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Content of this lecture

Regret analysis of sequential prediction problems lying between full and bandit
information regimes:

e Motivation

e Nonstochastic setting:
— Brief review of background

— Feedback graphs

e Stochastic setting:
— Brief review of background

— Feedback graphs

e Examples (nonstochastic)



Motivation

Sequential prediction problems with partial information where items in action
space have semantic connections turning into observability dependencies of
associated losses/gains

Action space

Action space




Background/1: Nonstochastic experts

K actions for Learner

010161616101020

Fort=1,2,...:

1. Losses ¢.(i7) € [0, 1] are assigned deterministically by Nature
to every action : =1... K (hidded to Learner)

2. Learner picks action I; (possibly using randomization) and incurs loss
aen

3. Learner gets feedback information: 4,(1),...,4(l;),..., 0 (K)
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No (External, Pseudo) Regret
Goal : Given T rounds, Learner’s total loss

T
> a(Iy)
t=1

must be close to that of single best action in hindsight for Learner
Regret of Learner for T" rounds:

T T
; ft(ft)] — erqu ; (1)

Want : Ry = o(T) as T grows large (" no regret”)

Rr=E

Notice : No stochastic assumptions on losses, but assume for simplicity Na-
ture is deterministic and oblivious

Lower bound: Tin K CB+497
Rr > (1-o(1))y/— e

as T', K — oo
(4+(z) random coin flips + simple probabilistic argument)



Exponentially-weighted Algorithm [CB4-97]

At round t pick action I; = ¢ with probability proportional to

t—1
exp <—"7 Zes(i)>

s=1
\

total loss of action i so far

o if77=\/|g—,l{< > RTS\/TISK

e Dynamic n = w% =i Rr looses constant factors




Nonstochastic bandit problem/1
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Nonstochastic bandit problem/1

SIGISIC10201010

Fort=1,2,...:

1. Losses 4:(i) € [0, 1] are assigned deterministically by Nature
to every action 1 = 1... K (hidded to Learner)

2. Learner picks action I; (possibly using randomization) and incurs loss
(1)

3. Learner gets feedback information: ¢.(1;)
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Nonstochastic bandit problem/2
Goal : same as before

Regret of Learner for 1" rounds:

T T
Rr =E ;et(m] - zrq?_thzt(i)

Want : Ry = o(T) as T grows large (" no regret”)

Tradeoff exploration vs. exploitation

12



Nonstochastic bandit problem/3: Exp3 Alg./1 [Auer+ 02]

At round t pick action I; = ¢ with probability proportional to
t—1
exp <—n Z&(@), i=1...K
s=1

R £.(2) if ¢,(3) is observed
L) = { W

Pr,(¢,(i) 1S observed in round s)
otherwise

e Only one nonzero component in 4

e Exponentially-weighted alg with (importance sampling) loss estimates

0(3) ~ £,(3)

13



Nonstochastic bandit problem/3: Exp3 Alg./2 [Auer+ 02]
Properties of loss estimates:

o E.[0:(i)] = £:(3) unbiasedness

-~ . 2 1 .
o Eifti(1)7] < Pr.(4(i) i1s observed in round t) variance control

Regret analysis:
e Set pt(i) = Pr; (It = ’L)

e Approximate exp(x) up to 2nd order, sum over rounds ¢ and overapprox.:

Zzptum(z)— min Zm) UL Zzptu)et(z)

t=1 =1 t=1i=1

e Take expectations (tower rule), and optimize over 7:

In K
Rr < — + TK V2TK In K

n

e Lower bound Q(vVTK) (improved upper bound by the INF alg. [ABO09])
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Contrasting expert to nonstochastic bandit problem

Experts :
e Learner observes all losses 4:(1),...,4:(K)
e Pr.(4(i) is observed in round t) =1
e Regret Ry = O(VTInK)
Nonstochastic bandits :
e Learner only observes loss 4:(1I;) of chosen action

o Pr:(4(2) is observed in round t) = Pr,(I; = 1)
Note: Exp3 collapses to Exponentially-weighted alg.

