Outline

- Kernel methods.
- Learning kernels
 - scenario.
 - learning bounds.
 - algorithms.
Machine Learning Components

user \rightarrow \text{features} \rightarrow \text{algorithm} \rightarrow h \rightarrow \text{sample}
Machine Learning Components

critical task

user \rightarrow features

sample

algorithm

main focus of ML literature

h
Kernel Methods

- Features $\Phi : X \to \mathcal{H}$ implicitly defined via the choice of a PDS kernel K

$$\forall x, y \in X, \quad \Phi(x) \cdot \Phi(y) = K(x, y).$$

- K interpreted as a similarity measure.

- Flexibility: PDS kernel can be chosen arbitrarily.

- Help extend a variety of algorithms to non-linear predictors, e.g., SVMs, KRR, SVR, KPCA.

- PDS condition directly related to convexity of optimization problem.
Definition:
\[
\forall x, y \in \mathbb{R}^N, \quad K(x, y) = (x \cdot y + c)^d, \quad c > 0.
\]

Example: for \(N = 2 \) and \(d = 2 \),

\[
K(x, y) = (x_1 y_1 + x_2 y_2 + c)^2
\]

\[
= \begin{bmatrix}
x_1^2 \\
x_2^2 \\
\sqrt{2} x_1 x_2 \\
\sqrt{2c} x_1 \\
\sqrt{2c} x_2 \\
c
\end{bmatrix}
\begin{bmatrix}
y_1^2 \\
y_2^2 \\
\sqrt{2} y_1 y_2 \\
\sqrt{2c} y_1 \\
\sqrt{2c} y_2 \\
c
\end{bmatrix}
\]
XOR Problem

- Use second-degree polynomial kernel with $c = 1$:

$$c = 1 \quad \Rightarrow \quad x_1 x_2 = 0.$$
Other Standard PDS Kernels

- **Gaussian kernels:**

 \[K(x, y) = \exp\left(-\frac{||x - y||^2}{2\sigma^2}\right), \quad \sigma \neq 0. \]

 - Normalized kernel of \((x, x') \mapsto \exp\left(\frac{x \cdot x'}{\sigma^2}\right)\).

- **Sigmoid Kernels:**

 \[K(x, y) = \tanh(a(x \cdot y) + b), \quad a, b \geq 0. \]
SVM

(Cortes and Vapnik, 1995; Boser, Guyon, and Vapnik, 1992)

Primal:

\[
\min_{\mathbf{w}, b} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \left(1 - y_i (\mathbf{w} \cdot \Phi_K(x_i) + b) \right)_+.
\]

Dual:

\[
\max_{\alpha} \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

subject to: \(0 \leq \alpha_i \leq C \land \sum_{i=1}^{m} \alpha_i y_i = 0, i \in [1, m]. \)
Kernel Ridge Regression

(Hoerl and Kennard, 1970; Sanders et al., 1998)

Primal:

$$\min_w \lambda \|w\|^2 + \sum_{i=1}^{m} (w \cdot \Phi_K(x_i) + b - y_i)^2.$$

Dual:

$$\max_{\alpha \in \mathbb{R}^m} -\alpha^T(K + \lambda I)\alpha + 2\alpha^T y.$$
Questions

How should the user choose the kernel?

• problem similar to that of selecting features for other learning algorithms.

• poor choice learning made very difficult.

• good choice even poor learners could succeed.

The requirement from the user is thus critical.

• can this requirement be lessened?

• is a more automatic selection of features possible?
Outline

- Kernel methods.
- Learning kernels
 - scenario.
 - learning bounds.
 - algorithms.
Standard Learning with Kernels

-user \rightarrow \text{kernel } K \rightarrow \text{algorithm} \rightarrow h

- user
- kernel K
- sample
- algorithm
- h
Learning Kernel Framework

user → kernel family \mathcal{K} → algorithm $\langle K, h \rangle$ → sample
Kernel Families

- Most frequently used kernel families, $q \geq 1$,

$$\mathcal{K}_q = \left\{ K_\mu : K_\mu = \sum_{k=1}^{p} \mu_k K_k, \mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix} \in \Delta_q \right\}$$

with $\Delta_q = \left\{ \mu : \mu \geq 0, \|\mu\|_q = 1 \right\}$.

