Advanced Machine Learning

Active Learning

MEHRYAR MOHRI
MOHRI@
COURANT INSTITUTE & GOOGLE RESEARCH
Active Learning Setup

- Passive learning:
 - IID sample \(((x_1, y_1), \ldots, (x_m, y_m)) \sim D^m \) is drawn.
 - learner receives full labeled sample.

- Active learning:
 - IID sample \(((x_1, y_1), \ldots, (x_m, y_m)) \sim D^m \) is drawn.
 - learner has access to \((x_1, \ldots, x_m)\).
 - learner can request the label \(y_i \) of point \(x_i \).
 - objective: fewer label requests than in passive learning.
Key Active Learning Problem

Tension:

- requesting label of new point to gain more information.
- sample bias induced by the label queries.
Favorable Example

- Binary classification problem in \mathbb{R}:
 - H: threshold functions.
 - data assumed separable.

- Sample complexity for determining θ^* within ϵ:
 - supervised learner needs $O\left(\frac{1}{\epsilon}\right)$ samples since at least one point is needed in $[\theta^* - \epsilon, \theta^* + \epsilon]$.
 - active learner needs only $O\left(\log\frac{1}{\epsilon}\right)$ using binary search.

exponential improvement!
Negative Result

Non-realizable case:

- stochastic or deterministic labels.
- if Bayes error is $\beta > 0$, the sample complexity of any active learning algorithm is at least
 $$\Omega \left(\frac{\beta^2}{\epsilon^2} \right).$$
- thus, lower bound matches passive learning upper bound $O \left(\frac{1}{\epsilon^2} \right)$.

(Kääriäinen, 2006)
CAL Algorithm

Assume realizable case with hypothesis set H.

CAL(H)

1. $H_1 \leftarrow H$
2. for $t \leftarrow 1$ to T do
3. if $(\exists h, h' \in H_t : h(x_t) \neq h'(x_t))$ then
4. $y_t \leftarrow \text{QUERYLABEL}(x_t)$
5. $H_{t+1} \leftarrow \{h \in H_t : h(x_t) = y_t\}$
6. else $H_{t+1} \leftarrow H_t$
7. return H_{T+1}
CAL Algorithm

Simple algorithm, but:
- Computational cost of maintaining H_ts.
- Separability requirement.
Definitions

- Region of disagreement:
 \[
 \text{DIS}(H) = \{ x \in X \mid \exists h, h' \in H : h(x) \neq h'(x) \}.
 \]

- Disagreement metric:
 \[
 d(h, h') = \Pr_{x \sim D}[h(x) \neq h'(x)].
 \]

- Disagreement ball:
 \[
 B(h, r) = \left\{ h' \in H : d(h, h') \leq r \right\}.
 \]

- Disagreement coefficient (rate of disagreement decrease):
 \[
 \theta = \limsup_{r \to 0} \frac{\text{DIS}(B(h^*, r))}{r}.
 \]

(Hanneke, 2009)
Disagreement Coefficient

Property: for all \(r > 0 \), \(\text{DIS}(B(h^*, r)) \leq \theta r \).

Examples:

- threshold functions: \(\theta \leq 2 \).

 - let \(t, t' \in B(t^*, r) \), then, \(t, t' \in [t^* - \epsilon, t^* + \epsilon'] \) where
 \[
 \epsilon = \underset{\epsilon > 0}{\text{argmax}} \{ \Pr([t^* - \epsilon, t^*]) \leq r \} \quad \epsilon' = \underset{\epsilon > 0}{\text{argmax}} \{ \Pr([t^*, t^* + \epsilon]) \leq r \}.

 - thus, \(\text{DIS}(B(h^*, r)) \leq 2r \).

 - finite hypothesis sets: \(\theta \leq |H| \).