e Regret Ry = O(VTK)

Exponential gap In K vs. K: relevant when actions are many
15



Nonstochastic bandits with Feedback Graphs/1[MS11,A+13,K+14

@Q,

@

O o
Fort=1,2,...: @

1. Losses ¢.(i) € [0, 1] are assigned deterministically by Nature
to every action 1 = 1... K (hidded to Learner)

K actions for Learner @

2. Feedback graph Gy = (V, E}), V={1,...,K}
generated by exogenous process (hidden to Learner) — all self-loops in-
cluded

3. Learner picks action I; (possibly using randomization) and incurs loss
0 (1)

4. Learner gets feedback information: {4:(j) : (I+,5) € Et} + Gy
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Nonstochastic bandits with Feedback Graphs/1[MS11,A+13,K+14

K actions for Learner

Fort=1,2,...:

1. Losses 4:(:) € [0, 1] are assigned deterministically by Nature
to every action 1 = 1... K (hidded to Learner)

2. Feedback graph Gy = (V, E}), V={1,...,K}
generated by exogenous process (hidden to Learner) — all self-loops in-
cluded

3. Learner picks action I; (possibly using randomization) and incurs loss
0 (1)

4. Learner gets feedback information: {4:(j) : (It,j) € Et} + Gy
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Nonstochastic bandits with Feedback Graphs/2: Exp3-IX
Alg. [Ne+15]

At round t pick action I; = 7 with probability proportional to
t—1
exp <—77 Zﬁs(z‘)>, i=1...K
s=1

. 20 if £,(i) is observed
ls(i) =

v + Pr.(e.(i) IS observed in round s)
o) otherwise

e Note: prob. of observing loss of action # prob. of playing action

e Exponentially-weighted alg with ~,-biased (importance sampling) loss es-
timates

(i) = (i)
e Bias is controlled by v = 1/v/t
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Nonstochastic bandits with Feedback Graphs/3[A+13,K+414]
Independence number a(Gy) : disregard edge orientation

| < < a(Gy < \ K,'
clique: expert problem edgeless: bandit problem

Regret analysis:
o If G = G Vt.

Rr=0 (x/Toz(G))

(also lower bound up to logs)

e In general:

T
Rr =0 | In(TK),| Y a(G)
t=1
21



Nonstochastic bandits with Feedback Graphs/4

Properties of loss estimates:

o pi(i) = Pry (I = 1) (prob. of playing)
o (Q:(1) = Pry (4(3) is observed in round t) (prob. of observing)
. 0(i) = () {e(i) is observed in round t}

Q:(7)
o Et[@(i)] = 4:(2) unbiasedness
1 d Et[Zﬁ(Z)Q] <

Ql(i) variance control
t

Some details of regret analysis:

e From . X In K
> Y p(@aG) - _min Zmz) +g Zzptu)et(z)
t=1 =1 t=1 =1
e [ake expectations: T
n .
Ry < —|— — E < variance
2 tzzl [_1 Qt(z)]
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Nonstochastic bandits with Feedback Graphs/5
Relating variance to a(G) :

e Suppose G is undirected (with self-loops)

p(%) p(2)
Z . Q5 Z y <18

where S C V is an independent set for G = (V,E)

o Init: S=0; Gi1=G, 1 =V
— Pick i1 = argmin,cy, Q% ()
— Augment S « SU{i1}
— Remove 7; from Vi, all its neighbors (and incident edges in G1):
p() 26), Q% (ir)
ST — >3 — =y =3 1
2 e(nZTT 2 guen T T v

j] >711 jj >’Ll

— . . . get smaller graph G> = (15, E») and iterate
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Nonstochastic bandits with Feedback Graphs/5
Relating variance to a(G) :

e Suppose G is undirected (with self-loops) /j
O Q\d
p(%) p(2)
> = < |5]
Z o Z o0
where S C V is an independent set for G = (V,E)

e Init: S=0; Gi1=G, 1 =V
— Pick ip = argmin,cy, Q“>(4)
— Augment S « SU{i2}
— Remove i» from V5, all its neighbors (and incident edges in G»):

p(4) p(4) Q% (i1)
> Z—E —>Z—§ =3 =3>_-1
T Z Q%G = Q 92 (i2) '
jij—>is J i j—>is 2