- Hypothesis sets:

$$H_q = \left\{ h \in \mathbb{H}_K : K \in \mathcal{K}_q, \|h\|_{\mathbb{H}_K} \leq 1 \right\}.$$
Relation between Norms

Lemma: for \(p, q \in (0, +\infty] \), the following holds:

\[
\forall \mathbf{x} \in \mathbb{R}^N, p \leq q \Rightarrow \|\mathbf{x}\|_q \leq \|\mathbf{x}\|_p \leq N^{\frac{1}{p} - \frac{1}{q}} \|\mathbf{x}\|_q.
\]

Proof: for the left inequalities, observe that for \(\mathbf{x} \neq 0 \),

\[
\left[\frac{\|\mathbf{x}\|_p}{\|\mathbf{x}\|_q} \right]^p = \sum_{i=1}^{N} \left[\frac{|x_i|}{\|\mathbf{x}\|_q} \right]^p \geq \sum_{i=1}^{N} \left[\frac{|x_i|}{\|\mathbf{x}\|_q} \right]^q = 1.
\]

- Right inequalities follow immediately Hölder’s inequality:

\[
\|\mathbf{x}\|_p = \left[\sum_{i=1}^{N} |x_i|^p \right]^\frac{1}{p} \leq \left[\left(\sum_{i=1}^{N} (|x_i|^p)^{\frac{q}{q-\frac{q}{p}}} \right)^{\frac{q}{q-\frac{q}{p}}} \left(\sum_{i=1}^{N} (1)^{\frac{q}{q-\frac{q}{p}}} \right)^{1-\frac{p}{q}} \right]^\frac{1}{p} = \|\mathbf{x}\|_q N^{\frac{1}{p} - \frac{1}{q}}.
\]
Single Kernel Guarantee

(Koltchinskii and Panchenko, 2002)

Theorem: fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $h \in H_1$,

$$R(h) \leq \hat{R}_\rho(h) + \frac{2}{\rho} \frac{\sqrt{\text{Tr}[K]}}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$
Multiple Kernel Guarantee

(Cortes, MM, and Rostamizadeh, 2010)

Theorem: fix $\rho > 0$. Let $q, r \geq 1$ with $\frac{1}{q} + \frac{1}{r} = 1$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $h \in H_q$ and any integer $1 \leq s \leq r$:

$$R(h) \leq \hat{R}_{\rho}(h) + \frac{2}{\rho} \sqrt{\frac{23}{22} s \|u\|_s} + \sqrt{\log \frac{1}{\delta}},$$

with $u = (\text{Tr}[K_1], \ldots, \text{Tr}[K_p])^\top$.
Proof

- Let $q, r \geq 1$ with $\frac{1}{q} + \frac{1}{r} = 1$.

\[
\hat{\mathcal{R}}_S(H_q) = \frac{1}{m} \mathbb{E} \left[\sup_{h \in H_q} \sum_{i=1}^{m} \sigma_i h(x_i) \right] \\
= \frac{1}{m} \mathbb{E} \left[\sup_{\mu \in \Delta_q, \alpha^\top K_\mu \alpha \leq 1} \sum_{i,j=1}^{m} \sigma_i \alpha_j K_\mu(x_i, x_j) \right] \\
= \frac{1}{m} \mathbb{E} \left[\sup_{\mu \in \Delta_q, \alpha^\top K_\mu \alpha \leq 1} \sigma^\top K_\mu \alpha \right] = \frac{1}{m} \mathbb{E} \left[\sup_{\mu \in \Delta_q, \|\alpha\|_{K_\mu}^{1/2} \leq 1} \langle \sigma, \alpha \rangle_{K_\mu}^{1/2} \right] \\
= \frac{1}{m} \mathbb{E} \left[\sup_{\mu \in \Delta_q} \sqrt{\sigma^\top K_\mu \sigma} \right] \quad \text{(Cauchy-Schwarz)} \\
= \frac{1}{m} \mathbb{E} \left[\sup_{\mu \in \Delta_q} \sqrt{\mu \cdot u_\sigma} \right] \quad \text{[}u_\sigma = (\sigma^\top K_1 \sigma, \ldots, \sigma^\top K_p \sigma)^\top\text{]} \\
= \frac{1}{m} \mathbb{E} \left[\sqrt{\|u_\sigma\|_r} \right]. \quad \text{(definition of dual norm)}
Lemma

