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Learning scenario

Compact convex action set K ⊂ Rd .
For t = 1 to T :

Predict xt ∈ K.
Receive convex loss function ft : K → R.
Incur loss ft (xt ).

Bandit setting: only loss revealed, no other information.
Regret of algorithm A:

RegT (A) =
T∑

t=1

ft (xt )−min
x∈K

T∑
t=1

ft (x).
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Related settings

Online convex optimization: ∇ft (and maybe ∇2ft ,∇3ft , . . .) known
at each round.
Multi-armed bandit: K = {1,2, . . . ,K} discrete.
Zero-th order optimization: ft = f .
Stochastic bandit convex optimization: ft (x) = f (x) + εt , εt ∼ D
noisy estimate.
Multi-point bandit convex optimization: Query ft at points (xt,i )

m
i=1,

m ≥ 2.
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“Gradient descent without a gradient”

Online gradient descent algorithm:

xt+1 ← xt − η∇ft (xt ).

BCO setting: ∇ft (xt ) is not known!
BCO idea:

Find ĝt such that ĝt ≈ ∇ft (xt ).
Update

xt+1 ← xt − ηĝt .

Question: how do we pick ĝt?
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Single-point gradient estimates (one dimension)

By the fundamental theorem of calculus:

f ′(x) ≈ 1
2δ

∫ δ

−δ
f ′(x + y)dy =

1
2δ

[f (x + δ)− f (x − δ)]

= E
z∼D

[
1
δ

f (x + z)
z
|z|

]
where D(z) = δ w.p.

1
2

and = −δ w.p.
1
2

.

With enough regularity (e.g. f Lipschitz),

d
dx

1
2δ

∫ δ

−δ
f (x + y)dy =

1
2δ

∫ δ

−δ
f ′(x + y)dy .
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Single-point gradient estimates (higher dimensions)

B1 = {x ∈ Rn : ‖x‖2 ≤ 1}.
S1 = {x ∈ Rn : ‖x‖2 = 1}.∫

A dy = |A|.
By Stokes’ theorem,

∇f (x) ≈ 1
|δB1|

∫
δB1

∇f (x + y)dy =
1
|δB1|

∫
δS1

f (x + z)
z
|z|

dz

=
1
|δB1|

∫
S1

f (x + δz)zdz =
|S1|

|S1||δB1|

∫
S1

f (x + δz)zdz

=
|S1|
|δB1|

Ez∼U(S1) [f (x + δz)] =
d
δ
Ez∼U(S1) [f (x + δz)] .

With enough regularity on f ,

∇ 1
|δB1|

∫
δB1

f (x + y)dy =
1
|δB1|

∫
δB1

∇f (x + y)dy .
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Projection method [Flaxman et al, 2005]

Let f̂ (x) = 1
|δB1|

∫
δB1

f (x + y)dy .

Estimate ∇f̂ (x) by sampling on δS1(x)

Project gradient descent update to keep samples inside K:
Kδ = 1

1−δK .

BANDITPGD(T , η, δ):
x1 ← 0.
For t = 1,2, . . . ,T :

ut ← SAMPLE(S1)
yt ← xt + δut

PLAY(yt )
ft (yt )← RECEIVELOSS(yt )
ĝt ← d

δ
ft (yt )ut

xt+1 ← ΠKδ (xt − ηĝt ).
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Analysis of BANDITPGD

Theorem (Flaxman et al, 2005)

Assume diam(K) ≤ D, |ft | ≤ C, and ‖∇ft‖ ≤ L. Then after T rounds,
the (expected) regret of the BANDITPGD algorithm is bounded by:

D2

2η
+
ηC2d2T

2δ2 + δ(D + 2)LT .

In particular, by setting η = δD
Cd
√

T
and δ =

√
DCd

(D+2)LT 1/2 , the regret is

upper bounded by: O(d1/2T 3/4).
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Proof of BANDITPGD regret

For any x ∈ K, let xδ = ΠKδ(x).
f̂t (z) ≥ ft (z).
Then

T∑
t=1

E[ft (yt )− ft (x∗)]

=
T∑

t=1

E

[
ft (yt )− ft (xt ) + ft (xt )− f̂t (xt ) + f̂t (xt )− f̂t (x∗δ )

+ f̂t (x∗δ )− ft (x∗δ ) + ft (x∗δ )− ft (x∗)

]

≤
T∑

t=1

E
[
f̂t (xt )− f̂t (x∗δ )

]
+ [2δLT + δDLT ]

≤
T∑

t=1

E
[
f̂t (xt )− f̂t (x∗δ )