— . . . get smaller graph G3 = (V3, E3) and iterate
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Nonstochastic bandits with Feedback Graphs/5
Relating variance to a(G) :

e Suppose G is undirected (with self-loops) Q
\ 3/ TN
p(3) p(2) i
=y oy MO s
< Q4 (4) o, p(7)

where S C V is an independent set for G = (V,E)
o Init: S=0; G1=G, 1 =V
— Pick i3 = argmin;cy, Q% (4)
— Augment S « SU{i3}
— Remove i3 from V3, all its neighbors (and incident edges in G3):

p(7) p(7) Q% (i3)
> 2 — —— 7 >3 =2 — => -1
vE X QG 2 Q 3 (is) '
jij—ris J jij—ris 3

— . . . get smaller graph G4 = (V4, E4) and iterate
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Nonstochastic bandits with Feedback Graphs/5
Relating variance to a(G) :

e Suppose G is undirected (with self-loops)

(@) (@)
== Zc;%) Z . Ok

where S C V is an independent set for G = (V,E)

e Init: S=0;, G1=G, 1=V
— Pick s = argmin;cy, Q% (i)
— Augment S + S U {is}

)

— Remove i4 from V4, all its neighbors (and incident edges in Ga):

S
14

G1 ,.
i, @ () Jii—si,

— . . . get smaller graph G4 = (V4, E4) and iterate

=23 -1
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Nonstochastic bandits with Feedback Graphs/6
Hence:

e > decreases by at most 1
e |S| increases by 1 @ O
e Potential |S|+ X increases over iterations: ‘
— has minimal value at the beginning (S = 0) ‘

— reaches maximal value is when G becomes empty (> = 0)
e S is independent set by construction
o S| <a(G)

When G directed analysis gets more complicated (needs lower bound on p:(2))
and adds a logT' factor in bound

Have obtained:

In K d
Ry < — + = Za(Gt) = (In K) Za(Gt)
t=1

27



Stochastic bandit problem/1
e K actions for Learner

e \When picking action 2 at time t, Learner receives as reward independent
realization of random variable X; : E[X;] = u,, X; €[0,1]

e The u;s are hidden to Learner

LDOLLLOOLO

Fort=1,2,...:
1. Learner picks action I; (possibly using random.) and gathers reward Xy ;
2. Learner gets feedback information: Xy ;

Goal: Optimize (pseudo)regret

T T T K
> Xiy| —E [Z X[,,t] = u*T —E [Z Xw] =) AE[T(T)]
=1

Rr = max E
i=1..K

28



Stochastic bandit problem/1
e K actions for Learner

e \When picking action z at time ¢, Learner receives as reward independent
realization of random variable X; : E[X;] = u,, X; €[0,1]

e T he u;s are hidden to Learner

DOOL@LOLLL

Fort=1,2,...:

1. Learner picks action I; (possibly using random.) and gathers reward Xy, ;

2. Learner gets feedback information: Xy ;

Goal: Optimize (pseudo)regret

ZXZ/

T

K
ZXL ] =u'T—E [Z Xf,.L] =Y AE[T(T)]
1=1

t=1

Ry = maxE — K
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Stochastic bandit problem/1
e K actions for Learner

e \When picking action 7 at time ¢, Learner receives as reward independent
realization of random variable X; : E[X;] = w,, X; €[0,1]

e The u;s are hidden to Learner

GIGISIC1001010

Fort=1,2,...:
1. Learner picks action I; (possibly using random.) and gathers reward X1t
2. Learner gets feedback information: Xy ;