Lemma: Let K be a kernel matrix for a finite sample. Then, for any integer r,

$$
\mathbb{E}_{\sigma} \left[(\sigma^\top K \sigma)^r \right] \leq \left(\frac{23}{22} r \text{ Tr}[K] \right)^r.
$$

Proof: combinatorial argument.
Proof

For any $1 \leq s \leq r$,

\[
\hat{K}_S(H_q) = \frac{1}{m} \mathbb{E}_\sigma \left[\sqrt{\|u_\sigma\|_r} \right] \\
\leq \frac{1}{m} \mathbb{E}_\sigma \left[\sqrt{\|u_\sigma\|_s} \right] \\
= \frac{1}{m} \mathbb{E}_\sigma \left[\left(\sum_{k=1}^{p} (\sigma^T K_k \sigma)^s \right)^{\frac{1}{2s}} \right] \\
\leq \frac{1}{m} \left(\mathbb{E}_\sigma \left[\sum_{k=1}^{p} (\sigma^T K_k \sigma)^s \right] \right)^{\frac{1}{2s}} \quad \text{(Jensen’s inequality)} \\
= \frac{1}{m} \left(\sum_{k=1}^{p} \mathbb{E}_\sigma \left[(\sigma^T K_k \sigma)^s \right] \right)^{\frac{1}{2s}} \\
\leq \frac{1}{m} \left(\sum_{k=1}^{p} \left(\frac{23}{22} s \text{Tr}[K_k] \right)^s \right)^{\frac{1}{2s}} = \frac{\sqrt{23/22} s \|u\|_s}{m}. \quad \text{(lemma)}
\]
Corollary: fix $\rho > 0$. For any $\delta > 0$, with probability $1 - \delta$, the following holds for all $h \in H_1$:

$$R(h) \leq \hat{R}_\rho(h) + \frac{2}{\rho} \sqrt{\frac{23}{22} e [\log p] \max_{k=1}^{p} \text{Tr}[K_k]} \frac{1}{m} + \frac{1}{2m}.$$

- weak dependency on p.
- bound valid for $p \gg m$.
- $\text{Tr}[K_k] \leq m \max_x K_k(x, x)$.

(Cortes, MM, and Rostamizadeh, 2010)
Proof

- For \(q = 1 \), the bound holds for any integer \(s \geq 1 \)

\[
R(h) \leq \hat{R}_\rho(h) + \frac{2}{\rho} \sqrt{\frac{23}{22} s \| u \|_s} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},
\]

with

\[
\| u \|_s = s \left[\sum_{k=1}^{p} \text{Tr}[K_k]^s \right]^{\frac{1}{s}} \leq s p \frac{1}{s} \max_{k=1}^{p} \text{Tr}[K_k].
\]

- The function \(s \mapsto s p \frac{1}{s} \) reaches its minimum at \(\log p \).
Lower Bound

- **Tight bound:**
 - dependency $\sqrt{\log p}$ cannot be improved.
 - argument based on VC dimension or example.

