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A. Non-stationary sequences.

The regret guarantees we discussed in class were typically with respect to
the best fixed expert in hindsight. In many situations, any fixed expert
admits a large loss. For example, if the problem consisted of predicting
the US electricity usage out of N bins over a decade, no single bin value
would be accurate since the power usage admits some seasonality with higher
levels during July and August, or January and February. This leads us to
considering instead non-stationary reference expert sequences (i1, . . . , iT ),
it ∈ [1, N ], with at most k changes, that is k indices t ∈ [1, T ] with it 6= it+1.

1. What is the total number M of such expert sequences?

Solution: For each j ∈ [0, k], there are
(
T−1
j

)
ways of choosing a change

time t with it 6= it+1 since t is in [1, T − 1]. There are N possible
ways of choosing an expert in the first part of sequence, N − 1 ways
of choosing a different one in the next and similarly for other parts.
Thus, the total number of ways of assigning an expert to each such
sequence is N(N − 1)j . The total number of such experts is therefore

M =
k∑
j=0

(
T − 1

j

)
N(N − 1)j . ut

2. Assume that k ≤ T/2. Give a randomized on-line algorithm for this
problem (you can assume that the algorithm knows T ) and a bound
on its expected regret expressed in terms of T and k (hint : you can
express the bound in terms of the binary entropy function H using the

inequality
∑k

i=0

(
T
i

)
≤ eTH( k

T
) for k ≤ T/2, where H(p) = −p log(p)−

(1− p) log(1− p)).
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Solution: We can run RWM with the M experts. The regret of the
algorithm is then

RT ≤ 2
√
T logM.

We can bound M as follows:

M =
k∑
j=0

(
T − 1

j

)
N(N − 1)j ≤

k∑
j=0

(
T − 1

j

)
Nk+1 ≤ e(T−1)H( k

T−1
)Nk+1.

Thus,

logM = (T − 1)H

(
k

T − 1

)
+ (k + 1) logN.

Thus, the regret of the algorithm is bounded as follows:

RT ≤ 2

√
T

[
(k + 1) logN + (T − 1)H

(
k

T − 1

)]
. ut

3. What is the computational complexity of your algorithm? Can you
suggest a way to improve it?

Solution: The complexity of RWM run with M experts is in O(MT ),
which is prohibitive. However, one can exploit the structure of the
experts to design a more efficient algorithm. ut

B. Mirror descent.

Let X and Y be compact and convex sets and Ψ: X×Y → R a function such
that Ψ(·, y) is convex for any y ∈ Y and Ψ(x, ·) concave for any x ∈ X . Then,
by the generalized von Neumann’s theorem, there exists (x∗, y∗) ∈ X × Y
such that

Ψ(x∗, y∗) = inf
x∈X

sup
y∈Y

Ψ(x, y) = sup
y∈Y

inf
x∈X

Ψ(x, y).

We seek an approximate solution (x, y) to (x∗, y∗) whose quality is measured
by maxy′∈Y Ψ(x, y′)−minx′∈X Ψ(x′, y). For any x, we denote by δΨX (x, y)
an element of the subgradient of Ψ(·, y) at x and similarly for δΨY(x, y).
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1. Prove that for any (x, y) ∈ X × Y there exists (x′, y′) ∈ X × Y such
that

max
y′∈Y

Ψ(x, y′)− min
x′∈X

Ψ(x′, y) ≤
[

δΨX (x, y)
−δΨY(x, y)

]
·
[
x− x′
y − y′

]
.

Solution: For any y ∈ Y, let x′ = argminx∈X Ψ(x, y). Similarly, for
any x ∈ X , let y′ = argmaxy∈Y Ψ(x, y). Since for any y, Ψ(·, y) is a
convex function of the first argument, the following inequality holds

Ψ(x, y)−Ψ(x′, y) ≤ δΨY(x, y) · (x− x′),

for any (x, y) ∈ X × Y. By concavity of Ψ(x, ·), we also have

Ψ(x, y′)−Ψ(x, y) ≤ −δΨY(x, y) · (y − y′),

for any (x, y) ∈ X × Y. Therefore, we have that

max
y′∈Y

Ψ(x, y′)− min
x′∈X

Ψ(x′, y) = Ψ(x, y′)−Ψ(x, y) + Ψ(x, y)−Ψ(x′, y)

≤
[

δΨX (x, y)
−δΨY(x, y)

]
·
[
x− x′
y − y′

]
,

which concludes the proof. ut

2. Let ΦX : CX → R be a Legendre type function that is αX -strongly
convex with respect to a norm ‖ · ‖X , with CX an open set containing
X and similarly with ΦY : CY → R αY -strongly convex with respect
to a norm ‖ · ‖Y . Assume that ΨX (·, y) is LX -Lipschitz with respect
to ‖ · ‖X , for any y, and similarly that ΨX (x, ·) is LY -Lipschitz with
respect to ‖ ·‖Y , for any x. Use the inequality of the previous question
to derive a mirror descent solution for this problem.

