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Learning scenario

@ Compact convex action set K ¢ RY.
@ Fort=1to T:

e Predict x; € K.
@ Receive convex loss function f; : K — R.
@ Incur loss fi(xt).

@ Bandit setting: only loss revealed, no other information.
@ Regret of algorithm A:

.
Regr(A) = Zf, Xt) )r(réi]rngt(x)
=1
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Related settings

@ Online convex optimization: Vf; (and maybe V?f;, V3f;, ...) known
at each round.

@ Multi-armed bandit: £ = {1,2,..., K} discrete.
@ Zero-th order optimization: f; = f.

@ Stochastic bandit convex optimization: fi(x) = f(x) + €, ¢t ~ D
noisy estimate.

@ Multi-point bandit convex optimization: Query f; at points (x; ;)7 ,,
m> 2.
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“Gradient descent without a gradient”

@ Online gradient descent algorithm:
Xtrq < Xt — ant(X[).

@ BCO setting: Vf;(x;) is not known!
@ BCO idea:
e Find g; such that g = Vf(x:).
e Update
Xt41 < Xt — 77@-

@ Question: how do we pick g;?
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Single-point gradient estimates (one dimension)

@ By the fundamental theorem of calculus:
F(x) ~ 1/5 F(x+ y)dy = = [(x + 8) — F(x — 6)]
~ 2 =725
1
- 5[5+ 9 J

where D(z) = § w.p. E and = —§ w.p. %

@ With enough regularity (e.g. f Lipschitz),

/
dx25/ f(x+y)dy = 25/ f'(x + y)dy.
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Single-point gradient estimates (higher dimensions)

0By ={xeR":|x|2<1}.
@ Si={xeR":|x|2=1}.
o [,dy=]Al

@ By Stokes’ theorem,

1 1 4
VX))~ — Vi(x + d:—/ f(x+2z)—dz
OV B g, VXN = 57 g, X1
1 IS4]
= f(x +6z2)zdz = f(x 4+ 6z)zdz
5811 Js, "X 020292 = 1q sy Jy, T 02)
|S1| d
\6153 | Ezoues) [f(x +62)] = EEZNU(S1)["(X+5Z)]'

@ With enough regularity on f,

1
V——- f(x+y)dy =

1
Vi(x+ y)dy.
|6B1] Jsm, 16B1] /53, ( )
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Projection method [Flaxman et al, 2005]

o Let f(X) = b fym, f(X + y)dy.

@ Estimate Vf(x) by sampling on §S+(x)
@ Project gradient descent update to keep samples inside K:

Ks = ﬂTéK.
BANDITPGD(T, 7, 9):
@ x; + 0.

@ Fort=1,2,...,T:

Ut < SAMPLE(S4)

Vi< Xt + U

PLAY(yt)

f:(y:) + RECEIVELOSS(yt)
O: < 2fi(yr)ur

X1 4= My (X — U@t)-
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Analysis of BANDITPGD

Theorem (Flaxman et al, 2005)

Assume diam(K) < D, |f;| < C, and ||Vf;|| < L. Then after T rounds,
the (expected) regret of the BANDITPGD algorithm is bounded by:

D?> nC?d’T
_l’_ e —
2n 262

. . DCd .
In particular, by setting n = o f andé = , /W’ the regret is
upper bounded by: O(d'/2T3/4).

+6(D+2)LT.
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Proof of BANDITPGD regret

@ Forany x € K, let x5 = Mg, (x).
o fi(z) > fi(2).
@ Then

;
> Elf(ye) — £(x)]
t=1

Mﬂ

E [ft(y,) — £(%) + K(x) — h(xe) + F(xe) — £ (X))

Il
BN

)

=

+i(x5) — (X)) + 7(X5) — fr(X*)]

M\i

<SE [?t(x,) _?t(xg)} + [26LT + 6DLT]

~
Il

1

Mﬂ

< S E[h(x) = 70G)] + (D +2)LT.

[k

1
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Proof of BANDITPGD regret

° E[|gille] < G&-.
@ Thus,

27715 (211Gl + 11Xt — X317 =[x — nge — X3 17]

1 C?d? A s
e i LRIl

n
1 o, 2OF] 1 [, 2O
< — — .
< 5B | -1 2| < g [P T
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Reuvisiting projection

@ Goal of projection: Keep x; € K so that y; € K.