- **Observations:** case $\mathcal{X} = \{-1, +1\}^p$.
 - canonical projection kernels $K_k(x, x') = x_k x_k'$.
 - H_1 contains $J_p = \{x \mapsto sx_k : k \in [1, p], s \in \{-1, +1\}\}$.
 - $\text{VCdim}(J_p) = \Omega(\log p)$.
 - for $\rho = 1$ and $h \in J_p$, $\hat{R}_\rho(h) = \hat{R}(h)$.
 - VC lower bound: $\Omega\left(\sqrt{\text{VCdim}(J^p)/m}\right)$.
Pseudo-Dimension Bound

(Srebro and Ben-David, 2006)

Assume that for all \(k \in [1, p] \), \(K_k(x, x) \leq R^2 \). Then, for any \(\delta > 0 \), with probability at least \(1 - \delta \), for any \(h \in H_1 \),

\[
R(h) \leq \hat{R}_\rho(h) + \sqrt{\frac{2 + p \log \frac{128em^3R^2}{\rho^2p}}{8} + \frac{256R^2}{\rho^2} \log \frac{em}{8R} \log \frac{128mR^2}{\rho^2} + \log \left(\frac{1}{\delta} \right)}.
\]

- bound additive in \(p \) (modulo log terms).
- not informative for \(p > m \).
- based on pseudo-dimension of kernel family.
- similar guarantees for other families.
Comparison

\[\frac{\rho}{R} = .2 \]
L_q Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)

Corollary: fix $\rho > 0$. Let $q, r \geq 1$ with $\frac{1}{q} + \frac{1}{r} = 1$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $h \in H_q$:

$$R(h) \leq \tilde{R}_\rho(h) + \frac{2}{\rho} \sqrt{\frac{23}{22} r p^\frac{1}{r} \max_{k=1}^p \text{Tr}[K_k]} \frac{\max_k \text{Tr}[K_k]}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

- mild dependency on p.
- $\text{Tr}[K_k] \leq m \max_x K_k(x, x)$.
Lower Bound

Tight bound:

- dependency $p^{\frac{1}{2r}}$ cannot be improved.
- in particular $p^{\frac{1}{4}}$ tight for L_2 regularization.

Observations: equal kernels.

- $\sum_{k=1}^{p} \mu_k K_k = \left(\sum_{k=1}^{p} \mu_k \right) K_1$.
- thus, $\|h\|_{\mathbb{H}_{K_1}}^{\frac{2}{r}} = \left(\sum_{k=1}^{p} \mu_k \right) \|h\|_{\mathbb{H}_K}^{\frac{2}{r}}$ for $\sum_{k=1}^{p} \mu_k \neq 0$.
- $\sum_{k=1}^{p} \mu_k \leq p^{\frac{1}{r}} \|\mu\|_q = p^{\frac{1}{r}}$ (Hölder’s inequality).
- H_q coincides with $\{ h \in \mathbb{H}_{K_1} : \|h\|_{\mathbb{H}_K} \leq p^{\frac{1}{2r}} \}$.
Outline

- Kernel methods.
- Learning kernels
 - scenario.
 - learning bounds.
 - algorithms.
General LK Formulation - SVMs

Notation:
- \mathcal{K} set of PDS kernel functions.
- $\overline{\mathcal{K}}$ kernel matrices associated to \mathcal{K}, assumed convex.
- $Y \in \mathbb{R}^{m \times m}$ diagonal matrix with $Y_{ii} = y_i$.

Optimization problem:
\[
\begin{align*}
\min_{\mathcal{K} \in \overline{\mathcal{K}}} \max_{\alpha} & \quad 2 \alpha^\top 1 - \alpha^\top Y^\top K Y \alpha \\
\text{subject to:} & \quad 0 \leq \alpha \leq C \wedge \alpha^\top y = 0.
\end{align*}
\]
- convex problem: function linear in K, convexity of pointwise maximum.
Parameterized LK Formulation

Notation:
- \((K_\mu)_{\mu \in \Delta}\) parameterized set of PDS kernel functions.
- \(\Delta\) convex set, \(\mu \mapsto K_\mu\) concave function.
- \(Y \in \mathbb{R}^{m \times m}\) diagonal matrix with \(Y_{ii} = y_i\).

