{h}_t^k, \mathbf{x}_i, \mathbf{y}_i \right) \right\} := F(\alpha)\end{aligned}$$

- Margin: $\rho \left(\tilde{h}^k, \mathbf{x}_i, \mathbf{y}_i \right) = \tilde{h}^k \left(\mathbf{x}_i, y_i^k \right) - \arg \max_{y^k \neq y_i^k} \tilde{h}^k \left(\mathbf{x}_i, y^k \right)$

ESPBoost

- Hypothesis space: the set of combined predictions

$$\mathcal{H}_{ESPBoost}(\mathbf{x}) = \left\{ h(\mathbf{x}) : \arg \max_{y \in \mathcal{Y}} \tilde{h}(\mathbf{x}, y) \right\}$$

- Objective Function $F : \mathbb{R}_+^T \rightarrow \mathbb{R}$

$$F(\boldsymbol{\alpha}) = \frac{1}{ml} \sum_{i=1}^m \sum_{k=1}^l \exp \left\{ - \sum_{t=1}^T \alpha_t \rho \left(\tilde{h}_t^k, \mathbf{x}_i, \mathbf{y}_i \right) \right\}$$

- Apply coordinate descent.

ESPBoost: algorithm

Algorithm 2 ESPBoost Algorithm.

Inputs: $S = ((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m))$; set of experts $\{h_1, \dots, h_p\}$.

for $i = 1$ **to** m **and** $k = 1$ **to** l **do**

$$\mathcal{D}_1(i, k) \leftarrow \frac{1}{ml}$$

end for

for $t = 1$ **to** T **do**

$$\mathbf{h}_t \leftarrow \operatorname{argmin}_{\mathbf{h} \in \mathcal{H}} \mathbb{E}_{(i, k) \sim \mathcal{D}_t} [\mathbf{1}_{\mathbf{h}^k(\mathbf{x}_i) \neq y_i^k}]$$
$$\epsilon_t \leftarrow \mathbb{E}_{(i, k) \sim \mathcal{D}_t} [\mathbf{1}_{\mathbf{h}_t^k(\mathbf{x}_i) \neq y_i^k}]$$
$$\alpha_t \leftarrow \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$
$$Z_t \leftarrow 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

for $i = 1$ **to** m **and** $k = 1$ **to** l **do**

$$\mathcal{D}_{t+1}(i, k) \leftarrow \frac{\exp(-\alpha_t \rho(\tilde{\mathbf{h}}_t^k, \mathbf{x}_i, \mathbf{y}_i)) \mathcal{D}_t(i, k)}{Z_t}$$

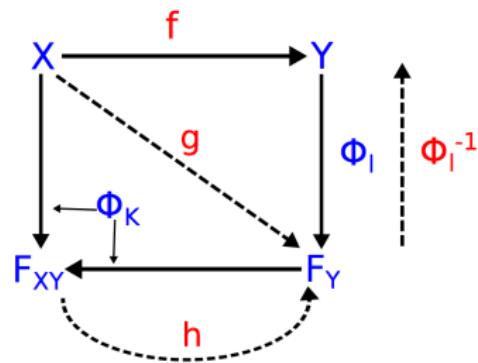
end for

end for

Return $\tilde{\mathbf{h}} = \sum_{t=1}^T \alpha_t \tilde{\mathbf{h}}_t$

Generalized Kernel Approach

- Problem Setting: Given $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$, we want to learn a mapping f from \mathcal{X} to \mathcal{Y} .



- $I : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ a kernel function
- $\mathcal{F}_{\mathcal{Y}}$: RKHS associated with I
- Φ_I : the mapping from \mathcal{Y} to $\mathcal{F}_{\mathcal{Y}}$

- Step 1: Learn the mapping g from \mathcal{X} to $\mathcal{F}_{\mathcal{Y}}$
- Step 2: Find the pre-image of $g(x)$

Generalized Kernel Approach

- Step 1: learn the mapping $g : \mathcal{X} \rightarrow \mathcal{F}_{\mathcal{Y}}$
- Preliminaries
 - Operator-valued kernels
 - Function-valued RKHS

Operator-valued Kernels

- $\mathcal{L}(\mathcal{F}_{\mathcal{Y}})$ be the set the bounded operators $\mathcal{T} : \mathcal{F}_{\mathcal{Y}} \rightarrow \mathcal{F}_{\mathcal{Y}}$
- Non-negative $\mathcal{L}(\mathcal{F}_{\mathcal{Y}})$ – valued kernel $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{L}(\mathcal{F}_{\mathcal{Y}})$ such that:
 - $\forall x_i, x_j \in \mathcal{X}, K(x_i, x_j) = K(x_j, x_i)^*$.
 - For any $m > 0$, $\{(x_i, \varphi_i)_{i=1, \dots, m}\} \subseteq \mathcal{X} \times \mathcal{F}_{\mathcal{Y}}$,
 $\sum_{i,j=1}^m \langle K(x_i, x_j) \varphi_j, \varphi_i \rangle_{\mathcal{F}_{\mathcal{Y}}} \geq 0$.
- Note: $*$ denotes adjoint operator, i.e. $\forall \varphi_1, \varphi_2 \in \mathcal{F}_{\mathcal{Y}}$,
 $\langle K(\varphi_1), \varphi_2 \rangle_{\mathcal{F}_{\mathcal{Y}}} = \langle \varphi_1, K^*(\varphi_2) \rangle_{\mathcal{F}_{\mathcal{Y}}}$