@ Total “cost” of projection: §DLT.

@ Deficiency: completely separate from gradient descent update.
@ Question: is there a better way to ensure that y; € £?
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Gradient Descent to Follow-the-Regularized-Leader

o Let §1:t = 22:1 as-
@ Proximal form of gradient descent:

X1 < Xy — NG:

Xev1 < argminng.c - x + x|
x€ERd

@ Follow-the-Regularized-Leader: for R : R — R,

Xty1 < argmin gy - X + R(x),
Xx€ER

@ BCO “wishlist” for R:

e Want to ensure that x;,1 stays inside K.
e Want enough “room” so that y;1 € K as well.
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Self-concordant barriers

Definition (Self-concordant barrier (SCB))

Let v > 0. A C® function R : int(K) — R is a v-self-concordant barrier
for IC if for any sequence (z5)2°; C int(K), with zs — 0K, we have
R(zs) — oo, and for all x € K and y € R”, the following inequalities
hold:

VRO, v, Y1l < 2115 IVR(X) -yl < v 2|lyllx,

where ||z||2 = HZ||2V2R(X) = zTV2R(x)z.
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Examples of barriers

o K =DB:
R(x) = —log(1 — [Ix]?)
is 1-self-concordant.
o K={x:a x<b}m,:

m

R(x) = _ —log(b; — af x)
i=1
is m-self-concordant.

@ Existence of “universal barrier” [Nesterov & Nemirovski, 1994]:
every closed convex domain K admits a O(d)-self-concordant
barrier.
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Properties of self-concordant-barriers

@ Translation invariance:
for any constant c € R, R + z is also a SCB (so wlog, we assume
minzcx R(2) =0.)

@ Dikin ellipsoid contained in interior:
let £(x) ={y € R": |ly|lx < 1}. Then for any x € int(K),
E(x) Cint(K).

@ Logarithmic growth away from boundary:
for any € € (0, 1], let y = argmin,_, R(z) and
Kye={y+(1—¢)(x—y):xeK}. Thenforall x € K, ,

R(x) <wvlog(1/e).
@ Proximity to minimizer: If [VR(x)| x,. < %, then

[x —argminR|[x < 2|[VR(X)]|x,-
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Adjusting to the local geometry

@ Let A= 0 SPD matrix.
@ Sampling around A instead of Euclidean ball:

U~ SAMPLE(Sy), X <« y+dAu
@ Smoothing over A instead of Euclidean ball:
F(x) = Eynue [f(x + 5A)).
@ One-point gradient estimate based on A:

~
~

d 5
g= gf(x +5ANA U, Euoye,) [9] = VI(x).

@ Local norm bound: 7
191% < 5 C*
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BANDITFTRL [Abernethy et al, 2008; Saha and Tewari

2011]

BANDITFTRL(R, d,n, T, X1)
@ Fort«+ 1to T:
@ U; + SAMPLE(U(Sy)).
o yi ¢ Xt + 6(VER(x)) " 2uy.
PLAY(y)).
f:(y:) + RECEIVELOSS(y1).
g < 2h(y1) VER(X:) .
Xpi1 <= @rgMin, cpa N1 X + R(X).
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Analysis of BANDITFTRL

Theorem (Abernethy et al, 2008; Saha and Tewari, 2011)
Assume diam(K) < D. Let R be a self-concordant-barrier for IC,
|| < C, and ||Vf;|| < L. Then the regret of BANDITFTRL is upper
bounded as follows:
e If ()], are linear functions, then
Reg(BANDITFTRL) = O(T'/?).
e If(f)[_, have Lipschitz gradients, then
Reg(BANDITFTRL) = O(T?/3).
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Proof of BANDITFTRL regret: linear case

Approximation error of smoothed losses:
° x* =argmin, . > f(x)

H *
@ X7 € argming,cic gist(y.ax)>e 1Y — X*||
@ Because f; are linear,

Reg(BANDITFTRL) =

S

T

t=1
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Proof of BANDITFTRL regret: linear case

Claim: forany z € K,

th (X1 —2) < R(Z)

t=1

@ T =1 case is true by definition of x..
@ Assuming statement is true for T — 1:

T T—1 T—1
. 1
>0 X1 =D G X1 + 97 X741 < SROT) + > 07 X+ g7 x4
t=1 t=1
1 L, 1
ER(XTH + th X741+ 97 X741 < R (z2) + th
t=1 t=1

t=1

<
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Proof of BANDITFTRL regret: linear case

o~

S [f00) — fO) + ) — ()

T
- 1 .
< Z E [Hgl‘HXr,*”Xf — Xt+1 HXI] + ER(XG )

Proximity to minimizer for SCB:

@ Recall:
© X1 = argmin, ngieX + R(x)
o Fi(x) = ngix + R(x) is a SCB.

