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Content of this lecture

Regret analysis of sequential prediction problems lying between full and bandit
information regimes:

• Motivation

• Nonstochastic setting:

– Brief review of background

– Feedback graphs

• Stochastic setting:

– Brief review of background

– Feedback graphs

• Examples (nonstochastic)
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Motivation
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Sequential prediction problems with partial information where items in action
space have semantic connections turning into observability dependencies of
associated losses/gains
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Background/1: Nonstochastic experts

K actions for Learner

........

For t = 1,2, . . . :

1. Losses `t(i) ∈ [0,1] are assigned deterministically by Nature
to every action i = 1 . . .K (hidded to Learner)

2. Learner picks action It (possibly using randomization) and incurs loss
`t(It)

3. Learner gets feedback information: `t(1), . . . , `t(It), . . . , `t(K)
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Background: Nonstochastic experts
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No (External, Pseudo) Regret
Goal : Given T rounds, Learner’s total loss

T∑
t=1

`t(It)

must be close to that of single best action in hindsight for Learner

Regret of Learner for T rounds:

RT = E

[
T∑
t=1

`t(It)

]
− min

i=1...K

T∑
t=1

`t(i)

Want : RT = o(T ) as T grows large (”no regret”)

Notice : No stochastic assumptions on losses, but assume for simplicity Na-
ture is deterministic and oblivious

Lower bound: [CB+97]
RT ≥ (1− o(1))

√
T lnK

2
as T , K →∞
(`t(i) random coin flips + simple probabilistic argument)

7



Exponentially-weighted Algorithm [CB+97]

total loss of action i so far

At round t pick action It = i with probability proportional to

exp

(
−η

t−1∑
s=1

`s(i)

)

• if η =
√

lnK
8T

=⇒ RT ≤
√

T lnK
2

• Dynamic η =
√

lnK
t

=⇒ RT looses constant factors
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Nonstochastic bandit problem/1

K actions for Learner

........

For t = 1,2, . . . :

1. Losses `t(i) ∈ [0,1] are assigned deterministically by Nature
to every action i = 1 . . .K (hidded to Learner)

2. Learner picks action It (possibly using randomization) and incurs loss
`t(It)

3. Learner gets feedback information: `t(It)
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Nonstochastic bandit problem/1

K actions for Learner

0.3

For t = 1,2, . . . :
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to every action i = 1 . . .K (hidded to Learner)

2. Learner picks action It (possibly using randomization) and incurs loss
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Nonstochastic bandit problem/2

Goal : same as before

Regret of Learner for T rounds:

RT = E

[
T∑
t=1

`t(It)

]
− min

i=1...K

T∑
t=1

`t(i)

Want : RT = o(T ) as T grows large (”no regret”)

Tradeoff exploration vs. exploitation
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Nonstochastic bandit problem/3: Exp3 Alg./1 [Auer+ 02]

At round t pick action It = i with probability proportional to

exp

(
−η

t−1∑
s=1

̂̀
s(i)

)
, i = 1 . . .K

̂̀
s(i) =

{
`s(i)

Prs(`s(i) is observed in round s)
if `s(i) is observed

0 otherwise

• Only one nonzero component in ̂̀t
• Exponentially-weighted alg with (importance sampling) loss estimateŝ̀

t(i) ≈ `t(i)
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Nonstochastic bandit problem/3: Exp3 Alg./2 [Auer+ 02]
Properties of loss estimates:

• Et[̂̀t(i)] = `t(i) unbiasedness

• Et[̂̀t(i)2] ≤ 1
Prt(`t(i) is observed in round t)

variance control

Regret analysis:

• Set pt(i) = Prt (It = i)

• Approximate exp(x) up to 2nd order, sum over rounds t and overapprox.:

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)− min
i=1,...,K

T∑
t=1

̂̀
t(i) ≤

lnK

η
+
η

2

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)2

• Take expectations (tower rule), and optimize over η:

RT ≤
lnK

η
+
η

2
TK =

√
2TK lnK

• Lower bound Ω(
√
TK) (improved upper bound by the INF alg. [AB09])
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Contrasting expert to nonstochastic bandit problem

Experts :

• Learner observes all losses `t(1), . . . , `t(K)

• Prt(`t(i) is observed in round t) = 1

• Regret RT = O(
√
T lnK)

Nonstochastic bandits :

• Learner only observes loss `t(It) of chosen action

• Prt(`t(i) is observed in round t) = Prt(It = i)

Note: Exp3 collapses to Exponentially-weighted alg.