Function-valued RKHS

- A Hilbert space $\mathcal{F}_{\mathcal{X}\mathcal{Y}}$ of functions $g : \mathcal{X} \rightarrow \mathcal{F}_{\mathcal{Y}}$ is a **$\mathcal{F}_{\mathcal{Y}} - valued$ RKHS** if there is a non-negative $\mathcal{L}(\mathcal{F}_{\mathcal{Y}}) - valued$ kernel K with the following properties:
 - $\forall x \in \mathcal{X}, \forall \varphi \in \mathcal{F}_{\mathcal{Y}}$, the function $K(x, \cdot) \varphi \in \mathcal{F}_{\mathcal{X}\mathcal{Y}}$
 - $\forall g \in \mathcal{F}_{\mathcal{X}\mathcal{Y}}, \forall x \in \mathcal{X}, \forall \varphi \in \mathcal{F}_{\mathcal{Y}}$,
 $\langle g, K(x, \cdot) \varphi \rangle_{\mathcal{F}_{\mathcal{X}\mathcal{Y}}} = \langle g(x), \varphi \rangle_{\mathcal{F}_{\mathcal{Y}}}$
- Theorem: Bijection between $\mathcal{F}_{\mathcal{X}\mathcal{Y}}$ and K , as long as K is non-negative.

Kernel Ridge Regression

- Step 1: Learning $g : \mathcal{X} \rightarrow \mathcal{F}_{\mathcal{Y}}$
- Kernel Ridge Regression, with closed form solution:

$$\arg \min_{g \in \mathcal{F}_{\mathcal{X}\mathcal{Y}}} \sum_{i=1}^n \|g(x_i) - \Phi_I(y_i)\|_{\mathcal{F}_{\mathcal{Y}}}^2 + \lambda \|g\|_{\mathcal{F}_{\mathcal{X}\mathcal{Y}}}^2$$

$$g(x) = \mathbf{K}_x (\mathbf{K} + \lambda I)^{-1} \Phi_I$$

- \mathbf{K}_x : a row vector of operators, $[K(\cdot, x_i) \in \mathcal{L}(\mathcal{F}_{\mathcal{Y}})]_{i=1}^n$
- \mathbf{K} : a matrix of operators, $[K(x_i, x_j) \in \mathcal{L}(\mathcal{F}_{\mathcal{Y}})]_{i,j=1}^n$
- Φ_I : a column vector of functions $[\Phi_I(y_i) \in \mathcal{F}_{\mathcal{Y}}]_{i=1}^n$

Find Pre-image

- Step 2: Find pre-image of $g(x)$

$$\begin{aligned}f(x) &= \arg \min_{y \in \mathcal{Y}} \|g(x) - \Phi_I(y)\|_{\mathcal{F}_{\mathcal{Y}}}^2 \\&= \arg \min_{y \in \mathcal{Y}} \left\| \mathcal{K}_x (\mathcal{K} + \lambda I)^{-1} \Phi_I - \Phi_I(y) \right\|_{\mathcal{F}_{\mathcal{Y}}}^2 \\&= \arg \min_{y \in \mathcal{Y}} I(y, y) - 2 \left\langle \mathcal{K}_x (\mathcal{K} + \lambda I)^{-1} \Phi_I, \Phi_I(y) \right\rangle_{\mathcal{F}_{\mathcal{Y}}}\end{aligned}$$

- $\Phi_I(y)$ unknown, use a **generalized kernel trick**:

$$\langle \mathcal{T} \Phi_I(y_i), \Phi_I(y) \rangle = [\mathcal{T} I(y_i, \cdot)](y)$$

- Express $f(x)$ using only kernel functions:

$$f(x) = \arg \min_{y \in \mathcal{Y}} I(y, y) - 2 \left[\mathcal{K}_x (\mathcal{K} + \lambda I)^{-1} \mathcal{L}_* \right](y)$$

where \mathcal{L}_* is a column vector of $[I(y_i, \cdot)]_{i=1}^n$

Covariance-based Operator-valued Kernels

- Covariance-based operator-valued kernels:

$$K(x_i, x_j) = k(x_i, x_j) C_{YY}$$

- $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a scalar-valued kernel;
- $C_{YY} : \mathcal{F}_{\mathcal{Y}} \rightarrow \mathcal{F}_{\mathcal{Y}}$ a covariance operator defined by a random variable $Y \in \mathcal{Y}$:

$$\langle \varphi_1, C_{YY} \varphi_2 \rangle_{\mathcal{F}_{\mathcal{Y}}} = \mathbb{E} [\varphi_1(Y) \varphi_2(Y)]$$

- Empirical covariance operator

$$\hat{C}_{YY}(\varphi) = \frac{1}{n} \sum_{i=1}^n \varphi(y_i) I(\cdot, y_i)$$

- To account for the effects of input, we could also use **conditional covariance operator**

$$C_{YY|X} = C_{YY} - C_{YX} C_{XX}^{-1} C_{XY}$$

Conclusion

- Ensemble methods: ensemble learning with expended 'path experts'.
 - On-line algorithm (WMWP): efficient for learning and inference by exploiting the output structure.
 - On-line-to-batch-conversion: randomized and deterministic algorithms with learning guarantees.
 - Boosting: efficient for output structure.
- Kernel method:
 - Use a joint feature space.
 - Covariance-based operator-valued kernel to encode interactions between outputs.
 - Conditional Covariance-based operator to correlate input with 'interaction between outputs'.
 - Express the final hypothesis with only kernel functions.

Reference

- Corinna Cortes, Vitaly Kuznetsov, and Mehryar Mohri.
Ensemble methods for structured prediction.
In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 1134–1142, 2014.
- Hachem Kadri, Mohammad Ghavamzadeh, and Philippe Preux.
A Generalized Kernel Approach to Structured Output Learning.
In *International Conference on Machine Learning (ICML)*,
Atlanta, United States, June 2013.