]
+ δ(D + 2)LT .
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Proof of BANDITPGD regret

E
[
‖ĝt‖2

]
≤ C2d2

δ2 .
Thus,

T∑
t=1

E
[
f̂t (xt )− f̂t (x∗δ )

]
≤

T∑
t=1

E
[
∇f̂t (xt ) · (xt − x∗δ )

]

=
T∑

t=1

E
[
ĝt · (xt − x∗δ )

]
=

T∑
t=1

1
2η

E
[
η2‖ĝt‖2 + ‖xt − x∗δ ‖2 − ‖xt − ηĝt − x∗δ ‖2]

≤
T∑

t=1

1
2η

E
[
η2 C2d2

δ2 + ‖xt − x∗δ ‖2 − ‖xt+1 − x∗δ ‖2
]

≤ 1
2η

E
[
‖x1 − x∗δ ‖2 + η2 C2d2

δ2

]
≤ 1

2η

[
D2 + η2 C2d2

δ2

]
.
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Revisiting projection

Goal of projection: Keep xt ∈ Kδ so that yt ∈ K.
Total “cost” of projection: δDLT .
Deficiency: completely separate from gradient descent update.
Question: is there a better way to ensure that yt ∈ K?
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Gradient Descent to Follow-the-Regularized-Leader

Let ĝ1:t =
∑t

s=1 ĝs.
Proximal form of gradient descent:

xt+1 ← xt − ηĝt

xt+1 ← argmin
x∈Rd

ηĝ1:t · x + ‖x‖2

Follow-the-Regularized-Leader: for R : Rd → R,

xt+1 ← argmin
x∈Rd

ĝ1:t · x +R(x),

BCO “wishlist” for R:
Want to ensure that xt+1 stays inside K.
Want enough “room” so that yt+1 ∈ K as well.
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Self-concordant barriers

Definition (Self-concordant barrier (SCB))

Let ν ≥ 0. A C3 function R : int(K)→ R is a ν-self-concordant barrier
for K if for any sequence (zs)∞s=1 ⊂ int(K), with zs → ∂K, we have
R(zs)→∞, and for all x ∈ K and y ∈ Rn, the following inequalities
hold:

|∇3R(x)[y , y , y ]| ≤ 2‖y‖3
x , |∇R(x) · y | ≤ ν1/2‖y‖x ,

where ‖z‖2
x = ‖z‖2

∇2R(x) = z>∇2R(x)z.
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Examples of barriers

K = B1:
R(x) = − log(1− ‖x‖2)

is 1-self-concordant.
K = {x : a>i x ≤ bi}m

i=1:

R(x) =
m∑

i=1

− log(bi − a>i x)

is m-self-concordant.
Existence of “universal barrier” [Nesterov & Nemirovski, 1994]:
every closed convex domain K admits a O(d)-self-concordant
barrier.
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Properties of self-concordant-barriers

Translation invariance:
for any constant c ∈ R, R+ z is also a SCB (so wlog, we assume
minz∈KR(z) = 0.)
Dikin ellipsoid contained in interior:
let E(x) = {y ∈ Rn : ‖y‖x ≤ 1}. Then for any x ∈ int(K),
E(x) ⊂ int(K).
Logarithmic growth away from boundary:
for any ε ∈ (0,1], let y = argminz∈KR(z) and
Ky,ε = {y + (1− ε)(x − y) : x ∈ K}. Then for all x ∈ Ky,ε,

R(x) ≤ ν log(1/ε).

Proximity to minimizer: If ‖∇R(x)‖x,∗ ≤ 1
2 , then

‖x − argminR‖x ≤ 2‖∇R(x)‖x,∗.
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Adjusting to the local geometry

Let A � 0 SPD matrix.
Sampling around A instead of Euclidean ball:

u ∼ SAMPLE(S1), x ← y + δAu

Smoothing over A instead of Euclidean ball:

f̂ (x) = Eu∼U(S1)[f (x + δAu)].

One-point gradient estimate based on A:

ĝ =
d
δ

f (x + δAu)A−1u, Eu∼U(S1)

[
ĝ
]

= ∇f̂ (x).