• Regret RT = O(
√
TK)

Exponential gap lnK vs. K: relevant when actions are many
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Nonstochastic bandits with Feedback Graphs/1[MS11,A+13,K+14]

.

.
.

.

.

.

.

.K actions for Learner

For t = 1,2, . . . :

1. Losses `t(i) ∈ [0,1] are assigned deterministically by Nature
to every action i = 1 . . .K (hidded to Learner)

2. Feedback graph Gt = (V,Et), V = {1, . . . ,K}
generated by exogenous process (hidden to Learner) – all self-loops in-
cluded

3. Learner picks action It (possibly using randomization) and incurs loss
`t(It)

4. Learner gets feedback information: {`t(j) : (It, j) ∈ Et} + Gt
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Nonstochastic bandits with Feedback Graphs/1[MS11,A+13,K+14]
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K actions for Learner
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Nonstochastic bandits with Feedback Graphs/2: Exp3-IX

Alg. [Ne+15]

At round t pick action It = i with probability proportional to

exp

(
−η

t−1∑
s=1

̂̀
s(i)

)
, i = 1 . . .K

̂̀
s(i) =

{
`s(i)

γt + Prs(`s(i) is observed in round s)
if `s(i) is observed

0 otherwise

• Note: prob. of observing loss of action 6= prob. of playing action

• Exponentially-weighted alg with γt-biased (importance sampling) loss es-
timates ̂̀

t(i) ≈ `t(i)

• Bias is controlled by γt = 1/
√
t
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Nonstochastic bandits with Feedback Graphs/3[A+13,K+14]
Independence number α(Gt) : disregard edge orientation

1︸︷︷︸
clique: expert problem

≤ α(Gt) ≤ K︸︷︷︸
edgeless: bandit problem

Regret analysis:

• If Gt = G ∀t:

RT = Õ
(√

Tα(G)
)

(also lower bound up to logs)

• In general:

RT = O

ln(TK)

√√√√ T∑
t=1

α(Gt)


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Nonstochastic bandits with Feedback Graphs/4

Properties of loss estimates:

• pt(i) = Prt (It = i) (prob. of playing)

• Qt(i) = Prt (`t(i) is observed in round t) (prob. of observing)

• ̂̀t(i) =
`t(i)
{
`t(i) is observed in round t

}
γt +Qt(i)

• Et[̂̀t(i)] = `t(i) unbiasedness

• Et[̂̀t(i)2] ≤ 1
Qt(i)

variance control

Some details of regret analysis:

• From T∑
t=1

K∑
i=1

pt(i)̂̀t(i)− min
i=1,...,K

T∑
t=1

̂̀
t(i) ≤

lnK

η
+
η

2

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)2

• Take expectations:

RT ≤
lnK

η
+
η

2

T∑
t=1

E

[
K∑
i=1

pt(i)

Qt(i)

]
← variance
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Nonstochastic bandits with Feedback Graphs/5

i

j

j

1

Relating variance to α(G) :

• Suppose G is undirected (with self-loops)

Σ =
K∑
i=1

p(i)

QG(i)
=

K∑
i=1

p(i)∑
j : j

G−→i
p(j)

≤ |S|

where S ⊆ V is an independent set for G = (V,E)

• Init: S = ∅; G1 = G, V1 = V

– Pick i1 = argmini∈V1
QG1(i)

– Augment S ← S ∪ {i1}
– Remove i1 from V1, all its neighbors (and incident edges in G1):

Σ← Σ−
∑

j : j
G1−→i1

p(j)

QG1(j)
≥ Σ−

∑
j : j

G1−→i1

p(j)

QG1(i1)
= Σ−

QG1(i1)