- linear separators going through the origin and uniform distribution: \(\theta \leq \pi \sqrt{N} \).
CAL Guarantees

Theorem: let H be a hypothesis set with $\text{VCdim}(H) = d$ and assume that the data is separable with disagreement coefficient θ. Then, the label complexity of CAL is bounded by

$$\tilde{O}(\theta d \log \frac{1}{\epsilon}).$$
DHM Algorithm

(According to Dasgupta, Hsu, and Monteleoni, 2007)

\[\mathcal{A}(S, T) \text{ returns hypothesis in } H \text{ consistent with } S \text{ with minimum error on } T \text{ when it exists, } \text{NIL otherwise.} \]

DHM((x_1, \ldots, x_T))

1. \(S \leftarrow \emptyset \) \quad \triangledown \text{ labels inferred}
2. \(T \leftarrow \emptyset \) \quad \triangledown \text{ labels queried}
3. \textbf{for} \ t \leftarrow 1 \textbf{ to } T \textbf{ do}
4. \quad h_+ \leftarrow A(S \cup (x_t, +1), T)
5. \quad h_- \leftarrow A(S \cup (x_t, -1), T)
6. \quad \textbf{if} \ (h_+ = \text{NIL}) \textbf{ then}
7. \quad \quad S \leftarrow S \cup \{(x_t, -1)\}
8. \quad \textbf{elseif} \ (h_- = \text{NIL}) \textbf{ then}
9. \quad \quad S \leftarrow S \cup \{(x_t, +1)\}
10. \quad \textbf{elseif} \ \hat{R}_{S\cup T}(h_+) - \hat{R}_{S\cup T}(h_-) > \Delta_t \textbf{ then}
11. \quad \quad S \leftarrow S \cup \{(x_t, -1)\}
12. \quad \textbf{elseif} \ \hat{R}_{S\cup T}(h_-) - \hat{R}_{S\cup T}(h_+) > \Delta_t \textbf{ then}
13. \quad \quad S \leftarrow S \cup \{(x_t, +1)\}
14. \quad \textbf{else} \ y_t \leftarrow \text{QUERYLABEL}(x_t)
15. \quad \quad T \leftarrow T \cup \{(x_t, y_t)\}
16. \quad \textbf{return} \ H_{T+1}
$S \cup T$ not an i.i.d. sample drawn according to D.

Δ_t is defined by $\Delta_t = \beta_t^2 + \beta_t \left(\sqrt{\hat{R}_t(h_+)} + \sqrt{\hat{R}_t(h_-)} \right)$,

with $\beta_t = 2 \sqrt{\frac{\log \left((8t^2 + t)\Pi_{2t}(H)\right) + \log \frac{1}{\delta}}{t}} = \tilde{O} \left(\sqrt{\frac{d \log t}{t}} \right)$.
Theorem: let H be a hypothesis set with $VC_{\text{dim}}(H) = d$ and disagreement coefficient θ. Then, the label complexity of DHM is bounded by

$$\tilde{O}\left(\theta \left(d \log^2 \frac{1}{\epsilon} + \frac{d\nu^2}{\epsilon^2} \right) \right),$$

where $\nu = R(h^*)$.
Heuristics

(see for example (Tong and Koller, 2002))

Idea:

- select points close to the decision surface.
- poor theory: no guarantee.
- experiments: often effective.
Recent Algorithms

 - uniformly distributed linear classifiers.
 - log-concave distributions.

- Confidence-rated predictors (Zhang and K. Chaudhuri, 2014):
 - better sample complexity than disagreement-based ones (term better than dis. coeff.).
 - more general than margin-based techniques.
 - however, computationally inefficient.
Empirical Results

(Guyon, Cawley, Dror and Lemaire, 2011)

Active learning challenge (2011):

- algorithms allowed to query labels with a budget.
- performance measured in terms of AUC.
- disappointing results compared to baseline passive learning algorithms.
References

References

- D. Cohn, L. Atlas, and R. Ladner (1994) Improving generalization with active learning, Machine Learning, 15, 201–221.

