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Outline

m Ensemble Methods for Structured Prediction[1]

m On-line learning
m Boosting

m A Generalized Kernel Approach to Structured Output Learning|[2]



Structured Prediction Problem

m Structured Output: Y =Y x ... x V.
m Loss Function: L: )Y x Y — R, decomposable.

m Training data: sample drawn i.i.d. from X x ) according to
some distribution D,

S=((x1,¥1) s (Xmy¥m)) EX XY

m Problem: find hypothesis h: X — ) with small generalization
error

Egey)~p [L(h(x),y)]



Ensemble Methods: Further assumptions

m The number of substructures / > 1 is fixed.

m Loss function L can be decomposed as a sum of loss functions
/k : yk — R+, ie.

m forally = (yl,...,y’) and y/ = (y’l,...,y”),

/
L(y.y') =k (y’ﬂy/k)

k=1
m A set of structured prediction experts hy, ..., hp:

hi (x) = (hj (x),-.., hj’- (x)),.Vi=1,..,p



Path Experts

m Intuition: one particular expert maybe better at predicting k-th
substructure, but not elsewhere.

h h e h

Figure: Path Expert

m Construct a larger set of experts, 'path experts':

H={(h,...h) k€ {l,...p} k=1, 1}, |H =p

m When selecting the best h* from #, it may not coincide with
any of original experts.



Review: Randomized Weighted Majority (WM)

m Task: find a distribution over experts.

m Initialize weights for all experts:

Wi = 1/p7./ =1,..,p

m After receiving sample (x;, y¢),

m Update weight for expert j,j =1, .., p:

Wtje—ﬂL(f/t,j,yr)

Wiyl = ,m > 0 constant

P, wje )

m Return wriy = (Wrii1, .o, Wrip)



Randomized Weighted Majority (WM)

m Apply the Weighted Majority algorithm to path experts set H.:

Wt (h) e_nL(h(Xf)vyf)
T e (B) e G

Vh e H, w1 (h)

m p' updates per round!

m Using the structure of ) and additive loss assumption, we can
reduce to p/ updates per round.



Weighted Majority Weight Pushing (WMWP)

m For every h= (h%,...h.), w(h) = [Tj_, w}

J1 T
m Enforce the weights at each substructure sum to one:

p

dowk=1vke{l,..I}
j=1

m The overall weights } ", _, w (h) will automatically sum to one!
Example: p =2,/ =2,

1,2 1,2 1,2 1,2 _ (1 1 2 2\ _
Wy Wy 4wy Wy W Wy W, W —(W1+W2)(W1—|—W2)—1



Weighted Majority Weight Pushing (WMWP)

m Initialize weights: w{; = 1/p, ¥ (k,j) € {1,....1} x {1, ..., p},
m At round t, YV (k,j) € {1,...,1} x {1, ..., p}, update weight

. Wk e—ﬂ/k(h-k(xt)dfzk)

Wy =
t+1,j _
P whe il (B (xe)yE)

m Return Wy, ..., Wy, where W, = (WU)



On-line to batch conversion

m How to define a hypothesis based on {Wj, ..., W, 1}7?
m Two steps:

Choose a good collection of distributions. P = {W4, ..., W41}
is one choice, but not necessarily the best.
Use P to define hypotheses for prediction.



On-line to batch conversion

m Step 1: Choose a good collection of distributions.

m For any collection P, define score

log &
" (P) = 17 Zce Sere We (W)L (1 () )+ My [

m Chose Ps = argminpcp I (P)




On-line to batch conversion

m Step 2: define hypotheses.
m Randomized: randomly select a path expert h € H according to

p(h):ﬁ S Wi(h),

denote the set of generated hypotheses as Hgang-

m Deterministic: defined a scoring function

1 P
(W > ZWtk,jlhﬁ(x)=yk>

WrePs j=1

/
EMVote (X>y) = H
k=

1

HMVote (X) = arg max EMVote (X> }/)
yey



Learning Guarantees

m Regret Ry

Rr = ZEfwwt [L(h(xt),ye)] — AQL Z L(h(xt), )

m For any § > 0, with probability at least 1 — 0 over sample
(xi,yi)_; drawn i.i.d from D, the following hold:

E[L (HRand < _ZEhNWL’ [L yt)] + M\/?

2T

E[L (Hrand (x) . y)] < inf E[L(h(x).y)] + R_TT Yy lOgTT‘




Learning Guarantees

m The following inequality always hold: with expectations taken
over (x,y) ~ D and h ~ p for Hrand,

E [LHam (HMVote (X) 7}’)] <2E [LHam (/HRand (X) aY)]

m Proof: by definition of Hpyvote, the following always hold:

1
21 Hiipvore ()7 S T Z ZWlehk

Wt€P5 _j 1

summing over k and take expectations over D yields the desired
results. [



AdaBoost: Review

m Hypothesis space: ‘H = {Zszl ajhj, o > 0}, where h; C H,
are base classifiers, h; : X — R.
m Objective Function: F (a) = S27, e i St hi(x)

m Apply Coordinate Descent to F ()
m Return hypothesis: h(x) = sgn <ZN:1 ajh; (X))

J



ESPBoost: hypothesis space

m How to make a convex combination of path experts? Prediction
— Score — Convex Combination of Score — "Combined’
Prediction

m For each path experts h; € H, define the score
hy : X xY — R,:

V(x,y) Xxy ht Xy Zlhkx)y
m Convex combination of score:

T
{77 = Z ahy © by derived from path experts, oy > O}

t=1
m 'Combined’ Prediction:

T
h(x) = argmax h(x, y) = arg max Z Z L )=k

yey Y&V =1 k=1



Loss Function and Upper Bound

m Normalized Hamming Loss:

1 m
p Z [Lttam (HEsPBoost (Xi) , ¥i)]

i=1

m i
1
:W Z Z 1[~7k(x,-,y,-)—maxy¢yi i—,k(th)<O

i=1 k=1

AEge{ fotten)] o

m Margin: p <77k,x,-,y,-) — h (x,-,y,-k) — argmax, hk (x,-,yk)



ESPBoost

m Hypothesis space: the set of combined predictions

HeEsppoost (X) = {h (x) :arg maxf;(x,y)}
yey

m Objective Function F : R] — R

-
F(G)Z%Z lexp{—X;atpU??,xi,y,-)}
. -

m Apply coordinate descent.



ESPBoost: algorithm

Algorithm 2 ESPBoost Algorithm.
Inputs: S = ((X1,¥1),---,(Xm,Ym)); set of experts

{hl, ey hp}

fori=1tomand k= 1toldo
Dl(’t', k) — %

end for

fort =1to T do
hy < argmin, ey B¢ kyp, [lhk(Xi)¢y§]
€t < Ei i)~ [Lns () 20]
oy < % log =<t
AR 2 ft(l — Et)
fori=1tomand k = 1to!ldo

Dt+1(i, k) - exP(_atP(Ffvzti:yi))Dt(iyk)

end for
end for
Return h = Zt 1 atht




Generalized Kernel Approach

m Problem Setting: Given (x;,y;);_; € X X ), we want to learn a
mapping f from X to ).

m/:)Y x)Y — R a kernel function

f
X\ >, B Fy: RKHS associated with /
e | m ®;: the mapping from ) to F-
\9 o O : PPINg Y
—®y . |
1 A I
P

~~~~~

m Step 1: Learn the mapping g from X to Fy,
m Step 2: Find the pre-image of g (x)



Generalized Kernel Approach

m Step 1: learn the mapping g : X — Fy

m Preliminaries

m Operator-valued kernels
m Function-valued RKHS



Operator-valued Kernels

m L (Fy) be the set the bounded operators T : Fy — Fy
m Non-negative £ (Fy) — valued kernel K : X x X — L (Fy)
such that:
| VX,',XJ‘ e X, K(thj) = K(Xj,Xi)*.

m For any m > 0, {(x;,go;),-zl } C X x Fy,

i1 (K (xi:5) ), i) 7, > 0.
m Note: * denotes adjoint operator, i.e. V1,02 € Fy,
<K(<P1),<P2>fy = (1, K* (@2)>fy



Function-valued RKHS

m A Hilbert space Fxy of functions g : X — Fy is a Fy, — valued
RKHS if there is a non-negative £ (Fy) — valued kernel K with
the following properties:

m Vx € X,V € Fy, the function K (x,-) p € Fry
m Vg e Fxy,Vx € X, Vp € Fy,
<g7 K (X’ ) 90>]-'Xy = <g (X) ’ 90>]-‘y

m Theorem: Bijection between Fxy and K, as long as K is

non-negative.



Kernel Ridge Regression

m Step 1: Learning g : X — Fy

m Kernel Ridge Regression, with closed form solution:

arg min Z llg (xi) — P ( y/)ny + A ”ngXy

g€Fxy i=1
g(x) =K (K+ M) "o,

m K,: a row vector of operators, [K (-, x;) € L (Fy)]7_;
m K: a matrix of operators, [K (x,x;) € L(Fy)]];_;

m ®;: a column vector of functions [, (y;) € Fy|'_,



Find Pre-image
m Step 2: Find pre-image of g (x)
f(x) = argmin g (x) =, ()|3,
yey

2

— arg min HKX (K+ M) ) — b, (y)

yeY Fy
= argmin/ (y,y) — 2 <KX (K+ M) o, 0, (y)>
yeY Fy

m O, (y) unknown, use a generalized kernel trick:

(T (yi), ®s (v)) = [T1(yi, )] (y)

m Express f (x) using only kernel functions:

f(x) = argmin/(y,y) — 2 [KX (K+AN? L.] ()

yey

where L. is a column vector of [/ (y;,-)]_;



Covariance-based Operator-valued Kernels

m Covariance-based operator-valued kernels:
K(Xivxj) = k(Xivxj) Cyy

B k:X xX — R ascalar-valued kernel;
m Cyy : Fy — Fy a covariance operator defined by a random
variable Y € :

(o1, Cyy2) 7, = Efp1 (V) 2 (Y)]

m Empirical covariance operator

Cyy (p) = Z @ (i) (i)

m To account for the effects of input, we could also use conditional
covariance operator

Cyyix = Cyy — Cyx C)& Cxy



Conclusion

m Ensemble methods: ensemble learning with expended 'path
experts'.

m On-line algorithm (WMWP): efficient for learning and inference
by exploiting the output structure.

m On-line-to-batch-conversion: randomized and deterministic
algorithms with learning guarantees.

m Boosting: efficient for output structure.

m Kernel method:

Use a joint feature space.

Covariance-based operator-valued kernel to encode interactions
between outputs.

m Conditional Covariance-based operator to correlate input with
"interaction between outputs’.

Express the final hypothesis with only kernel functions.
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