@ Proximity bound: |[x; — Xi1llx < [[VF(Xt)llx. = nllGitllx.«
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Proof of BANDITFTRL regret: linear case

;
. 1
Regr(BANDITFTRL) < eLT + > "E [n]g:|%,.] + E'R(XE*)
t=1

@ By the local norm bound: E [1|g|2.] < &

@ By the logarithmic growth of the SCB: %R(xj) <wvlog(1).

2 2
— Reg,(BANDITFTRL) < ¢LT + T 052d + % log (1> .
€
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Issues with BANDITFTRL in the non-linear case

@ Approximation error of f ~ [
e ~ 4T for %' functions
o ~ 62T for " functions
o Variance of gradient estimates: E []|g[2.] < &£

> 752
@ Regret for non-linear loss functions:
o O(T3*)for c%' functions
e O(T?/®)for "' functions
@ Question: can we reduce the variance of the gradient estimates to
improve the regret?
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Variance reduction

@ Observation [Dekel et al, 2015]: If §; = S o Or_i» then

_ C?d?
2 _

@ Note: averaged gradient g; is no longer an unbiased estimate of
V.

@ |dea: If f; is sufficiently regular, then the bias will still be
manageable.
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Improving variance reduction via “optimism”

@ Optimistic FTRL [Rakhlin and Sridharan, 2013]:

Xty1 argrpcin(gu + 1) X+ R(x)
(S

T T
- 1
S hix) = H(X*) <0 Y l1g— Bl + ER(X*)

t=1 t=1

@ By re-centering the averaged gradient at each step, we can further
reduce the variance:

k
~ 1 ~
gt = P ; gt—i-
@ Variance of re-centered averaged gradients:

_ 2 1 2 C?d?
9t — gt”xt,* = m Hgt”xr,* =0 (62(k+1)2> .
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BANDITFTRL-VR

BANDITFTRL-VR(R, §, 1, k, T, x1)
@ Fort«1—T:
@ ur < SAMPLE(U(Sy))
Vi < X+ 6(VPR(x:)) "2 ur
PLAY(yt)
f:(y:) + RECEIVELOSS(y:)

9t + LH)(VER(x)) 2 uy

Ot + ;(1? Zf:o @Fi

Gri1 ,(1? ZL Ot

Xei1 < @rgMin,pa 0(G1:t + Gr+1) ' X + R(X)
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Analysis of BANDITFTRL-VR

Theorem (Mohri & Y., 2016)

Assume diam(K) < D. Let R be a self-concordant-barrier for IC,
|fi| < C, and ||Vf| < L. Then the regret of BANDITFTRL is upper
bounded as follows:
e If(f;), are Lipschitz, then Reg;(BANDITFTRL-VR) = O(T).
) lf(f,),T: 1 have Lipschitz gradients, then
Reg;(BANDITFTRL-VR) = O(T).
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Proof of BANDITFTRL-VR regret: Lipschitz case

Approximation: real to smoothed losses
@ Relate global optimum x* to projected optimum x*.

@ Use Lipschitz property of losses to relate y; to x; and f; to ?,

Reg(BANDITFTRL-VR) lz fi(ye) — fi(x ]

< LT +2L5DT + Z E [?t(x,) - ?(xj)} .
t=1
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Proof of BANDITFTRL-VR regret: Lipschitz case

Approximation: smoothed to averaged losses

é[ftx, ) -3 e

;
Ck
<5+ +LT sup E[||x_ ,—Xt||2]+z [ ( 5]
ler[%[jkT/]\t] t=t
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Proof of BANDITFTRL-VR regret: Lipschitz case

FTRL analysis on averaged gradients with re-centering:

;