Local norm bound:

‖ĝ‖2
A2 ≤

d2

δ2 C2.
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BANDITFTRL [Abernethy et al, 2008; Saha and Tewari
2011]

BANDITFTRL(R, δ, η, T , x1)
For t ← 1 to T :

ut ← SAMPLE(U(S1)).
yt ← xt + δ(∇2R(xt ))−1/2ut .
PLAY(yt ).
ft (yt )← RECEIVELOSS(yt ).
ĝt ← d

δ
ft (yt )∇2R(xt )ut .

xt+1 ← argminx∈Rd ηĝ>1:tx +R(x).
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Analysis of BANDITFTRL

Theorem (Abernethy et al, 2008; Saha and Tewari, 2011)

Assume diam(K) ≤ D. Let R be a self-concordant-barrier for K,
|ft | ≤ C, and ‖∇ft‖ ≤ L. Then the regret of BANDITFTRL is upper
bounded as follows:

If (ft )T
t=1 are linear functions, then

RegT (BANDITFTRL) = Õ(T 1/2).
If (ft )T

t=1 have Lipschitz gradients, then
RegT (BANDITFTRL) = Õ(T 2/3).
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Proof of BANDITFTRL regret: linear case

Approximation error of smoothed losses:

x∗ = argminx∈K
∑T

t=1 ft (x)

x∗ε ∈ argminy∈K,dist(y,∂K)>ε ‖y − x∗‖
Because ft are linear,

RegT (BANDITFTRL) = E

[
T∑

t=1

ft (yt )− ft (x∗)

]

= E
[ T∑

t=1

ft (yt )− f̂t (yt ) + f̂t (yt )− f̂t (xt ) + f̂t (xt )− f̂t (x∗ε ) + f̂t (x∗ε )

− ft (x∗ε ) + ft (x∗ε )− ft (x∗)
]

≤ E

[
T∑

t=1

f̂t (xt )− f̂t (x∗ε )

]
+ εLT = E

[
T∑

t=1

ĝ>t (xt − x∗ε )

]
+ εLT .
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Proof of BANDITFTRL regret: linear case

Claim: for any z ∈ K,

T∑
t=1

ĝ>t (xt+1 − z) ≤ 1
η
R(z).

T = 1 case is true by definition of x2.
Assuming statement is true for T − 1:

T∑
t=1

ĝ>t xt+1 =
T−1∑
t=1

ĝ>t xt+1 + ĝ>T xT+1 ≤
1
η
R(xT ) +

T−1∑
t=1

ĝ>t xT + ĝ>T xT+1

≤ 1
η
R(xT+1) +

T−1∑
t=1

ĝ>t xT+1 + ĝ>T xT+1 ≤
1
η
R(z) +

T∑
t=1

ĝ>t z.
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Proof of BANDITFTRL regret: linear case

E

[
T∑

t=1

f̂t (xt )− f̂t (x∗ε )

]
≤

T∑
t=1

E
[
f̂t (xt )− f̂t (xt+1) + f̂t (xt+1)− f̂t (x∗ε )

]

≤
T∑

t=1

E
[
‖ĝt‖xt ,∗‖xt − xt+1‖xt

]
+

1
η
R(x∗ε )

Proximity to minimizer for SCB:
Recall:

xt+1 = argminx∈K ηĝ>1:tx +R(x)

Ft (x) = ηĝ>1:tx +R(x) is a SCB.

Proximity bound: ‖xt − xt+1‖xt ≤ ‖∇Ft (xt )‖xt ,∗ = η‖ĝt‖xt ,∗
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Proof of BANDITFTRL regret: linear case

RegT (BANDITFTRL) ≤ εLT +
T∑

t=1

E
[
η‖ĝt‖2

xt ,∗
]

+
1
η
R(x∗ε )

By the local norm bound: E
[
η‖ĝt‖2

xt ,∗
]
≤ C2d2

δ2 .

By the logarithmic growth of the SCB: 1
ηR(x∗ε ) ≤ ν log

( 1
ε

)
.

⇒ RegT (BANDITFTRL) ≤ εLT + Tη
C2d2

δ2 +
ν

η
log
(

1
ε

)
.
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Issues with BANDITFTRL in the non-linear case

Approximation error of f ∼ f̂ :
∼ δT for C0,1 functions
∼ δ2T for C1,1 functions

Variance of gradient estimates: E
[
η‖ĝt‖2

xt ,∗
]
≤ C2d2

δ2

Regret for non-linear loss functions:
O(T 3/4) for C0,1 functions
O(T 2/3) for C1,1 functions

Question: can we reduce the variance of the gradient estimates to
improve the regret?
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Variance reduction

Observation [Dekel et al, 2015]: If ḡt = 1
k+1

∑k
i=0 ĝt−i , then

‖ḡt‖2
xt ,∗ = O

(
C2d2

δ2(k + 1)

)
.

