
Structured Prediction

Ningshan Zhang

Advanced Machine Learning, Spring 2016

Outline

Ensemble Methods for Structured Prediction[1]

On-line learning
Boosting

A Generalized Kernel Approach to Structured Output Learning[2]

Structured Prediction Problem

Structured Output: Y = Y1 × ...× Yl .

Loss Function: L : Y × Y → R+ decomposable.

Training data: sample drawn i.i.d. from X × Y according to
some distribution D,

S = ((x1, y 1) , ..., (xm, ym)) ∈ X × Y

Problem: find hypothesis h : X → Y with small generalization
error

E(x ,y)∼D [L (h (x) , y)]

Ensemble Methods: Further assumptions

The number of substructures l ≥ 1 is fixed.

Loss function L can be decomposed as a sum of loss functions
lk : Yk → R+ , i.e.

for all y =
(

y1, ..., y l
)

and y
′ =

(

y ′1, ..., y ′l
)

,

L
(

y , y
′
)

=
l
∑

k=1

lk

(

yk , y ′k
)

A set of structured prediction experts h1, ..., hp:

hj (x) =
(

h1

j (x) , ..., h
l
j (x)

)

, ∀j = 1, ..., p

Path Experts

Intuition: one particular expert maybe better at predicting k-th
substructure, but not elsewhere.

Figure: Path Expert

Construct a larger set of experts, ’path experts’:

H =
{(

h1

j1
, ..., hljl

)

, jk ∈ {1, ..., p} , k = 1, ..., l
}

, |H| = pl

When selecting the best h∗ from H, it may not coincide with
any of original experts.

Review: Randomized Weighted Majority (WM)

Task: find a distribution over experts.

Initialize weights for all experts:

w1,j = 1/p, j = 1, ..., p

After receiving sample (xt , yt),

Update weight for expert j , j = 1, .., p:

wt+1,j =
wt,je

−ηL(ŷt,j ,yt)
∑p

j=1
wt,je

−ηL(ŷt,j ,yt)
, η > 0 constant

Return wT+1 = (wT+1,1, ...,wT+1,p)

Randomized Weighted Majority (WM)

Apply the Weighted Majority algorithm to path experts set H:

∀h ∈ H,wt+1 (h) =
wt (h) e−ηL(h(xt),yt)

∑

h∈H wt (h) e−ηL(h(xt),yt)

pl updates per round!

Using the structure of Y and additive loss assumption, we can
reduce to pl updates per round.

Weighted Majority Weight Pushing (WMWP)

For every h =
(

h1
j1
, ..., hljl

)

, w (h) =
∏l

k=1
w k
jk

Enforce the weights at each substructure sum to one:

p
∑

j=1

w k
j = 1, ∀k ∈ {1, ..., l}

The overall weights
∑

h∈H w (h) will automatically sum to one!
Example: p = 2,l = 2,

w 1

1w
2

1 + w 1

1w
2

2 + w 1

2w
2

1 + w 1

2w
2

2 =
(

w 1

1 + w 1

2

) (

w 2

1 + w 2

2

)

= 1

Weighted Majority Weight Pushing (WMWP)

Initialize weights: w k
1,j = 1/p, ∀ (k, j) ∈ {1, ..., l}× {1, ..., p},

At round t, ∀ (k, j) ∈ {1, ..., l}× {1, ..., p}, update weight

w k
t+1,j =

w k
t,je

−ηlk(hkj (xt),yk
t)

∑p
j=1

w k
t,je

−ηlk(hkj (xt),yk
t)
,

Return W1, ...,WT+1, where Wt =
(

w k
t,j

)

.

On-line to batch conversion

How to define a hypothesis based on {W1, ...,WT+1}?

Two steps:

1 Choose a good collection of distributions. P = {W1, ...,WT+1}
is one choice, but not necessarily the best.

2 Use P to define hypotheses for prediction.

On-line to batch conversion

Step 1: Choose a good collection of distributions.

For any collection P, define score

Γ (P) =
1

|P|

∑

Wt∈P

∑

h∈H Wt (h) L (h (xt) , yt) +M

√

log 1

δ

|P|

Chose Pδ = arg minP∈P Γ (P)

On-line to batch conversion

Step 2: define hypotheses.

