Convergence of Eigenspaces in Kernel Principal Component Analysis

Shixin Wang

Advanced machine learning

April 19, 2016

- Motivation
- Result
- Summary

2/18

- Motivation
- Result
- Summary

Kernel Principal Component Analysis

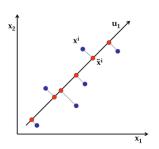
- PCA: To find the most relevant lower-dimension projection of data.
- KPCA: Extend PCA to data mapped in a kernel feature space.
- Assumption: Target dimensionality of the projected data is fixed: D.
- Objective: To find the span S_D of the first D eigenvectors of the covariance matrix.

How reliable is our estimation?

- Problem: The true covariance matrix is no known and has to be estimated from the available data.
- Question: How reliable is the D-eigenspace \hat{S}_D of the empirical covariance matrix compared to the D-eigenspace S_D of the true covariance matrix?
 - ① The average reconstruction error of \hat{S}_D converges to the reconstruction error of S_D . (Blanchard et al 2004, Shawe-Taylor 2005)
 - ② But this does not mean \hat{S}_D converges to S_D ! since different subspaces can have a very similar reconstruction error.

Why analyze the behavior of \hat{S}_D ?

- PCA or KPCA is often used merely as a preprocessing step, so the behavior of \hat{S}_D is more important than just reconstruction error.
- We want to use u_1 in the future, so we need to show that $\hat{x_i}$ converges to the true ones, rather than only norm of $x_i \hat{x_i}$.



- Motivation
- Result
- Summary

Notation

- X: interest variable taking values in measurable space \mathcal{X} , with distribution P.
- $\varphi(x) = k(x, \dot{})$: feature mapping of $x \in \mathcal{X}$ into a reproduction kernel Hilbert space \mathcal{H}
- D: target dimensionality of projected data
- C: covariance matrix of variable $\varphi(X)$
- $\lambda_1 > \lambda_2 > ...$: simple nonzero eigenvalues of C
- $\phi_1, \phi_2...$: associated eigenvectors
- C_n: empirical covariance matrix

8 / 18

Notation

- $S_D = span\{\phi_1, ...\phi_D\}$: D-dimensional subspace of \mathcal{H} such that the projection of $\varphi(X)$ on S_D has maximum average squared norm
- \hat{S}_D : subspace spanned by the first D eigenvectors of C_n .
- P_{S_D} : the orthogonal projectors of X on S_D
- $P_{\hat{S}_D}$: the orthogonal projectors of X on \hat{S}_D

9/18

First Bound

Tow steps to obtain the first bound:

- A non-asympotic bound on the (Hilbert-Schmidt) norm of the difference between the empirical and the true covariance operators
- An operator perturbation result bounding the difference between spectral projectors of two operators by the norm of their difference.

Lemma 1

Lemma

Supposing that $\sup_{x \in \mathcal{X}} k(x, x) \leq M$, with probability greater than $1 - e^{-\xi}$,

$$||C_n-C|| \leq \frac{2M}{\sqrt{n}}(1+\sqrt{\frac{\xi}{2}})$$

Proof of Lemma 1

Proof.

Theorem (Bounded Differences Inequality)

Suppose that $X_1, ..., X_n \in \mathcal{X}$ are independent, and $f: \mathcal{X}^n \to R$, Let $c_1, ..., c_n$ satisfy

$$\sup_{x_1,\ldots,x_n,x_i'} \|f(x_1,\ldots,x_n) - f(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n)\| \le c_i,$$

 $\forall i = 1, ..., n$ Then,

$$P(f - E[f] \ge t) \le exp(\frac{-2t^2}{\sum_{i=1}^{n} c_i^2})$$

Proof of Lemma 1

Proof.