Optimization problem:
\[
\min_{\mu \in \Delta} \max_\alpha 2\alpha^\top 1 - \alpha^\top Y^\top K_\mu Y \alpha \\
\text{subject to: } 0 \leq \alpha \leq C \land \alpha^\top y = 0.
\]
- convex problem: function convex in \(\mu\), convexity of pointwise maximum.
Non-Negative Combinations

\[K_\mu = \sum_{k=1}^{p} \mu_k K_k, \mu \in \Delta_1. \]

By von Neumann’s generalized minimax theorem (convexity wrt \(\mu \), concavity wrt \(\alpha \), \(\Delta_1 \) convex and compact, \(A \) convex and compact):

\[
\begin{align*}
\min_{\mu \in \Delta_1} \max_{\alpha \in A} & \quad 2 \alpha^\top 1 - \alpha^\top Y^\top K_\mu Y \alpha \\
= \max_{\alpha \in A} \min_{\mu \in \Delta_1} & \quad 2 \alpha^\top 1 - \alpha^\top Y^\top K_\mu Y \alpha \\
= \max_{\alpha \in A} & \quad 2 \alpha^\top 1 - \max_{\mu \in \Delta_1} \alpha^\top Y^\top K_\mu Y \alpha \\
= \max_{\alpha \in A} & \quad 2 \alpha^\top 1 - \max_{k \in [1,p]} \alpha^\top Y^\top K_k Y \alpha.
\end{align*}
\]
Non-Negative Combinations

(Lanckriet et al., 2004)

- **Optimization problem**: in view of the previous analysis, the problem can be rewritten as the following QCQP.

\[
\begin{align*}
\max_{\alpha, t} \quad & 2\alpha^\top \mathbf{1} - t \\
\text{subject to:} \quad & \forall k \in [1, p], \ t \geq \alpha^\top \mathbf{Y}^\top \mathbf{K}_k \mathbf{Y} \alpha; \\
& 0 \leq \alpha \leq \mathbf{C} \land \alpha^\top \mathbf{y} = 0.
\end{align*}
\]

- Complexity (interior-point methods): \(O(pm^3) \).
Equivalent Primal Formulation

![Optimization problem:](equation)

\[
\min_{w, \mu \in \Delta_q} \frac{1}{2} \sum_{k=1}^{p} \frac{\|w_k\|^2}{\mu_k} + C \sum_{i=1}^{m} \max \left\{ 0, 1 - y_i \left(\sum_{k=1}^{p} w_k \cdot \Phi_k(x_i) \right) \right\}.
\]
Lots of Optimization Solutions

- QCQP (Lanckriet et al., 2004).

- Wrapper methods — interleaving call to SVM solver and update of μ:
 - SILP (Sonnenburg et al., 2006).
 - Reduced gradient (SimpleML) (Rakotomamonjy et al., 2008).
 - Newton’s method (Kloft et al., 2009).
 - Mirror descent (Nath et al., 2009).

- Many other methods proposed.
Does It Work?

Experiments:

- this algorithm and its different optimization solutions often do not significantly outperform the simple uniform combination kernel in practice!
- observations corroborated by NIPS workshops.

Alternative algorithms: significant improvement (see empirical results of (Gönen and Alpaydin, 2011)).

- centered alignment-based LK algorithms (Cortes, MM, and Rostamizadeh, 2010 and 2012).
LK Formulation - KRR

(Cortes, MM, and Rostamizadeh, 2009)

- Kernel family:
 - non-negative combinations.
 - L_q regularization.

- Optimization problem:

$$\min_{\mu} \max_{\alpha} - \lambda \alpha^\top \alpha - \sum_{k=1}^{p} \mu_k \alpha^\top K_k \alpha + 2\alpha^\top y$$

subject to: $\mu \geq 0 \land \|\mu - \mu_0\|_q \leq \Lambda$.