Randomized: randomly select a path expert h ∈ H according to

p (h) =
1

|Pδ|

∑

Wt∈Pδ

Wt (h) ,

denote the set of generated hypotheses as HRand .

Deterministic: defined a scoring function

h̃MVote (x , y) =
l
∏

k=1

(

1

|Pδ|

∑

Wt∈Pδ

p
∑

j=1

w k
t,j1hkj (x)=yk

)

HMVote (x) = arg max
y∈Y

h̃MVote (x , y)

Learning Guarantees

Regret RT

RT =
T
∑

t=1

Eh∼Wt [L (h (xt) , yt)]− inf
h∈H

T
∑

t=1

L (h (xt) , yt)

For any δ > 0, with probability at least 1 − δ over sample
(xi , yi)

T
i=1

drawn i.i.d from D, the following hold:

E [L (HRand (x) , y)] ≤
1

T

T
∑

t=1

Eh∼Wt [L (h (xt) , yt)] +M

√

log T
δ

T
,

E [L (HRand (x) , y)] ≤ inf
h∈H

E [L (h (x) , y)] +
RT

T
+ 2M

√

log 2T
δ

T
.

Learning Guarantees

The following inequality always hold: with expectations taken
over (x , y) ∼ D and h ∼ p for HRand ,

E [LHam (HMVote (x) , y)] ≤ 2 E [LHam (HRand (x) , y)]

Proof: by definition of HMVote , the following always hold:

1

2
1Hk

MVote (x) ̸=yk ≤
1

|Pδ|

∑

Wt∈Pδ

p
∑

j=1

w k
t,j1hkj (x)̸=yk

summing over k and take expectations over D yields the desired
results. !

AdaBoost: Review

Hypothesis space: H =
{

∑N
j=1

αjhj ,αj ≥ 0
}

, where hj ⊂ H0

are base classifiers, hj : X → R.

Objective Function: F (α) =
∑m

i=1
e−yi

∑N
j=1

αj hj (xi)

Apply Coordinate Descent to F (α)

Return hypothesis: h (x) = sgn

(

∑N
j=1

αjhj (x)
)

ESPBoost: hypothesis space
How to make a convex combination of path experts? Prediction
→ Score → Convex Combination of Score → ’Combined’
Prediction
For each path experts ht ∈ H, define the score
h̃t : X × Y → R+:

∀ (x , y) ∈ X × Y , h̃t (x , y) =
l
∑

k=1

1hkt (x)=yk

Convex combination of score:
{

h̃ =
T
∑

t=1

αt h̃t : h̃t derived from path experts,αt ≥ 0

}

’Combined’ Prediction:

h (x) = arg max
y∈Y

h̃ (x , y) = arg max
y∈Y

T
∑

t=1

l
∑

k=1

αt1hkt (x)=yk

Loss Function and Upper Bound

Normalized Hamming Loss:

1

m

m
∑

i=1

[LHam (HESPBoost (xi) , yi)]

=
1

ml

m
∑

i=1

l
∑

k=1

1h̃k(xi ,yi)−maxy ̸=yi
h̃k(xi ,y)<0

≤
1

ml

m
∑

i=1

l
∑

k=1

exp

{

−
T
∑

t=1

αtρ
(

h̃kt , x i , y i

)

}

:= F (α)

Margin: ρ
(

h̃k , x i , y i

)

= h̃k
(

x i , y k
i

)

− arg maxyk ̸=yk
i
h̃k
(

x i , y k
)

ESPBoost

Hypothesis space: the set of combined predictions

HESPBoost (x) =

{

h (x) : arg max
y∈Y

h̃ (x , y)

}

Objective Function F : RT
+ → R

F (α) =
1

ml

m
∑

i=1

l
∑

k=1

exp

{

−
T
∑

t=1

αtρ
(

h̃kt , x i , y i

)

}

Apply coordinate descent.

ESPBoost: algorithm

Generalized Kernel Approach

Problem Setting: Given (xi , yi)
n
i=1

∈ X × Y , we want to learn a
mapping f from X to Y .

l : Y × Y → R a kernel function

FY : RKHS associated with l

Φl : the mapping from Y to FY

Step 1: Learn the mapping g from X to FY

Step 2: Find the pre-image of g (x)

Generalized Kernel Approach

Step 1: learn the mapping g : X → FY

Preliminaries

Operator-valued kernels
Function-valued RKHS

Operator-valued Kernels

L (FY) be the set the bounded operators T : FY → FY

Non-negative L (FY)− valued kernel K : X × X → L (FY)
such that:

∀xi , xj ∈ X , K (xi , xj) = K (xj , xi)
∗.