Goal: Optimize (pseudo)regret

T K
ZXH _E [Z Xy, ] =T —F [Z XM] — Z A E[T(T)]
=1

t=1

RT— max K

30



Stochastic bandit problem/1
e K actions for Learner

e When picking action ¢ at time ¢, Learner receives as reward independent
realization of random variable X; : E[X;] = w,, X; €[0,1]

e T he u;s are hidden to Learner

GIGIOIC10201010

Fort=1,2,...:
1. Learner picks action I; (possibly using random.) and gathers reward Xj,;
2. Learner gets feedback information: Xy ;

Goal: Optimize (pseudo)regret

T T
Fr = anlaé(E [Z X@'at] —k ;Xlt,t] =p T—-EKE

t=1

T K
> th,t] =) AE[T(T)]
1=1

t=1
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Stochastic bandit problem/2: UCB alg [AFCO02]

At round t pick action

_ Int
I; = argmax;—; g <X¢,t—1 + )
Tit—1

Y

e T;:—1 = no. of times reward of action ¢ has been observed so far

T — 1 o . .
® Xit—1= 7~ Dis<t—1:1= \i,s — average reward of action ¢ observed so far

(Pseudo)Regret:

32



Stochastic bandits with feedback graphs/1
e K actions for Learner, arranged into a fixed graph G = (V, E)

e When picking action ¢ at time ¢, Learner receives
as reward independent realization of
random variable X; : E[X;] = u;, but also
reward of nearby actions in G

@v\

0 je

Fort=1,2,...: @

1. Learner picks action I; (possibly using random.) and gathers reward Xy ;

e T he u;s are hidden to Learner

2. Learner gets feedback information: {X;: : (I+,5) € E}

Goal: Optimize (pseudo)regret

T T

T K
> Xft,t] = AE[T(T)]
1=1

t=1
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Stochastic bandits with feedback graphs/2: UCB-N [Ca+12]

At round t pick action

O;+—1

Y

_ Int¢
It = argmax;—1. g (Xi,tl + )

e O;;—1 = no. of times reward of action 7 has been observed so far

— 1 . .
[ ] 1 = - et
Xit-1 0. ngt—lzlsi)i Xis average reward of action ¢ observed so far
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Stochastic bandits with feedback graphs/3
Clique covering number x(G) : assume G is undirected

x(G) =4
| 1 <a(@ < xG) < v
clique: expert problem edgeless: bandit problem

Regret analysis:
e Given any partition C of V into cliques: C = {C1,C>,...,Cj}

MaX;co 2\;
Rr=0|Y" icC 2 INT + K
CeC min;ec A,

e Sum over < x(G) regret terms (but can be improved to “< a(G)")
e Term K replaced by x(G) by modified alg.

No tight lower bounds available
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Simple examples/1: Auctions (nonstoc.)

Revenue (= 1- Loss)

Feedback graph G,

bz / revealed after play
O O E) O
/ "

b ) b | price Each price reveals revenue of itself

S5
0
O
E)
0
)
O
%

+ revenue of any higher price

e Second-price auction with reserve (seller side)
highest bid revealed to seller (e.g. AppNexus)

e Auctioneer is third party

e After seller plays reserve price I;, both seller’'s revenue and highest bid
revealed to him/her

e Seller/Player in a position to observe all revenues for prices j > I,

e a(G)=1: Ry =0 (IN(TK)VT) (expert problem up to logs) [CB+17]
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Simple examples/2: “Contextual” bandits (nonstoc.)[Auer+402]
K predictors

fi :{1... T} -{1...N}, i=1...K
each one having the same N << K actions
Learner’'s “action space’” is the set of K predictors

Fort=1,2,...: @
1

. 4:(j) € [0,1] are assigned deterministically by Nature K=8 N=3
to every action j =1... N (hidded to Learner)

Y

2. Learner observes f1(t) fo(t) ... fx(t)

3. Learner picks predictor f; (possibly using randomization) and incurs loss

G(f1.(t))
4. Learner gets feedback information: 4:(f1.(t))

Feedback graph G; on K predictors made up of < N cliques
i i)=1} {i: fi®®) =2}y ... {i: fi(t) =N}
Independence number: a(G) < N Vi
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