Note: averaged gradient ḡt is no longer an unbiased estimate of
∇f̂t .
Idea: If ft is sufficiently regular, then the bias will still be
manageable.
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Improving variance reduction via “optimism”

Optimistic FTRL [Rakhlin and Sridharan, 2013]:

xt+1 ← argmin
x∈K

(g1:t + g̃t+1)>x +R(x)

T∑
t=1

ft (xt )− ft (x∗) ≤ η
T∑

t=1

‖gt − g̃t‖xt ,∗ +
1
η
R(x∗)

By re-centering the averaged gradient at each step, we can further
reduce the variance:

g̃t =
1

k + 1

k∑
i=1

ĝt−i .

Variance of re-centered averaged gradients:

‖ḡt − g̃t‖2
xt ,∗ =

1
(k + 1)2

∥∥ĝt
∥∥2

xt ,∗
= O

(
C2d2

δ2(k + 1)2

)
.

Scott Yang Bandit Convex Optimization



BANDITFTRL-VR

BANDITFTRL-VR(R, δ, η, k , T , x1)
For t ← 1→ T :

ut ← SAMPLE(U(S1))

yt ← xt + δ(∇2R(xt ))−
1
2 ut

PLAY(yt )
ft (yt )← RECEIVELOSS(yt )

ĝt ← d
δ
ft (yt )(∇2R(xt ))−

1
2 ut

ḡt ← 1
k+1

∑k
i=0 ĝt−i

g̃t+1 ← 1
k+1

∑k
i=1 ĝt+1−i

xt+1 ← argminx∈Rd η(ḡ1:t + g̃t+1)>x +R(x)
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Analysis of BANDITFTRL-VR

Theorem (Mohri & Y., 2016)

Assume diam(K) ≤ D. Let R be a self-concordant-barrier for K,
|ft | ≤ C, and ‖∇ft‖ ≤ L. Then the regret of BANDITFTRL is upper
bounded as follows:

If (ft )T
t=1 are Lipschitz, then RegT (BANDITFTRL-VR) = Õ(T

11
16 ).

If (ft )T
t=1 have Lipschitz gradients, then

RegT (BANDITFTRL-VR) = Õ(T
8

13 ).
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Proof of BANDITFTRL-VR regret: Lipschitz case

Approximation: real to smoothed losses
Relate global optimum x∗ to projected optimum x∗ε .

Use Lipschitz property of losses to relate yt to xt and ft to f̂t .

RegT (BANDITFTRL-VR) = E

[
T∑

t=1

ft (yt )− ft (x∗)

]

≤ εLT + 2LδDT +
T∑

t=1

E
[
f̂t (xt )− f̂ (x∗ε )

]
.
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Proof of BANDITFTRL-VR regret: Lipschitz case

Approximation: smoothed to averaged losses

T∑
t=1

E
[
f̂t (xt )− f̂ (x∗ε )

]
=

T∑
t=1

E

[
1

k + 1

k∑
i=0

(
f̂t (xt )− f̂t−i (xt−i )

)

+
1

k + 1

k∑
i=0

(
f̂t−i (xt−i )− f̄t (x∗ε )

)
+

1
k + 1

k∑
i=0

(
f̄t (x∗ε )− f̂t (x∗ε )

)]

≤ Ck
2

+ LT sup
t∈[1,T ]

i∈[0,k∧t]

E [‖xt−i − xt‖2] +
T∑

t=1

E
[
ḡ>t (xt − x∗ε )

]
.
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Proof of BANDITFTRL-VR regret: Lipschitz case

FTRL analysis on averaged gradients with re-centering:

T∑
t=1

E
[
ḡ>t (xt − x∗ε )

]
≤ 2C2d2ηT
δ2(k + 1)2 +

1
η
R(x∗ε ).

Cumulative analysis:

RegT (BANDITFTRL-VR) ≤ εLT + 2LδDT +
Ck
2

+
2C2d2ηT
δ2(k + 1)2 +

1
η
R(x∗ε )

+ LT sup
t∈[1,T ]

i∈[0,k∧t]

E [‖xt−i − xt‖2] .
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Proof of BANDITFTRL-VR regret: Lipschitz case

Stability estimate for the actions
Want to bound: sup t∈[1,T ]

i∈[0,k∧t]
E [‖xt−i − xt‖2].

Fact: Let D be the diameter of K. For any x ∈ K and z ∈ Rd ,

D−1‖z‖x,∗ ≤ ‖z‖2 ≤ D‖z‖x .