- convex optimization: linearity in μ and convexity of pointwise maximum.
Projected Gradient

- Solving maximization problem in α, closed-form solution $\alpha = (K_\mu + \lambda I)^{-1}y$, reduces problem to
 $\min_\mu y^\top (K_\mu + \lambda I)^{-1}y$

 subject to: $\mu \geq 0 \land \|\mu - \mu_0\|_2 \leq \Lambda$.

- Convex optimization problem, one solution using projection-based gradient descent:

 $\frac{\partial F}{\partial \mu_k} = \text{Tr} \left[\frac{\partial y^\top (K_\mu + \lambda I)^{-1}y}{\partial (K_\mu + \lambda I)} \frac{\partial (K_\mu + \lambda I)}{\partial \mu_k} \right]$

 $= - \text{Tr} \left[(K_\mu + \lambda I)^{-1}yy^\top (K_\mu + \lambda I)^{-1} \frac{\partial (K_\mu + \lambda I)}{\partial \mu_k} \right]$

 $= - \text{Tr} \left[(K_\mu + \lambda I)^{-1}yy^\top (K_\mu + \lambda I)^{-1}K_k \right]$

 $= - y^\top (K_\mu + \lambda I)^{-1}K_k(K_\mu + \lambda I)^{-1}y = -\alpha^\top K_k \alpha. \quad \square$
Proj. Grad. KRR - L₂ Reg.

ProjectionBasedGradientDescent\(((K_k)_{k \in [1,p]}, \mu_0)\)

1. \(\mu \leftarrow \mu_0\)
2. \(\mu' \leftarrow \infty\)
3. **while** \(\|\mu' - \mu\| > \epsilon\) **do**
 4. \(\mu \leftarrow \mu'\)
 5. \(\alpha \leftarrow (K_\mu + \lambda I)^{-1}y\)
 6. \(\mu' \leftarrow \mu + \eta (\alpha^\top K_1 \alpha, \ldots, \alpha^\top K_p \alpha)^\top\)
 7. **for** \(k \leftarrow 1\) **to** \(p\) **do**
 8. \(\mu'_k \leftarrow \max(0, \mu'_k)\)
 9. \(\mu' \leftarrow \mu_0 + \Lambda \frac{\mu' - \mu_0}{\|\mu' - \mu_0\|}\)
10. **return** \(\mu'\)
Interpolated Step KRR - L_2 Reg.

\[
\text{INTERPOLATED ITERATIVE ALGORITHM}\left(\left(K_k\right)_{k \in \left[1,p\right]}, \mu_0\right)
\]

1. $\alpha \leftarrow \infty$
2. $\alpha' \leftarrow (K_{\mu_0} + \lambda I)^{-1}y$
3. \textbf{while} $\|\alpha' - \alpha\| > \epsilon$ \textbf{do}
4. \hspace{1em} $\alpha \leftarrow \alpha'$
5. \hspace{1em} $v \leftarrow (\alpha^\top K_1 \alpha, \ldots, \alpha^\top K_p \alpha)^\top$
6. \hspace{1em} $\mu \leftarrow \mu_0 + \Lambda \frac{v}{\|v\|}$
7. \hspace{1em} $\alpha' \leftarrow \eta \alpha + (1 - \eta)(K_\mu + \lambda I)^{-1}y$
8. \hspace{1em} \textbf{return} α'

Simple and very efficient: few iterations (less than 15).
L₂-Regularized Combinations

(Cortes, MM, and Rostamizadeh, 2009)

- Dense combinations are beneficial when using many kernels.

- Combining kernels based on single features, can be viewed as principled feature weighting.

![Graphs showing performance metrics for DVD and Reuters (acq) datasets.](image-url)
Conclusion

- Solid theoretical guarantees suggesting the use of a large number of base kernels.
- Broad literature on optimization techniques but often no significant improvement over uniform combination.
- Recent algorithms with significant improvements, in particular non-linear combinations.
- Still many theoretical and algorithmic questions left to explore.

References

- Sham M. Kakade, Shai Shalev-Shwartz, Ambuj Tewari: Regularization Techniques for Learning with Matrices. JMLR 13: 1865-1890, 2012.

References