QG1(i1)
= Σ− 1

– . . . get smaller graph G2 = (V2, E2) and iterate
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Nonstochastic bandits with Feedback Graphs/5

i2

j

Relating variance to α(G) :

• Suppose G is undirected (with self-loops)

Σ =
K∑
i=1

p(i)

QG(i)
=

K∑
i=1

p(i)∑
j : j

G−→i
p(j)

≤ |S|

where S ⊆ V is an independent set for G = (V,E)

• Init: S = ∅; G1 = G, V1 = V

– Pick i2 = argmini∈V2
QG2(i)

– Augment S ← S ∪ {i2}
– Remove i2 from V2, all its neighbors (and incident edges in G2):

Σ← Σ−
∑

j : j
G2−→i2

p(j)

Q
G1 (j)

≥ Σ−
∑

j : j
G2−→i2

p(j)

Q
G2 (i2)

= Σ−
QG2(i1)

QG2(i2)
= Σ−1

– . . . get smaller graph G3 = (V3, E3) and iterate
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Nonstochastic bandits with Feedback Graphs/5

i3

Relating variance to α(G) :

• Suppose G is undirected (with self-loops)

Σ =
K∑
i=1

p(i)

QG(i)
=

K∑
i=1

p(i)∑
j : j

G−→i
p(j)

≤ |S|

where S ⊆ V is an independent set for G = (V,E)

• Init: S = ∅; G1 = G, V1 = V

– Pick i3 = argmini∈V3
QG3(i)

– Augment S ← S ∪ {i3}
– Remove i3 from V3, all its neighbors (and incident edges in G3):

Σ← Σ−
∑

j : j
G3−→i3

p(j)

Q
G1 (j)

≥ Σ−
∑

j : j
G3−→i3

p(j)

Q
G3 (i3)

= Σ−
QG3(i3)

QG3(i3)
= Σ−1

– . . . get smaller graph G4 = (V4, E4) and iterate
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Nonstochastic bandits with Feedback Graphs/5

i4

Relating variance to α(G) :

• Suppose G is undirected (with self-loops)

Σ =
K∑
i=1

p(i)

QG(i)
=

K∑
i=1

p(i)∑
j : j

G−→i
p(j)

≤ |S|

where S ⊆ V is an independent set for G = (V,E)

• Init: S = ∅; G1 = G, V1 = V

– Pick i4 = argmini∈V4
QG4(i)

– Augment S ← S ∪ {i4}
– Remove i4 from V4, all its neighbors (and incident edges in G4):

Σ← Σ−
∑

j : j
G4−→i4

p(j)

Q
G1 (j)

≥ Σ−
∑

j : j
G4−→i4

p(j)

Q
G4 (i4)

= Σ−
QG4(i4)

QG4(i4)
= Σ−1

– . . . get smaller graph G4 = (V4, E4) and iterate
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Nonstochastic bandits with Feedback Graphs/6

i4
i2 i3

i11

Hence:

• Σ decreases by at most 1

• |S| increases by 1

• Potential |S|+ Σ increases over iterations:

– has minimal value at the beginning (S = ∅)
– reaches maximal value is when G becomes empty (Σ = 0)

• S is independent set by construction

• |S| ≤ α(G)

When G directed analysis gets more complicated (needs lower bound on pt(i))
and adds a logT factor in bound

Have obtained:

RT ≤
lnK

η
+
η

2

T∑
t=1

α(Gt) = O


√√√√(lnK)

T∑
t=1

α(Gt)


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Stochastic bandit problem/1

• K actions for Learner

• When picking action i at time t, Learner receives as reward independent
realization of random variable Xi : E[Xi] = µi, Xi ∈ [0,1]

• The µis are hidden to Learner

........