For any m > 0,
{

(xi ,ϕi)i=1,...,m

}

⊆ X × FY ,
∑m

i ,j=1
⟨K (xi , xj)ϕj ,ϕi ⟩FY

≥ 0.

Note: * denotes adjoint operator, i.e. ∀ϕ1,ϕ2 ∈ FY ,
⟨K (ϕ1) ,ϕ2⟩FY

= ⟨ϕ1,K ∗ (ϕ2)⟩FY

Function-valued RKHS

A Hilbert space FXY of functions g : X → FY is a FY − valued
RKHS if there is a non-negative L (FY)− valued kernel K with
the following properties:

∀x ∈ X ,∀ϕ ∈ FY , the function K (x , ·)ϕ ∈ FXY

∀g ∈ FXY ,∀x ∈ X ,∀ϕ ∈ FY ,
⟨g ,K (x , ·)ϕ⟩FXY

= ⟨g (x) ,ϕ⟩FY

Theorem: Bijection between FXY and K , as long as K is
non-negative.

Kernel Ridge Regression

Step 1: Learning g : X → FY

Kernel Ridge Regression, with closed form solution:

arg min
g∈FXY

n
∑

i=1

∥g (xi)− Φl (yi)∥
2

FY
+ λ ∥g∥2

FXY

g (x) = K x (K + λI)−1
Φl

K x : a row vector of operators, [K (·, xi) ∈ L (FY)]
n
i=1

K : a matrix of operators, [K (xi , xj) ∈ L (FY)]
n
i ,j=1

Φl : a column vector of functions [Φl (yi) ∈ FY]
n
i=1

Find Pre-image
Step 2: Find pre-image of g (x)

f (x) = arg min
y∈Y

∥g (x)− Φl (y)∥
2

FY

= arg min
y∈Y

∥

∥

∥
K x (K + λI)−1

Φl − Φl (y)
∥

∥

∥

2

FY

= arg min
y∈Y

l (y , y)− 2
〈

K x (K + λI)−1
Φl ,Φl (y)

〉

FY

Φl (y) unknown, use a generalized kernel trick:

⟨T Φl (yi) ,Φl (y)⟩ = [T l (yi , ·)] (y)

Express f (x) using only kernel functions:

f (x) = arg min
y∈Y

l (y , y)− 2
[

K x (K + λI)−1
L.
]

(y)

where L. is a column vector of [l (yi , ·)]
n
i=1

Covariance-based Operator-valued Kernels
Covariance-based operator-valued kernels:

K (xi , xj) = k (xi , xj)CYY

k : X × X → R a scalar-valued kernel;
CYY : FY → FY a covariance operator defined by a random
variable Y ∈ Y:

⟨ϕ1,CYYϕ2⟩FY
= E [ϕ1 (Y)ϕ2 (Y)]

Empirical covariance operator

ĈYY (ϕ) =
1

n

n
∑

i=1

ϕ (yi) l (·, yi)

To account for the effects of input, we could also use conditional
covariance operator

CYY |X = CYY − CYXC
−1

XXCXY

Conclusion

Ensemble methods: ensemble learning with expended ’path
experts’.

On-line algorithm (WMWP): efficient for learning and inference
by exploiting the output structure.
On-line-to-batch-conversion: randomized and deterministic
algorithms with learning guarantees.
Boosting: efficient for output structure.

Kernel method:

Use a joint feature space.
Covariance-based operator-valued kernel to encode interactions
between outputs.
Conditional Covariance-based operator to correlate input with
’interaction between outputs’.
Express the final hypothesis with only kernel functions.

Reference

Corinna Cortes, Vitaly Kuznetsov, and Mehryar Mohri.
Ensemble methods for structured prediction.
In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1134–1142, 2014.

Hachem Kadri, Mohammad Ghavamzadeh, and Philippe Preux.
A Generalized Kernel Approach to Structured Output Learning.
In International Conference on Machine Learning (ICML),
Atlanta, United States, June 2013.

