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A. Non-stationary sequences.

The regret guarantees we discussed in class were typically with respect to
the best fixed expert in hindsight. In many situations, any fixed expert
admits a large loss. For example, if the problem consisted of predicting
the US electricity usage out of N bins over a decade, no single bin value
would be accurate since the power usage admits some seasonality with higher
levels during July and August, or January and February. This leads us to
considering instead non-stationary reference expert sequences (iy,...,ir),
it € [1, N], with at most k changes, that is k indices ¢ € [1,T] with i; # i¢41.

1. What is the total number M of such expert sequences?

Solution: For each j € [0, k], there are (Tgl) ways of choosing a change
time ¢ with i; # 4441 since ¢ is in [1,7 — 1]. There are N possible
ways of choosing an expert in the first part of sequence, N — 1 ways
of choosing a different one in the next and similarly for other parts.
Thus, the total number of ways of assigning an expert to each such
sequence is N(N — 1)/. The total number of such experts is therefore

k

M:§<T;1>N(N—1)j. 0

2. Assume that k¥ < T'/2. Give a randomized on-line algorithm for this
problem (you can assume that the algorithm knows 7') and a bound
on its expected regret expressed in terms of T and k (hint: you can
express the bound in terms of the binary entropy function H using the
inequality Zf:o (?) < eTH(F) for k < T/2, where H(p) = —plog(p) —
(1 —p)log(l —p)).



Solution: We can run RWM with the M experts. The regret of the
algorithm is then

RT <2 TlogM.

We can bound M as follows:
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logM = (T —1)H (Tkl) + (k+1)log N.

Thus, the regret of the algorithm is bounded as follows:

e <2yfr o om0 (2] ;

3. What is the computational complexity of your algorithm? Can you
suggest a way to improve it?

Solution: The complexity of RWM run with M experts is in O(MT),
which is prohibitive. However, one can exploit the structure of the
experts to design a more efficient algorithm. O

B. Mirror descent.

Let X and )Y be compact and convex sets and ¥: X x) — R a function such
that (-, y) is convex for any y € ) and ¥(z, -) concave for any = € X'. Then,
by the generalized von Neumann’s theorem, there exists (z*,y*) € X x Y
such that
U(z*,y*) = inf sup ¥(z,y) = sup inf ¥(z,y).
TEX yey yey TEX

We seek an approximate solution (x,y) to (z*, y*) whose quality is measured
by maxycy V(z,y) — ming ey ¥(z',y). For any z, we denote by 6¥x(x,y)
an element of the subgradient of ¥(-,y) at = and similarly for 0¥y (x,y).



1. Prove that for any (x,y) € X x Y there exists (2/,3) € X x Y such
that

max ¥ (z,y") — min ¥(z',y) <
y'ey z'eX

e [

—0Uy(z,y)| |y—y

Solution: For any y € Y, let 2’ = argmin,cy ¥(z,y). Similarly, for
any x € X, let y' = argmax, ¢y, V(z,y). Since for any y, ¥(-,y) is a
convex function of the first argument, the following inequality holds

U(z,y) — (@', y) < 0Vy(z,y) - (v — ),

for any (z,y) € X x Y. By concavity of ¥(z, ), we also have
U(z,y') = U(z,y) < —0Cy(z,y) - (y —¢'),

for any (z,y) € X x Y. Therefore, we have that

max ¥ (z,y') — min (2, y) = U(z,y') — ¥(z,y) + V(z,y) — U(2, y)

y'ey r'eX
< { 5\I/X(:L‘,y)] . [x—x’]
T 0Vy(zy)] -y

which concludes the proof. O

2. Let ®x: Cxy — R be a Legendre type function that is ay-strongly
convex with respect to a norm || - || x, with Cy an open set containing
X and similarly with ®y: Cy — R ay-strongly convex with respect
to a norm || - ||y. Assume that WUy (-,y) is Ly-Lipschitz with respect
to || - |lx, for any y, and similarly that W y(z,-) is Ly-Lipschitz with
respect to || - ||y, for any z. Use the inequality of the previous question
to derive a mirror descent solution for this problem.

Solution: We propose the following variant of the mirror descent algo-
rithm. Starting with

x1 < argmin @y (),
zeX

y1 « argmin ®y(y),
yey



for each iteration t =1,...,T, we let
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Yt+1 = argmin < — Wy (2, yt) -y + —Bay, (v || yt)>,
yeY n

where Bg denotes the Bregman divergence associated to ® and 7 is a
learning rate which we specify below. The solution returned by this

algorithm is % ZtT:l(CUta Yt)- =

. Give a convergence guarantee for your algorithm in terms of 73 =
sup,ecx Px(x) — Px (1), a similar quantity r%, defined for ), ay and

ay.
Solution: Observe that by convexity of ¥y the following holds:
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Similarly, by concavity of ¥y, the following holds:

T
1
~min¥(z, < - 7§ U(

t=1

Therefore, combining these inequalities with part 1 leads to the fol-
lowing bound:

1
< =y U - v
= @ ﬁeaifxy T Z (21, ) (@, yt)

< max ( Z&I’th,yt (2 — )

A s )
t=1



Applying, the same arguments as in the proof of convergence of the
mirror descent algorithm with fi(x) = 0V x(x¢, y¢) - ©, we have that
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for any x € X. Note that above result is using the fact that ¢y is a
ax-strongly convex Legendre type function and Wy is Ly-Lipschitz.

Similarly,
T 2 2
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for any y € Y. Therefore, solving for the optimal n leads to the
following convergence guarantee
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which provides a convergence guarantee for the algorithm in part 2.
O

C. Continuous bandit.

Consider the problem where at each round t € [1,T], the player selects an
action x; € [0,1] and incurs a loss fi(z;) where f;: [0,1] — R is L-Lipschitz.

1. Give an upper bound on the pseudo-regret of the algorithm that con-
sists of running EXP3 with the action set A = {K, Y 1} in terms
of K, T, and L (note: here, the pseudo-regret of this algorithm is with
respect to the best fixed action in hindsight in [0, 1]).

Solution: The pseudo-regret of EXP3 reduced to A is bounded by
V2KTlog K. For any = € [0, 1], there exists a(x) € A with |[z—a(x)| <



%. Thus, since fs are L-Lipschitz,

T T
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2. Choose K = {(bgT)l/‘g] and give a big-O upper bound on the pseudo-

regret of the algorithm.

Solution: For that choice of K, the regret of the algorithm is bounded by
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