Solution: We propose the following variant of the mirror descent algo-
rithm. Starting with

x1 ← argmin
x∈X

ΦX (x),

y1 ← argmin
y∈Y

ΦY(y),
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for each iteration t = 1, . . . , T , we let

xt+1 = argmin
x∈X

(
δΨX (xt, yt) · x+

1

η
BΦX (x ‖ xt)

)
,

yt+1 = argmin
y∈Y

(
− δΨY(xt, yt) · y +

1

η
BΦY (y ‖ yt)

)
,

where BΦ denotes the Bregman divergence associated to Φ and η is a
learning rate which we specify below. The solution returned by this
algorithm is 1

T

∑T
t=1(xt, yt). ut

3. Give a convergence guarantee for your algorithm in terms of r2
X =

supx∈X ΦX (x)− ΦX (x1), a similar quantity r2
Y defined for Y, αX and

αY .

Solution: Observe that by convexity of ΨX the following holds:

max
y∈Y

Ψ

(
1

T

T∑
t=1

xt, y

)
≤ max

y∈Y

1

T

T∑
t=1

Ψ(xt, y).

Similarly, by concavity of ΨY the following holds:

−min
x∈X

Ψ

(
x,

1

T

T∑
t=1

yt

)
≤ −min

x∈Y

1

T

T∑
t=1

Ψ(x, yt).

Therefore, combining these inequalities with part 1 leads to the fol-
lowing bound:

max
y∈Y

Ψ

(
1

T

T∑
t=1

xt, y

)
−min

x∈X
Ψ

(
x,

1

T

T∑
t=1

yt

)

≤ max
y∈Y

1

T

T∑
t=1

Ψ(xt, y)−min
x∈Y

1

T

T∑
t=1

Ψ(x, yt)

≤ max
(x,y)∈X×Y

1

T

T∑
t=1

Ψ(xt, y)−Ψ(x, yt)

≤ max
(x,y)∈X×Y

(
1

T

T∑
t=1

δΨX (xt, yt) · (xt − x)

− 1

T

T∑
t=1

δΨY(xt, yt) · (yt − y)

)
.
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Applying, the same arguments as in the proof of convergence of the
mirror descent algorithm with ft(x) = δΨX (xt, yt) · x, we have that

T∑
t=1

δΨX (xt, yt) · (xt − x) ≤
r2
X
η

+
ηL2
XT

2αX
,

for any x ∈ X . Note that above result is using the fact that ΦX is a
αX -strongly convex Legendre type function and ΨX is LX -Lipschitz.
Similarly,

T∑
t=1

−δΨX (xt, yt) · (yt − y) ≤
r2
Y
η

+
ηL2
YT

2αY
,

for any y ∈ Y. Therefore, solving for the optimal η leads to the
following convergence guarantee

max
y∈Y

Ψ

(
1

T

T∑
t=1

xt, y

)
−min

x∈X
Ψ

(
x,

1

T

T∑
t=1

yt

)
≤

√√√√2(r2
X + r2

Y)(
L2
X

αX
+

L2
Y

αY
)

T
,

which provides a convergence guarantee for the algorithm in part 2.
ut

C. Continuous bandit.

Consider the problem where at each round t ∈ [1, T ], the player selects an
action xt ∈ [0, 1] and incurs a loss ft(xt) where ft : [0, 1]→ R is L-Lipschitz.

1. Give an upper bound on the pseudo-regret of the algorithm that con-
sists of running EXP3 with the action set A =

{
1
K ,

2
K , . . . , 1

}
in terms

of K, T , and L (note: here, the pseudo-regret of this algorithm is with
respect to the best fixed action in hindsight in [0, 1]).

Solution: The pseudo-regret of EXP3 reduced to A is bounded by√
2KT logK. For any x ∈ [0, 1], there exists a(x) ∈ A with |x−a(x)| ≤
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1
K . Thus, since fts are L-Lipschitz,

E
[ T∑
t=1

ft(xt)− ft(x)
]

= E
[ T∑
t=1

ft(xt)− ft(a(x)) + ft(a(x))− f(x)
]

≤ E
[ T∑
t=1

ft(xt)− ft(a(x))
]

+
LT

K

≤
√

2KT logK +
LT

K
. ut

2. Choose K =
⌈
( T

log T )1/3
⌉

and give a big-O upper bound on the pseudo-
regret of the algorithm.

Solution: For that choice of K, the regret of the algorithm is bounded by

O

(√
KT logK +

L

K

)
= O

[ T 4/3

(log T )1/3
log T

]1/2

+ T 2/3(log T )1/3


= O

([
T 2/3(log T )1/3

]
+ T 2/3(log T )1/3

)
= O

(
T

2
3 (log T )

1
3

)
. ut
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