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A. Deep ensembles

In class, we presented a guarantee for the SRM method. This problem
suggests you to derive a similar guarantee for deep ensembles or the principle
of voted risk minimization (VRM). We will largely adopt the notation used in
class. Let X denote the input space and let H1, . . . ,Hp families of functions
mapping from X to R. F is the convex hull of the union of these families:

F = conv

( p⋃
k=1

Hk

)
=

{ N∑
j=1

αjhj : αj ≥ 0,

N∑
j=1

αj ≤ 1

}
.

Let F be the objective function defined for all f =
∑N

j=1 αjhj ∈ F by

F (f) = R̂S,ρ(f) +
4

ρ

N∑
j=1

αjRm(Hk(j)),

where Hk(j) is the least complex family containing hj . Define the VRM
solution as the function fVRM minimizing F :

fVRM = argmin
f∈F

F (f).

Use Corollary 1 and Corollary 2 (see appendix) to show the following result.
For any δ > 0, with probability at least 1 − δ over the choice of a sample
S of size m drawn i.i.d. according to Dm, the following inequality holds for
fVRM:

R(fVRM) ≤ inf
f∈F

(
Rρ(f) +

8

ρ

N∑
j=1

αjRm(Hk(j))

+
4

ρ

√
log p

m

[
1 +

√⌈
log
[ ρ2m

log p

]⌉])
+

√
log 4

δ

2m
,
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with Rρ(f) = E[Φρ(yf(x))], where Φρ is the margin loss function: Φρ(x) =
min

(
1,max

(
0, 1− x

ρ

))
for all x ∈ R.

Note that the bound applies in particular with the right-hand side func-
tion chosen to be f∗, the one minimizing F : fVRM = argminf∈F F (f).

Solution: Let C = 2
ρ

√
log p
m

[
1 +

√⌈
log
[
ρ2m
log p

]⌉]
. Then, by Corollary 1 and

Corollary 2, the following holds:

Pr
[
R(fVRM)−Rρ(f∗)−

8

ρ

N∑
j=1

α∗jRm(Hk(j))− 2C > ε
]

≤ Pr
[
R(fVRM)− F (fVRM)− C >

ε

2

]
+ Pr

[
F (fVRM)−Rρ(f∗)−

8

ρ

N∑
j=1

α∗jRm(Hk(j))− C >
ε

2

]

≤ 2e−
mε2

2 + Pr
[
F (f∗)−Rρ(f∗)−

8

ρ

N∑
j=1

α∗jRm(Hk(j))− C >
ε

2

]

= 2e−
mε2

2 + Pr
[
R̂S(f∗)−Rρ(f∗)−

4

ρ

N∑
j=1

α∗jRm(Hk(j))− C >
ε

2

]
= 2e−

mε2

2 + 2e−
mε2

2 = 4e−
mε2

2 .

The proof is completed by setting the right-hand side to δ. ut

B. Zero-sum games

In class, we gave a proof of von Neumann’s minimax theorem by assuming
that one of the players was using the RWM algorithm. Consider the scenario
where both players use RWM at each round, which we alluded to in class.
Prove von Neumann’s minimax theorem using that scenario, proceeding as
follows.

1. Assume without loss of generality that u1 ≤ 1. Let pt be the distribu-
tion defined at the tth round by the row player and qt the one for the
column player. Show that

max
p

1

T

T∑
t=1

E
a1∼p
a2∼qt

[u1(a)]− RT
T
≤ min

q

1

T

T∑
t=1

E
a1∼pt
a2∼q

[u1(a)] +
RT
T
.
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Solution: By the definition of the regret of the RWM algorithm played
by the row player, we can write

1

T

T∑
t=1

E
a1∼pt
a2∼qt

[u1(a)] ≤ min
q

1

T

T∑
t=1

E
a1∼pt
a2∼q

[u1(a)] +
RT
T
.

Similarly, for the column player,

− 1

T

T∑
t=1

E
a1∼pt
a2∼qt

[u1(a)] ≤ min
p
− 1

T

T∑
t=1

E
a1∼p
a2∼qt

[u1(a)] +
RT
T

⇔ 1

T

T∑
t=1

E
a1∼pt
a2∼qt

[u1(a)] ≥ max
p

1

T

T∑
t=1

E
a1∼p
a2∼qt

[u1(a)]− RT
T
.

Combining the inequalities, we obtain

max
p

1

T

T∑
t=1

E
a1∼p
a2∼qt

[u1(a)]− RT
T
≤ 1

T

T∑
t=1

E
a1∼pt
a2∼qt

[u1(a)] ≤ min
q

1

T

T∑
t=1

E
a1∼pt
a2∼q

[u1(a)] +
RT
T
.