For t = 1,2, . . . :

1. Learner picks action It (possibly using random.) and gathers reward XIt,t

2. Learner gets feedback information: XIt,t

Goal: Optimize (pseudo)regret

RT = max
i=1...K

E

[
T∑
t=1

Xi,t

]
− E

[
T∑
t=1

XIt,t

]
= µ∗ T − E

[
T∑
t=1

XIt,t

]
=

K∑
i=1

∆i E[Ti(T )]
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Stochastic bandit problem/1

• K actions for Learner
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0.3
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Stochastic bandit problem/1
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0.3
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Stochastic bandit problem/2: UCB alg [AFC02]

At round t pick action

It = argmaxi=1...K

(
X̄i,t−1 +

√
ln t

Ti,t−1

)

• Ti,t−1 = no. of times reward of action i has been observed so far

• X̄i,t−1 = 1
Ti,t−1

∑
s≤t−1 : Is=iXi,s = average reward of action i observed so far

(Pseudo)Regret:

RT = O

((
K∑
i=1

1

∆i

)
lnT +K

)
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Stochastic bandits with feedback graphs/1

• K actions for Learner, arranged into a fixed graph G = (V,E)

• When picking action i at time t, Learner receives
as reward independent realization of
random variable Xi : E[Xi] = µi, but also
reward of nearby actions in G

• The µis are hidden to Learner
..

.

0.1

0.3
0.4

0.3

0.7
For t = 1,2, . . . :

1. Learner picks action It (possibly using random.) and gathers reward XIt,t

2. Learner gets feedback information: {Xj,t : (It, j) ∈ E}

Goal: Optimize (pseudo)regret

RT = max
i=1...K

E

[
T∑
t=1

Xi,t

]
− E

[
T∑
t=1

XIt,t

]
= µ∗ T − E

[
T∑
t=1

XIt,t

]
=

K∑
i=1

∆i E[Ti(T )]
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Stochastic bandits with feedback graphs/2: UCB-N [Ca+12]

At round t pick action

It = argmaxi=1...K

(
X̄i,t−1 +

√
ln t

Oi,t−1

)

• Oi,t−1 = no. of times reward of action i has been observed so far

• X̄i,t−1 = 1
Oi,t−1

∑
s≤t−1 : Is

G−→i
Xi,s = average reward of action i observed so far
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Stochastic bandits with feedback graphs/3

c(G) = 4

Clique covering number χ(G) : assume G is undirected

1︸︷︷︸
clique: expert problem

≤ α(G) ≤ χ(G) ≤ K︸︷︷︸
edgeless: bandit problem

Regret analysis:

• Given any partition C of V into cliques: C = {C1, C2, . . . , C|C|}

• RT = O

∑
C∈C

maxi∈C ∆i

mini∈C ∆
2
i

lnT +K


• Sum over ≤ χ(G) regret terms (but can be improved to “≤ α(G)”)

• Term K replaced by χ(G) by modified alg.

• No tight lower bounds available
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Simple examples/1: Auctions (nonstoc.)

Each price reveals revenue of itself 
+ revenue of any higher price

price

Revenue (= 1- Loss)

b
t

b2

revealed after play

1

b2

played I

tFeedback graph G

• Second-price auction with reserve (seller side)
highest bid revealed to seller (e.g. AppNexus)

• Auctioneer is third party

• After seller plays reserve price It, both seller’s revenue and highest bid
revealed to him/her

• Seller/Player in a position to observe all revenues for prices j ≥ It
• α(G) = 1: RT = O

(
ln(TK)

√
T
)

(expert problem up to logs) [CB+17]
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Simple examples/2: “Contextual” bandits (nonstoc.)[Auer+02]

K = 8    N = 3

K predictors

fi : {1 . . . T} → {1 . . . N}, i = 1 . . .K,

each one having the same N << K actions

Learner’s “action space” is the set of K predictors

For t = 1,2, . . . :

1. `t(j) ∈ [0,1] are assigned deterministically by Nature
to every action j = 1 . . . N (hidded to Learner)

2. Learner observes f1(t) f2(t) . . . fK(t)

3. Learner picks predictor fIt (possibly using randomization) and incurs loss
`t(fIt(t))

4. Learner gets feedback information: `t(fIt(t))

Feedback graph Gt on K predictors made up of ≤ N cliques

{i : fi(t) = 1} {i : fi(t) = 2} . . . {i : fi(t) = N}

Independence number: α(Gt) ≤ N ∀t
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