By triangle inequality and equivalence of norms,

E [‖xt−i − xt‖2] ≤
t−1∑

s=t−i

E [‖xs − xs+1‖2]

≤ D
t−1∑

s=t−i

E [‖xs − xs+1‖xs ] ≤ D
t−1∑

s=t−i

2ηE [‖ḡs + g̃s+1 − g̃s‖xs,∗] .
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Proof of BANDITFTRL-VR regret: Lipschitz case

ḡs + g̃s+1 − g̃s = 1
k+1

∑k
i=0 ĝs−i + 1

k+1 ĝs

Thus,

E
[
‖ḡs + g̃s+1 − g̃s‖2

xs,∗
]

≤ 3
k2

∥∥∥∥∥
k−1∑
i=0

Es−i
[
ĝs−i

]∥∥∥∥∥
2

xs,∗

+
3
k2E

∥∥∥∥∥
k−1∑
i=0

ĝs−i − Es−i [ĝs−i ]

∥∥∥∥∥
2

xs,∗

+
3
k2 L

≤ 3
k2 L + 2D2L2 +

3
k2E

∥∥∥∥∥
k−1∑
i=0

ĝs−i − Es−i [ĝs−i ]

∥∥∥∥∥
2

xs,∗

 .
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Proof of BANDITFTRL-VR regret: Lipschitz case

Fact: ∀0 ≤ i ≤ k such that t − i ≥ 1,

1
2
‖z‖xt−i ,∗ ≤ ‖z‖xt ,∗ ≤ 2‖z‖xt−i ,∗.

Because the terms in the sum make up martingale difference,

E

∥∥∥∥∥
k−1∑
i=0

ĝs−i − Es−i [ĝs−i ]

∥∥∥∥∥
2

xs,∗

 ≤ 4E

∥∥∥∥∥
k−1∑
i=0

ĝs−i − Es−i [ĝs−i ]

∥∥∥∥∥
2

xs−k ,∗


≤ 4

k−1∑
i=0

E
[∥∥ĝs−i − Es−i [ĝs−i ]

∥∥2
xs−k ,∗

]

≤ 16
k−1∑
i=0

E
[∥∥ĝs−i − Es−i [ĝs−i ]

∥∥2
xs−i ,∗

]

≤ 16
k−1∑
i=0

E
[∥∥ĝs−i

∥∥2
xs−i ,∗

]
≤ 16

k−1∑
i=0

C2d2

δ2 = 16k
C2d2

δ2 .
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Proof of BANDITFTRL-VR regret: Lipschitz case

By combining the components of the stability estimate,

E [‖xt−i − xt‖2] ≤ 2ηD
t−1∑

s=t−i

√
3
k2 L + 2D2L2 +

3
k2 16k

C2d2

δ2 .

By the previous calculations,

RegT (BANDITFTRL-VR) ≤ εLT + 2LδDT +
Ck
2

+
2C2d2ηT
δ2(k + 1)2

+
1
η

log(1/ε) + LTD2ηk

√
3
k2 L + 2D2L2 +

48
k2

C2d2

δ2 .

Now set η = T−11/16d−3/8, δ = T−5/16d3/8, k = T 1/8d1/4.
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Discussion of BANDITFTRL-VR regret: Lipschitz
gradient case

Approximation of real to smoothed losses incurs a δ2D2T penalty
instead of δDT .
Rest of analysis also leads to some changes in constants.
General regret bound:

RegT (BANDITFTRL-VR) ≤ εLT + Hδ2D2T + Ck +
2C2d2ηT
δ2(k + 1)2

+
1
η

log(1/ε) + (TL + DHT )2ηkD

√
3
k2 L + 2D2L2 +

48
k2

C2d2

δ2 .

Now set η = T−8/13d−5/6, δ = T−5/26d1/3, k = T 1/13d5/3.
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Other BCO methods

Strongly convex loss functions:
Augment R in BANDITFTRL with additional regularization.
C0,1 [Agarawal et al, 2010]: O(T 2/3) regret
C1,1 [Hazan & Levy, 2014]: O(T 1/2) regret

Other types of algorithms:
Ellipsoid method-based algorithm [Hazan and Li, 2016]:
O(2d4

log(T )2dT 1/2).
Kernel-based algorithm [Bubeck et al, 2017]: O(d9.5T 1/2)
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Conclusion

BCO is a flexible framework for modeling learning problems with
sequential data and very limited feedback.
BCO generalizes many existing models of online learning and
optimization.
State-of-the-art algorithms leverage techniques from online
convex optimization and interior-point methods.
“Efficient” algorithms obtaining optimal guarantees in C0,1, C1,1

cases are still open.
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