_ o 2C2PnT 1, .
Y E[g (x—x0)] < 2k 1) + ;R(Xe)'
t=1

Cumulative analysis:

Ck 2C%d*nT A1
- < - 4 —— - T 4 *
Reg7(BANDITFTRL-VR) < LT 4+ 2L6DT + 5 + Rk 1) + nR(xe)
+ LT sup E[||xi—i— xtll2] -
te[1,T]
ie[0,kAt]
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Proof of BANDITFTRL-VR regret: Lipschitz case

Stability estimate for the actions

@ Want to bound: sup .y E[||Xe—i — X¢||2]-
i€[0,kAt]

@ Fact: Let D be the diameter of K. For any x € K and z € RY,
D7'z|lxx < [|2ll2 < Dl|z]|x-

@ By triangle inequality and equivalence of norms,

t—1
E [|X-i = Xll2] < > E[lIXs — Xs+1]le]

s=t—i

t—1 t—1

<D Z EfllXs — Xs41llx] < D Z 2NE[(|9s + 9s+1 — Osllxe ] -

s=t—i s=t—i
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Proof of BANDITFTRL-VR regret: Lipschitz case

_ - - kK~ ~
@ Os+Qs41 —G9s = k1? > ic0 9s—i + k%gs
@ Thus,

[”Qs + Js+1 — §s||)2(s ]

k—1
3 3
< k2 ZES i gs / [ ng i — Es_i[gs—i] ] +p’-
X, ¥ X,
P 2
< —L+202L2 [ Z —Es_i[Gs-1] ] :
i=0 Xg,%
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Proof of BANDITFTRL-VR regret: Lipschitz case

@ Fact: VO << ksuchthatt—i>1,

1
112l < 12l < 20121

k—1

Z as—i - ]Es—i[as—i]

i=0

k—1
E

@ Because the terms in the sum make up martingale difference,
Z Os—i — Es_i[0s_i]
=0

2 2
Xs % Xs—ks*
k—1

<43 E[|gos - Ee iG], ]
i=0
)2(3—/'7*:|

k—1
<16 E||[gsi -
i=0

— 2 42 2 2
<163 E[|g-il7 ] < 162“ i
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Proof of BANDITFTRL-VR regret: Lipschitz case

@ By combining the components of the stability estimate,

t—1
3 3,,., C2a2
E[[|xt—i — Xtll2] < 27D el +2DPL 4 516k =

s=t—i
@ By the previous calculations,

Ck 2C%a*nT
- < —_— YRy}
Reg(BANDITFTRL-VR) < eLT 4+ 2L5DT + 5> T 2k 1 1)

1 3 48 C202
+ p log(1/€) + LTD2nk FL+2D2L2 +z s

@ Nowsetn = T-11/16g=3/8 5 — T-5/16¢3/8 k — T1/8qg1/4,
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Discussion of BANDITFTRL-VR regret: Lipschitz

gradient case

@ Approximation of real to smoothed losses incurs a 62D? T penalty
instead of §DT.

@ Rest of analysis also leads to some changes in constants.

@ General regret bound:

2C2a%nT

02(k +1)2
48 C?d?

1 3
_ — 2 [ 2 - =
+,109(1/€) + (TL+ DHT)20kDy | 5L+ 20212 + 5 =

Reg(BANDITFTRL-VR) < eLT + H?D?T + Ck +

o Now setr = T-8/13g-5/6 5 — T-5/26¢1/3 k — T1/13¢5/3,
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Other BCO methods

Strongly convex loss functions:
@ Augment R in BANDITFTRL with additional regularization.
@ C%'" [Agarawal et al, 2010]: O(T?/3) regret
@ C"'[Hazan & Levy, 2014]: O(T'/2) regret
Other types of algorithms:
@ Ellipsoid method-based algorithm [Hazan and Li, 2016]:
O0(2% log(T)AT1/2).
@ Kernel-based algorithm [Bubeck et al, 2017]: O(d®5T1/?)
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Conclusion

@ BCO is a flexible framework for modeling learning problems with
sequential data and very limited feedback.

@ BCO generalizes many existing models of online learning and
optimization.

@ State-of-the-art algorithms leverage techniques from online
convex optimization and interior-point methods.

e “Efficient” algorithms obtaining optimal guarantees in C%', ¢
cases are still open.
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