2. Use the previous inequality and the regret bound for RWM to prove
von Neumann’s minimax theorem.

Solution: The inequality between the left-most and right-most terms can be
rewritten as follows

max
p

E
a1∼p
a2∼ 1

T

∑T
t=1 qt

[u1(a)]− RT
T
≤ min

q
E

a1∼ 1
T

∑T
t=1 pt

a2∼q

[u1(a)] +
RT
T

⇒ max
p

E
a1∼p
a2∼ 1

T

∑T
t=1 qt

[u1(a)]− RT
T
≤ max

p
min
q

E
a1∼p
a2∼q

[u1(a)] +
RT
T

⇒ min
q

max
p

E
a1∼p

a2∼q

[u1(a)]− RT
T
≤ max

p
min
q

E
a1∼p
a2∼q

[u1(a)] +
RT
T
.

Using RT
T = O(1/

√
T ) and taking T → +∞ proves the result. ut
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C. Correlated Equilibria

Consider the game defined by the following matrix:
A B

A (8, 8) (1, 9)
B (9, 1) (0, 0)

1. Which are the pure Nash equilibria for this game?

Solution:

Consider first (B,B). If we are the row player and column player is
playing B then we are better off playing A since that gives a payoff of
1 against 0. Therefore, (B,B) is not a Nash equilibrium.

Next consider (A,A). If we are the row player and the column player
is playing A then we are better off playing B since this gives a payoff
of 9 against 8 if we are playing A. Therefore, (A,A) is not a Nash
equilibrium.

Now consider (A,B). If we are the row player again and column player
is playing B, then we do not have incentive to switch from A to B since
in that case we will have a smaller payoff (0 against 1). If we are a
column player and row player is playing A then we do not have any
incentive to switch from B to A since that leads to a smaller payoff (8
against 9). Therefore, (A,B) is a Nash equilibrium.

By symmetry, we conclude that (B,A) is also a Nash equilibrium.

2. Find a mixed Nash equilibrium. Which is the expected payoff for the
row player?

Solution: Suppose (prow, pcol) is a mixed Nash equilibrium. Then ei-
ther prow(A) > 0 and prow(B) > 0 or pcol(A) > 0 and pcol(B) > 0. We
consider the case that prow(A) > 0 and prow(B) > 0. Then the ex-
pected payoff of playing A and playing B must be the same for the row
player assuming (prow, pcol) is a mixed Nash equilibrium. Otherwise,
if A has a higher payoff then row player has an incentive to switch
to pure strategy only playing A which would contradict the fact that
(prow, pcol) is a mixed Nash equilibrium.

We use this observation to figure out pcol. Note that if pcol(A) = p
this implies that

p · 8 + (1− p) · 1 = p · 9 + (1− p) · 0
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which leads to p = 1/2. A symmetric argument leads us to conclude
that ((1/2, 1/2), (1/2, 1/2)) is a mixed Nash equilibrium.

The expected payoff of the row player is 9/2.

3. Suppose now that a correlation device draws each of (A,A), (A,B),
(B,A) with equal probability. Prove that this defines a correlated
equilibrium. What is the expected payoff? How does it compare to
the expected payoff for a mixed Nash equilibrium found in the previous
question?

Solution:

We first show that this is a correlated equilibrium. Consider row first
player. We have the following:

1

3
· u(A,A) +

1

3
· u(A,B) =

10

3
≥ 1

3
=

1

3
· u(A,A) +

1

3
· u(B,A)

1

3
· u(B,A) + 0 · u(B,B) = 3 ≥ 8

3
=

1

3
· u(A,A) + 0 · u(B,A),

where u denotes a payoff of the row player. Since the same set of linear
inequalities holds for column player as well by symmetry, we conclude
that this is indeed a correlated equilibrium.

The expected payoff of the row player in this case is

1

3
· u(A,A) +

1

3
· u(A,B) +

1

3
· u(B,A) = 6

which is higher than for a mixed Nash equilibrium found in the previ-
ous question.

This a version of the so-called Chicken Game where each player either
dares or chickens out. This game is famous for his relevance to the
Cuban missile crisis.
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A Appendix

Corollary 1 Assume p > 1. Fix ρ > 0. Then, for any δ > 0, with prob-
ability at least 1 − δ over the choice of a sample S of size m drawn i.i.d.
according to Dm, the following inequality holds for all f =

∑N
j=1 αjhj ∈ F :

R(f) ≤ R̂S,ρ(f) +
4

ρ

N∑
j=1

αjRm(Hk(j))

+
2

ρ

√
log p

m

[
1 +

√⌈
log
[ ρ2m

log p

]⌉]
+

√
log 2

δ

2m
.

Corollary 2 Assume p > 1. Fix ρ > 0. Then, for any δ > 0, with prob-
ability at least 1 − δ over the choice of a sample S of size m drawn i.i.d.
according to Dm, the following inequality holds for all f =

∑N
j=1 αjhj ∈ F :

R̂S,ρ(f) ≤ Rρ(f) +
4

ρ

N∑
j=1

αjRm(Hk(j))

+
2

ρ

√
log p

m

[
1 +

√⌈
log
[ ρ2m

log p

]⌉]
+

√
log 2

δ

2m
.

6