$$||C_n - C|| = ||\frac{1}{n} \sum_{i=1}^n C_{X_i} - E[C_X]||$$

$$||C_X|| = ||\varphi(X) \otimes \varphi(X)^*|| = k(X, X) \le M$$

Here
$$c_i = \frac{2M}{n}$$
, $t = 2M\sqrt{\frac{\xi}{2n}}$, then we get

$$P\left\{ \|C_n - C\| - E[\|C_n - C\|] \ge 2M\sqrt{\frac{\xi}{2n}} \right\}$$

$$\le exp(\frac{-2t^2}{\sum_{i=1}^{n} c_i^2}) = exp(\frac{-\frac{4M^2\xi}{n}}{4M^2/n}) = e^{-\xi}$$

Theorem 2

Theorem 2 (Simplified Version of [7], Theorem 5.2) Let A be a symmetric positive Hilbert-Schmidt operator of the Hilbert space $\mathcal H$ with simple positive eigenvalues $\lambda_1 > \lambda_2 > \ldots$ For an integer r such that $\lambda_r > 0$, let $\widetilde{\delta}_r = \delta_r \wedge \delta_{r-1}$ where $\delta_r = \frac{1}{2}(\lambda_r - \lambda_{r+1})$. Let $B \in HS(\mathcal H)$ be another symmetric operator such that $||B|| < \widetilde{\delta}_r/2$ and (A+B) is still a positive operator with simple nonzero eigenvalues.

Let $P_r(A)$ (resp. $P_r(A+B)$) denote the orthogonal projector onto the subspace spanned by the r-th eigenvector of A (resp. (A+B)). Then, these projectors satisfy:

$$||P_r(A) - P_r(A+B)|| \le \frac{2||B||}{\tilde{\delta}_r}.$$

$$\left\|P_{S_D} - P_{\widehat{S}_D}\right\| \leq \left(\sum_{r=1}^D \widetilde{\delta}_r^{-1}\right) \frac{4M}{\sqrt{n}} \left(1 + \sqrt{\frac{\xi}{2}}\right)$$

Improved bound

Theorem 3 Let A be a symmetric positive Hilbert-Schmidt operator of the Hilbert space \mathcal{H} with simple nonzero eigenvalues $\lambda_1 > \lambda_2 > \dots$ Let D > 0 be an integer such that $\lambda_D > 0$, $\delta_D = \frac{1}{2}(\lambda_D - \lambda_{D+1})$. Let $B \in HS(\mathcal{H})$ be another symmetric operator such that $||B|| < \delta_D/2$ and (A+B) is still a positive operator. Let $P^D(A)$ (resp. $P^D(A+B)$) denote the orthogonal projector onto the subspace spanned by the first D eigenvectors A (resp. (A+B)). Then these satisfy:

$$||P^{D}(A) - P^{D}(A+B)|| \le \frac{||B||}{\delta_{D}}.$$
 (1)

Improved bound

Theorem 4 Assume that $\sup_{x \in \mathcal{X}} k(x,x) \leq M$. Let S_D, \widehat{S}_D be the subspaces spanned by the first D eigenvectors of C, resp. C_n defined earlier. Denoting $\lambda_1 > \lambda_2 > \dots$ the eigenvalues of C, if D > 0 is such that $\lambda_D > 0$, put $\delta_D = \frac{1}{2}(\lambda_D - \lambda_{D+1})$ and

$$B_D = \frac{2M}{\delta_D} \left(1 + \sqrt{\frac{\xi}{2}} \right) .$$

Then provided that $n \geq B_D^2$, the following bound holds with probability at least $1 - e^{-\xi}$:

$$\left\| P_{S_D} - P_{\widehat{S}_D} \right\| \le \frac{B_D}{\sqrt{n}} \,. \tag{2}$$

- Motivation
- Result
- Summary

Summary

- Provide finite sample size confidence bounds of the eigenspaces of Kernel-PCA
- Prove a bound in which the complexity factor for estimating the eigenspace S_D by its empirical counterpart depends only on the inverse gap between the D-th and D+1-th eigenvalues
- Restriction: Assume that the eigenvalues to be simple.

